Weighted Intuitionistic Fuzzy C-Means Clustering Algorithms
Atanassov intuitionistic fuzzy set (AIFS)-based C -means algorithms are successful in clustering uncertain or vague real-world datasets. The AIFS-based clustering algorithms are classified into adaptive class and non-adaptive class. An algorithm from the adaptive class computes its feature weight di...
        Saved in:
      
    
          | Published in | International journal of fuzzy systems Vol. 26; no. 3; pp. 943 - 977 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        01.04.2024
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1562-2479 2199-3211  | 
| DOI | 10.1007/s40815-023-01644-5 | 
Cover
| Abstract | Atanassov intuitionistic fuzzy set (AIFS)-based
C
-means algorithms are successful in clustering uncertain or vague real-world datasets. The AIFS-based clustering algorithms are classified into adaptive class and non-adaptive class. An algorithm from the adaptive class computes its feature weight distribution with the help of the given dataset. On the other side, the algorithm belonging to the non-adaptive class mostly computes the feature weight distribution by employing an equally likely approach. The guarantee to reach up to the mark clustering performance is missing within this approach. Simultaneously, the performance gets deteriorated if the datasets showcase noises/irrelevant features. The irrelevant features in the datasets add to the computational cost. So, a feature reduction-equipped clustering algorithm called uni-weighted intuitionistic fuzzy
C
-means (uW-IFCM) is introduced in the paper. Moreover, the probabilistic weights-based adaptive clustering algorithm, namely bi-weighted probabilistic intuitionistic fuzzy
C
-means (bW-PIFCM) is proposed under the AIFS environment. The parametric analysis for uW-IFCM is provided to comprehend and compare its performance with bW-PIFCM, PIFCM, IFCM, and FCM algorithms. Here, an intuitionistic data fuzzification technique transforms the real-valued dataset into AIFS dataset, therefore bW-PIFCM and uW-IFCM algorithms cluster the real-valued datasets. The research proposal of Yang and Nataliani in [IEEE Transactions on Fuzzy Systems, 26(2), 817–835] motivates us to introduce a feature reduction-equipped uW-IFCM algorithm. We have considered synthetic datasets and some UCI machine learning datasets for the experimental study of uW-IFCM and bW-PIFCM. The efficacy and the precision of proposed algorithms are tested in terms of some popular benchmark indexes as well. | 
    
|---|---|
| AbstractList | Atanassov intuitionistic fuzzy set (AIFS)-based
C
-means algorithms are successful in clustering uncertain or vague real-world datasets. The AIFS-based clustering algorithms are classified into adaptive class and non-adaptive class. An algorithm from the adaptive class computes its feature weight distribution with the help of the given dataset. On the other side, the algorithm belonging to the non-adaptive class mostly computes the feature weight distribution by employing an equally likely approach. The guarantee to reach up to the mark clustering performance is missing within this approach. Simultaneously, the performance gets deteriorated if the datasets showcase noises/irrelevant features. The irrelevant features in the datasets add to the computational cost. So, a feature reduction-equipped clustering algorithm called uni-weighted intuitionistic fuzzy
C
-means (uW-IFCM) is introduced in the paper. Moreover, the probabilistic weights-based adaptive clustering algorithm, namely bi-weighted probabilistic intuitionistic fuzzy
C
-means (bW-PIFCM) is proposed under the AIFS environment. The parametric analysis for uW-IFCM is provided to comprehend and compare its performance with bW-PIFCM, PIFCM, IFCM, and FCM algorithms. Here, an intuitionistic data fuzzification technique transforms the real-valued dataset into AIFS dataset, therefore bW-PIFCM and uW-IFCM algorithms cluster the real-valued datasets. The research proposal of Yang and Nataliani in [IEEE Transactions on Fuzzy Systems, 26(2), 817–835] motivates us to introduce a feature reduction-equipped uW-IFCM algorithm. We have considered synthetic datasets and some UCI machine learning datasets for the experimental study of uW-IFCM and bW-PIFCM. The efficacy and the precision of proposed algorithms are tested in terms of some popular benchmark indexes as well. Atanassov intuitionistic fuzzy set (AIFS)-based C-means algorithms are successful in clustering uncertain or vague real-world datasets. The AIFS-based clustering algorithms are classified into adaptive class and non-adaptive class. An algorithm from the adaptive class computes its feature weight distribution with the help of the given dataset. On the other side, the algorithm belonging to the non-adaptive class mostly computes the feature weight distribution by employing an equally likely approach. The guarantee to reach up to the mark clustering performance is missing within this approach. Simultaneously, the performance gets deteriorated if the datasets showcase noises/irrelevant features. The irrelevant features in the datasets add to the computational cost. So, a feature reduction-equipped clustering algorithm called uni-weighted intuitionistic fuzzy C-means (uW-IFCM) is introduced in the paper. Moreover, the probabilistic weights-based adaptive clustering algorithm, namely bi-weighted probabilistic intuitionistic fuzzy C-means (bW-PIFCM) is proposed under the AIFS environment. The parametric analysis for uW-IFCM is provided to comprehend and compare its performance with bW-PIFCM, PIFCM, IFCM, and FCM algorithms. Here, an intuitionistic data fuzzification technique transforms the real-valued dataset into AIFS dataset, therefore bW-PIFCM and uW-IFCM algorithms cluster the real-valued datasets. The research proposal of Yang and Nataliani in [IEEE Transactions on Fuzzy Systems, 26(2), 817–835] motivates us to introduce a feature reduction-equipped uW-IFCM algorithm. We have considered synthetic datasets and some UCI machine learning datasets for the experimental study of uW-IFCM and bW-PIFCM. The efficacy and the precision of proposed algorithms are tested in terms of some popular benchmark indexes as well.  | 
    
| Author | Castillo, Oscar Danish Lohani, Q. M. Kaushal, Meenakshi  | 
    
| Author_xml | – sequence: 1 givenname: Meenakshi surname: Kaushal fullname: Kaushal, Meenakshi organization: Department of Mathematics, South Asian University – sequence: 2 givenname: Q. M. surname: Danish Lohani fullname: Danish Lohani, Q. M. organization: Department of Mathematics, South Asian University – sequence: 3 givenname: Oscar orcidid: 0000-0002-7385-5689 surname: Castillo fullname: Castillo, Oscar email: ocastillo@tectijuana.mx organization: Division of Graduate Studies and Research, Tijuana Institute of Technology  | 
    
| BookMark | eNp9kD1PwzAQhi1UJErpH2CKxGzwR-w4YqoiPioVsYAYLce5tEZpUmxnaH89KUFCYuh0N7zPe6fnEk3argWErim5pYRkdyEligpMGMeEyjTF4gxNGc1zzBmlEzSlQjLM0iy_QPMQXEk4ZZILyafo_gPcehOhSpZt7F10XetCdDZ57A-HfVLgFzBtSIqmDxG8a9fJoll33sXNNlyh89o0Aea_c4beHx_eime8en1aFosVtpzmEYucZ7VVsrRKcQJKVrm05bAwCpQLKyxwJjMDxlqpaiqIMiWpKgBiy9xIPkM3Y-_Od189hKg_u963w0nNCRdcEMLSIcXGlPVdCB5qvfNua_xeU6KPnvToSQ-e9I8nLQZI_YOsi-ZoIXrjmtMoH9GwO3oB__fVCeobCn5-dw | 
    
| CitedBy_id | crossref_primary_10_3390_a17120551 crossref_primary_10_1109_ACCESS_2024_3512416 crossref_primary_10_1007_s12145_024_01453_w  | 
    
| Cites_doi | 10.1016/j.patrec.2013.04.021 10.1049/iet-ipr.2016.0891 10.1109/91.413225 10.1109/TFUZZ.2017.2692203 10.1016/j.fss.2009.10.021 10.1145/276304.276314 10.3969/j.issn.1004-4132.2010.04.009 10.2991/eusflat.2013.124 10.1016/S0165-0114(86)80034-3 10.1016/j.ijar.2013.05.005 10.1109/ACCESS.2019.2916894 10.1016/j.patrec.2004.03.008 10.1023/A:1009745219419 10.1016/0098-3004(84)90020-7 10.1109/91.493905 10.1016/j.asoc.2018.04.014 10.1109/ANNES.1995.499469 10.34768/amcs-2021-0021 10.1109/TFUZZ.2018.2848245 10.1007/s00500-014-1264-2 10.1109/TPAMI.2005.95 10.1145/3321386 10.1016/j.knosys.2020.106549 10.1007/s40815-021-01243-2 10.1109/IGARSS.2007.4423224 10.1007/s40815-020-00929-3 10.1016/j.ijar.2022.05.007 10.1016/j.asoc.2015.12.022 10.1109/FUZZ-IEEE.2018.8491602 10.1109/WCICA.2002.1020845 10.1016/j.cmpb.2011.10.010 10.1109/TFUZZ.2013.2280141 10.1016/S0165-0114(98)00244-9 10.1007/978-981-15-6141-2_1 10.1016/j.ins.2022.02.004 10.1016/j.asoc.2010.05.005 10.1145/3264746.3264777 10.1016/j.eswa.2022.116782 10.1016/S0031-3203(01)00197-2 10.1109/CDC.1978.268028 10.1016/j.fss.2017.01.001 10.1109/MSP.2010.939739 10.1109/ACCESS.2021.3077622 10.1155/2019/5984649 10.3233/IFS-151894 10.1007/978-3-540-88458-3_69 10.1016/j.fss.2019.03.017 10.1002/9780470061190 10.1016/j.patcog.2021.108064  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) under exclusive licence to Taiwan Fuzzy Systems Association 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| Copyright_xml | – notice: The Author(s) under exclusive licence to Taiwan Fuzzy Systems Association 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS  | 
    
| DOI | 10.1007/s40815-023-01644-5 | 
    
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection  | 
    
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Computer Science Database  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2199-3211 | 
    
| EndPage | 977 | 
    
| ExternalDocumentID | 10_1007_s40815_023_01644_5 | 
    
| GroupedDBID | -EM .4S .DC 0R~ 188 203 2UF 4.4 406 5GY 9RA A8Z AACDK AAHNG AAIAL AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABDZT ABECU ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AEVLU AEXYK AFBBN AFKRA AFQWF AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AILAN AINHJ AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ARAPS ARCSS ATFKH AVXWI AXYYD BENPR BGLVJ BGNMA CCPQU CNMHZ CSCUP CVCKV DNIVK DPUIP EBLON EBS EDO EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE GGCAI GJIRD HCIFZ HG6 HRMNR I-F IKXTQ IWAJR IXD J-C J9A JBSCW JZLTJ K7- KOV LLZTM M4Y M7S NPVJJ NQJWS NU0 O9J OK1 P2P PT4 PTHSS RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG TUS TUXDW UG4 UOJIU UTJUX UZ4 UZXMN VFIZW Z88 ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ESTFP PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI  | 
    
| ID | FETCH-LOGICAL-c319t-5937fc86bc8830e86d96cb0e821e135c5ce3267aeacc68f1508ab0ddee0cb9a63 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1562-2479 | 
    
| IngestDate | Fri Jul 25 11:11:43 EDT 2025 Wed Oct 01 03:51:25 EDT 2025 Thu Apr 24 23:01:33 EDT 2025 Fri Feb 21 02:40:43 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | Intuitionistic fuzzy means Atanassov intuitionisitic fuzzy set (AIFS) Feature reduction PIFCM  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c319t-5937fc86bc8830e86d96cb0e821e135c5ce3267aeacc68f1508ab0ddee0cb9a63 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-7385-5689 | 
    
| PQID | 3035350024 | 
    
| PQPubID | 2043640 | 
    
| PageCount | 35 | 
    
| ParticipantIDs | proquest_journals_3035350024 crossref_primary_10_1007_s40815_023_01644_5 crossref_citationtrail_10_1007_s40815_023_01644_5 springer_journals_10_1007_s40815_023_01644_5  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20240400 2024-04-00 20240401  | 
    
| PublicationDateYYYYMMDD | 2024-04-01 | 
    
| PublicationDate_xml | – month: 4 year: 2024 text: 20240400  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg  | 
    
| PublicationTitle | International journal of fuzzy systems | 
    
| PublicationTitleAbbrev | Int. J. Fuzzy Syst | 
    
| PublicationYear | 2024 | 
    
| Publisher | Springer Berlin Heidelberg Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V  | 
    
| References | BezdekJCEhrlichRFullWFcm: the fuzzy c-means clustering algorithmComput. Geosci.1984102–319120310.1016/0098-3004(84)90020-7 Lee, J.Y., Kim, D., Mun, J.Y., Kang, S., Son, S.H., Shin, S.: Texture weighted fuzzy c-means algorithm for 3d brain mri segmentation. In: Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems, pp. 291–295 (2018) WangXWangYWangLImproving fuzzy c-means clustering based on feature-weight learningPattern Recognit. Lett.200425101123113210.1016/j.patrec.2004.03.008 WangGWangJ-SWangH-YFuzzy c-means clustering validity function based on multiple clustering performance evaluation componentsInt. J. Fuzzy Syst.20222441859188710.1007/s40815-021-01243-2 D’UrsoPLeskiJMFuzzy clustering of fuzzy data based on robust loss functions and ordered weighted averagingFuzzy Sets Syst.2020389128409041010.1016/j.fss.2019.03.017 Danish LohaniQMDSolankiRMuhuriPKNovel adaptive clustering algorithms based on a probabilistic similarity measure over atanassov intuitionistic fuzzy setIEEE Trans. Fuzzy Syst.20182663715372910.1109/TFUZZ.2018.2848245 ChengmaoWXiaokangGA novel interval-valued data driven type-2 possibilistic local information c-means clustering for land cover classificationInt. J. Approx. Reason.202214880116444012010.1016/j.ijar.2022.05.007 SiminskiKAn outlier-robust neuro-fuzzy system for classification and regressionInt. J. Appl. Math. Comput. Sci.2021312303319 YangM-SNatalianiYA feature-reduction fuzzy clustering algorithm based on feature-weighted entropyIEEE Trans. Fuzzy Syst.201726281783510.1109/TFUZZ.2017.2692203 Lin, K.-P.: A novel evolutionary kernel intuitionistic fuzzy c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c$$\end{document}-means clustering algorithm. IEEE Trans. Fuzzy Syst. 22(5), 1074–1087 (2013) ValenteDOJWitoldPAdvances in Fuzzy Clustering and Its Applications2007New YorkWiley10.1002/9780470061190 Miin-ShenYSinaga KristinaPCollaborative feature-weighted multi-view fuzzy c-means clusteringPattern Recognit.202111910806410.1016/j.patcog.2021.108064 WenyuanZTianyuHJunCA robust bias-correction fuzzy weighted c-ordered-means clustering algorithmMath. Probl. Eng.2019397662310.1155/2019/5984649 NhaVPThePLPedryczWNgoLTFeature-reduction fuzzy co-clustering approach for hyper-spectral image analysisKnowl. Based Syst.202121610.1016/j.knosys.2020.106549 ZhouXZhaoRFengquanYuTianHIntuitionistic fuzzy entropy clustering algorithm for infrared image segmentationJ. Intell. Fuzzy Syst.20163031831184010.3233/IFS-151894 Gustafson,D.E., Kessel, W.C.: Fuzzy clustering with a fuzzy covariance matrix. In: 1978 IEEE Conference on Decision and Control Including the 17th Symposium on Adaptive Processes, pp. 761–766. IEEE (1979) SiminskiKFuzzy weighted c-ordered means clustering algorithmFuzzy Sets Syst.2017318133363455210.1016/j.fss.2017.01.001 PalNRBezdekJCOn cluster validity for the fuzzy c-means modelIEEE Trans. Fuzzy Syst.19953337037910.1109/91.413225 Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. In: Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, pp. 94–105 (1998) AtanassovKTIntuitionistic fuzzy setsFuzzy Sets Syst.1986201879693734610.1016/S0165-0114(86)80034-3 Cohen-AddadVKanadeVMallmann-TrennFMathieuCHierarchical clustering: objective functions and algorithmsJ. ACM2019664142396326310.1145/3321386 HuangC-WLinK-PMing-ChangWHungK-CLiuG-SJenC-HIntuitionisti fuzzy c-means clustering algorithm with neighborhood attration in segmenting medial imageSoft Comput.201519245947010.1007/s00500-014-1264-2 VidalRSubspace clusteringIEEE Signal Process. Mag.2011282526810.1109/MSP.2010.939739 QiuCXiaoJYuLHanLIqbalMNA modified interval type-2 fuzzy c-means algorithm with application in mr image segmentationPattern Recogn. Lett.201334121329133810.1016/j.patrec.2013.04.021 Bensaid AmineMHall LawrenceOBezdek JamesCClarke LaurencePSilbiger MartinLArrington JohnAMurtaghRFValidity-guided (re) clustering with applications to image segmentationIEEE Trans. Fuzzy Syst.19964211212310.1109/91.493905 Szmidt, E., Kacprzyk, J.: Geometric similarity measures for the intuitionistic fuzzy sets. In: EUSFLAT Conference (2013) NamburuASamayamantulaSKEdaraSRGeneralised rough intuitionistic fuzzy c-means for magnetic resonance brain image segmentationIET Image Process.201711977778510.1049/iet-ipr.2016.0891 Danish LohaniQMDSolankiRMuhuriPKA convergence theorem and an experimental study of intuitionistic fuzzy c-mean algorithm over machine learning datasetAppl. Soft Comput.2018711176118810.1016/j.asoc.2018.04.014 GravesDPedryczWKernel-based fuzzy clustering and fuzzy clustering: a comparative experimental studyFuzzy Sets Syst.20101614522543257658410.1016/j.fss.2009.10.021 SanderJEsterMKriegelH-PXiaoweiXDensity-based clustering in spatial databases: the algorithm gdbscan and its applicationsData Min. Knowl. Discov.19982216919410.1023/A:1009745219419 Asuncion, A., Newman, D.: Uci machine learning repository (2007) ZeshuiXJunjieWIntuitionistic fuzzy c-means clustering algorithmsJ. Syst. Eng. Electron.201021458059010.3969/j.issn.1004-4132.2010.04.009 Kaushal, M., Solanki, R., Danish Lohani, Q.M., Muhuri Pranab, K.: A novel intuitionistic fuzzy set generator with application to clustering. In: 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8. IEEE (2018) Iakovidis, D.K., Pelekis, N., Kotsifakos, E., Kopanakis, I.: Intuitionistic fuzzy clustering with applications in computer vision. In: International Conference on Advanced Concepts for Intelligent Vision Systems, pp. 764–774. Springer, New York (2008) JiZSunQXiaYChenQXiaDFengDGeneralized rough fuzzy c-means algorithm for brain mr image segmentationComput. Methods Programs Biomed.2012108264465510.1016/j.cmpb.2011.10.010 Li, J., Gao, X., Ji, H.: A feature weighted FCM clustering algorithm based on evolutionary strategy. In: Proceedings of the 4th World Congress on Intelligent Control and Automation (Cat. No. 02EX527), Vol. 2, pp. 1549–1553. IEEE (2002) ZhexueHJNg MichaelKHongqiangRZichenLAutomated variable weighting in k-means type clusteringIEEE Trans. Pattern Anal. Mach. Intell.200527565766810.1109/TPAMI.2005.95 Kuo-LungWYangM-SAlternative c-means clustering algorithmsPattern Recognit.200235102267227810.1016/S0031-3203(01)00197-2 SunLZhangJDingWJiuchengXFeature reduction for imbalanced data classification using similarity-based feature clustering with adaptive weighted k-nearest neighborsInf. Sci.202259359161310.1016/j.ins.2022.02.004 StephanTSharmaKShankarAPunithaSVaradarajanVLiuPFuzzy-logic-inspired zone-based clustering algorithm for wireless sensor networksInt. J. Fuzzy Syst.20212350651710.1007/s40815-020-00929-3 He Yu-LinOGui-LiangPF-VHuangJZSuganthanPNA novel dependency-oriented mixed-attribute data classification methodExpert Syst. Appl.202219910.1016/j.eswa.2022.116782 SinagaKPHussainIYangM-SEntropy k-means clustering with feature reduction under unknown number of clustersIEEE Access20219677366775110.1109/ACCESS.2021.3077622 ChairaTA novel intuitionistic fuzzy c means clustering algorithm and its application to medical imagesAppl. Soft Comput.20111121711171710.1016/j.asoc.2010.05.005 LiFYeMChenXAn extension to rough c-means clustering based on decision-theoretic rough sets modelInt. J. Approx. Reason.2014551116129312778710.1016/j.ijar.2013.05.005 HanumanVAgrawalRKAditiSAn improved intuitionistic fuzzy c-means clustering algorithm incorporating local information for brain image segmentationAppl. Soft Comput.20164654355710.1016/j.asoc.2015.12.022 Khan, M.A., Arshad, H., Nisar, W., Javed, M.Y., Sharif, M.: An integrated design of fuzzy c-means and nca-based multi-properties feature reduction for brain tumor recognition. In: Signal and Image Processing Techniques for the Development of Intelligent Healthcare Systems, pp. 1–28. Springer, New York (2021) Bezdek, J.C., Pal, N.R.: Cluster validation with generalized dunn’s indices. In: Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems, pp. 190–190. IEEE Computer Society (1995) SzmidtEKacprzykJDistances between intuitionistic fuzzy setsFuzzy Sets Syst.20001143505518177528610.1016/S0165-0114(98)00244-9 ChenNZe-shuiXXiaMHierarchical hesitant fuzzy k-means clustering algorithmAppl. Math. A20142911173182588 ZhaoFChenYLiuHFanJAlternate pso-based adaptive interval type-2 intuitionistic fuzzy c-means clustering algorithm for color image segmentationIEEE Access20197640286403910.1109/ACCESS.2019.2916894 Liu, X., Li, X., Zhang, Y., Yang, C., Xu, W., Li, M., Luo, H.: Remote sensing image classification based on dot density function weighted fcm clustering algorithm. In: 2007 IEEE International Geoscience and Remote Sensing Symposium, pp. 2010–2013. IEEE (2007) 1644_CR19 G Wang (1644_CR23) 2022; 24 V Cohen-Addad (1644_CR5) 2019; 66 F Zhao (1644_CR37) 2019; 7 1644_CR51 DOJ Valente (1644_CR4) 2007 1644_CR13 1644_CR16 1644_CR15 X Zeshui (1644_CR7) 2010; 21 D Graves (1644_CR48) 2010; 161 QMD Danish Lohani (1644_CR41) 2018; 26 1644_CR1 KP Sinaga (1644_CR24) 2021; 9 L Sun (1644_CR27) 2022; 593 M-S Yang (1644_CR21) 2017; 26 NR Pal (1644_CR49) 1995; 3 R Vidal (1644_CR2) 2011; 28 V Hanuman (1644_CR36) 2016; 46 X Zhou (1644_CR38) 2016; 30 1644_CR42 1644_CR40 K Siminski (1644_CR29) 2021; 31 A Namburu (1644_CR39) 2017; 11 X Wang (1644_CR20) 2004; 25 W Kuo-Lung (1644_CR14) 2002; 35 1644_CR47 E Szmidt (1644_CR43) 2000; 114 HJ Zhexue (1644_CR44) 2005; 27 VP Nha (1644_CR28) 2021; 216 P D’Urso (1644_CR25) 2020; 389 C Qiu (1644_CR8) 2013; 34 T Chaira (1644_CR32) 2011; 11 F Li (1644_CR11) 2014; 55 Z Wenyuan (1644_CR18) 2019 W Chengmao (1644_CR9) 2022; 148 1644_CR30 1644_CR35 Z Ji (1644_CR10) 2012; 108 1644_CR34 Y Miin-Shen (1644_CR17) 2021; 119 M Bensaid Amine (1644_CR50) 1996; 4 QMD Danish Lohani (1644_CR45) 2018; 71 N Chen (1644_CR12) 2014; 29 T Stephan (1644_CR22) 2021; 23 K Siminski (1644_CR46) 2017; 318 J Sander (1644_CR3) 1998; 2 O He Yu-Lin (1644_CR26) 2022; 199 C-W Huang (1644_CR33) 2015; 19 JC Bezdek (1644_CR6) 1984; 10 KT Atanassov (1644_CR31) 1986; 20  | 
    
| References_xml | – reference: WangGWangJ-SWangH-YFuzzy c-means clustering validity function based on multiple clustering performance evaluation componentsInt. J. Fuzzy Syst.20222441859188710.1007/s40815-021-01243-2 – reference: ZhaoFChenYLiuHFanJAlternate pso-based adaptive interval type-2 intuitionistic fuzzy c-means clustering algorithm for color image segmentationIEEE Access20197640286403910.1109/ACCESS.2019.2916894 – reference: Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. In: Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, pp. 94–105 (1998) – reference: SinagaKPHussainIYangM-SEntropy k-means clustering with feature reduction under unknown number of clustersIEEE Access20219677366775110.1109/ACCESS.2021.3077622 – reference: Lee, J.Y., Kim, D., Mun, J.Y., Kang, S., Son, S.H., Shin, S.: Texture weighted fuzzy c-means algorithm for 3d brain mri segmentation. In: Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems, pp. 291–295 (2018) – reference: D’UrsoPLeskiJMFuzzy clustering of fuzzy data based on robust loss functions and ordered weighted averagingFuzzy Sets Syst.2020389128409041010.1016/j.fss.2019.03.017 – reference: HanumanVAgrawalRKAditiSAn improved intuitionistic fuzzy c-means clustering algorithm incorporating local information for brain image segmentationAppl. Soft Comput.20164654355710.1016/j.asoc.2015.12.022 – reference: NhaVPThePLPedryczWNgoLTFeature-reduction fuzzy co-clustering approach for hyper-spectral image analysisKnowl. Based Syst.202121610.1016/j.knosys.2020.106549 – reference: Liu, X., Li, X., Zhang, Y., Yang, C., Xu, W., Li, M., Luo, H.: Remote sensing image classification based on dot density function weighted fcm clustering algorithm. In: 2007 IEEE International Geoscience and Remote Sensing Symposium, pp. 2010–2013. IEEE (2007) – reference: Miin-ShenYSinaga KristinaPCollaborative feature-weighted multi-view fuzzy c-means clusteringPattern Recognit.202111910806410.1016/j.patcog.2021.108064 – reference: Szmidt, E., Kacprzyk, J.: Geometric similarity measures for the intuitionistic fuzzy sets. In: EUSFLAT Conference (2013) – reference: ZhexueHJNg MichaelKHongqiangRZichenLAutomated variable weighting in k-means type clusteringIEEE Trans. Pattern Anal. Mach. Intell.200527565766810.1109/TPAMI.2005.95 – reference: He Yu-LinOGui-LiangPF-VHuangJZSuganthanPNA novel dependency-oriented mixed-attribute data classification methodExpert Syst. Appl.202219910.1016/j.eswa.2022.116782 – reference: Danish LohaniQMDSolankiRMuhuriPKA convergence theorem and an experimental study of intuitionistic fuzzy c-mean algorithm over machine learning datasetAppl. Soft Comput.2018711176118810.1016/j.asoc.2018.04.014 – reference: Bezdek, J.C., Pal, N.R.: Cluster validation with generalized dunn’s indices. In: Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems, pp. 190–190. IEEE Computer Society (1995) – reference: Kuo-LungWYangM-SAlternative c-means clustering algorithmsPattern Recognit.200235102267227810.1016/S0031-3203(01)00197-2 – reference: Lin, K.-P.: A novel evolutionary kernel intuitionistic fuzzy c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c$$\end{document}-means clustering algorithm. IEEE Trans. Fuzzy Syst. 22(5), 1074–1087 (2013) – reference: Asuncion, A., Newman, D.: Uci machine learning repository (2007) – reference: SiminskiKAn outlier-robust neuro-fuzzy system for classification and regressionInt. J. Appl. Math. Comput. Sci.2021312303319 – reference: NamburuASamayamantulaSKEdaraSRGeneralised rough intuitionistic fuzzy c-means for magnetic resonance brain image segmentationIET Image Process.201711977778510.1049/iet-ipr.2016.0891 – reference: ZeshuiXJunjieWIntuitionistic fuzzy c-means clustering algorithmsJ. Syst. Eng. Electron.201021458059010.3969/j.issn.1004-4132.2010.04.009 – reference: Gustafson,D.E., Kessel, W.C.: Fuzzy clustering with a fuzzy covariance matrix. In: 1978 IEEE Conference on Decision and Control Including the 17th Symposium on Adaptive Processes, pp. 761–766. IEEE (1979) – reference: JiZSunQXiaYChenQXiaDFengDGeneralized rough fuzzy c-means algorithm for brain mr image segmentationComput. Methods Programs Biomed.2012108264465510.1016/j.cmpb.2011.10.010 – reference: Khan, M.A., Arshad, H., Nisar, W., Javed, M.Y., Sharif, M.: An integrated design of fuzzy c-means and nca-based multi-properties feature reduction for brain tumor recognition. In: Signal and Image Processing Techniques for the Development of Intelligent Healthcare Systems, pp. 1–28. Springer, New York (2021) – reference: VidalRSubspace clusteringIEEE Signal Process. Mag.2011282526810.1109/MSP.2010.939739 – reference: ChengmaoWXiaokangGA novel interval-valued data driven type-2 possibilistic local information c-means clustering for land cover classificationInt. J. Approx. Reason.202214880116444012010.1016/j.ijar.2022.05.007 – reference: ChenNZe-shuiXXiaMHierarchical hesitant fuzzy k-means clustering algorithmAppl. Math. A20142911173182588 – reference: HuangC-WLinK-PMing-ChangWHungK-CLiuG-SJenC-HIntuitionisti fuzzy c-means clustering algorithm with neighborhood attration in segmenting medial imageSoft Comput.201519245947010.1007/s00500-014-1264-2 – reference: SiminskiKFuzzy weighted c-ordered means clustering algorithmFuzzy Sets Syst.2017318133363455210.1016/j.fss.2017.01.001 – reference: StephanTSharmaKShankarAPunithaSVaradarajanVLiuPFuzzy-logic-inspired zone-based clustering algorithm for wireless sensor networksInt. J. Fuzzy Syst.20212350651710.1007/s40815-020-00929-3 – reference: SzmidtEKacprzykJDistances between intuitionistic fuzzy setsFuzzy Sets Syst.20001143505518177528610.1016/S0165-0114(98)00244-9 – reference: GravesDPedryczWKernel-based fuzzy clustering and fuzzy clustering: a comparative experimental studyFuzzy Sets Syst.20101614522543257658410.1016/j.fss.2009.10.021 – reference: Bensaid AmineMHall LawrenceOBezdek JamesCClarke LaurencePSilbiger MartinLArrington JohnAMurtaghRFValidity-guided (re) clustering with applications to image segmentationIEEE Trans. Fuzzy Syst.19964211212310.1109/91.493905 – reference: ValenteDOJWitoldPAdvances in Fuzzy Clustering and Its Applications2007New YorkWiley10.1002/9780470061190 – reference: QiuCXiaoJYuLHanLIqbalMNA modified interval type-2 fuzzy c-means algorithm with application in mr image segmentationPattern Recogn. Lett.201334121329133810.1016/j.patrec.2013.04.021 – reference: WangXWangYWangLImproving fuzzy c-means clustering based on feature-weight learningPattern Recognit. Lett.200425101123113210.1016/j.patrec.2004.03.008 – reference: Danish LohaniQMDSolankiRMuhuriPKNovel adaptive clustering algorithms based on a probabilistic similarity measure over atanassov intuitionistic fuzzy setIEEE Trans. Fuzzy Syst.20182663715372910.1109/TFUZZ.2018.2848245 – reference: PalNRBezdekJCOn cluster validity for the fuzzy c-means modelIEEE Trans. Fuzzy Syst.19953337037910.1109/91.413225 – reference: YangM-SNatalianiYA feature-reduction fuzzy clustering algorithm based on feature-weighted entropyIEEE Trans. Fuzzy Syst.201726281783510.1109/TFUZZ.2017.2692203 – reference: WenyuanZTianyuHJunCA robust bias-correction fuzzy weighted c-ordered-means clustering algorithmMath. Probl. Eng.2019397662310.1155/2019/5984649 – reference: Li, J., Gao, X., Ji, H.: A feature weighted FCM clustering algorithm based on evolutionary strategy. In: Proceedings of the 4th World Congress on Intelligent Control and Automation (Cat. No. 02EX527), Vol. 2, pp. 1549–1553. IEEE (2002) – reference: ChairaTA novel intuitionistic fuzzy c means clustering algorithm and its application to medical imagesAppl. Soft Comput.20111121711171710.1016/j.asoc.2010.05.005 – reference: LiFYeMChenXAn extension to rough c-means clustering based on decision-theoretic rough sets modelInt. J. Approx. Reason.2014551116129312778710.1016/j.ijar.2013.05.005 – reference: AtanassovKTIntuitionistic fuzzy setsFuzzy Sets Syst.1986201879693734610.1016/S0165-0114(86)80034-3 – reference: Kaushal, M., Solanki, R., Danish Lohani, Q.M., Muhuri Pranab, K.: A novel intuitionistic fuzzy set generator with application to clustering. In: 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8. IEEE (2018) – reference: BezdekJCEhrlichRFullWFcm: the fuzzy c-means clustering algorithmComput. Geosci.1984102–319120310.1016/0098-3004(84)90020-7 – reference: Iakovidis, D.K., Pelekis, N., Kotsifakos, E., Kopanakis, I.: Intuitionistic fuzzy clustering with applications in computer vision. In: International Conference on Advanced Concepts for Intelligent Vision Systems, pp. 764–774. Springer, New York (2008) – reference: Cohen-AddadVKanadeVMallmann-TrennFMathieuCHierarchical clustering: objective functions and algorithmsJ. ACM2019664142396326310.1145/3321386 – reference: SunLZhangJDingWJiuchengXFeature reduction for imbalanced data classification using similarity-based feature clustering with adaptive weighted k-nearest neighborsInf. Sci.202259359161310.1016/j.ins.2022.02.004 – reference: ZhouXZhaoRFengquanYuTianHIntuitionistic fuzzy entropy clustering algorithm for infrared image segmentationJ. Intell. Fuzzy Syst.20163031831184010.3233/IFS-151894 – reference: SanderJEsterMKriegelH-PXiaoweiXDensity-based clustering in spatial databases: the algorithm gdbscan and its applicationsData Min. Knowl. Discov.19982216919410.1023/A:1009745219419 – volume: 34 start-page: 1329 issue: 12 year: 2013 ident: 1644_CR8 publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2013.04.021 – volume: 11 start-page: 777 issue: 9 year: 2017 ident: 1644_CR39 publication-title: IET Image Process. doi: 10.1049/iet-ipr.2016.0891 – volume: 3 start-page: 370 issue: 3 year: 1995 ident: 1644_CR49 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.413225 – volume: 26 start-page: 817 issue: 2 year: 2017 ident: 1644_CR21 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2017.2692203 – volume: 161 start-page: 522 issue: 4 year: 2010 ident: 1644_CR48 publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2009.10.021 – ident: 1644_CR1 doi: 10.1145/276304.276314 – volume: 21 start-page: 580 issue: 4 year: 2010 ident: 1644_CR7 publication-title: J. Syst. Eng. Electron. doi: 10.3969/j.issn.1004-4132.2010.04.009 – ident: 1644_CR42 doi: 10.2991/eusflat.2013.124 – volume: 20 start-page: 87 issue: 1 year: 1986 ident: 1644_CR31 publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(86)80034-3 – volume: 55 start-page: 116 issue: 1 year: 2014 ident: 1644_CR11 publication-title: Int. J. Approx. Reason. doi: 10.1016/j.ijar.2013.05.005 – volume: 7 start-page: 64028 year: 2019 ident: 1644_CR37 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2916894 – volume: 25 start-page: 1123 issue: 10 year: 2004 ident: 1644_CR20 publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2004.03.008 – volume: 2 start-page: 169 issue: 2 year: 1998 ident: 1644_CR3 publication-title: Data Min. Knowl. Discov. doi: 10.1023/A:1009745219419 – volume: 10 start-page: 191 issue: 2–3 year: 1984 ident: 1644_CR6 publication-title: Comput. Geosci. doi: 10.1016/0098-3004(84)90020-7 – volume: 4 start-page: 112 issue: 2 year: 1996 ident: 1644_CR50 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.493905 – volume: 71 start-page: 1176 year: 2018 ident: 1644_CR45 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.04.014 – ident: 1644_CR51 doi: 10.1109/ANNES.1995.499469 – volume: 29 start-page: 1 issue: 1 year: 2014 ident: 1644_CR12 publication-title: Appl. Math. A – volume: 31 start-page: 303 issue: 2 year: 2021 ident: 1644_CR29 publication-title: Int. J. Appl. Math. Comput. Sci. doi: 10.34768/amcs-2021-0021 – volume: 26 start-page: 3715 issue: 6 year: 2018 ident: 1644_CR41 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2018.2848245 – volume: 19 start-page: 459 issue: 2 year: 2015 ident: 1644_CR33 publication-title: Soft Comput. doi: 10.1007/s00500-014-1264-2 – volume: 27 start-page: 657 issue: 5 year: 2005 ident: 1644_CR44 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.95 – volume: 66 start-page: 1 issue: 4 year: 2019 ident: 1644_CR5 publication-title: J. ACM doi: 10.1145/3321386 – volume: 216 year: 2021 ident: 1644_CR28 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2020.106549 – volume: 24 start-page: 1859 issue: 4 year: 2022 ident: 1644_CR23 publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-021-01243-2 – ident: 1644_CR16 doi: 10.1109/IGARSS.2007.4423224 – volume: 23 start-page: 506 year: 2021 ident: 1644_CR22 publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-020-00929-3 – volume: 148 start-page: 80 year: 2022 ident: 1644_CR9 publication-title: Int. J. Approx. Reason. doi: 10.1016/j.ijar.2022.05.007 – volume: 46 start-page: 543 year: 2016 ident: 1644_CR36 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.12.022 – ident: 1644_CR40 doi: 10.1109/FUZZ-IEEE.2018.8491602 – ident: 1644_CR19 doi: 10.1109/WCICA.2002.1020845 – volume: 108 start-page: 644 issue: 2 year: 2012 ident: 1644_CR10 publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2011.10.010 – ident: 1644_CR35 doi: 10.1109/TFUZZ.2013.2280141 – volume: 114 start-page: 505 issue: 3 year: 2000 ident: 1644_CR43 publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(98)00244-9 – ident: 1644_CR30 doi: 10.1007/978-981-15-6141-2_1 – volume: 593 start-page: 591 year: 2022 ident: 1644_CR27 publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.02.004 – volume: 11 start-page: 1711 issue: 2 year: 2011 ident: 1644_CR32 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.05.005 – ident: 1644_CR15 doi: 10.1145/3264746.3264777 – volume: 199 year: 2022 ident: 1644_CR26 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.116782 – ident: 1644_CR47 – volume: 35 start-page: 2267 issue: 10 year: 2002 ident: 1644_CR14 publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(01)00197-2 – ident: 1644_CR13 doi: 10.1109/CDC.1978.268028 – volume: 318 start-page: 1 year: 2017 ident: 1644_CR46 publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2017.01.001 – volume: 28 start-page: 52 issue: 2 year: 2011 ident: 1644_CR2 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2010.939739 – volume: 9 start-page: 67736 year: 2021 ident: 1644_CR24 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3077622 – year: 2019 ident: 1644_CR18 publication-title: Math. Probl. Eng. doi: 10.1155/2019/5984649 – volume: 30 start-page: 1831 issue: 3 year: 2016 ident: 1644_CR38 publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/IFS-151894 – ident: 1644_CR34 doi: 10.1007/978-3-540-88458-3_69 – volume: 389 start-page: 1 year: 2020 ident: 1644_CR25 publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2019.03.017 – volume-title: Advances in Fuzzy Clustering and Its Applications year: 2007 ident: 1644_CR4 doi: 10.1002/9780470061190 – volume: 119 start-page: 108064 year: 2021 ident: 1644_CR17 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.108064  | 
    
| SSID | ssib031263563 ssib053833614 ssib026410675 ssj0002147029 ssib008679421  | 
    
| Score | 2.3514721 | 
    
| Snippet | Atanassov intuitionistic fuzzy set (AIFS)-based
C
-means algorithms are successful in clustering uncertain or vague real-world datasets. The AIFS-based... Atanassov intuitionistic fuzzy set (AIFS)-based C-means algorithms are successful in clustering uncertain or vague real-world datasets. The AIFS-based...  | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 943 | 
    
| SubjectTerms | Adaptive algorithms Algorithms Artificial Intelligence Clustering Computational Intelligence Datasets Engineering Fuzzy sets Fuzzy systems Machine learning Management Science Operations Research Parametric analysis Performance indices Synthetic data  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDDwRhQKysAGrhI7L4upqloKqExUlCmKHRsQpUVtMtBfz9lN0lIBUrdI8eVxPt93ie--Q-hCMUaE6ypMFHGxqwKCOaUUU5YwRZgKE6Frh7sPfqfn3vW9fl4UNimy3YstSeOpy2I3F9BLVxPr_B9Aceytow3Dt1VBG42b5_tWaUeaRG6hfhMwXxOllXZLHc3AMqedgjVPaQ5TxoPr3j22aXAGXzcEEzdgeb3N7w_yE9PmgerS3qqBrPYO6hUvO8tUea9nKa-L6RIP5Kra2EXbeQxrNWZGt4fW5HAfbS0wGx6g6yfzy1Um1i2AmkkLM4zQVjubTr-sJu5KwEirOcg0UQOIWI3By2j8lr5-TA5Rr916bHZw3qcBC1jAKfYgxFEi9LkIQ2rL0E-YLzgcEEc61BOekBAkBjH4eOGHSjPQx9wGvyptwVns0yNUGY6G8hhZvoydJOFJwDTxvbBDCHgCzWnG_ZgR5VWRU2g6EjmJue6lMYhK-mWjmAgUExnFRCBzWcp8zig8_h1dKyYwypfzJAKc96in45kquirmY37676udrDb8FG0SuMksM6iGKuk4k2cQ9KT8PLfxb2ED7es priority: 102 providerName: Springer Nature  | 
    
| Title | Weighted Intuitionistic Fuzzy C-Means Clustering Algorithms | 
    
| URI | https://link.springer.com/article/10.1007/s40815-023-01644-5 https://www.proquest.com/docview/3035350024  | 
    
| Volume | 26 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2199-3211 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002147029 issn: 1562-2479 databaseCode: AFBBN dateStart: 20150301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2199-3211 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0002147029 issn: 1562-2479 databaseCode: BENPR dateStart: 20150301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2199-3211 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002147029 issn: 1562-2479 databaseCode: AGYKE dateStart: 20150101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ1LS8NAEMcHbS96EJ_4LDl408VkN69FRGppfWERUdRTSPahh1pf7UE_vTPbpFVBTwkku4dhduafzc5vALatlFyFoWXc8pCFNuGsEEIwIbW0XNpUK6odvujGJzfh2V10NwXdqhaGjlVWMdEFav2saI98D0NtJCJKKYcvr4y6RtHf1aqFRl62VtAHDjE2DXVOZKwa1I_a3cursYcRXu5bZSeqAUKojT1aBMRmmQCpMBoIUSYwF9upq4_vWp_hdw9nPExkWYnj6vFCTLBU8ExHlFBosOhntptI2F9_XV0y68zDXKlCvebIbRZgyvQXYfYbm3AJ9m_dpqnR3immJXewyzGdvc7w8_PDa7ELg1nOa_WGhFrAIV6z94AGGzw-vS_DTad93TphZacFpnAJDliEIsWqNC5UmgrfpLGWsSrwhgcmEJGKlEGZl-QYpVWcWmLI54WPkdH4qpB5LFag1n_um1XwYpMHWhc6kYSuV36KkiUhKlkR55LbaA2CyiKZKjHk1A2jl40Bys6KGVoxc1bMcMzOeMzLCMLx79ublaGzckG-ZxP3WYPdyviTx3_Ptv7_bBsww_EyOsuzCbXB29BsoUwZFA2YTjvHDag3j-_P243SE78A6f7c4w | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ROLQcUJ8qjxYf2lO7qr27fqwqhGggSgqJqgpUbq69DziE8EgiBD-uv42ZzTqhlcqNm2V79zA7nu9b78w3AB-cUlxL6Rh3XDLpcs5qIQQTyijHlSuMptrhXj_rHMnvx-nxAvxpamEorbKJiT5Qm3NN_8i_YKhNRUqQsn1xyahrFJ2uNi00qtBawWx5ibFQ2LFvb65xCzfa6u7ien_kvL132Oqw0GWAaXS_MUsRoJ0usloXhYhtkRmV6RoveGITkepUW6Q4eYURSmeFI_30qo4xKthY16rKBM77BJakkAo3f0vf9vo_fs48muTs7lWSIvsgybbZFyQS0oKZC2Bh9BEiAKbHEuoiFPtWa7jP4ozLXIXKH1__JxHQqcCaUqKQ2LD0b3SdU-Z_Tnk9eLafw0pgvdHO1E1fwIIdvoTle1qIr-DrL_-T1pqoizDoE8m8hnTUntze3kQt1rOIqlFrMCFpBxwS7QxOcIHGp2ej13D0KDZ_A4vD86F9C1Fmq8SY2uSKpPJ1XCBFykkFrc4qxV26CkljkVIH2XPqvjEoZ4LN3oolWrH0VixxzKfZmIup6MeDb280hi5DABiVc3ddhc-N8eeP_z_b2sOzbcLTzmHvoDzo9vfX4RnHW9M8og1YHF9N7DukSOP6ffDDCH4_tuvfAd1TGMQ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWASggO7IhCgRy4gSGxs1mcqtKyFBAHKuAUxY4NiNIiSA_06xk7SwsCJMQtUuIs47HfOJ73BqEdxRgRrqswUcTFrgoI5pRSTFnCFGEqTITmDl9c-icd9-zWux1j8Zts92JLMuM0aJWmXnrwkqiDkvjmApJpZrHOBQJEx94kqsDSJABPr9SP79rN0qe0oNwYlxPwX4umlT5MHa3GMpKggvFPaQ5ZZjbXdXxsU-wMVjoEEzdgOffm-xf5jG-joPXLPquBr9Y8iosPz7JWnvYHKd8Xwy-akP-xzAKay2Nbq5454yKakL0lNDumeLiMDm_Mr1iZWKcAdiZdzChFW63BcPhuNfCFBOy0Gt2BFnCAJla9e99_fUwfnt9WUKfVvG6c4Lx-AxYwsFPsQeijROhzEYbUlqGfMF9wOCCOdKgnPCEheAximPuFHyqtTB9zG-ZbaQvOYp-uoqlevyfXkOXL2EkSngRMC-ILO4RAKNBaZ9yPGVFeFTmF1SORi5vrGhvdqJRlNoaJwDCRMUwEbXbLNi-ZtMevV9eKzozyYf4WAf571NNxThXtFX0zOv3z3db_dvk2mr46akXnp5ftDTRD4HlZ8lANTaWvA7kJcVHKt3LX_wAOCvmu | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weighted+Intuitionistic+Fuzzy+C-Means+Clustering+Algorithms&rft.jtitle=International+journal+of+fuzzy+systems&rft.au=Kaushal%2C+Meenakshi&rft.au=Danish+Lohani%2C+Q.+M.&rft.au=Castillo%2C+Oscar&rft.date=2024-04-01&rft.issn=1562-2479&rft.eissn=2199-3211&rft.volume=26&rft.issue=3&rft.spage=943&rft.epage=977&rft_id=info:doi/10.1007%2Fs40815-023-01644-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40815_023_01644_5 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1562-2479&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1562-2479&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1562-2479&client=summon |