An optimized resource scheduling algorithm based on GA and ACO algorithm in fog computing
With the rise of Internet of Things (IoT) technology, fog computing has emerged as a promising solution for low-latency and real-time applications. As a highly virtualized platform, fog computing provides computing and storage services at the network edge to meet users’ needs for latency-sensitive a...
Saved in:
| Published in | The Journal of supercomputing Vol. 80; no. 3; pp. 4248 - 4285 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.02.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0920-8542 1573-0484 |
| DOI | 10.1007/s11227-023-05571-y |
Cover
| Abstract | With the rise of Internet of Things (IoT) technology, fog computing has emerged as a promising solution for low-latency and real-time applications. As a highly virtualized platform, fog computing provides computing and storage services at the network edge to meet users’ needs for latency-sensitive applications. However, resource scheduling is crucial in meeting customer demands and improving service quality. If the resource scheduling problem for large-scale service requests cannot be effectively solved, it will reduce resource utilization and decrease user satisfaction. Therefore, we propose a resource scheduling model called Normalization Processing to find the optimal pheromone for achieving the lowest total cost. The optimal resource scheduling result can be achieved by changing the ant pheromone concentration in the simulated foraging process. We also propose a resource scheduling algorithm called New Genetic Ant Colony Optimization (NGACO) Algorithm that a combination of the improved genetic algorithm (GA) and the improved ant colony optimization (ACO) algorithm. The GA is improved by incorporating a randomized initialization strategy, while the ACO algorithm is enhanced with the use of niche technology. NGACO algorithm introduces a pheromone update method optimization of three operators and a pheromone correction factor in the pheromone update rule. It can update pheromone generation by roulette algorithm. The NGACO algorithm effectively improves the exploratory power of the algorithm while ensuring initial population diversity. Additionally, we introduce a penalty mechanism to handle constraints, while the niche technology addresses the optimization problem of multimodal functions. The experimental results show that the NGACO algorithm demonstrates excellent resource scheduling performance, with a 14.7%, 25%, and 12.8% reduction in makespan, economic cost, and total cost, respectively, compared to the ACO algorithm. Furthermore, the load balancing is 34.7% higher than the ACO algorithm. |
|---|---|
| AbstractList | With the rise of Internet of Things (IoT) technology, fog computing has emerged as a promising solution for low-latency and real-time applications. As a highly virtualized platform, fog computing provides computing and storage services at the network edge to meet users’ needs for latency-sensitive applications. However, resource scheduling is crucial in meeting customer demands and improving service quality. If the resource scheduling problem for large-scale service requests cannot be effectively solved, it will reduce resource utilization and decrease user satisfaction. Therefore, we propose a resource scheduling model called Normalization Processing to find the optimal pheromone for achieving the lowest total cost. The optimal resource scheduling result can be achieved by changing the ant pheromone concentration in the simulated foraging process. We also propose a resource scheduling algorithm called New Genetic Ant Colony Optimization (NGACO) Algorithm that a combination of the improved genetic algorithm (GA) and the improved ant colony optimization (ACO) algorithm. The GA is improved by incorporating a randomized initialization strategy, while the ACO algorithm is enhanced with the use of niche technology. NGACO algorithm introduces a pheromone update method optimization of three operators and a pheromone correction factor in the pheromone update rule. It can update pheromone generation by roulette algorithm. The NGACO algorithm effectively improves the exploratory power of the algorithm while ensuring initial population diversity. Additionally, we introduce a penalty mechanism to handle constraints, while the niche technology addresses the optimization problem of multimodal functions. The experimental results show that the NGACO algorithm demonstrates excellent resource scheduling performance, with a 14.7%, 25%, and 12.8% reduction in makespan, economic cost, and total cost, respectively, compared to the ACO algorithm. Furthermore, the load balancing is 34.7% higher than the ACO algorithm. |
| Author | Fang, Qin Tang, Dan Yin, Chao Li, Hongyi Peng, Yingjian Xu, Xiaogang |
| Author_xml | – sequence: 1 givenname: Chao surname: Yin fullname: Yin, Chao email: cs_yinchao@163.com organization: School of Computer and Big Data Science, Jiujiang University – sequence: 2 givenname: Qin surname: Fang fullname: Fang, Qin organization: School of Computer and Big Data Science, Jiujiang University – sequence: 3 givenname: Hongyi surname: Li fullname: Li, Hongyi organization: School of Computer and Big Data Science, Jiujiang University – sequence: 4 givenname: Yingjian surname: Peng fullname: Peng, Yingjian organization: School of Computer and Big Data Science, Jiujiang University – sequence: 5 givenname: Xiaogang surname: Xu fullname: Xu, Xiaogang organization: School of Computer and Big Data Science, Jiujiang University – sequence: 6 givenname: Dan surname: Tang fullname: Tang, Dan organization: School of Computer Science and Electronic Engineering (CSEE), Hunan University (HNU) |
| BookMark | eNp9kD9PwzAQxS1UJNrCF2CyxBzw_8RjVEFBqsQCA5PlJk7qKrGDnQ7l02MIEoih0-l073f37i3AzHlnALjG6BYjlN9FjAnJM0RohjjPcXY8A3PM89Sygs3AHEmCsoIzcgEWMe4RQozmdA7eSgf9MNrefpgaBhP9IVQGxmpn6kNnXQt11_pgx10PtzomjXdwXULtaliunv9MrYONb2Hl--EwJvASnDe6i-bqpy7B68P9y-ox2zyvn1blJqsolmPGpZCiMERuGauLRhZECFRxLSTe6gLXIhlHguWYNVUjhTEN1VIizEWdC1ZzugQ3094h-PeDiaPapx9cOqko4YJLjiVOqmJSVcHHGEyjKjvq0Xo3Bm07hZH6ClJNQaoUpPoOUh0TSv6hQ7C9DsfTEJ2gmMSuNeHX1QnqExbnh0Y |
| CitedBy_id | crossref_primary_10_1016_j_jwpe_2024_106547 crossref_primary_10_3390_wevj15090405 crossref_primary_10_59324_ejaset_2025_3_2__08 crossref_primary_10_32604_cmes_2025_059786 |
| Cites_doi | 10.1109/TCYB.2020.2989309 10.1109/ACCESS.2021.3064831 10.1049/ntw2.12001 10.1007/s10586-021-03481-3 10.1109/ACCESS.2019.2897580 10.1145/1721654.1721672 10.1016/j.future.2021.11.019 10.1016/j.swevo.2019.04.008 10.1016/j.jcss.2011.12.014 10.3233/JIFS-212220 10.1109/TII.2018.2851241 10.1109/ACCESS.2020.2968378 10.1109/ACCESS.2022.3155767 10.1007/s11227-021-04262-w 10.3233/JIFS-211214 10.1109/ACCESS.2021.3094876 10.1007/s11227-020-03606-2 10.1016/j.comnet.2004.12.001 10.1109/ACCESS.2020.3016762 10.3390/a14110325 10.1109/ACCESS.2016.2529723 10.1109/ACCESS.2019.2900029 10.1016/j.swevo.2016.09.002 10.1016/j.future.2019.05.052 10.1016/j.cogsys.2020.03.001 10.1109/TPDS.2017.2754366 10.1109/ACCESS.2014.2332453 10.1109/ICNDS.2010.5479311 10.1109/INFOCOM.2016.7524355 10.1109/ICISCAE52414.2021.9590674 10.1109/PDGC.2016.7913163 10.1109/ICC.2017.7996858 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s11227-023-05571-y |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0484 |
| EndPage | 4285 |
| ExternalDocumentID | 10_1007_s11227_023_05571_y |
| GrantInformation_xml | – fundername: Science and Technology Project of Jiangxi Provincial Department of Education grantid: GJJ211816 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-c319t-596968e29b44d8f982660c5a691ba81d6920064714fcf96eef3a990156d764d53 |
| IEDL.DBID | U2A |
| ISSN | 0920-8542 |
| IngestDate | Mon Oct 06 18:32:21 EDT 2025 Wed Oct 01 03:43:56 EDT 2025 Thu Apr 24 23:02:44 EDT 2025 Fri Feb 21 02:41:38 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Fog computing Resource scheduling model NGACO algorithm Pheromone |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-596968e29b44d8f982660c5a691ba81d6920064714fcf96eef3a990156d764d53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3256595191 |
| PQPubID | 2043774 |
| PageCount | 38 |
| ParticipantIDs | proquest_journals_3256595191 crossref_citationtrail_10_1007_s11227_023_05571_y crossref_primary_10_1007_s11227_023_05571_y springer_journals_10_1007_s11227_023_05571_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240200 2024-02-00 20240201 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 2 year: 2024 text: 20240200 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
| PublicationTitle | The Journal of supercomputing |
| PublicationTitleAbbrev | J Supercomput |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Wan, Zuo, Chen, Tang, Chen (CR10) 2020; 8 Jin, Tang, Cai (CR34) 2022; 10 Yin, Luo, Luo (CR12) 2018; 14 Devi, Valli (CR14) 2021; 77 Deng, Xu, Zhao (CR32) 2019; 7 Zhai, Feng (CR35) 2022; 42 CR18 Akyildiz, Wang, Wang (CR21) 2005; 47 Nagendranth, Khanna, Krishnaraj, Sikkandar, Aboamer, Surendran (CR36) 2022; 78 Armbrust, Fox, Griffith, Joseph, Katz, Konwinski, Lee, Patterson, Rabkin, Stoica, Zaharia (CR7) 2010; 53 Wu, Garg, Buyya (CR40) 2012; 78 Gong, Zhang, Zhou (CR39) 2018; 29 Lin, Wu, Wang (CR6) 2016; 5 Li, Xia, Li, Zeng (CR30) 2020; 62 Ye, Zhang, Ruan (CR19) 2009; 37 Zhai, Feng (CR23) 2022; 42 Peake, Amos, Costen, Masala, Lloyd (CR31) 2022; 129 Huang, Gong, Kwong, Wang, Zhang (CR38) 2020; 24 Qian, Fu, Li (CR22) 2022; 10 Bisht, Vampugani (CR13) 2022; 12 Hu, Wen, Chua, Li (CR1) 2014; 2 Loheswaran (CR16) 2021; 10 Zhou, Wang, Zhou (CR37) 2021; 9 McKay, Beckman, Conover (CR42) 1979; 21 Huang, Lin, Xiong, Pan, Huang (CR29) 2021; 51 Chen, You, Liu, Li (CR28) 2019; 7 CR4 Liu, Wang (CR24) 2020; 8 CR3 CR5 Yu, Shen, Cai, Liu, Pu (CR8) 2018; 29 Helton, Davis (CR43) 1996; 11 Sun, Song, Jara, Bie (CR2) 2016; 4 CR27 Yu, Shen, Sapra, Ye, Cai (CR9) 2017; 28 CR45 Silva, Han (CR11) 2019; 100 Del Ser, Osaba, Molina, Yang, Salcedo-Sanz, Camacho, Das, Suganthan, Coello, Herrera (CR25) 2019; 48 CR44 CR20 Rakshit, Konar, Das (CR26) 2017; 33 Liu, Yang (CR15) 2021; 14 Tang, Zhang, Li, Zhang (CR33) 2018; 9 Yadav, Tripathi, Sharma (CR17) 2022; 25 Christian, George (CR41) 2004 L Yu (5571_CR9) 2017; 28 IF Akyildiz (5571_CR21) 2005; 47 AM Yadav (5571_CR17) 2022; 25 J Ye (5571_CR19) 2009; 37 H Hu (5571_CR1) 2014; 2 5571_CR18 YJ Gong (5571_CR39) 2018; 29 W Deng (5571_CR32) 2019; 7 J Bisht (5571_CR13) 2022; 12 Q Jin (5571_CR34) 2022; 10 BN Silva (5571_CR11) 2019; 100 JC Helton (5571_CR43) 1996; 11 K Loheswaran (5571_CR16) 2021; 10 P Rakshit (5571_CR26) 2017; 33 J Del Ser (5571_CR25) 2019; 48 5571_CR3 M Armbrust (5571_CR7) 2010; 53 J Chen (5571_CR28) 2019; 7 MD McKay (5571_CR42) 1979; 21 5571_CR5 L Liu (5571_CR15) 2021; 14 5571_CR4 W Lin (5571_CR6) 2016; 5 5571_CR45 L Tang (5571_CR33) 2018; 9 5571_CR44 5571_CR20 J Peake (5571_CR31) 2022; 129 MVSS Nagendranth (5571_CR36) 2022; 78 L Zhai (5571_CR35) 2022; 42 J Li (5571_CR30) 2020; 62 LL Wu (5571_CR40) 2012; 78 L Yu (5571_CR8) 2018; 29 C Qian (5571_CR22) 2022; 10 5571_CR27 Q Zhou (5571_CR37) 2021; 9 S Liu (5571_CR24) 2020; 8 L Yin (5571_CR12) 2018; 14 T Huang (5571_CR29) 2021; 51 PR Christian (5571_CR41) 2004 T Huang (5571_CR38) 2020; 24 Y Wan (5571_CR10) 2020; 8 L Zhai (5571_CR23) 2022; 42 KL Devi (5571_CR14) 2021; 77 Y Sun (5571_CR2) 2016; 4 |
| References_xml | – ident: CR45 – ident: CR18 – volume: 51 start-page: 5595 issue: 11 year: 2021 end-page: 5608 ident: CR29 article-title: An ant colony optimization-based multiobjective service replicas placement strategy for fog computing publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2020.2989309 – volume: 10 start-page: 28322 year: 2022 end-page: 28332 ident: CR34 article-title: Research on dynamic path planning based on the fusion algorithm of improved ant colony optimization and rolling window method publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3064831 – volume: 5 start-page: 1 year: 2016 end-page: 10 ident: CR6 article-title: A heuristic task scheduling algorithm for heterogeneous virtual clusters publication-title: Sci Program – volume: 10 start-page: 24 year: 2021 end-page: 33 ident: CR16 article-title: An upgraded fruit fly optimisation algorithm for solving task scheduling and resource management problem in cloud infrastructure publication-title: IET Netw. doi: 10.1049/ntw2.12001 – volume: 25 start-page: 983 year: 2022 end-page: 998 ident: CR17 article-title: An enhanced multi-objective fireworks algorithm for task scheduling in fog computing environment publication-title: Clust Comput doi: 10.1007/s10586-021-03481-3 – volume: 9 start-page: 1585 year: 2018 end-page: 1594 ident: CR33 article-title: A new hybrid task scheduling algorithm designed based on ACO and GA publication-title: J Inf Hiding Multim Signal Process – volume: 24 start-page: 508 issue: 3 year: 2020 end-page: 522 ident: CR38 article-title: A niching memetic algorithm for multi-solution traveling salesman problem publication-title: IEEE Trans Evol Comput – ident: CR4 – volume: 7 start-page: 20281 year: 2019 end-page: 20292 ident: CR32 article-title: An improved ant colony optimization algorithm based on hybrid strategies for scheduling problem publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2897580 – volume: 53 start-page: 50 issue: 4 year: 2010 end-page: 58 ident: CR7 article-title: A view of cloud computing publication-title: Commun ACM doi: 10.1145/1721654.1721672 – volume: 37 start-page: 809 year: 2009 end-page: 817 ident: CR19 article-title: A new genetic algorithm based on improved crossover and self-identify high mutation operators publication-title: J Fuzhou Univ – volume: 129 start-page: 174 year: 2022 end-page: 186 ident: CR31 article-title: PACO-VMP: parallel ant colony optimization for virtual machine placement publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2021.11.019 – volume: 21 start-page: 239 issue: 2 year: 1979 end-page: 245 ident: CR42 article-title: Comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics – volume: 48 start-page: 220 year: 2019 end-page: 250 ident: CR25 article-title: Bio-inspired computation: where we stand and what’s next publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2019.04.008 – volume: 12 start-page: 1 year: 2022 end-page: 20 ident: CR13 article-title: Load and cost-aware min-min workflow scheduling algorithm for heterogeneous resources in fog, cloud, and edge scenarios publication-title: Int J Cloud Appl Comput (IJCAC) – volume: 78 start-page: 1280 issue: 5 year: 2012 end-page: 1299 ident: CR40 article-title: Sla-based admission control for a software-as-a-service provider in cloud computing environments publication-title: J Comput Syst Sci doi: 10.1016/j.jcss.2011.12.014 – volume: 42 start-page: 5773 year: 2022 end-page: 5788 ident: CR35 article-title: An improved ant colony algorithm based on artificial potential field and quantum evolution theory publication-title: J Intell Fuzzy Syst doi: 10.3233/JIFS-212220 – volume: 14 start-page: 4712 issue: 10 year: 2018 end-page: 4721 ident: CR12 article-title: Tasks scheduling and resource allocation in fog computing based on containers for smart manufacturing publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2018.2851241 – volume: 8 start-page: 19286 year: 2020 end-page: 19296 ident: CR10 article-title: Efficiency-oriented production scheduling scheme: an ant colony system method publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2968378 – year: 2004 ident: CR41 publication-title: Monte Carlo statistical methods – volume: 10 start-page: 25645 year: 2022 end-page: 25656 ident: CR22 article-title: Route planning for chain restaurants with improved delivery mode using an adaptive genetic algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3155767 – ident: CR27 – volume: 78 start-page: 9102 year: 2022 end-page: 9120 ident: CR36 article-title: Type II fuzzy-based clustering with improved ant colony optimization-based routing (t2fcatr) protocol for secured data transmission in manet publication-title: J Supercomput doi: 10.1007/s11227-021-04262-w – volume: 42 start-page: 1813 year: 2022 end-page: 1823 ident: CR23 article-title: A novel evacuation path planning method based on improved genetic algorithm publication-title: J Intell Fuzzy Syst doi: 10.3233/JIFS-211214 – volume: 9 start-page: 104513 year: 2021 end-page: 104521 ident: CR37 article-title: DNA design based on improved ant colony optimization algorithm with bloch sphere publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3094876 – volume: 11 start-page: 197 issue: 3 year: 1996 end-page: 206 ident: CR43 article-title: On Latin hypercube sampling for structural reliability analysis publication-title: Probab Eng Mech – volume: 77 start-page: 8252 issue: 8 year: 2021 end-page: 8280 ident: CR14 article-title: Multi-objective heuristics algorithm for dynamic resource scheduling in the cloud computing environment publication-title: J Supercomput doi: 10.1007/s11227-020-03606-2 – volume: 47 start-page: 445 issue: 4 year: 2005 end-page: 487 ident: CR21 article-title: Wireless mesh networks: a survey publication-title: Comput Netw doi: 10.1016/j.comnet.2004.12.001 – ident: CR44 – volume: 8 start-page: 150878 year: 2020 end-page: 150890 ident: CR24 article-title: Collaborative optimization scheduling of cloud service resources based on improved genetic algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3016762 – volume: 14 start-page: 325 year: 2021 ident: CR15 article-title: Travel time reliability-based rescue resource scheduling for accidents concerning transport of dangerous goods by rail publication-title: Algorithms doi: 10.3390/a14110325 – volume: 4 start-page: 766 year: 2016 end-page: 773 ident: CR2 article-title: Internet of things and big data analytics for smart and connected communities publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2529723 – ident: CR3 – volume: 28 start-page: 446 issue: 2 year: 2017 end-page: 461 ident: CR9 article-title: Core: cooperative end-to-end traffic redundancy elimination for reducing cloud bandwidth cost publication-title: IEEE Trans Parallel Distrib Syst – volume: 7 start-page: 56317 year: 2019 end-page: 56328 ident: CR28 article-title: Entropy-based dynamic heterogeneous ant colony optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2900029 – volume: 33 start-page: 18 year: 2017 end-page: 45 ident: CR26 article-title: Noisy evolutionary optimization algorithms—a comprehensive survey publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2016.09.002 – volume: 100 start-page: 557 year: 2019 end-page: 568 ident: CR11 article-title: Mutation operator integrated ant colony optimization based domestic appliance scheduling for lucrative demand side management publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2019.05.052 – volume: 62 start-page: 1 year: 2020 end-page: 9 ident: CR30 article-title: A pseudo-dynamic search ant colony optimization algorithm with improved negative feedback mechanism publication-title: Cogn Syst Res doi: 10.1016/j.cogsys.2020.03.001 – volume: 29 start-page: 450 issue: 2 year: 2018 end-page: 465 ident: CR8 article-title: Towards bandwidth guarantee for virtual clusters under demand uncertainty in multi-tenant clouds publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2017.2754366 – volume: 29 start-page: 2944 issue: 7 year: 2018 end-page: 2959 ident: CR39 article-title: Learning multimodal parameters: a bare-bones niching differential evolution approach publication-title: IEEE Trans Neural Netw Learn Syst – volume: 2 start-page: 652 year: 2014 end-page: 687 ident: CR1 article-title: Toward scalable systems for big data analytics: a technology tutorial publication-title: IEEE Access doi: 10.1109/ACCESS.2014.2332453 – ident: CR5 – ident: CR20 – volume: 28 start-page: 446 issue: 2 year: 2017 ident: 5571_CR9 publication-title: IEEE Trans Parallel Distrib Syst – ident: 5571_CR27 doi: 10.1109/ICNDS.2010.5479311 – volume: 129 start-page: 174 year: 2022 ident: 5571_CR31 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2021.11.019 – volume: 2 start-page: 652 year: 2014 ident: 5571_CR1 publication-title: IEEE Access doi: 10.1109/ACCESS.2014.2332453 – volume: 42 start-page: 5773 year: 2022 ident: 5571_CR35 publication-title: J Intell Fuzzy Syst doi: 10.3233/JIFS-212220 – volume: 14 start-page: 4712 issue: 10 year: 2018 ident: 5571_CR12 publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2018.2851241 – volume: 7 start-page: 20281 year: 2019 ident: 5571_CR32 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2897580 – volume: 5 start-page: 1 year: 2016 ident: 5571_CR6 publication-title: Sci Program – ident: 5571_CR4 doi: 10.1109/INFOCOM.2016.7524355 – ident: 5571_CR18 doi: 10.1109/ICISCAE52414.2021.9590674 – volume: 9 start-page: 104513 year: 2021 ident: 5571_CR37 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3094876 – ident: 5571_CR3 doi: 10.1109/PDGC.2016.7913163 – volume: 62 start-page: 1 year: 2020 ident: 5571_CR30 publication-title: Cogn Syst Res doi: 10.1016/j.cogsys.2020.03.001 – volume: 21 start-page: 239 issue: 2 year: 1979 ident: 5571_CR42 publication-title: Technometrics – volume: 11 start-page: 197 issue: 3 year: 1996 ident: 5571_CR43 publication-title: Probab Eng Mech – volume: 100 start-page: 557 year: 2019 ident: 5571_CR11 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2019.05.052 – volume: 47 start-page: 445 issue: 4 year: 2005 ident: 5571_CR21 publication-title: Comput Netw doi: 10.1016/j.comnet.2004.12.001 – volume: 24 start-page: 508 issue: 3 year: 2020 ident: 5571_CR38 publication-title: IEEE Trans Evol Comput – volume: 4 start-page: 766 year: 2016 ident: 5571_CR2 publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2529723 – volume: 53 start-page: 50 issue: 4 year: 2010 ident: 5571_CR7 publication-title: Commun ACM doi: 10.1145/1721654.1721672 – ident: 5571_CR44 – volume: 8 start-page: 19286 year: 2020 ident: 5571_CR10 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2968378 – volume: 37 start-page: 809 year: 2009 ident: 5571_CR19 publication-title: J Fuzhou Univ – volume: 10 start-page: 25645 year: 2022 ident: 5571_CR22 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3155767 – volume: 42 start-page: 1813 year: 2022 ident: 5571_CR23 publication-title: J Intell Fuzzy Syst doi: 10.3233/JIFS-211214 – volume: 78 start-page: 1280 issue: 5 year: 2012 ident: 5571_CR40 publication-title: J Comput Syst Sci doi: 10.1016/j.jcss.2011.12.014 – volume: 29 start-page: 450 issue: 2 year: 2018 ident: 5571_CR8 publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2017.2754366 – ident: 5571_CR5 doi: 10.1109/ICC.2017.7996858 – volume: 77 start-page: 8252 issue: 8 year: 2021 ident: 5571_CR14 publication-title: J Supercomput doi: 10.1007/s11227-020-03606-2 – volume: 14 start-page: 325 year: 2021 ident: 5571_CR15 publication-title: Algorithms doi: 10.3390/a14110325 – volume: 29 start-page: 2944 issue: 7 year: 2018 ident: 5571_CR39 publication-title: IEEE Trans Neural Netw Learn Syst – volume: 10 start-page: 24 year: 2021 ident: 5571_CR16 publication-title: IET Netw. doi: 10.1049/ntw2.12001 – volume: 8 start-page: 150878 year: 2020 ident: 5571_CR24 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3016762 – volume: 33 start-page: 18 year: 2017 ident: 5571_CR26 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2016.09.002 – volume: 78 start-page: 9102 year: 2022 ident: 5571_CR36 publication-title: J Supercomput doi: 10.1007/s11227-021-04262-w – volume: 48 start-page: 220 year: 2019 ident: 5571_CR25 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2019.04.008 – volume: 9 start-page: 1585 year: 2018 ident: 5571_CR33 publication-title: J Inf Hiding Multim Signal Process – volume: 25 start-page: 983 year: 2022 ident: 5571_CR17 publication-title: Clust Comput doi: 10.1007/s10586-021-03481-3 – ident: 5571_CR20 – ident: 5571_CR45 – volume: 51 start-page: 5595 issue: 11 year: 2021 ident: 5571_CR29 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2020.2989309 – volume: 10 start-page: 28322 year: 2022 ident: 5571_CR34 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3064831 – volume-title: Monte Carlo statistical methods year: 2004 ident: 5571_CR41 – volume: 12 start-page: 1 year: 2022 ident: 5571_CR13 publication-title: Int J Cloud Appl Comput (IJCAC) – volume: 7 start-page: 56317 year: 2019 ident: 5571_CR28 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2900029 |
| SSID | ssj0004373 |
| Score | 2.3946111 |
| Snippet | With the rise of Internet of Things (IoT) technology, fog computing has emerged as a promising solution for low-latency and real-time applications. As a highly... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4248 |
| SubjectTerms | Ant colony optimization Cloud computing Communication Compilers Computer Science Cost reduction Customer services Economic impact Edge computing Efficiency Energy consumption Genetic algorithms Information industry Integer programming Internet of Things Interpreters Mutation Network latency Optimization algorithms Pheromones Processor Architectures Programming Languages Real time Resource scheduling Resource utilization Scheduling User satisfaction |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7R5dJLKbRVl1LkAzdqdZ3YzvqAULriISS2VVUkeoocPwAJku02PSy_nnHiNKUSnBM7yow9843H8w3AXpYxJVyiqGPaUG4mKdVlWlI0x4ZbNZ1yEwLF87k8veBnl-JyDeZ9LUy4VtnbxNZQ29qEM_LPKfpmgXBAscPFLxq6RoXsat9CQ8fWCvagpRh7AetJYMYawfqXo_m370OlZNrlnBUGTVPBk1hG0xXTsSTJKPowGnipGF09dlUD_vwvZdp6ouPX8CpCSJJ3Ot-ENVdtwUbfnoHE3foGfuYVqdEi3N3cO0uW8ZyeYDiL7iVUoRN9e4W_2FzfkeDMLKkrcpITXVmSz77-8_SmIr6-Iqb9BA58CxfHRz9mpzR2UqAGt1hDRcuBgyopObdTrzCmkBMjtFSs1IhYpUraqlPGvfFKOudTHRJmQtpMcivSdzCq6sq9B-JTM5GI2bIyzbiRiOBKIz2X2jsvWJmMgfVCK0ykGQ_dLm6LgSA5CLpAQRetoIvVGPb_jll0JBvPvr3T66KIG-53MSyPMXzq9TM8fnq27edn-wAvE4Qx3T3tHRg1yz_uI8KQptyNa-sBZUTXmw priority: 102 providerName: ProQuest |
| Title | An optimized resource scheduling algorithm based on GA and ACO algorithm in fog computing |
| URI | https://link.springer.com/article/10.1007/s11227-023-05571-y https://www.proquest.com/docview/3256595191 |
| Volume | 80 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1573-0484 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: ABDBF dateStart: 20030501 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-0484 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: ADMLS dateStart: 19870101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7xWFh4I8qj8sAGlurEduIxRW0RiIIQlWCKEseGSpCgUgb49ZzThAACJCYPfkS68_m-y_k7AxwEAVPCeIoalmjKdcenSeqnFI9jzTMVhly7QPF8KE9G_PRG3FSksOf6tnudkixP6obsxjwvoOhjqKsbxejrPCwKV84Ld_HIixo2pD_LKysMjELBvYoq8_MaX91RgzG_pUVLb9NfheUKJpJoptc1mDP5OqzUTzCQyiI34DbKSYFW_zh-MxmZVP_iCYas6EIc05wkD3fFZDy9fyTOYWWkyMkgIkmekej44lPvOCe2uCO6_ARO3IRRv3d9fEKr1xKoRjOaUlHWuUGxp5xnoVUYN8iOFolULE0QlUrllcxSxq22Shpj_cQlxYTMAskz4W_BQl7kZhuI9XVHIi4LUj_gWiJKS7W0XCbWWMFSrwWsFlqsq1Li7kWLh7gpguwEHaOg41LQ8WsLDj_mPM0Kafw5eq_WRVwZ1XPsIzwTiAgVa8FRrZ-m-_fVdv43fBeWPIQus7vZe7AwnbyYfYQe07QN82F_0IbFqN_tDl07uD3rYdvtDS-v2uU-fAf939QH |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PTxUxEJ4QOOhFFDA-RO0BTtrw2u12Xw_EPBF8CDwNgQRPS7c_kAR2EZ4xzz_Ov83pbpdFErlx7ra7mU7n-2anMwOwmmVMpY4r6pg2VJh-QnWRFBTNsRFWDQbCBEdxfyxHR-LzcXo8A3_aXJhwrbK1ibWhtpUJ_8jXE8TmFOmAYu8vf9DQNSpEV9sWGjq2VrAbdYmxmNix66a_0IW73tj5iPu9xvn21uHmiMYuA9Sg-k1oWteHwc8thLADr5Bvy75JtVSs0MjmpOJ1RiYT3nglnfOJDsGkVNpMChu6RiAEzIlEKHT-5j5sjb8edJmZSRPjxjXoIBU8pu00yXuM84wiZtJQB4vR6b_Q2PHdOyHaGvm2n8KTSFnJsNGxZzDjygWYb9tBkGgdFuHbsCQVWqCLs9_OkqsYFyDoPiOchax3os9PUaST7xckgKclVUk-DYkuLRlufrk1elYSX50SU78CJy7B0YPI9DnMllXpXgDxielL5IhZkWTCSGSMhZFeSO2dT1nBe8BaoeUmljUP3TXO864gcxB0joLOa0Hn0x68vZlz2RT1uPfplXYv8njAr_NOHXvwrt2fbvj_qy3fv9obeDQ63N_L93bGuy_hMUcK1dwRX4HZydVP9wop0KR4HfWMwMlDq_Zf5nMSiA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSIgLO6KsPnADizqxnfoYAWVfDlSCU5Q4dqnUJlUJh_L1jLOQggCJs5dIM7bnTcbvGaEDz6OSa0cSTUNFmGq5JIzciMBxrFgs222mbKJ4eycuuuzqiT9Nsfjz2-5VSbLgNFiVpiQ7HsXmuCa-UcfxCMQbYjWkKJnMojlmhRJgRXcdv2ZGukWNWUKS1ObMKWkzP8_xNTTVePNbiTSPPJ1ltFhCRuwXPl5BMzpZRUvVcwy43J1r6NlPcAonwLD_rmM8Lv_LY0hfIZxY1jkOB7103M9ehtgGrxinCT73cZjE2D-5n2rtJ9ikPazyT8DAddTtnD2eXJDy5QSiYEtlhOeaN-CCiLG4bSTkEKKleCgkjUJAqEI6OcuUMqOMFFobN7QFMi5iT7CYuxuokaSJ3kTYuKolAKN5kesxJQCxRUoYJkKjDaeR00S0MlqgSllx-7rFIKgFka2hAzB0kBs6mDTR4eeYUSGq8WfvncoXQbnBXgMXoBoHdChpEx1V_qmbf59t63_d99H8w2knuLm8u95GCw4gmuLK9g5qZOM3vQuIJIv28kX3Aauo1Z8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimized+resource+scheduling+algorithm+based+on+GA+and+ACO+algorithm+in+fog+computing&rft.jtitle=The+Journal+of+supercomputing&rft.au=Yin%2C+Chao&rft.au=Fang%2C+Qin&rft.au=Li%2C+Hongyi&rft.au=Peng%2C+Yingjian&rft.date=2024-02-01&rft.pub=Springer+US&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=80&rft.issue=3&rft.spage=4248&rft.epage=4285&rft_id=info:doi/10.1007%2Fs11227-023-05571-y&rft.externalDocID=10_1007_s11227_023_05571_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |