Open-Circuit Fault Diagnosis of Three-Phase PWM Rectifier Using Beetle Antennae Search Algorithm Optimized Deep Belief Network
Effective open-circuit fault diagnosis for a two-level three-phase pulse-width modulating (PWM) rectifier can reduce the failure rate and prevent unscheduled shutdown. Nevertheless, traditional signal-based feature extraction methods show poor distinguishability for insufficient fault features. Shal...
Saved in:
| Published in | Electronics (Basel) Vol. 9; no. 10; p. 1570 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.10.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2079-9292 2079-9292 |
| DOI | 10.3390/electronics9101570 |
Cover
| Abstract | Effective open-circuit fault diagnosis for a two-level three-phase pulse-width modulating (PWM) rectifier can reduce the failure rate and prevent unscheduled shutdown. Nevertheless, traditional signal-based feature extraction methods show poor distinguishability for insufficient fault features. Shallow learning diagnosis models are prone to fall into local extremum, slow convergence speed, and overfitting. In this paper, a novel fault diagnosis strategy based on modified ensemble empirical mode decomposition (MEEMD) and the beetle antennae search (BAS) algorithm optimized deep belief network (DBN) is proposed to cope with these problems. Initially, MEEMD is applied to extract useful fault features from each intrinsic mode function (IMF) component. Meanwhile, to remove features with redundancy and interference, fault features are selected by calculating the importance of each feature based on the extremely randomized trees (ERT) algorithm, and the dimension of fault feature vectors is reduced by principal component analysis. Additionally, the DBN stacked with two layers of a restricted Boltzmann machine (RBM) is selected as the classifier, and the BAS algorithm is used as the optimizer to determine the optimal number of units in the hidden layers of the DBN. The proposed method combined with feature extraction, feature selection, optimization, and fault classification algorithms significantly improves the diagnosis accuracy. |
|---|---|
| AbstractList | Effective open-circuit fault diagnosis for a two-level three-phase pulse-width modulating (PWM) rectifier can reduce the failure rate and prevent unscheduled shutdown. Nevertheless, traditional signal-based feature extraction methods show poor distinguishability for insufficient fault features. Shallow learning diagnosis models are prone to fall into local extremum, slow convergence speed, and overfitting. In this paper, a novel fault diagnosis strategy based on modified ensemble empirical mode decomposition (MEEMD) and the beetle antennae search (BAS) algorithm optimized deep belief network (DBN) is proposed to cope with these problems. Initially, MEEMD is applied to extract useful fault features from each intrinsic mode function (IMF) component. Meanwhile, to remove features with redundancy and interference, fault features are selected by calculating the importance of each feature based on the extremely randomized trees (ERT) algorithm, and the dimension of fault feature vectors is reduced by principal component analysis. Additionally, the DBN stacked with two layers of a restricted Boltzmann machine (RBM) is selected as the classifier, and the BAS algorithm is used as the optimizer to determine the optimal number of units in the hidden layers of the DBN. The proposed method combined with feature extraction, feature selection, optimization, and fault classification algorithms significantly improves the diagnosis accuracy. |
| Author | Du, Bolun He, Yigang Zhang, Yaru |
| Author_xml | – sequence: 1 givenname: Bolun orcidid: 0000-0002-6297-6848 surname: Du fullname: Du, Bolun – sequence: 2 givenname: Yigang surname: He fullname: He, Yigang – sequence: 3 givenname: Yaru surname: Zhang fullname: Zhang, Yaru |
| BookMark | eNqNkE9LAzEQxYMo-PcLeAp4Xk02ze7mWKtVQa2oxeOSppM2miZrkqXUg5_dlXoQBXEuM4ffm3nzdtGm8w4QOqTkmDFBTsCCSsE7o6KghPKSbKCdnJQiE7nIN7_N2-ggxmfSlaCsYmQHvY8acNnABNWahIeytQmfGTlzPpqIvcaP8wCQ3c1lBHz3dIPvu1tGGwh4HI2b4VOAZAH3XQLnJOAHkEHNcd_OfDBpvsCjJpmFeYMpPgNoOt4a0PgW0tKHl320paWNcPDV99B4eP44uMyuRxdXg_51phgVKeOc5kJWXJXlpJz0tOI8Vz3JaaEUL7qXhaJMFlOlGchK8FKWBXDS0VpPOAG2h9h6b-sauVpKa-smmIUMq5qS-jPF-neKneporWqCf20hpvrZt8F1Ruuc96peTmhVdFS1plTwMQbQtTJJJuNdCtLYvw_kP6T_cPUBk5-cNA |
| CitedBy_id | crossref_primary_10_3390_electronics10222878 crossref_primary_10_3390_electronics10121451 crossref_primary_10_3390_en14196316 crossref_primary_10_5937_jouproman2103089B crossref_primary_10_1155_2021_9579453 crossref_primary_10_3390_electronics11213528 crossref_primary_10_1109_TPEL_2022_3194113 crossref_primary_10_3390_electronics10030349 |
| Cites_doi | 10.1016/j.isatra.2020.01.023 10.1049/iet-epa.2017.0438 10.1109/TII.2019.2949344 10.1016/j.isatra.2018.12.002 10.3390/electronics9030429 10.1109/TPEL.2015.2393373 10.1109/ACCESS.2020.2968934 10.1109/TPEL.2017.2691804 10.1109/ACCESS.2017.2786458 10.1109/ACCESS.2018.2823765 10.1109/TPEL.2017.2705985 10.1109/TIM.2009.2025068 10.1109/TPEL.2014.2383436 10.1016/j.ijepes.2012.03.004 10.1016/j.measurement.2015.03.003 10.1109/ICGE.2014.6835416 10.1049/iet-pel.2019.0672 10.3390/electronics8030293 10.3390/electronics8010006 10.3390/electronics9030399 10.1016/j.neucom.2013.11.012 10.1109/TSMC.2017.2754287 10.1016/j.measurement.2019.06.004 10.1109/TIE.2018.2847709 10.3390/electronics9040600 10.1109/CGNCC.2016.7828788 10.3390/electronics9081251 10.1109/TPEL.2016.2587339 10.1109/TPEL.2015.2465299 10.1109/PHM.2016.7819874 |
| ContentType | Journal Article |
| Copyright | 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY |
| DOI | 10.3390/electronics9101570 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9292 |
| ExternalDocumentID | 10.3390/electronics9101570 10_3390_electronics9101570 |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ ITC RIG UNPAY |
| ID | FETCH-LOGICAL-c319t-55129a85c77b7b4fc552c4a516cc560159c13a6dcf3ea8957a76e5077bffb50e3 |
| IEDL.DBID | BENPR |
| ISSN | 2079-9292 |
| IngestDate | Sun Oct 26 04:10:55 EDT 2025 Sun Jul 13 05:26:33 EDT 2025 Thu Oct 16 04:26:16 EDT 2025 Thu Apr 24 23:01:28 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-55129a85c77b7b4fc552c4a516cc560159c13a6dcf3ea8957a76e5077bffb50e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6297-6848 |
| OpenAccessLink | https://www.proquest.com/docview/2548420186?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2548420186 |
| PQPubID | 2032404 |
| ParticipantIDs | unpaywall_primary_10_3390_electronics9101570 proquest_journals_2548420186 crossref_citationtrail_10_3390_electronics9101570 crossref_primary_10_3390_electronics9101570 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-01 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2020 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Liu (ref_31) 2017; 460 Long (ref_16) 2014; 133 Acosta (ref_34) 2020; 8 Yao (ref_12) 2015; 30 ref_14 Sun (ref_28) 2018; 6 Yaghoubi (ref_7) 2018; 66 Zhao (ref_19) 2019; 146 Zhao (ref_4) 2018; 33 Kou (ref_1) 2020; 101 Liu (ref_21) 2020; 99 Wu (ref_2) 2016; 32 Coates (ref_32) 2011; 15 Ge (ref_8) 2018; 33 Xia (ref_11) 2020; 16 Gou (ref_10) 2015; 31 Zhang (ref_29) 2018; 6 Li (ref_18) 2019; 88 ref_25 ref_23 Yu (ref_33) 2015; 68 ref_22 Behjat (ref_17) 2012; 42 Wen (ref_30) 2019; 49 ref_27 ref_26 ref_9 Kumar (ref_13) 2020; 13 Yuan (ref_15) 2010; 59 Shi (ref_3) 2018; 12 Cai (ref_20) 2020; 37 ref_5 Wang (ref_24) 2015; 30 ref_6 |
| References_xml | – volume: 101 start-page: 399 year: 2020 ident: ref_1 article-title: Fault diagnosis for three-phase PWM rectifier based on deep feedforward network with transient synthetic features publication-title: ISA Trans. doi: 10.1016/j.isatra.2020.01.023 – volume: 12 start-page: 447 year: 2018 ident: ref_3 article-title: Online diagnostic method of open-switch faults in PWM voltage source rectifier based on instantaneous AC current distortion publication-title: IET Electr. Power Appl. doi: 10.1049/iet-epa.2017.0438 – volume: 16 start-page: 5223 year: 2020 ident: ref_11 article-title: A Data-Driven Method for IGBT Open-Circuit Fault Diagnosis Based on Hybrid Ensemble Learning and Sliding-Window Classification publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2019.2949344 – volume: 88 start-page: 170 year: 2019 ident: ref_18 article-title: Application of EEMD and improved frequency band entropy in bearing fault feature extraction publication-title: ISA Trans. doi: 10.1016/j.isatra.2018.12.002 – ident: ref_5 doi: 10.3390/electronics9030429 – volume: 30 start-page: 7006 year: 2015 ident: ref_24 article-title: Cascaded H-Bridge Multilevel Inverter System Fault Diagnosis Using a PCA and Multi-class Relevance Vector Machine Approach publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2015.2393373 – volume: 8 start-page: 19921 year: 2020 ident: ref_34 article-title: Extremely Randomized Trees-Based Scheme for Stealthy Cyber-Attack Detection in Smart Grid Networks publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2968934 – volume: 33 start-page: 2559 year: 2018 ident: ref_8 article-title: An Open-Circuit Fault Diagnosis Approach for Single-Phase Three-Level Neutral-Point-Clamped Converters publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2017.2691804 – volume: 6 start-page: 6273 year: 2018 ident: ref_28 article-title: A Novel Fault Diagnostic Approach for DC-DC Converters Based on CSA-DBN publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2786458 – volume: 6 start-page: 23053 year: 2018 ident: ref_29 article-title: Analog Circuit Incipient Fault Diagnosis Method Using DBN Based Features Extraction publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2823765 – volume: 33 start-page: 3452 year: 2018 ident: ref_4 article-title: Open-Switch Fault-Diagnostic Method for Back-to-Back Converters of a Doubly Fed Wind Power Generation System publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2017.2705985 – volume: 59 start-page: 586 year: 2010 ident: ref_15 article-title: A New Neural-Network-Based Fault Diagnosis Approach for Analog Circuits by Using Kurtosis and Entropy as a Preprocessor publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2009.2025068 – volume: 30 start-page: 6993 year: 2015 ident: ref_12 article-title: A Current-Sensorless Online ESR and C Identification Method for Output Capacitor of Buck Converter publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2014.2383436 – volume: 42 start-page: 78 year: 2012 ident: ref_17 article-title: Sweep frequency response analysis for diagnosis of low level short circuit faults on the windings of power transformers: An experimental study publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2012.03.004 – volume: 68 start-page: 328 year: 2015 ident: ref_33 article-title: A novel sensor fault diagnosis method based on Modified Ensemble Empirical Mode Decomposition and Probabilistic Neural Network publication-title: Measurement doi: 10.1016/j.measurement.2015.03.003 – volume: 37 start-page: 543 year: 2020 ident: ref_20 article-title: Load State Identification Method for Wet Ball Mills Based on the MEEMD Singular Value Entropy and PNN Classification publication-title: Min. Metall. Explor. – ident: ref_23 doi: 10.1109/ICGE.2014.6835416 – volume: 13 start-page: 1 year: 2020 ident: ref_13 article-title: Review on fault-diagnosis and fault-tolerance for DC–DC converters publication-title: IET Power Electron. doi: 10.1049/iet-pel.2019.0672 – ident: ref_14 doi: 10.3390/electronics8030293 – ident: ref_26 doi: 10.3390/electronics8010006 – ident: ref_6 doi: 10.3390/electronics9030399 – volume: 133 start-page: 237 year: 2014 ident: ref_16 article-title: Improved diagnostics for the incipient faults in analog circuits using LSSVM based on PSO algorithm with Mahalanobis distance publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.11.012 – volume: 49 start-page: 136 year: 2019 ident: ref_30 article-title: A New Deep Transfer Learning Based on Sparse Auto-Encoder for Fault Diagnosis publication-title: IEEE Trans. Syst. Man, Cybern. Syst. doi: 10.1109/TSMC.2017.2754287 – volume: 15 start-page: 215 year: 2011 ident: ref_32 article-title: An Analysis of Single-Layer Networks in Unsupervised Feature Learning publication-title: J. Mach. Learn. Res. – volume: 146 start-page: 279 year: 2019 ident: ref_19 article-title: A recurrent neural network approach for remaining useful life prediction utilizing a novel trend features construction method publication-title: Measurement doi: 10.1016/j.measurement.2019.06.004 – volume: 460 start-page: 623 year: 2017 ident: ref_31 article-title: Circuit Fault Diagnosis Method of Wind Power Converter with Wavelet-DBN publication-title: Chin. Intell. Syst. Conf. – volume: 66 start-page: 2847 year: 2018 ident: ref_7 article-title: IGBT Open-Circuit Fault Diagnosis in a Quasi-Z-Source Inverter publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2847709 – ident: ref_22 doi: 10.3390/electronics9040600 – ident: ref_27 doi: 10.1109/CGNCC.2016.7828788 – ident: ref_9 doi: 10.3390/electronics9081251 – volume: 32 start-page: 3935 year: 2016 ident: ref_2 article-title: Current Similarity Analysis-Based Open-Circuit Fault Diagnosis for Two-Level Three-Phase PWM Rectifier publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2016.2587339 – volume: 31 start-page: 3816 year: 2015 ident: ref_10 article-title: An Open-Switch Fault Diagnosis Method for Single-Phase PWM Rectifier Using a Model-Based Approach in High-Speed Railway Electrical Traction Drive System publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2015.2465299 – volume: 99 start-page: 11 year: 2020 ident: ref_21 article-title: A Fault Diagnosis Solution of Rolling Bearing Based on MEEMD and QPSO-LSSVM publication-title: IEEE Access – ident: ref_25 doi: 10.1109/PHM.2016.7819874 |
| SSID | ssj0000913830 |
| Score | 2.2333295 |
| Snippet | Effective open-circuit fault diagnosis for a two-level three-phase pulse-width modulating (PWM) rectifier can reduce the failure rate and prevent unscheduled... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 1570 |
| SubjectTerms | Accuracy Antennae Belief networks Circuits Decomposition Deep learning Empirical analysis Failure rates Fault diagnosis Feature extraction Feature selection Mathematical models Neural networks Optimization Optimization algorithms Parameter identification Power Principal components analysis Pulse duration Rectifiers Redundancy Search algorithms Shutdowns Signal processing Support vector machines Wavelet transforms |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dT9swFLWm8rDtYTBgWkeH_LA3MM2X7fhp6goVmkSpEBXwlDn-gGghrdpk03jYb991k_I1CW3i_dpJ5GPfc6LjexH6JGygYkYFSa0KQKAoQWQsfBIy49hppD3lfugfDdnhOPp6Ts-bPqfzxlYJUjxbHNKBxwWB_B10Bezurk-5151q-_lH8yvJZ4sKacLdXl-BBzKvhVbGw1HvwrWUWw6ur8qEIO67d61l5pAm3XwP09Edx3xZFVP566fM83vpZrCKvi1ftHaZfN-rynRP3Tyq4fiML1lDbxoqins1dt6iF6ZYR6_vFSjcQL-d34T0s5mqshIPZJWXeL8252VzPLH4FKBgyOgKciEenR3hE3d-Wki1eOFFwF-MATDinjPKF9Lg2t2Me_nlZJaVV9f4GI6s6-zGaLxvzBTigRNbPKzN6ZtoPDg47R-SpmMDUbCVS0IdfZAxVZynPI2sojRQkaQ-U8pJPyqUH0qmlQ0NQIJyyZkBRspTa1PqmfAdahWTwrxHGGgHqKvQ08BBIw3hgdCB4kxI33CudRv5y4VLVFPO3HXVyBOQNW6xk78Xu412bsdM62IeT0Z3lnhImo09T0BPxxGQppi10e4tRv5htg__F76FXgVO2S9sgx3UKmeV-Qj0p0y3G4j_AblcAvQ priority: 102 providerName: Unpaywall |
| Title | Open-Circuit Fault Diagnosis of Three-Phase PWM Rectifier Using Beetle Antennae Search Algorithm Optimized Deep Belief Network |
| URI | https://www.proquest.com/docview/2548420186 https://www.mdpi.com/2079-9292/9/10/1570/pdf?version=1601016991 |
| UnpaywallVersion | publishedVersion |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: ADMLS dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only) customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: 8FG dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9tAEB1BcqA9oH4hAjTaQ2_tivhjvfYBIUNIUdW4ERAVTtZ6P0ok4wTiqGoP_e2dje0kUiXUky_rPfjtzrxZv50H8CEyrgwDFtHMSBcLFBlREUYO9QJt2amvetIe6A-T4HLsf7llt1uQNHdhrKyyiYnLQK2m0p6RH2MhE_qYrcLgdPZIrWuU_bvaWGiI2lpBnSxbjG1D27WdsVrQPrtIRlerUxfbBTP0etXtGQ_r_eO128wcM6fDrGvxZoZa086dRTETv36KPN_IQINXsFtTRxJXWL-GLV28gZcbDQXfwh-rD6Hnkye5mJRkIBZ5SfqVmG4yJ1NDbhA6TUf3mLvI6PuQXNl4ZzA1kqV2gJxpjYuHxFbYXghNKjUyifMf-C3K-wfyDUPMw-S3VqSv9QzHI4c1JKnE5O9gPLi4Ob-ktcMClbj1Sspsuhchk5xnPPONZMyVvmBOIKUt1VgkHU8EShpPI4SMCx5oZJA8MyZjPe3tQauYFnofCNIErIa8nkLO6Csc7kbKlTyIhKM5V6oDTvNVU1m3H7cuGHmKZYhFIv0XiQ58XL0zq5pvPDv6qAErrTfiPF0vmw58WgH4H7MdPD_bIbxwbeW9lPUdQat8Wuj3SE_KrAvb4eBzF9pxf_j1uluvQHyOk1F89xerPexc |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2V9lA4ID5FoMAe4ASr2l6v13uoUNo0SmkToioVvbnr3TWN5DqhcVSVAz-N38ZsbCeRkCouva9X8s545r31mxmADzILdBxxSdNMB0hQtKQqlj5lkXXoNDSedhf6_UHUOwu_nvPzDfjT1MI4WWUTExeB2ky0uyPfRSITh5it4ujL9Cd1U6Pc39VmhIaqRyuYvUWLsbqw49je3iCFm-0dddDeH4Ogezg66NF6ygDV6H4l5S7lqZhrIVKRhpnmPNCh4n6ktaMrXGqfqcjojFl8DS6UiCyiKJFmWco9y3DfB7AVslAi-dvaPxwMT5e3PK7rZsy8qlqHMentrqbbzDBT-9xNSV7PiCuYuz0vpur2RuX5WsbrPoHHNVQl7cq3nsKGLZ7Bo7UGhs_ht9Oj0IPxtZ6PS9JV87wknUq8N56RSUZG6CqWDi8xV5Lh9z45dfE1w1RMFloFsm8tOitpOyF9oSyp1M-knf_Asy8vr8g3DGlX41_WkI61U1yPmDkjg0q8_gLO7uWsX8JmMSnsKyAIS5B9Mc8gRg0NLg-kCbSIpPKtEMa0wG9ONdF1u3M3dSNPkPY4SyT_WqIFn5bPTKtmH3eu3mmMldQf_ixZuWkLPi8N-B-7vb57t_ew3Rv1T5KTo8HxG3gYONa_kBTuwGZ5PbdvERqV6bva_whc3LfL_wX2TCUT |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIvE4IJ4ipcAe4ASr-LVe-4BQaDAtpSFCrejNrNe7bSTXCY2jqj30h_XXdSa2k0hIFZfe1yt55_PMN-tvZgDexdbTUShinlntYYKiY66i2OV-aIidBrmj6UJ_bxBuHwTfD8XhGly1tTAkq2x94txR52NNd-RdTGSiAKNVFHZtI4sY9pPPk7-cJkjRn9Z2nEYNkV1zfobp2_TTTh9t_d7zkq_7W9u8mTDANUKv4oLCnYqEljKTWWC1EJ4OlHBDrSlVEbF2fRXm2voGX0FIJUODDEpm1mbCMT7uewfuSuriTlXqybfF_Q7124x8p67T8f3Y6S7n2kwxRruC5iOvxsIlwb0_Kyfq_EwVxUqsSx7Do4aksl6NqiewZsqn8HCldeEzuCQlCt8anerZqGKJmhUV69eyvdGUjS3bR5AYPjzGKMmGv_fYL_KsFoMwm6sU2BdjEKasRxL6UhlW655ZrzjCk66OT9hPdGYnowuTs74xE1yPbNmyQS1bfw4Ht3LSL2C9HJfmJTAkJJh3-U6O7DTIcbkX556WYaxcI2Wed8BtTzXVTaNzmrdRpJjwkCXSfy3RgQ-LZyZ1m48bV2-2xkqbT36aLgHagY8LA_7Hbhs37_YW7iHQ0x87g91X8MCjdH-uJdyE9ep0Zl4jJ6qyN3PwMfhz22i_BgVsIq0 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dT9swFLWm8rDtYTBgWkeH_LA3MM2X7fhp6goVmkSpEBXwlDn-gGghrdpk03jYb991k_I1CW3i_dpJ5GPfc6LjexH6JGygYkYFSa0KQKAoQWQsfBIy49hppD3lfugfDdnhOPp6Ts-bPqfzxlYJUjxbHNKBxwWB_B10Bezurk-5151q-_lH8yvJZ4sKacLdXl-BBzKvhVbGw1HvwrWUWw6ur8qEIO67d61l5pAm3XwP09Edx3xZFVP566fM83vpZrCKvi1ftHaZfN-rynRP3Tyq4fiML1lDbxoqins1dt6iF6ZYR6_vFSjcQL-d34T0s5mqshIPZJWXeL8252VzPLH4FKBgyOgKciEenR3hE3d-Wki1eOFFwF-MATDinjPKF9Lg2t2Me_nlZJaVV9f4GI6s6-zGaLxvzBTigRNbPKzN6ZtoPDg47R-SpmMDUbCVS0IdfZAxVZynPI2sojRQkaQ-U8pJPyqUH0qmlQ0NQIJyyZkBRspTa1PqmfAdahWTwrxHGGgHqKvQ08BBIw3hgdCB4kxI33CudRv5y4VLVFPO3HXVyBOQNW6xk78Xu412bsdM62IeT0Z3lnhImo09T0BPxxGQppi10e4tRv5htg__F76FXgVO2S9sgx3UKmeV-Qj0p0y3G4j_AblcAvQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Open-Circuit+Fault+Diagnosis+of+Three-Phase+PWM+Rectifier+Using+Beetle+Antennae+Search+Algorithm+Optimized+Deep+Belief+Network&rft.jtitle=Electronics+%28Basel%29&rft.au=Du%2C+Bolun&rft.au=He%2C+Yigang&rft.au=Zhang%2C+Yaru&rft.date=2020-10-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=9&rft.issue=10&rft.spage=1570&rft_id=info:doi/10.3390%2Felectronics9101570&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics9101570 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |