Conductivity and applications of Li-biphenyl-1,2-dimethoxyethane solution for lithium ion batteries

The total conductivity of Li-biphenyl-1,2-dimethoxyethane solution(Li_xBp(DME)_(9.65), Bp = biphenyl, DME = 1,2-dimethoxyethane, x = 0.25, 0.50, 1.00, 1.50, 2.00) is measured by impedance spectroscopy at a temperature range from 0℃ to 40℃. The Li_(1.50)Bp(DME)_(9.65) has the highest total conductivi...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 26; no. 7; pp. 433 - 438
Main Author 褚赓 刘柏男 罗飞 李文俊 陆浩 陈立泉 李泓
Format Journal Article
LanguageEnglish
Published 01.06.2017
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/26/7/078201

Cover

Abstract The total conductivity of Li-biphenyl-1,2-dimethoxyethane solution(Li_xBp(DME)_(9.65), Bp = biphenyl, DME = 1,2-dimethoxyethane, x = 0.25, 0.50, 1.00, 1.50, 2.00) is measured by impedance spectroscopy at a temperature range from 0℃ to 40℃. The Li_(1.50)Bp(DME)_(9.65) has the highest total conductivity 10.7 m S/cm. The conductivity obeys Arrhenius law with the activation energy(E_(a(x=0.50))= 0.014 eV, E_(a(x=1.00))= 0.046 eV). The ionic conductivity and electronic conductivity of Li_xBp(DME)_(9.65) solutions are investigated at 20℃ using the isothermal transient ionic current(ITIC) technique with an ion-blocking stainless steal electrode. The ionic conductivity and electronic conductivity of Li_(1.00)Bp(DME)_(9.65) are measured as 4.5 mS/cm and 6.6 mS/cm, respectively. The Li_(1.00)Bp(DME)_(9.65) solution is tested as an anode material of half liquid lithium ion battery due to the coexistence of electronic conductivity and ionic conductivity. The lithium iron phosphate(LFP) and Li_(1.5)Al_(0.5)Ti_(1.5)(PO_4)_3(LATP) are chosen to be the counter electrode and electrolyte, respectively. The assembled cell is cycled in the voltage range of 2.2 V-3.75 V at a current density of 50 mA/g. The potential of Li_(1.00)Bp(DME)_(9.65) solution is about 0.3 V vs. Li~+/Li, which indicates the solution has a strong reducibility. The Li_(1.00)Bp(DME)_(9.65) solution is also used to prelithiate the anode material with low first efficiency, such as hard carbon, soft carbon and silicon.
AbstractList The total conductivity of Li-biphenyl-1,2-dimethoxyethane solution(Li_xBp(DME)_(9.65), Bp = biphenyl, DME = 1,2-dimethoxyethane, x = 0.25, 0.50, 1.00, 1.50, 2.00) is measured by impedance spectroscopy at a temperature range from 0℃ to 40℃. The Li_(1.50)Bp(DME)_(9.65) has the highest total conductivity 10.7 m S/cm. The conductivity obeys Arrhenius law with the activation energy(E_(a(x=0.50))= 0.014 eV, E_(a(x=1.00))= 0.046 eV). The ionic conductivity and electronic conductivity of Li_xBp(DME)_(9.65) solutions are investigated at 20℃ using the isothermal transient ionic current(ITIC) technique with an ion-blocking stainless steal electrode. The ionic conductivity and electronic conductivity of Li_(1.00)Bp(DME)_(9.65) are measured as 4.5 mS/cm and 6.6 mS/cm, respectively. The Li_(1.00)Bp(DME)_(9.65) solution is tested as an anode material of half liquid lithium ion battery due to the coexistence of electronic conductivity and ionic conductivity. The lithium iron phosphate(LFP) and Li_(1.5)Al_(0.5)Ti_(1.5)(PO_4)_3(LATP) are chosen to be the counter electrode and electrolyte, respectively. The assembled cell is cycled in the voltage range of 2.2 V-3.75 V at a current density of 50 mA/g. The potential of Li_(1.00)Bp(DME)_(9.65) solution is about 0.3 V vs. Li~+/Li, which indicates the solution has a strong reducibility. The Li_(1.00)Bp(DME)_(9.65) solution is also used to prelithiate the anode material with low first efficiency, such as hard carbon, soft carbon and silicon.
Author 褚赓 刘柏男 罗飞 李文俊 陆浩 陈立泉 李泓
AuthorAffiliation Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China Department of Chemistry, Tsinghua University, Beijing 100084, China
Author_xml – sequence: 1
  fullname: 褚赓 刘柏男 罗飞 李文俊 陆浩 陈立泉 李泓
BookMark eNqFkF1LwzAUhoNMcJv-BCF4bWy-mrZ4JcMvGHij1yFNkzXSJbXJxP17Wze88Mabc3jhec-BZwFmPngDwCXBNwSXZUZEwRHBucioyIoMFyXF5ATMKc5LxErGZ2D-y5yBRYzvGAuCKZsDvQq-2enkPl3aQ-UbqPq-c1olF3yEwcK1Q7XrW-P3HSLXFDVua1IbvvbjVN7AGLrdBEMbBti51LrdFk65VimZwZl4Dk6t6qK5OO4leHu4f109ofXL4_Pqbo00I1VCOc8rLaq8zhVlrLb1mDGnVFdaWc6LCtOKa26ILkZmhEresNpUlnFbK4bZEuSHu3oIMQ7Gyn5wWzXsJcFyMiUnC3KyIKmQhTyYGnu3f3rapR8BaVCu-7d9dWy3wW8-nN_8vhUFFYSNDPsGsc59DQ
CitedBy_id crossref_primary_10_1002_bte2_20220059
crossref_primary_10_1002_aenm_202102061
crossref_primary_10_1016_j_cej_2025_161184
crossref_primary_10_1016_j_jpowsour_2020_228213
crossref_primary_10_1021_acsami_3c06554
crossref_primary_10_1016_j_jpowsour_2024_235671
crossref_primary_10_1038_s41563_019_0286_7
crossref_primary_10_1021_acsami_9b21417
crossref_primary_10_1002_ange_202002411
crossref_primary_10_1021_acsaem_3c00601
crossref_primary_10_1002_smll_202409509
crossref_primary_10_1002_anie_202002411
crossref_primary_10_1016_j_ensm_2024_103749
crossref_primary_10_1021_prechem_3c00030
crossref_primary_10_1002_adfm_202001249
Cites_doi 10.1016/j.electacta.2005.09.036
10.1016/j.electacta.2010.05.072
10.1016/j.electacta.2014.01.040
10.1021/ja01642a004
10.1021/cr030203g
10.1039/C5CS00289C
10.1002/aenm.201100152
10.1149/1.1348257
10.1021/nl401776d
10.1016/j.electacta.2013.06.117
10.7498/aps.62.098201
10.1002/app.1993.070480304
10.3969/j.issn.2095-4239.2015.03.001
10.7498/aps.63.168201
10.1088/1674-1056/18/10/078
10.1149/1.1390899
10.1016/j.electacta.2015.07.100
10.1021/jp056653p
10.7498/aps.60.118202
10.1021/ja01303a022
10.1149/1.2831921
10.1039/jr9540000720
10.1103/PhysRevB.44.9170
10.1021/jacs.6b05341
10.1016/j.electacta.2015.09.074
10.1021/jp3039219
10.1021/ja01287a011
10.1021/ja01291a041
10.1021/ja01271a058
10.1039/C2CP44466F
10.1016/S0008-6223(01)00040-9
10.1063/1.336191
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
DOI 10.1088/1674-1056/26/7/078201
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Conductivity and applications of Li-biphenyl-1,2-dimethoxyethane solution for lithium ion batteries
EISSN 2058-3834
EndPage 438
ExternalDocumentID 10_1088_1674_1056_26_7_078201
672613013
GroupedDBID 02O
1JI
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NT-
NT.
PJBAE
Q02
RIN
RNS
ROL
RPA
RW3
SY9
TCJ
TGP
UCJ
W28
~WA
-SA
-S~
AAYXX
ACARI
ADEQX
AEINN
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
U1G
U5K
ID FETCH-LOGICAL-c319t-5459c695b5a233bfb4590422c9caf44790294c4e1c75b55a284d3be9f34fba303
ISSN 1674-1056
IngestDate Wed Oct 01 03:35:05 EDT 2025
Thu Apr 24 22:52:15 EDT 2025
Wed Feb 14 09:59:44 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c319t-5459c695b5a233bfb4590422c9caf44790294c4e1c75b55a284d3be9f34fba303
Notes The total conductivity of Li-biphenyl-1,2-dimethoxyethane solution(Li_xBp(DME)_(9.65), Bp = biphenyl, DME = 1,2-dimethoxyethane, x = 0.25, 0.50, 1.00, 1.50, 2.00) is measured by impedance spectroscopy at a temperature range from 0℃ to 40℃. The Li_(1.50)Bp(DME)_(9.65) has the highest total conductivity 10.7 m S/cm. The conductivity obeys Arrhenius law with the activation energy(E_(a(x=0.50))= 0.014 eV, E_(a(x=1.00))= 0.046 eV). The ionic conductivity and electronic conductivity of Li_xBp(DME)_(9.65) solutions are investigated at 20℃ using the isothermal transient ionic current(ITIC) technique with an ion-blocking stainless steal electrode. The ionic conductivity and electronic conductivity of Li_(1.00)Bp(DME)_(9.65) are measured as 4.5 mS/cm and 6.6 mS/cm, respectively. The Li_(1.00)Bp(DME)_(9.65) solution is tested as an anode material of half liquid lithium ion battery due to the coexistence of electronic conductivity and ionic conductivity. The lithium iron phosphate(LFP) and Li_(1.5)Al_(0.5)Ti_(1.5)(PO_4)_3(LATP) are chosen to be the counter electrode and electrolyte, respectively. The assembled cell is cycled in the voltage range of 2.2 V-3.75 V at a current density of 50 mA/g. The potential of Li_(1.00)Bp(DME)_(9.65) solution is about 0.3 V vs. Li~+/Li, which indicates the solution has a strong reducibility. The Li_(1.00)Bp(DME)_(9.65) solution is also used to prelithiate the anode material with low first efficiency, such as hard carbon, soft carbon and silicon.
Geng Chu1,Bo-Nan Liu1,Fei Luo2,Wen-Jun Li1,Hao Lu1,Li-Quan Chen1,Hong Li1( 1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China ; 2Department of Chemistry, Tsinghua University, Beijing 100084, China)
lithium solution; ionic and electronic conductivity; flow lithium ion battery; prelithiation
11-5639/O4
PageCount 6
ParticipantIDs crossref_primary_10_1088_1674_1056_26_7_078201
crossref_citationtrail_10_1088_1674_1056_26_7_078201
chongqing_primary_672613013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-01
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics B
PublicationTitleAlternate Chinese Physics
PublicationYear 2017
References 22
23
24
25
26
27
28
Huang Q Z (13) 2016; 25
29
30
31
10
32
11
33
12
34
15
16
17
18
19
1
2
3
Chen Y C (14) 2012; 31
4
Shi S L (21) 2009; 18
5
6
7
8
9
20
References_xml – ident: 18
  doi: 10.1016/j.electacta.2005.09.036
– ident: 16
  doi: 10.1016/j.electacta.2010.05.072
– ident: 24
  doi: 10.1016/j.electacta.2014.01.040
– ident: 5
  doi: 10.1021/ja01642a004
– ident: 31
  doi: 10.1021/cr030203g
– ident: 11
  doi: 10.1039/C5CS00289C
– ident: 12
  doi: 10.1002/aenm.201100152
– ident: 33
  doi: 10.1149/1.1348257
– ident: 27
  doi: 10.1021/nl401776d
– volume: 25
  start-page: 7
  issn: 1674-1056
  year: 2016
  ident: 13
  publication-title: Chin. Phys.
– ident: 26
  doi: 10.1016/j.electacta.2013.06.117
– ident: 23
  doi: 10.7498/aps.62.098201
– ident: 30
  doi: 10.1002/app.1993.070480304
– ident: 15
  doi: 10.3969/j.issn.2095-4239.2015.03.001
– ident: 22
  doi: 10.7498/aps.63.168201
– volume: 18
  start-page: 4564
  issn: 1674-1056
  year: 2009
  ident: 21
  publication-title: Chin. Phys.
  doi: 10.1088/1674-1056/18/10/078
– ident: 19
  doi: 10.1149/1.1390899
– ident: 9
  doi: 10.1016/j.electacta.2015.07.100
– ident: 7
  doi: 10.1021/jp056653p
– volume: 31
  start-page: 3
  year: 2012
  ident: 14
  publication-title: Adv. Technol. Electral. Eng. Energ.
– ident: 20
  doi: 10.7498/aps.60.118202
– ident: 1
  doi: 10.1021/ja01303a022
– ident: 32
  doi: 10.1149/1.2831921
– ident: 6
  doi: 10.1039/jr9540000720
– ident: 34
  doi: 10.1103/PhysRevB.44.9170
– ident: 28
  doi: 10.1021/jacs.6b05341
– ident: 25
  doi: 10.1016/j.electacta.2015.09.074
– ident: 8
  doi: 10.1021/jp3039219
– ident: 3
  doi: 10.1021/ja01287a011
– ident: 4
  doi: 10.1021/ja01291a041
– ident: 2
  doi: 10.1021/ja01271a058
– ident: 10
  doi: 10.1039/C2CP44466F
– ident: 17
  doi: 10.1016/S0008-6223(01)00040-9
– ident: 29
  doi: 10.1063/1.336191
SSID ssj0061023
Score 2.1909337
Snippet The total conductivity of Li-biphenyl-1,2-dimethoxyethane solution(Li_xBp(DME)_(9.65), Bp = biphenyl, DME = 1,2-dimethoxyethane, x = 0.25, 0.50, 1.00,...
SourceID crossref
chongqing
SourceType Enrichment Source
Index Database
Publisher
StartPage 433
SubjectTerms 应用
溶液电导率
电子电导率
离子导电性
离子电导率
锂离子电池
阳极材料
阿伦尼乌斯
Title Conductivity and applications of Li-biphenyl-1,2-dimethoxyethane solution for lithium ion batteries
URI http://lib.cqvip.com/qk/85823A/201707/672613013.html
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 2058-3834
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061023
  issn: 1674-1056
  databaseCode: IOP
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCIkXxKfoxpAfeBtZG8eJ7UeoNo1JjD1s0t6i2HFopZGwrZEYfz13dpx6ME2Ml6i27GuV-_V8d74PQt6nTAjNU5nkRW3BQDEmkamBPx7PjVWaNUWD2chfjoqDU354lp9FN6aYXbLSu-bXrXkl_8NVmAO-YpbsPTg7EoUJ-Az8hSdwGJ7_xON512K5Vt__wVVdja6jnfcfLV-M4ro-T0BkzVlSL13P6J_XFn3mdif8QBduCCr5Ytl_38GxdoU3Q4hhqGWwcB0rB3_I1bpl83zRew_7cBBiiM_STX3qkqMo7qd3rtl9u1wvc2F-tk0O-zb2QaRiHSs1iM1CcBDovkR4kKs-E37Aj4iEJJboS28V3yDy0JMQqGG2Cj7wVnk27rpZNPuPw2wMMXSX61KWSKxEYiUrSlF6Mg_JIwanALb6-Pz1OJzcBZaxQAM9fH_I-JJyOs5NWTEVU08G63EsuvbbBWgZkV4TKSgnz8jTwbKgHz1MnpMHtn1BHh97Tr0kJgYLBbDQGCy0a-gNsHz4Cyo0QIUCVOgAFYrjESqvyOn-3sn8IBk6bCQGRO8qAfVZmULlOq9YlulGwxiLwhllqoZzoWZMccNtagSsgUWS15m2qsl4oyvQfl6TjbZr7RtCc6lYxcFAbiwHHUeotGbazmQF9oSqpZiQrfFdlT98JZWyEAzt1zSbEB7eXmmG4vTYI-W8vJOPE7I7bgs079ywed8NW-TJGvBvycbqsrfboIau9DuHnd_ngH5T
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conductivity+and+applications+of+Li-biphenyl-1%2C2-dimethoxyethane+solution+for+lithium+ion+batteries&rft.jtitle=Chinese+physics+B&rft.au=Chu%2C+Geng&rft.au=Liu%2C+Bo-Nan&rft.au=Luo%2C+Fei&rft.au=Li%2C+Wen-Jun&rft.date=2017-06-01&rft.issn=1674-1056&rft.volume=26&rft.issue=7&rft.spage=78201&rft_id=info:doi/10.1088%2F1674-1056%2F26%2F7%2F078201&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_26_7_078201
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg