Weighted Intuitionistic Fuzzy C-Means Clustering Algorithms

Atanassov intuitionistic fuzzy set (AIFS)-based C -means algorithms are successful in clustering uncertain or vague real-world datasets. The AIFS-based clustering algorithms are classified into adaptive class and non-adaptive class. An algorithm from the adaptive class computes its feature weight di...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of fuzzy systems Vol. 26; no. 3; pp. 943 - 977
Main Authors Kaushal, Meenakshi, Danish Lohani, Q. M., Castillo, Oscar
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1562-2479
2199-3211
DOI10.1007/s40815-023-01644-5

Cover

Abstract Atanassov intuitionistic fuzzy set (AIFS)-based C -means algorithms are successful in clustering uncertain or vague real-world datasets. The AIFS-based clustering algorithms are classified into adaptive class and non-adaptive class. An algorithm from the adaptive class computes its feature weight distribution with the help of the given dataset. On the other side, the algorithm belonging to the non-adaptive class mostly computes the feature weight distribution by employing an equally likely approach. The guarantee to reach up to the mark clustering performance is missing within this approach. Simultaneously, the performance gets deteriorated if the datasets showcase noises/irrelevant features. The irrelevant features in the datasets add to the computational cost. So, a feature reduction-equipped clustering algorithm called uni-weighted intuitionistic fuzzy C -means (uW-IFCM) is introduced in the paper. Moreover, the probabilistic weights-based adaptive clustering algorithm, namely bi-weighted probabilistic intuitionistic fuzzy C -means (bW-PIFCM) is proposed under the AIFS environment. The parametric analysis for uW-IFCM is provided to comprehend and compare its performance with bW-PIFCM, PIFCM, IFCM, and FCM algorithms. Here, an intuitionistic data fuzzification technique transforms the real-valued dataset into AIFS dataset, therefore bW-PIFCM and uW-IFCM algorithms cluster the real-valued datasets. The research proposal of Yang and Nataliani in [IEEE Transactions on Fuzzy Systems, 26(2), 817–835] motivates us to introduce a feature reduction-equipped uW-IFCM algorithm. We have considered synthetic datasets and some UCI machine learning datasets for the experimental study of uW-IFCM and bW-PIFCM. The efficacy and the precision of proposed algorithms are tested in terms of some popular benchmark indexes as well.
AbstractList Atanassov intuitionistic fuzzy set (AIFS)-based C -means algorithms are successful in clustering uncertain or vague real-world datasets. The AIFS-based clustering algorithms are classified into adaptive class and non-adaptive class. An algorithm from the adaptive class computes its feature weight distribution with the help of the given dataset. On the other side, the algorithm belonging to the non-adaptive class mostly computes the feature weight distribution by employing an equally likely approach. The guarantee to reach up to the mark clustering performance is missing within this approach. Simultaneously, the performance gets deteriorated if the datasets showcase noises/irrelevant features. The irrelevant features in the datasets add to the computational cost. So, a feature reduction-equipped clustering algorithm called uni-weighted intuitionistic fuzzy C -means (uW-IFCM) is introduced in the paper. Moreover, the probabilistic weights-based adaptive clustering algorithm, namely bi-weighted probabilistic intuitionistic fuzzy C -means (bW-PIFCM) is proposed under the AIFS environment. The parametric analysis for uW-IFCM is provided to comprehend and compare its performance with bW-PIFCM, PIFCM, IFCM, and FCM algorithms. Here, an intuitionistic data fuzzification technique transforms the real-valued dataset into AIFS dataset, therefore bW-PIFCM and uW-IFCM algorithms cluster the real-valued datasets. The research proposal of Yang and Nataliani in [IEEE Transactions on Fuzzy Systems, 26(2), 817–835] motivates us to introduce a feature reduction-equipped uW-IFCM algorithm. We have considered synthetic datasets and some UCI machine learning datasets for the experimental study of uW-IFCM and bW-PIFCM. The efficacy and the precision of proposed algorithms are tested in terms of some popular benchmark indexes as well.
Atanassov intuitionistic fuzzy set (AIFS)-based C-means algorithms are successful in clustering uncertain or vague real-world datasets. The AIFS-based clustering algorithms are classified into adaptive class and non-adaptive class. An algorithm from the adaptive class computes its feature weight distribution with the help of the given dataset. On the other side, the algorithm belonging to the non-adaptive class mostly computes the feature weight distribution by employing an equally likely approach. The guarantee to reach up to the mark clustering performance is missing within this approach. Simultaneously, the performance gets deteriorated if the datasets showcase noises/irrelevant features. The irrelevant features in the datasets add to the computational cost. So, a feature reduction-equipped clustering algorithm called uni-weighted intuitionistic fuzzy C-means (uW-IFCM) is introduced in the paper. Moreover, the probabilistic weights-based adaptive clustering algorithm, namely bi-weighted probabilistic intuitionistic fuzzy C-means (bW-PIFCM) is proposed under the AIFS environment. The parametric analysis for uW-IFCM is provided to comprehend and compare its performance with bW-PIFCM, PIFCM, IFCM, and FCM algorithms. Here, an intuitionistic data fuzzification technique transforms the real-valued dataset into AIFS dataset, therefore bW-PIFCM and uW-IFCM algorithms cluster the real-valued datasets. The research proposal of Yang and Nataliani in [IEEE Transactions on Fuzzy Systems, 26(2), 817–835] motivates us to introduce a feature reduction-equipped uW-IFCM algorithm. We have considered synthetic datasets and some UCI machine learning datasets for the experimental study of uW-IFCM and bW-PIFCM. The efficacy and the precision of proposed algorithms are tested in terms of some popular benchmark indexes as well.
Author Castillo, Oscar
Danish Lohani, Q. M.
Kaushal, Meenakshi
Author_xml – sequence: 1
  givenname: Meenakshi
  surname: Kaushal
  fullname: Kaushal, Meenakshi
  organization: Department of Mathematics, South Asian University
– sequence: 2
  givenname: Q. M.
  surname: Danish Lohani
  fullname: Danish Lohani, Q. M.
  organization: Department of Mathematics, South Asian University
– sequence: 3
  givenname: Oscar
  orcidid: 0000-0002-7385-5689
  surname: Castillo
  fullname: Castillo, Oscar
  email: ocastillo@tectijuana.mx
  organization: Division of Graduate Studies and Research, Tijuana Institute of Technology
BookMark eNp9kD1PwzAQhi1UJErpH2CKxGzwR-w4YqoiPioVsYAYLce5tEZpUmxnaH89KUFCYuh0N7zPe6fnEk3argWErim5pYRkdyEligpMGMeEyjTF4gxNGc1zzBmlEzSlQjLM0iy_QPMQXEk4ZZILyafo_gPcehOhSpZt7F10XetCdDZ57A-HfVLgFzBtSIqmDxG8a9fJoll33sXNNlyh89o0Aea_c4beHx_eime8en1aFosVtpzmEYucZ7VVsrRKcQJKVrm05bAwCpQLKyxwJjMDxlqpaiqIMiWpKgBiy9xIPkM3Y-_Od189hKg_u963w0nNCRdcEMLSIcXGlPVdCB5qvfNua_xeU6KPnvToSQ-e9I8nLQZI_YOsi-ZoIXrjmtMoH9GwO3oB__fVCeobCn5-dw
CitedBy_id crossref_primary_10_3390_a17120551
crossref_primary_10_1109_ACCESS_2024_3512416
crossref_primary_10_1007_s12145_024_01453_w
Cites_doi 10.1016/j.patrec.2013.04.021
10.1049/iet-ipr.2016.0891
10.1109/91.413225
10.1109/TFUZZ.2017.2692203
10.1016/j.fss.2009.10.021
10.1145/276304.276314
10.3969/j.issn.1004-4132.2010.04.009
10.2991/eusflat.2013.124
10.1016/S0165-0114(86)80034-3
10.1016/j.ijar.2013.05.005
10.1109/ACCESS.2019.2916894
10.1016/j.patrec.2004.03.008
10.1023/A:1009745219419
10.1016/0098-3004(84)90020-7
10.1109/91.493905
10.1016/j.asoc.2018.04.014
10.1109/ANNES.1995.499469
10.34768/amcs-2021-0021
10.1109/TFUZZ.2018.2848245
10.1007/s00500-014-1264-2
10.1109/TPAMI.2005.95
10.1145/3321386
10.1016/j.knosys.2020.106549
10.1007/s40815-021-01243-2
10.1109/IGARSS.2007.4423224
10.1007/s40815-020-00929-3
10.1016/j.ijar.2022.05.007
10.1016/j.asoc.2015.12.022
10.1109/FUZZ-IEEE.2018.8491602
10.1109/WCICA.2002.1020845
10.1016/j.cmpb.2011.10.010
10.1109/TFUZZ.2013.2280141
10.1016/S0165-0114(98)00244-9
10.1007/978-981-15-6141-2_1
10.1016/j.ins.2022.02.004
10.1016/j.asoc.2010.05.005
10.1145/3264746.3264777
10.1016/j.eswa.2022.116782
10.1016/S0031-3203(01)00197-2
10.1109/CDC.1978.268028
10.1016/j.fss.2017.01.001
10.1109/MSP.2010.939739
10.1109/ACCESS.2021.3077622
10.1155/2019/5984649
10.3233/IFS-151894
10.1007/978-3-540-88458-3_69
10.1016/j.fss.2019.03.017
10.1002/9780470061190
10.1016/j.patcog.2021.108064
ContentType Journal Article
Copyright The Author(s) under exclusive licence to Taiwan Fuzzy Systems Association 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s) under exclusive licence to Taiwan Fuzzy Systems Association 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.1007/s40815-023-01644-5
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2199-3211
EndPage 977
ExternalDocumentID 10_1007_s40815_023_01644_5
GroupedDBID -EM
.4S
.DC
0R~
188
203
2UF
4.4
406
5GY
9RA
A8Z
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABDZT
ABECU
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFKRA
AFQWF
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AILAN
AINHJ
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ARAPS
ARCSS
ATFKH
AVXWI
AXYYD
BENPR
BGLVJ
BGNMA
CCPQU
CNMHZ
CSCUP
CVCKV
DNIVK
DPUIP
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGCAI
GJIRD
HCIFZ
HG6
HRMNR
I-F
IKXTQ
IWAJR
IXD
J-C
J9A
JBSCW
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9J
OK1
P2P
PT4
PTHSS
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
TUS
TUXDW
UG4
UOJIU
UTJUX
UZ4
UZXMN
VFIZW
Z88
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ESTFP
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-5937fc86bc8830e86d96cb0e821e135c5ce3267aeacc68f1508ab0ddee0cb9a63
IEDL.DBID BENPR
ISSN 1562-2479
IngestDate Fri Jul 25 11:11:43 EDT 2025
Wed Oct 01 03:51:25 EDT 2025
Thu Apr 24 23:01:33 EDT 2025
Fri Feb 21 02:40:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Intuitionistic fuzzy
means
Atanassov intuitionisitic fuzzy set (AIFS)
Feature reduction
PIFCM
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-5937fc86bc8830e86d96cb0e821e135c5ce3267aeacc68f1508ab0ddee0cb9a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7385-5689
PQID 3035350024
PQPubID 2043640
PageCount 35
ParticipantIDs proquest_journals_3035350024
crossref_primary_10_1007_s40815_023_01644_5
crossref_citationtrail_10_1007_s40815_023_01644_5
springer_journals_10_1007_s40815_023_01644_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240400
2024-04-00
20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 4
  year: 2024
  text: 20240400
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal of fuzzy systems
PublicationTitleAbbrev Int. J. Fuzzy Syst
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References BezdekJCEhrlichRFullWFcm: the fuzzy c-means clustering algorithmComput. Geosci.1984102–319120310.1016/0098-3004(84)90020-7
Lee, J.Y., Kim, D., Mun, J.Y., Kang, S., Son, S.H., Shin, S.: Texture weighted fuzzy c-means algorithm for 3d brain mri segmentation. In: Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems, pp. 291–295 (2018)
WangXWangYWangLImproving fuzzy c-means clustering based on feature-weight learningPattern Recognit. Lett.200425101123113210.1016/j.patrec.2004.03.008
WangGWangJ-SWangH-YFuzzy c-means clustering validity function based on multiple clustering performance evaluation componentsInt. J. Fuzzy Syst.20222441859188710.1007/s40815-021-01243-2
D’UrsoPLeskiJMFuzzy clustering of fuzzy data based on robust loss functions and ordered weighted averagingFuzzy Sets Syst.2020389128409041010.1016/j.fss.2019.03.017
Danish LohaniQMDSolankiRMuhuriPKNovel adaptive clustering algorithms based on a probabilistic similarity measure over atanassov intuitionistic fuzzy setIEEE Trans. Fuzzy Syst.20182663715372910.1109/TFUZZ.2018.2848245
ChengmaoWXiaokangGA novel interval-valued data driven type-2 possibilistic local information c-means clustering for land cover classificationInt. J. Approx. Reason.202214880116444012010.1016/j.ijar.2022.05.007
SiminskiKAn outlier-robust neuro-fuzzy system for classification and regressionInt. J. Appl. Math. Comput. Sci.2021312303319
YangM-SNatalianiYA feature-reduction fuzzy clustering algorithm based on feature-weighted entropyIEEE Trans. Fuzzy Syst.201726281783510.1109/TFUZZ.2017.2692203
Lin, K.-P.: A novel evolutionary kernel intuitionistic fuzzy c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c$$\end{document}-means clustering algorithm. IEEE Trans. Fuzzy Syst. 22(5), 1074–1087 (2013)
ValenteDOJWitoldPAdvances in Fuzzy Clustering and Its Applications2007New YorkWiley10.1002/9780470061190
Miin-ShenYSinaga KristinaPCollaborative feature-weighted multi-view fuzzy c-means clusteringPattern Recognit.202111910806410.1016/j.patcog.2021.108064
WenyuanZTianyuHJunCA robust bias-correction fuzzy weighted c-ordered-means clustering algorithmMath. Probl. Eng.2019397662310.1155/2019/5984649
NhaVPThePLPedryczWNgoLTFeature-reduction fuzzy co-clustering approach for hyper-spectral image analysisKnowl. Based Syst.202121610.1016/j.knosys.2020.106549
ZhouXZhaoRFengquanYuTianHIntuitionistic fuzzy entropy clustering algorithm for infrared image segmentationJ. Intell. Fuzzy Syst.20163031831184010.3233/IFS-151894
Gustafson,D.E., Kessel, W.C.: Fuzzy clustering with a fuzzy covariance matrix. In: 1978 IEEE Conference on Decision and Control Including the 17th Symposium on Adaptive Processes, pp. 761–766. IEEE (1979)
SiminskiKFuzzy weighted c-ordered means clustering algorithmFuzzy Sets Syst.2017318133363455210.1016/j.fss.2017.01.001
PalNRBezdekJCOn cluster validity for the fuzzy c-means modelIEEE Trans. Fuzzy Syst.19953337037910.1109/91.413225
Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. In: Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, pp. 94–105 (1998)
AtanassovKTIntuitionistic fuzzy setsFuzzy Sets Syst.1986201879693734610.1016/S0165-0114(86)80034-3
Cohen-AddadVKanadeVMallmann-TrennFMathieuCHierarchical clustering: objective functions and algorithmsJ. ACM2019664142396326310.1145/3321386
HuangC-WLinK-PMing-ChangWHungK-CLiuG-SJenC-HIntuitionisti fuzzy c-means clustering algorithm with neighborhood attration in segmenting medial imageSoft Comput.201519245947010.1007/s00500-014-1264-2
VidalRSubspace clusteringIEEE Signal Process. Mag.2011282526810.1109/MSP.2010.939739
QiuCXiaoJYuLHanLIqbalMNA modified interval type-2 fuzzy c-means algorithm with application in mr image segmentationPattern Recogn. Lett.201334121329133810.1016/j.patrec.2013.04.021
Bensaid AmineMHall LawrenceOBezdek JamesCClarke LaurencePSilbiger MartinLArrington JohnAMurtaghRFValidity-guided (re) clustering with applications to image segmentationIEEE Trans. Fuzzy Syst.19964211212310.1109/91.493905
Szmidt, E., Kacprzyk, J.: Geometric similarity measures for the intuitionistic fuzzy sets. In: EUSFLAT Conference (2013)
NamburuASamayamantulaSKEdaraSRGeneralised rough intuitionistic fuzzy c-means for magnetic resonance brain image segmentationIET Image Process.201711977778510.1049/iet-ipr.2016.0891
Danish LohaniQMDSolankiRMuhuriPKA convergence theorem and an experimental study of intuitionistic fuzzy c-mean algorithm over machine learning datasetAppl. Soft Comput.2018711176118810.1016/j.asoc.2018.04.014
GravesDPedryczWKernel-based fuzzy clustering and fuzzy clustering: a comparative experimental studyFuzzy Sets Syst.20101614522543257658410.1016/j.fss.2009.10.021
SanderJEsterMKriegelH-PXiaoweiXDensity-based clustering in spatial databases: the algorithm gdbscan and its applicationsData Min. Knowl. Discov.19982216919410.1023/A:1009745219419
Asuncion, A., Newman, D.: Uci machine learning repository (2007)
ZeshuiXJunjieWIntuitionistic fuzzy c-means clustering algorithmsJ. Syst. Eng. Electron.201021458059010.3969/j.issn.1004-4132.2010.04.009
Kaushal, M., Solanki, R., Danish Lohani, Q.M., Muhuri Pranab, K.: A novel intuitionistic fuzzy set generator with application to clustering. In: 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8. IEEE (2018)
Iakovidis, D.K., Pelekis, N., Kotsifakos, E., Kopanakis, I.: Intuitionistic fuzzy clustering with applications in computer vision. In: International Conference on Advanced Concepts for Intelligent Vision Systems, pp. 764–774. Springer, New York (2008)
JiZSunQXiaYChenQXiaDFengDGeneralized rough fuzzy c-means algorithm for brain mr image segmentationComput. Methods Programs Biomed.2012108264465510.1016/j.cmpb.2011.10.010
Li, J., Gao, X., Ji, H.: A feature weighted FCM clustering algorithm based on evolutionary strategy. In: Proceedings of the 4th World Congress on Intelligent Control and Automation (Cat. No. 02EX527), Vol. 2, pp. 1549–1553. IEEE (2002)
ZhexueHJNg MichaelKHongqiangRZichenLAutomated variable weighting in k-means type clusteringIEEE Trans. Pattern Anal. Mach. Intell.200527565766810.1109/TPAMI.2005.95
Kuo-LungWYangM-SAlternative c-means clustering algorithmsPattern Recognit.200235102267227810.1016/S0031-3203(01)00197-2
SunLZhangJDingWJiuchengXFeature reduction for imbalanced data classification using similarity-based feature clustering with adaptive weighted k-nearest neighborsInf. Sci.202259359161310.1016/j.ins.2022.02.004
StephanTSharmaKShankarAPunithaSVaradarajanVLiuPFuzzy-logic-inspired zone-based clustering algorithm for wireless sensor networksInt. J. Fuzzy Syst.20212350651710.1007/s40815-020-00929-3
He Yu-LinOGui-LiangPF-VHuangJZSuganthanPNA novel dependency-oriented mixed-attribute data classification methodExpert Syst. Appl.202219910.1016/j.eswa.2022.116782
SinagaKPHussainIYangM-SEntropy k-means clustering with feature reduction under unknown number of clustersIEEE Access20219677366775110.1109/ACCESS.2021.3077622
ChairaTA novel intuitionistic fuzzy c means clustering algorithm and its application to medical imagesAppl. Soft Comput.20111121711171710.1016/j.asoc.2010.05.005
LiFYeMChenXAn extension to rough c-means clustering based on decision-theoretic rough sets modelInt. J. Approx. Reason.2014551116129312778710.1016/j.ijar.2013.05.005
HanumanVAgrawalRKAditiSAn improved intuitionistic fuzzy c-means clustering algorithm incorporating local information for brain image segmentationAppl. Soft Comput.20164654355710.1016/j.asoc.2015.12.022
Khan, M.A., Arshad, H., Nisar, W., Javed, M.Y., Sharif, M.: An integrated design of fuzzy c-means and nca-based multi-properties feature reduction for brain tumor recognition. In: Signal and Image Processing Techniques for the Development of Intelligent Healthcare Systems, pp. 1–28. Springer, New York (2021)
Bezdek, J.C., Pal, N.R.: Cluster validation with generalized dunn’s indices. In: Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems, pp. 190–190. IEEE Computer Society (1995)
SzmidtEKacprzykJDistances between intuitionistic fuzzy setsFuzzy Sets Syst.20001143505518177528610.1016/S0165-0114(98)00244-9
ChenNZe-shuiXXiaMHierarchical hesitant fuzzy k-means clustering algorithmAppl. Math. A20142911173182588
ZhaoFChenYLiuHFanJAlternate pso-based adaptive interval type-2 intuitionistic fuzzy c-means clustering algorithm for color image segmentationIEEE Access20197640286403910.1109/ACCESS.2019.2916894
Liu, X., Li, X., Zhang, Y., Yang, C., Xu, W., Li, M., Luo, H.: Remote sensing image classification based on dot density function weighted fcm clustering algorithm. In: 2007 IEEE International Geoscience and Remote Sensing Symposium, pp. 2010–2013. IEEE (2007)
1644_CR19
G Wang (1644_CR23) 2022; 24
V Cohen-Addad (1644_CR5) 2019; 66
F Zhao (1644_CR37) 2019; 7
1644_CR51
DOJ Valente (1644_CR4) 2007
1644_CR13
1644_CR16
1644_CR15
X Zeshui (1644_CR7) 2010; 21
D Graves (1644_CR48) 2010; 161
QMD Danish Lohani (1644_CR41) 2018; 26
1644_CR1
KP Sinaga (1644_CR24) 2021; 9
L Sun (1644_CR27) 2022; 593
M-S Yang (1644_CR21) 2017; 26
NR Pal (1644_CR49) 1995; 3
R Vidal (1644_CR2) 2011; 28
V Hanuman (1644_CR36) 2016; 46
X Zhou (1644_CR38) 2016; 30
1644_CR42
1644_CR40
K Siminski (1644_CR29) 2021; 31
A Namburu (1644_CR39) 2017; 11
X Wang (1644_CR20) 2004; 25
W Kuo-Lung (1644_CR14) 2002; 35
1644_CR47
E Szmidt (1644_CR43) 2000; 114
HJ Zhexue (1644_CR44) 2005; 27
VP Nha (1644_CR28) 2021; 216
P D’Urso (1644_CR25) 2020; 389
C Qiu (1644_CR8) 2013; 34
T Chaira (1644_CR32) 2011; 11
F Li (1644_CR11) 2014; 55
Z Wenyuan (1644_CR18) 2019
W Chengmao (1644_CR9) 2022; 148
1644_CR30
1644_CR35
Z Ji (1644_CR10) 2012; 108
1644_CR34
Y Miin-Shen (1644_CR17) 2021; 119
M Bensaid Amine (1644_CR50) 1996; 4
QMD Danish Lohani (1644_CR45) 2018; 71
N Chen (1644_CR12) 2014; 29
T Stephan (1644_CR22) 2021; 23
K Siminski (1644_CR46) 2017; 318
J Sander (1644_CR3) 1998; 2
O He Yu-Lin (1644_CR26) 2022; 199
C-W Huang (1644_CR33) 2015; 19
JC Bezdek (1644_CR6) 1984; 10
KT Atanassov (1644_CR31) 1986; 20
References_xml – reference: WangGWangJ-SWangH-YFuzzy c-means clustering validity function based on multiple clustering performance evaluation componentsInt. J. Fuzzy Syst.20222441859188710.1007/s40815-021-01243-2
– reference: ZhaoFChenYLiuHFanJAlternate pso-based adaptive interval type-2 intuitionistic fuzzy c-means clustering algorithm for color image segmentationIEEE Access20197640286403910.1109/ACCESS.2019.2916894
– reference: Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. In: Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, pp. 94–105 (1998)
– reference: SinagaKPHussainIYangM-SEntropy k-means clustering with feature reduction under unknown number of clustersIEEE Access20219677366775110.1109/ACCESS.2021.3077622
– reference: Lee, J.Y., Kim, D., Mun, J.Y., Kang, S., Son, S.H., Shin, S.: Texture weighted fuzzy c-means algorithm for 3d brain mri segmentation. In: Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems, pp. 291–295 (2018)
– reference: D’UrsoPLeskiJMFuzzy clustering of fuzzy data based on robust loss functions and ordered weighted averagingFuzzy Sets Syst.2020389128409041010.1016/j.fss.2019.03.017
– reference: HanumanVAgrawalRKAditiSAn improved intuitionistic fuzzy c-means clustering algorithm incorporating local information for brain image segmentationAppl. Soft Comput.20164654355710.1016/j.asoc.2015.12.022
– reference: NhaVPThePLPedryczWNgoLTFeature-reduction fuzzy co-clustering approach for hyper-spectral image analysisKnowl. Based Syst.202121610.1016/j.knosys.2020.106549
– reference: Liu, X., Li, X., Zhang, Y., Yang, C., Xu, W., Li, M., Luo, H.: Remote sensing image classification based on dot density function weighted fcm clustering algorithm. In: 2007 IEEE International Geoscience and Remote Sensing Symposium, pp. 2010–2013. IEEE (2007)
– reference: Miin-ShenYSinaga KristinaPCollaborative feature-weighted multi-view fuzzy c-means clusteringPattern Recognit.202111910806410.1016/j.patcog.2021.108064
– reference: Szmidt, E., Kacprzyk, J.: Geometric similarity measures for the intuitionistic fuzzy sets. In: EUSFLAT Conference (2013)
– reference: ZhexueHJNg MichaelKHongqiangRZichenLAutomated variable weighting in k-means type clusteringIEEE Trans. Pattern Anal. Mach. Intell.200527565766810.1109/TPAMI.2005.95
– reference: He Yu-LinOGui-LiangPF-VHuangJZSuganthanPNA novel dependency-oriented mixed-attribute data classification methodExpert Syst. Appl.202219910.1016/j.eswa.2022.116782
– reference: Danish LohaniQMDSolankiRMuhuriPKA convergence theorem and an experimental study of intuitionistic fuzzy c-mean algorithm over machine learning datasetAppl. Soft Comput.2018711176118810.1016/j.asoc.2018.04.014
– reference: Bezdek, J.C., Pal, N.R.: Cluster validation with generalized dunn’s indices. In: Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems, pp. 190–190. IEEE Computer Society (1995)
– reference: Kuo-LungWYangM-SAlternative c-means clustering algorithmsPattern Recognit.200235102267227810.1016/S0031-3203(01)00197-2
– reference: Lin, K.-P.: A novel evolutionary kernel intuitionistic fuzzy c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c$$\end{document}-means clustering algorithm. IEEE Trans. Fuzzy Syst. 22(5), 1074–1087 (2013)
– reference: Asuncion, A., Newman, D.: Uci machine learning repository (2007)
– reference: SiminskiKAn outlier-robust neuro-fuzzy system for classification and regressionInt. J. Appl. Math. Comput. Sci.2021312303319
– reference: NamburuASamayamantulaSKEdaraSRGeneralised rough intuitionistic fuzzy c-means for magnetic resonance brain image segmentationIET Image Process.201711977778510.1049/iet-ipr.2016.0891
– reference: ZeshuiXJunjieWIntuitionistic fuzzy c-means clustering algorithmsJ. Syst. Eng. Electron.201021458059010.3969/j.issn.1004-4132.2010.04.009
– reference: Gustafson,D.E., Kessel, W.C.: Fuzzy clustering with a fuzzy covariance matrix. In: 1978 IEEE Conference on Decision and Control Including the 17th Symposium on Adaptive Processes, pp. 761–766. IEEE (1979)
– reference: JiZSunQXiaYChenQXiaDFengDGeneralized rough fuzzy c-means algorithm for brain mr image segmentationComput. Methods Programs Biomed.2012108264465510.1016/j.cmpb.2011.10.010
– reference: Khan, M.A., Arshad, H., Nisar, W., Javed, M.Y., Sharif, M.: An integrated design of fuzzy c-means and nca-based multi-properties feature reduction for brain tumor recognition. In: Signal and Image Processing Techniques for the Development of Intelligent Healthcare Systems, pp. 1–28. Springer, New York (2021)
– reference: VidalRSubspace clusteringIEEE Signal Process. Mag.2011282526810.1109/MSP.2010.939739
– reference: ChengmaoWXiaokangGA novel interval-valued data driven type-2 possibilistic local information c-means clustering for land cover classificationInt. J. Approx. Reason.202214880116444012010.1016/j.ijar.2022.05.007
– reference: ChenNZe-shuiXXiaMHierarchical hesitant fuzzy k-means clustering algorithmAppl. Math. A20142911173182588
– reference: HuangC-WLinK-PMing-ChangWHungK-CLiuG-SJenC-HIntuitionisti fuzzy c-means clustering algorithm with neighborhood attration in segmenting medial imageSoft Comput.201519245947010.1007/s00500-014-1264-2
– reference: SiminskiKFuzzy weighted c-ordered means clustering algorithmFuzzy Sets Syst.2017318133363455210.1016/j.fss.2017.01.001
– reference: StephanTSharmaKShankarAPunithaSVaradarajanVLiuPFuzzy-logic-inspired zone-based clustering algorithm for wireless sensor networksInt. J. Fuzzy Syst.20212350651710.1007/s40815-020-00929-3
– reference: SzmidtEKacprzykJDistances between intuitionistic fuzzy setsFuzzy Sets Syst.20001143505518177528610.1016/S0165-0114(98)00244-9
– reference: GravesDPedryczWKernel-based fuzzy clustering and fuzzy clustering: a comparative experimental studyFuzzy Sets Syst.20101614522543257658410.1016/j.fss.2009.10.021
– reference: Bensaid AmineMHall LawrenceOBezdek JamesCClarke LaurencePSilbiger MartinLArrington JohnAMurtaghRFValidity-guided (re) clustering with applications to image segmentationIEEE Trans. Fuzzy Syst.19964211212310.1109/91.493905
– reference: ValenteDOJWitoldPAdvances in Fuzzy Clustering and Its Applications2007New YorkWiley10.1002/9780470061190
– reference: QiuCXiaoJYuLHanLIqbalMNA modified interval type-2 fuzzy c-means algorithm with application in mr image segmentationPattern Recogn. Lett.201334121329133810.1016/j.patrec.2013.04.021
– reference: WangXWangYWangLImproving fuzzy c-means clustering based on feature-weight learningPattern Recognit. Lett.200425101123113210.1016/j.patrec.2004.03.008
– reference: Danish LohaniQMDSolankiRMuhuriPKNovel adaptive clustering algorithms based on a probabilistic similarity measure over atanassov intuitionistic fuzzy setIEEE Trans. Fuzzy Syst.20182663715372910.1109/TFUZZ.2018.2848245
– reference: PalNRBezdekJCOn cluster validity for the fuzzy c-means modelIEEE Trans. Fuzzy Syst.19953337037910.1109/91.413225
– reference: YangM-SNatalianiYA feature-reduction fuzzy clustering algorithm based on feature-weighted entropyIEEE Trans. Fuzzy Syst.201726281783510.1109/TFUZZ.2017.2692203
– reference: WenyuanZTianyuHJunCA robust bias-correction fuzzy weighted c-ordered-means clustering algorithmMath. Probl. Eng.2019397662310.1155/2019/5984649
– reference: Li, J., Gao, X., Ji, H.: A feature weighted FCM clustering algorithm based on evolutionary strategy. In: Proceedings of the 4th World Congress on Intelligent Control and Automation (Cat. No. 02EX527), Vol. 2, pp. 1549–1553. IEEE (2002)
– reference: ChairaTA novel intuitionistic fuzzy c means clustering algorithm and its application to medical imagesAppl. Soft Comput.20111121711171710.1016/j.asoc.2010.05.005
– reference: LiFYeMChenXAn extension to rough c-means clustering based on decision-theoretic rough sets modelInt. J. Approx. Reason.2014551116129312778710.1016/j.ijar.2013.05.005
– reference: AtanassovKTIntuitionistic fuzzy setsFuzzy Sets Syst.1986201879693734610.1016/S0165-0114(86)80034-3
– reference: Kaushal, M., Solanki, R., Danish Lohani, Q.M., Muhuri Pranab, K.: A novel intuitionistic fuzzy set generator with application to clustering. In: 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8. IEEE (2018)
– reference: BezdekJCEhrlichRFullWFcm: the fuzzy c-means clustering algorithmComput. Geosci.1984102–319120310.1016/0098-3004(84)90020-7
– reference: Iakovidis, D.K., Pelekis, N., Kotsifakos, E., Kopanakis, I.: Intuitionistic fuzzy clustering with applications in computer vision. In: International Conference on Advanced Concepts for Intelligent Vision Systems, pp. 764–774. Springer, New York (2008)
– reference: Cohen-AddadVKanadeVMallmann-TrennFMathieuCHierarchical clustering: objective functions and algorithmsJ. ACM2019664142396326310.1145/3321386
– reference: SunLZhangJDingWJiuchengXFeature reduction for imbalanced data classification using similarity-based feature clustering with adaptive weighted k-nearest neighborsInf. Sci.202259359161310.1016/j.ins.2022.02.004
– reference: ZhouXZhaoRFengquanYuTianHIntuitionistic fuzzy entropy clustering algorithm for infrared image segmentationJ. Intell. Fuzzy Syst.20163031831184010.3233/IFS-151894
– reference: SanderJEsterMKriegelH-PXiaoweiXDensity-based clustering in spatial databases: the algorithm gdbscan and its applicationsData Min. Knowl. Discov.19982216919410.1023/A:1009745219419
– volume: 34
  start-page: 1329
  issue: 12
  year: 2013
  ident: 1644_CR8
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2013.04.021
– volume: 11
  start-page: 777
  issue: 9
  year: 2017
  ident: 1644_CR39
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2016.0891
– volume: 3
  start-page: 370
  issue: 3
  year: 1995
  ident: 1644_CR49
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.413225
– volume: 26
  start-page: 817
  issue: 2
  year: 2017
  ident: 1644_CR21
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2017.2692203
– volume: 161
  start-page: 522
  issue: 4
  year: 2010
  ident: 1644_CR48
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2009.10.021
– ident: 1644_CR1
  doi: 10.1145/276304.276314
– volume: 21
  start-page: 580
  issue: 4
  year: 2010
  ident: 1644_CR7
  publication-title: J. Syst. Eng. Electron.
  doi: 10.3969/j.issn.1004-4132.2010.04.009
– ident: 1644_CR42
  doi: 10.2991/eusflat.2013.124
– volume: 20
  start-page: 87
  issue: 1
  year: 1986
  ident: 1644_CR31
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(86)80034-3
– volume: 55
  start-page: 116
  issue: 1
  year: 2014
  ident: 1644_CR11
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2013.05.005
– volume: 7
  start-page: 64028
  year: 2019
  ident: 1644_CR37
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2916894
– volume: 25
  start-page: 1123
  issue: 10
  year: 2004
  ident: 1644_CR20
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2004.03.008
– volume: 2
  start-page: 169
  issue: 2
  year: 1998
  ident: 1644_CR3
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009745219419
– volume: 10
  start-page: 191
  issue: 2–3
  year: 1984
  ident: 1644_CR6
  publication-title: Comput. Geosci.
  doi: 10.1016/0098-3004(84)90020-7
– volume: 4
  start-page: 112
  issue: 2
  year: 1996
  ident: 1644_CR50
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.493905
– volume: 71
  start-page: 1176
  year: 2018
  ident: 1644_CR45
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.04.014
– ident: 1644_CR51
  doi: 10.1109/ANNES.1995.499469
– volume: 29
  start-page: 1
  issue: 1
  year: 2014
  ident: 1644_CR12
  publication-title: Appl. Math. A
– volume: 31
  start-page: 303
  issue: 2
  year: 2021
  ident: 1644_CR29
  publication-title: Int. J. Appl. Math. Comput. Sci.
  doi: 10.34768/amcs-2021-0021
– volume: 26
  start-page: 3715
  issue: 6
  year: 2018
  ident: 1644_CR41
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2018.2848245
– volume: 19
  start-page: 459
  issue: 2
  year: 2015
  ident: 1644_CR33
  publication-title: Soft Comput.
  doi: 10.1007/s00500-014-1264-2
– volume: 27
  start-page: 657
  issue: 5
  year: 2005
  ident: 1644_CR44
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.95
– volume: 66
  start-page: 1
  issue: 4
  year: 2019
  ident: 1644_CR5
  publication-title: J. ACM
  doi: 10.1145/3321386
– volume: 216
  year: 2021
  ident: 1644_CR28
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2020.106549
– volume: 24
  start-page: 1859
  issue: 4
  year: 2022
  ident: 1644_CR23
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-021-01243-2
– ident: 1644_CR16
  doi: 10.1109/IGARSS.2007.4423224
– volume: 23
  start-page: 506
  year: 2021
  ident: 1644_CR22
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-020-00929-3
– volume: 148
  start-page: 80
  year: 2022
  ident: 1644_CR9
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2022.05.007
– volume: 46
  start-page: 543
  year: 2016
  ident: 1644_CR36
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.12.022
– ident: 1644_CR40
  doi: 10.1109/FUZZ-IEEE.2018.8491602
– ident: 1644_CR19
  doi: 10.1109/WCICA.2002.1020845
– volume: 108
  start-page: 644
  issue: 2
  year: 2012
  ident: 1644_CR10
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2011.10.010
– ident: 1644_CR35
  doi: 10.1109/TFUZZ.2013.2280141
– volume: 114
  start-page: 505
  issue: 3
  year: 2000
  ident: 1644_CR43
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(98)00244-9
– ident: 1644_CR30
  doi: 10.1007/978-981-15-6141-2_1
– volume: 593
  start-page: 591
  year: 2022
  ident: 1644_CR27
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.02.004
– volume: 11
  start-page: 1711
  issue: 2
  year: 2011
  ident: 1644_CR32
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.05.005
– ident: 1644_CR15
  doi: 10.1145/3264746.3264777
– volume: 199
  year: 2022
  ident: 1644_CR26
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116782
– ident: 1644_CR47
– volume: 35
  start-page: 2267
  issue: 10
  year: 2002
  ident: 1644_CR14
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(01)00197-2
– ident: 1644_CR13
  doi: 10.1109/CDC.1978.268028
– volume: 318
  start-page: 1
  year: 2017
  ident: 1644_CR46
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2017.01.001
– volume: 28
  start-page: 52
  issue: 2
  year: 2011
  ident: 1644_CR2
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2010.939739
– volume: 9
  start-page: 67736
  year: 2021
  ident: 1644_CR24
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3077622
– year: 2019
  ident: 1644_CR18
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2019/5984649
– volume: 30
  start-page: 1831
  issue: 3
  year: 2016
  ident: 1644_CR38
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/IFS-151894
– ident: 1644_CR34
  doi: 10.1007/978-3-540-88458-3_69
– volume: 389
  start-page: 1
  year: 2020
  ident: 1644_CR25
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2019.03.017
– volume-title: Advances in Fuzzy Clustering and Its Applications
  year: 2007
  ident: 1644_CR4
  doi: 10.1002/9780470061190
– volume: 119
  start-page: 108064
  year: 2021
  ident: 1644_CR17
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108064
SSID ssib031263563
ssib053833614
ssib026410675
ssj0002147029
ssib008679421
Score 2.3514721
Snippet Atanassov intuitionistic fuzzy set (AIFS)-based C -means algorithms are successful in clustering uncertain or vague real-world datasets. The AIFS-based...
Atanassov intuitionistic fuzzy set (AIFS)-based C-means algorithms are successful in clustering uncertain or vague real-world datasets. The AIFS-based...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 943
SubjectTerms Adaptive algorithms
Algorithms
Artificial Intelligence
Clustering
Computational Intelligence
Datasets
Engineering
Fuzzy sets
Fuzzy systems
Machine learning
Management Science
Operations Research
Parametric analysis
Performance indices
Synthetic data
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDDwRhQKysAGrhI7L4upqloKqExUlCmKHRsQpUVtMtBfz9lN0lIBUrdI8eVxPt93ie--Q-hCMUaE6ypMFHGxqwKCOaUUU5YwRZgKE6Frh7sPfqfn3vW9fl4UNimy3YstSeOpy2I3F9BLVxPr_B9Aceytow3Dt1VBG42b5_tWaUeaRG6hfhMwXxOllXZLHc3AMqedgjVPaQ5TxoPr3j22aXAGXzcEEzdgeb3N7w_yE9PmgerS3qqBrPYO6hUvO8tUea9nKa-L6RIP5Kra2EXbeQxrNWZGt4fW5HAfbS0wGx6g6yfzy1Um1i2AmkkLM4zQVjubTr-sJu5KwEirOcg0UQOIWI3By2j8lr5-TA5Rr916bHZw3qcBC1jAKfYgxFEi9LkIQ2rL0E-YLzgcEEc61BOekBAkBjH4eOGHSjPQx9wGvyptwVns0yNUGY6G8hhZvoydJOFJwDTxvbBDCHgCzWnG_ZgR5VWRU2g6EjmJue6lMYhK-mWjmAgUExnFRCBzWcp8zig8_h1dKyYwypfzJAKc96in45kquirmY37676udrDb8FG0SuMksM6iGKuk4k2cQ9KT8PLfxb2ED7es
  priority: 102
  providerName: Springer Nature
Title Weighted Intuitionistic Fuzzy C-Means Clustering Algorithms
URI https://link.springer.com/article/10.1007/s40815-023-01644-5
https://www.proquest.com/docview/3035350024
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2199-3211
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002147029
  issn: 1562-2479
  databaseCode: AFBBN
  dateStart: 20150301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2199-3211
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0002147029
  issn: 1562-2479
  databaseCode: BENPR
  dateStart: 20150301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2199-3211
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002147029
  issn: 1562-2479
  databaseCode: AGYKE
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ1LS8NAEMcHbS96EJ_4LDl408VkN69FRGppfWERUdRTSPahh1pf7UE_vTPbpFVBTwkku4dhduafzc5vALatlFyFoWXc8pCFNuGsEEIwIbW0XNpUK6odvujGJzfh2V10NwXdqhaGjlVWMdEFav2saI98D0NtJCJKKYcvr4y6RtHf1aqFRl62VtAHDjE2DXVOZKwa1I_a3cursYcRXu5bZSeqAUKojT1aBMRmmQCpMBoIUSYwF9upq4_vWp_hdw9nPExkWYnj6vFCTLBU8ExHlFBosOhntptI2F9_XV0y68zDXKlCvebIbRZgyvQXYfYbm3AJ9m_dpqnR3immJXewyzGdvc7w8_PDa7ELg1nOa_WGhFrAIV6z94AGGzw-vS_DTad93TphZacFpnAJDliEIsWqNC5UmgrfpLGWsSrwhgcmEJGKlEGZl-QYpVWcWmLI54WPkdH4qpB5LFag1n_um1XwYpMHWhc6kYSuV36KkiUhKlkR55LbaA2CyiKZKjHk1A2jl40Bys6KGVoxc1bMcMzOeMzLCMLx79ublaGzckG-ZxP3WYPdyviTx3_Ptv7_bBsww_EyOsuzCbXB29BsoUwZFA2YTjvHDag3j-_P243SE78A6f7c4w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ROLQcUJ8qjxYf2lO7qr27fqwqhGggSgqJqgpUbq69DziE8EgiBD-uv42ZzTqhlcqNm2V79zA7nu9b78w3AB-cUlxL6Rh3XDLpcs5qIQQTyijHlSuMptrhXj_rHMnvx-nxAvxpamEorbKJiT5Qm3NN_8i_YKhNRUqQsn1xyahrFJ2uNi00qtBawWx5ibFQ2LFvb65xCzfa6u7ien_kvL132Oqw0GWAaXS_MUsRoJ0usloXhYhtkRmV6RoveGITkepUW6Q4eYURSmeFI_30qo4xKthY16rKBM77BJakkAo3f0vf9vo_fs48muTs7lWSIvsgybbZFyQS0oKZC2Bh9BEiAKbHEuoiFPtWa7jP4ozLXIXKH1__JxHQqcCaUqKQ2LD0b3SdU-Z_Tnk9eLafw0pgvdHO1E1fwIIdvoTle1qIr-DrL_-T1pqoizDoE8m8hnTUntze3kQt1rOIqlFrMCFpBxwS7QxOcIHGp2ej13D0KDZ_A4vD86F9C1Fmq8SY2uSKpPJ1XCBFykkFrc4qxV26CkljkVIH2XPqvjEoZ4LN3oolWrH0VixxzKfZmIup6MeDb280hi5DABiVc3ddhc-N8eeP_z_b2sOzbcLTzmHvoDzo9vfX4RnHW9M8og1YHF9N7DukSOP6ffDDCH4_tuvfAd1TGMQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWASggO7IhCgRy4gSGxs1mcqtKyFBAHKuAUxY4NiNIiSA_06xk7SwsCJMQtUuIs47HfOJ73BqEdxRgRrqswUcTFrgoI5pRSTFnCFGEqTITmDl9c-icd9-zWux1j8Zts92JLMuM0aJWmXnrwkqiDkvjmApJpZrHOBQJEx94kqsDSJABPr9SP79rN0qe0oNwYlxPwX4umlT5MHa3GMpKggvFPaQ5ZZjbXdXxsU-wMVjoEEzdgOffm-xf5jG-joPXLPquBr9Y8iosPz7JWnvYHKd8Xwy-akP-xzAKay2Nbq5454yKakL0lNDumeLiMDm_Mr1iZWKcAdiZdzChFW63BcPhuNfCFBOy0Gt2BFnCAJla9e99_fUwfnt9WUKfVvG6c4Lx-AxYwsFPsQeijROhzEYbUlqGfMF9wOCCOdKgnPCEheAximPuFHyqtTB9zG-ZbaQvOYp-uoqlevyfXkOXL2EkSngRMC-ILO4RAKNBaZ9yPGVFeFTmF1SORi5vrGhvdqJRlNoaJwDCRMUwEbXbLNi-ZtMevV9eKzozyYf4WAf571NNxThXtFX0zOv3z3db_dvk2mr46akXnp5ftDTRD4HlZ8lANTaWvA7kJcVHKt3LX_wAOCvmu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weighted+Intuitionistic+Fuzzy+C-Means+Clustering+Algorithms&rft.jtitle=International+journal+of+fuzzy+systems&rft.au=Kaushal%2C+Meenakshi&rft.au=Danish+Lohani%2C+Q.+M.&rft.au=Castillo%2C+Oscar&rft.date=2024-04-01&rft.issn=1562-2479&rft.eissn=2199-3211&rft.volume=26&rft.issue=3&rft.spage=943&rft.epage=977&rft_id=info:doi/10.1007%2Fs40815-023-01644-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40815_023_01644_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1562-2479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1562-2479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1562-2479&client=summon