Open-Circuit Fault Diagnosis of Three-Phase PWM Rectifier Using Beetle Antennae Search Algorithm Optimized Deep Belief Network

Effective open-circuit fault diagnosis for a two-level three-phase pulse-width modulating (PWM) rectifier can reduce the failure rate and prevent unscheduled shutdown. Nevertheless, traditional signal-based feature extraction methods show poor distinguishability for insufficient fault features. Shal...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 9; no. 10; p. 1570
Main Authors Du, Bolun, He, Yigang, Zhang, Yaru
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2020
Subjects
Online AccessGet full text
ISSN2079-9292
2079-9292
DOI10.3390/electronics9101570

Cover

Abstract Effective open-circuit fault diagnosis for a two-level three-phase pulse-width modulating (PWM) rectifier can reduce the failure rate and prevent unscheduled shutdown. Nevertheless, traditional signal-based feature extraction methods show poor distinguishability for insufficient fault features. Shallow learning diagnosis models are prone to fall into local extremum, slow convergence speed, and overfitting. In this paper, a novel fault diagnosis strategy based on modified ensemble empirical mode decomposition (MEEMD) and the beetle antennae search (BAS) algorithm optimized deep belief network (DBN) is proposed to cope with these problems. Initially, MEEMD is applied to extract useful fault features from each intrinsic mode function (IMF) component. Meanwhile, to remove features with redundancy and interference, fault features are selected by calculating the importance of each feature based on the extremely randomized trees (ERT) algorithm, and the dimension of fault feature vectors is reduced by principal component analysis. Additionally, the DBN stacked with two layers of a restricted Boltzmann machine (RBM) is selected as the classifier, and the BAS algorithm is used as the optimizer to determine the optimal number of units in the hidden layers of the DBN. The proposed method combined with feature extraction, feature selection, optimization, and fault classification algorithms significantly improves the diagnosis accuracy.
AbstractList Effective open-circuit fault diagnosis for a two-level three-phase pulse-width modulating (PWM) rectifier can reduce the failure rate and prevent unscheduled shutdown. Nevertheless, traditional signal-based feature extraction methods show poor distinguishability for insufficient fault features. Shallow learning diagnosis models are prone to fall into local extremum, slow convergence speed, and overfitting. In this paper, a novel fault diagnosis strategy based on modified ensemble empirical mode decomposition (MEEMD) and the beetle antennae search (BAS) algorithm optimized deep belief network (DBN) is proposed to cope with these problems. Initially, MEEMD is applied to extract useful fault features from each intrinsic mode function (IMF) component. Meanwhile, to remove features with redundancy and interference, fault features are selected by calculating the importance of each feature based on the extremely randomized trees (ERT) algorithm, and the dimension of fault feature vectors is reduced by principal component analysis. Additionally, the DBN stacked with two layers of a restricted Boltzmann machine (RBM) is selected as the classifier, and the BAS algorithm is used as the optimizer to determine the optimal number of units in the hidden layers of the DBN. The proposed method combined with feature extraction, feature selection, optimization, and fault classification algorithms significantly improves the diagnosis accuracy.
Author Du, Bolun
He, Yigang
Zhang, Yaru
Author_xml – sequence: 1
  givenname: Bolun
  orcidid: 0000-0002-6297-6848
  surname: Du
  fullname: Du, Bolun
– sequence: 2
  givenname: Yigang
  surname: He
  fullname: He, Yigang
– sequence: 3
  givenname: Yaru
  surname: Zhang
  fullname: Zhang, Yaru
BookMark eNqNkE9LAzEQxYMo-PcLeAp4Xk02ze7mWKtVQa2oxeOSppM2miZrkqXUg5_dlXoQBXEuM4ffm3nzdtGm8w4QOqTkmDFBTsCCSsE7o6KghPKSbKCdnJQiE7nIN7_N2-ggxmfSlaCsYmQHvY8acNnABNWahIeytQmfGTlzPpqIvcaP8wCQ3c1lBHz3dIPvu1tGGwh4HI2b4VOAZAH3XQLnJOAHkEHNcd_OfDBpvsCjJpmFeYMpPgNoOt4a0PgW0tKHl320paWNcPDV99B4eP44uMyuRxdXg_51phgVKeOc5kJWXJXlpJz0tOI8Vz3JaaEUL7qXhaJMFlOlGchK8FKWBXDS0VpPOAG2h9h6b-sauVpKa-smmIUMq5qS-jPF-neKneporWqCf20hpvrZt8F1Ruuc96peTmhVdFS1plTwMQbQtTJJJuNdCtLYvw_kP6T_cPUBk5-cNA
CitedBy_id crossref_primary_10_3390_electronics10222878
crossref_primary_10_3390_electronics10121451
crossref_primary_10_3390_en14196316
crossref_primary_10_5937_jouproman2103089B
crossref_primary_10_1155_2021_9579453
crossref_primary_10_3390_electronics11213528
crossref_primary_10_1109_TPEL_2022_3194113
crossref_primary_10_3390_electronics10030349
Cites_doi 10.1016/j.isatra.2020.01.023
10.1049/iet-epa.2017.0438
10.1109/TII.2019.2949344
10.1016/j.isatra.2018.12.002
10.3390/electronics9030429
10.1109/TPEL.2015.2393373
10.1109/ACCESS.2020.2968934
10.1109/TPEL.2017.2691804
10.1109/ACCESS.2017.2786458
10.1109/ACCESS.2018.2823765
10.1109/TPEL.2017.2705985
10.1109/TIM.2009.2025068
10.1109/TPEL.2014.2383436
10.1016/j.ijepes.2012.03.004
10.1016/j.measurement.2015.03.003
10.1109/ICGE.2014.6835416
10.1049/iet-pel.2019.0672
10.3390/electronics8030293
10.3390/electronics8010006
10.3390/electronics9030399
10.1016/j.neucom.2013.11.012
10.1109/TSMC.2017.2754287
10.1016/j.measurement.2019.06.004
10.1109/TIE.2018.2847709
10.3390/electronics9040600
10.1109/CGNCC.2016.7828788
10.3390/electronics9081251
10.1109/TPEL.2016.2587339
10.1109/TPEL.2015.2465299
10.1109/PHM.2016.7819874
ContentType Journal Article
Copyright 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.3390/electronics9101570
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10.3390/electronics9101570
10_3390_electronics9101570
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
ITC
RIG
UNPAY
ID FETCH-LOGICAL-c319t-55129a85c77b7b4fc552c4a516cc560159c13a6dcf3ea8957a76e5077bffb50e3
IEDL.DBID BENPR
ISSN 2079-9292
IngestDate Sun Oct 26 04:10:55 EDT 2025
Sun Jul 13 05:26:33 EDT 2025
Thu Oct 16 04:26:16 EDT 2025
Thu Apr 24 23:01:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-55129a85c77b7b4fc552c4a516cc560159c13a6dcf3ea8957a76e5077bffb50e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6297-6848
OpenAccessLink https://www.proquest.com/docview/2548420186?pq-origsite=%requestingapplication%&accountid=15518
PQID 2548420186
PQPubID 2032404
ParticipantIDs unpaywall_primary_10_3390_electronics9101570
proquest_journals_2548420186
crossref_citationtrail_10_3390_electronics9101570
crossref_primary_10_3390_electronics9101570
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Liu (ref_31) 2017; 460
Long (ref_16) 2014; 133
Acosta (ref_34) 2020; 8
Yao (ref_12) 2015; 30
ref_14
Sun (ref_28) 2018; 6
Yaghoubi (ref_7) 2018; 66
Zhao (ref_19) 2019; 146
Zhao (ref_4) 2018; 33
Kou (ref_1) 2020; 101
Liu (ref_21) 2020; 99
Wu (ref_2) 2016; 32
Coates (ref_32) 2011; 15
Ge (ref_8) 2018; 33
Xia (ref_11) 2020; 16
Gou (ref_10) 2015; 31
Zhang (ref_29) 2018; 6
Li (ref_18) 2019; 88
ref_25
ref_23
Yu (ref_33) 2015; 68
ref_22
Behjat (ref_17) 2012; 42
Wen (ref_30) 2019; 49
ref_27
ref_26
ref_9
Kumar (ref_13) 2020; 13
Yuan (ref_15) 2010; 59
Shi (ref_3) 2018; 12
Cai (ref_20) 2020; 37
ref_5
Wang (ref_24) 2015; 30
ref_6
References_xml – volume: 101
  start-page: 399
  year: 2020
  ident: ref_1
  article-title: Fault diagnosis for three-phase PWM rectifier based on deep feedforward network with transient synthetic features
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2020.01.023
– volume: 12
  start-page: 447
  year: 2018
  ident: ref_3
  article-title: Online diagnostic method of open-switch faults in PWM voltage source rectifier based on instantaneous AC current distortion
  publication-title: IET Electr. Power Appl.
  doi: 10.1049/iet-epa.2017.0438
– volume: 16
  start-page: 5223
  year: 2020
  ident: ref_11
  article-title: A Data-Driven Method for IGBT Open-Circuit Fault Diagnosis Based on Hybrid Ensemble Learning and Sliding-Window Classification
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2949344
– volume: 88
  start-page: 170
  year: 2019
  ident: ref_18
  article-title: Application of EEMD and improved frequency band entropy in bearing fault feature extraction
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2018.12.002
– ident: ref_5
  doi: 10.3390/electronics9030429
– volume: 30
  start-page: 7006
  year: 2015
  ident: ref_24
  article-title: Cascaded H-Bridge Multilevel Inverter System Fault Diagnosis Using a PCA and Multi-class Relevance Vector Machine Approach
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2015.2393373
– volume: 8
  start-page: 19921
  year: 2020
  ident: ref_34
  article-title: Extremely Randomized Trees-Based Scheme for Stealthy Cyber-Attack Detection in Smart Grid Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2968934
– volume: 33
  start-page: 2559
  year: 2018
  ident: ref_8
  article-title: An Open-Circuit Fault Diagnosis Approach for Single-Phase Three-Level Neutral-Point-Clamped Converters
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2017.2691804
– volume: 6
  start-page: 6273
  year: 2018
  ident: ref_28
  article-title: A Novel Fault Diagnostic Approach for DC-DC Converters Based on CSA-DBN
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2786458
– volume: 6
  start-page: 23053
  year: 2018
  ident: ref_29
  article-title: Analog Circuit Incipient Fault Diagnosis Method Using DBN Based Features Extraction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2823765
– volume: 33
  start-page: 3452
  year: 2018
  ident: ref_4
  article-title: Open-Switch Fault-Diagnostic Method for Back-to-Back Converters of a Doubly Fed Wind Power Generation System
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2017.2705985
– volume: 59
  start-page: 586
  year: 2010
  ident: ref_15
  article-title: A New Neural-Network-Based Fault Diagnosis Approach for Analog Circuits by Using Kurtosis and Entropy as a Preprocessor
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2009.2025068
– volume: 30
  start-page: 6993
  year: 2015
  ident: ref_12
  article-title: A Current-Sensorless Online ESR and C Identification Method for Output Capacitor of Buck Converter
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2014.2383436
– volume: 42
  start-page: 78
  year: 2012
  ident: ref_17
  article-title: Sweep frequency response analysis for diagnosis of low level short circuit faults on the windings of power transformers: An experimental study
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2012.03.004
– volume: 68
  start-page: 328
  year: 2015
  ident: ref_33
  article-title: A novel sensor fault diagnosis method based on Modified Ensemble Empirical Mode Decomposition and Probabilistic Neural Network
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.03.003
– volume: 37
  start-page: 543
  year: 2020
  ident: ref_20
  article-title: Load State Identification Method for Wet Ball Mills Based on the MEEMD Singular Value Entropy and PNN Classification
  publication-title: Min. Metall. Explor.
– ident: ref_23
  doi: 10.1109/ICGE.2014.6835416
– volume: 13
  start-page: 1
  year: 2020
  ident: ref_13
  article-title: Review on fault-diagnosis and fault-tolerance for DC–DC converters
  publication-title: IET Power Electron.
  doi: 10.1049/iet-pel.2019.0672
– ident: ref_14
  doi: 10.3390/electronics8030293
– ident: ref_26
  doi: 10.3390/electronics8010006
– ident: ref_6
  doi: 10.3390/electronics9030399
– volume: 133
  start-page: 237
  year: 2014
  ident: ref_16
  article-title: Improved diagnostics for the incipient faults in analog circuits using LSSVM based on PSO algorithm with Mahalanobis distance
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.11.012
– volume: 49
  start-page: 136
  year: 2019
  ident: ref_30
  article-title: A New Deep Transfer Learning Based on Sparse Auto-Encoder for Fault Diagnosis
  publication-title: IEEE Trans. Syst. Man, Cybern. Syst.
  doi: 10.1109/TSMC.2017.2754287
– volume: 15
  start-page: 215
  year: 2011
  ident: ref_32
  article-title: An Analysis of Single-Layer Networks in Unsupervised Feature Learning
  publication-title: J. Mach. Learn. Res.
– volume: 146
  start-page: 279
  year: 2019
  ident: ref_19
  article-title: A recurrent neural network approach for remaining useful life prediction utilizing a novel trend features construction method
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.06.004
– volume: 460
  start-page: 623
  year: 2017
  ident: ref_31
  article-title: Circuit Fault Diagnosis Method of Wind Power Converter with Wavelet-DBN
  publication-title: Chin. Intell. Syst. Conf.
– volume: 66
  start-page: 2847
  year: 2018
  ident: ref_7
  article-title: IGBT Open-Circuit Fault Diagnosis in a Quasi-Z-Source Inverter
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2847709
– ident: ref_22
  doi: 10.3390/electronics9040600
– ident: ref_27
  doi: 10.1109/CGNCC.2016.7828788
– ident: ref_9
  doi: 10.3390/electronics9081251
– volume: 32
  start-page: 3935
  year: 2016
  ident: ref_2
  article-title: Current Similarity Analysis-Based Open-Circuit Fault Diagnosis for Two-Level Three-Phase PWM Rectifier
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2016.2587339
– volume: 31
  start-page: 3816
  year: 2015
  ident: ref_10
  article-title: An Open-Switch Fault Diagnosis Method for Single-Phase PWM Rectifier Using a Model-Based Approach in High-Speed Railway Electrical Traction Drive System
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2015.2465299
– volume: 99
  start-page: 11
  year: 2020
  ident: ref_21
  article-title: A Fault Diagnosis Solution of Rolling Bearing Based on MEEMD and QPSO-LSSVM
  publication-title: IEEE Access
– ident: ref_25
  doi: 10.1109/PHM.2016.7819874
SSID ssj0000913830
Score 2.2333295
Snippet Effective open-circuit fault diagnosis for a two-level three-phase pulse-width modulating (PWM) rectifier can reduce the failure rate and prevent unscheduled...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1570
SubjectTerms Accuracy
Antennae
Belief networks
Circuits
Decomposition
Deep learning
Empirical analysis
Failure rates
Fault diagnosis
Feature extraction
Feature selection
Mathematical models
Neural networks
Optimization
Optimization algorithms
Parameter identification
Power
Principal components analysis
Pulse duration
Rectifiers
Redundancy
Search algorithms
Shutdowns
Signal processing
Support vector machines
Wavelet transforms
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dT9swFLWm8rDtYTBgWkeH_LA3MM2X7fhp6goVmkSpEBXwlDn-gGghrdpk03jYb991k_I1CW3i_dpJ5GPfc6LjexH6JGygYkYFSa0KQKAoQWQsfBIy49hppD3lfugfDdnhOPp6Ts-bPqfzxlYJUjxbHNKBxwWB_B10Bezurk-5151q-_lH8yvJZ4sKacLdXl-BBzKvhVbGw1HvwrWUWw6ur8qEIO67d61l5pAm3XwP09Edx3xZFVP566fM83vpZrCKvi1ftHaZfN-rynRP3Tyq4fiML1lDbxoqins1dt6iF6ZYR6_vFSjcQL-d34T0s5mqshIPZJWXeL8252VzPLH4FKBgyOgKciEenR3hE3d-Wki1eOFFwF-MATDinjPKF9Lg2t2Me_nlZJaVV9f4GI6s6-zGaLxvzBTigRNbPKzN6ZtoPDg47R-SpmMDUbCVS0IdfZAxVZynPI2sojRQkaQ-U8pJPyqUH0qmlQ0NQIJyyZkBRspTa1PqmfAdahWTwrxHGGgHqKvQ08BBIw3hgdCB4kxI33CudRv5y4VLVFPO3HXVyBOQNW6xk78Xu412bsdM62IeT0Z3lnhImo09T0BPxxGQppi10e4tRv5htg__F76FXgVO2S9sgx3UKmeV-Qj0p0y3G4j_AblcAvQ
  priority: 102
  providerName: Unpaywall
Title Open-Circuit Fault Diagnosis of Three-Phase PWM Rectifier Using Beetle Antennae Search Algorithm Optimized Deep Belief Network
URI https://www.proquest.com/docview/2548420186
https://www.mdpi.com/2079-9292/9/10/1570/pdf?version=1601016991
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: ADMLS
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only)
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: 8FG
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9tAEB1BcqA9oH4hAjTaQ2_tivhjvfYBIUNIUdW4ERAVTtZ6P0ok4wTiqGoP_e2dje0kUiXUky_rPfjtzrxZv50H8CEyrgwDFtHMSBcLFBlREUYO9QJt2amvetIe6A-T4HLsf7llt1uQNHdhrKyyiYnLQK2m0p6RH2MhE_qYrcLgdPZIrWuU_bvaWGiI2lpBnSxbjG1D27WdsVrQPrtIRlerUxfbBTP0etXtGQ_r_eO128wcM6fDrGvxZoZa086dRTETv36KPN_IQINXsFtTRxJXWL-GLV28gZcbDQXfwh-rD6Hnkye5mJRkIBZ5SfqVmG4yJ1NDbhA6TUf3mLvI6PuQXNl4ZzA1kqV2gJxpjYuHxFbYXghNKjUyifMf-C3K-wfyDUPMw-S3VqSv9QzHI4c1JKnE5O9gPLi4Ob-ktcMClbj1Sspsuhchk5xnPPONZMyVvmBOIKUt1VgkHU8EShpPI4SMCx5oZJA8MyZjPe3tQauYFnofCNIErIa8nkLO6Csc7kbKlTyIhKM5V6oDTvNVU1m3H7cuGHmKZYhFIv0XiQ58XL0zq5pvPDv6qAErrTfiPF0vmw58WgH4H7MdPD_bIbxwbeW9lPUdQat8Wuj3SE_KrAvb4eBzF9pxf_j1uluvQHyOk1F89xerPexc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2V9lA4ID5FoMAe4ASr2l6v13uoUNo0SmkToioVvbnr3TWN5DqhcVSVAz-N38ZsbCeRkCouva9X8s545r31mxmADzILdBxxSdNMB0hQtKQqlj5lkXXoNDSedhf6_UHUOwu_nvPzDfjT1MI4WWUTExeB2ky0uyPfRSITh5it4ujL9Cd1U6Pc39VmhIaqRyuYvUWLsbqw49je3iCFm-0dddDeH4Ogezg66NF6ygDV6H4l5S7lqZhrIVKRhpnmPNCh4n6ktaMrXGqfqcjojFl8DS6UiCyiKJFmWco9y3DfB7AVslAi-dvaPxwMT5e3PK7rZsy8qlqHMentrqbbzDBT-9xNSV7PiCuYuz0vpur2RuX5WsbrPoHHNVQl7cq3nsKGLZ7Bo7UGhs_ht9Oj0IPxtZ6PS9JV87wknUq8N56RSUZG6CqWDi8xV5Lh9z45dfE1w1RMFloFsm8tOitpOyF9oSyp1M-knf_Asy8vr8g3DGlX41_WkI61U1yPmDkjg0q8_gLO7uWsX8JmMSnsKyAIS5B9Mc8gRg0NLg-kCbSIpPKtEMa0wG9ONdF1u3M3dSNPkPY4SyT_WqIFn5bPTKtmH3eu3mmMldQf_ixZuWkLPi8N-B-7vb57t_ew3Rv1T5KTo8HxG3gYONa_kBTuwGZ5PbdvERqV6bva_whc3LfL_wX2TCUT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIvE4IJ4ipcAe4ASr-LVe-4BQaDAtpSFCrejNrNe7bSTXCY2jqj30h_XXdSa2k0hIFZfe1yt55_PMN-tvZgDexdbTUShinlntYYKiY66i2OV-aIidBrmj6UJ_bxBuHwTfD8XhGly1tTAkq2x94txR52NNd-RdTGSiAKNVFHZtI4sY9pPPk7-cJkjRn9Z2nEYNkV1zfobp2_TTTh9t_d7zkq_7W9u8mTDANUKv4oLCnYqEljKTWWC1EJ4OlHBDrSlVEbF2fRXm2voGX0FIJUODDEpm1mbCMT7uewfuSuriTlXqybfF_Q7124x8p67T8f3Y6S7n2kwxRruC5iOvxsIlwb0_Kyfq_EwVxUqsSx7Do4aksl6NqiewZsqn8HCldeEzuCQlCt8anerZqGKJmhUV69eyvdGUjS3bR5AYPjzGKMmGv_fYL_KsFoMwm6sU2BdjEKasRxL6UhlW655ZrzjCk66OT9hPdGYnowuTs74xE1yPbNmyQS1bfw4Ht3LSL2C9HJfmJTAkJJh3-U6O7DTIcbkX556WYaxcI2Wed8BtTzXVTaNzmrdRpJjwkCXSfy3RgQ-LZyZ1m48bV2-2xkqbT36aLgHagY8LA_7Hbhs37_YW7iHQ0x87g91X8MCjdH-uJdyE9ep0Zl4jJ6qyN3PwMfhz22i_BgVsIq0
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dT9swFLWm8rDtYTBgWkeH_LA3MM2X7fhp6goVmkSpEBXwlDn-gGghrdpk03jYb991k_I1CW3i_dpJ5GPfc6LjexH6JGygYkYFSa0KQKAoQWQsfBIy49hppD3lfugfDdnhOPp6Ts-bPqfzxlYJUjxbHNKBxwWB_B10Bezurk-5151q-_lH8yvJZ4sKacLdXl-BBzKvhVbGw1HvwrWUWw6ur8qEIO67d61l5pAm3XwP09Edx3xZFVP566fM83vpZrCKvi1ftHaZfN-rynRP3Tyq4fiML1lDbxoqins1dt6iF6ZYR6_vFSjcQL-d34T0s5mqshIPZJWXeL8252VzPLH4FKBgyOgKciEenR3hE3d-Wki1eOFFwF-MATDinjPKF9Lg2t2Me_nlZJaVV9f4GI6s6-zGaLxvzBTigRNbPKzN6ZtoPDg47R-SpmMDUbCVS0IdfZAxVZynPI2sojRQkaQ-U8pJPyqUH0qmlQ0NQIJyyZkBRspTa1PqmfAdahWTwrxHGGgHqKvQ08BBIw3hgdCB4kxI33CudRv5y4VLVFPO3HXVyBOQNW6xk78Xu412bsdM62IeT0Z3lnhImo09T0BPxxGQppi10e4tRv5htg__F76FXgVO2S9sgx3UKmeV-Qj0p0y3G4j_AblcAvQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Open-Circuit+Fault+Diagnosis+of+Three-Phase+PWM+Rectifier+Using+Beetle+Antennae+Search+Algorithm+Optimized+Deep+Belief+Network&rft.jtitle=Electronics+%28Basel%29&rft.au=Du%2C+Bolun&rft.au=He%2C+Yigang&rft.au=Zhang%2C+Yaru&rft.date=2020-10-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=9&rft.issue=10&rft.spage=1570&rft_id=info:doi/10.3390%2Felectronics9101570&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics9101570
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon