Application of RBF neural network optimal segmentation algorithm in credit rating
Credit rating is an important part of bank credit risk management. Since the traditional radial basis function network model is more susceptible to outliers and cannot effectively process the classification data, it is very sensitive in terms of the initial center and class width of the selected mod...
Saved in:
| Published in | Neural computing & applications Vol. 33; no. 14; pp. 8227 - 8235 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.07.2021
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0941-0643 1433-3058 |
| DOI | 10.1007/s00521-020-04958-9 |
Cover
| Abstract | Credit rating is an important part of bank credit risk management. Since the traditional radial basis function network model is more susceptible to outliers and cannot effectively process the classification data, it is very sensitive in terms of the initial center and class width of the selected model. This paper mainly studies the application of the radial basis function neural network model combined with the optimal segmentation algorithm in the personal loan credit rating model of banks or other financial institutions. The optimal segmentation algorithm is improved and applied to the training of RBF neural network parameters in this paper to increase the center and width of the class, and the center and width of the RBF network model are further improved. Finally, the adaptive selection of the number of hidden nodes is realized by using the differential objective function of the class to adjust dynamically the structure of the radial basis function network model, which is used to establish the credit rating model. The experimental results show that the improved model has higher precision when dealing with non-numeric data, and the robustness of the improved model has been improved. |
|---|---|
| AbstractList | Credit rating is an important part of bank credit risk management. Since the traditional radial basis function network model is more susceptible to outliers and cannot effectively process the classification data, it is very sensitive in terms of the initial center and class width of the selected model. This paper mainly studies the application of the radial basis function neural network model combined with the optimal segmentation algorithm in the personal loan credit rating model of banks or other financial institutions. The optimal segmentation algorithm is improved and applied to the training of RBF neural network parameters in this paper to increase the center and width of the class, and the center and width of the RBF network model are further improved. Finally, the adaptive selection of the number of hidden nodes is realized by using the differential objective function of the class to adjust dynamically the structure of the radial basis function network model, which is used to establish the credit rating model. The experimental results show that the improved model has higher precision when dealing with non-numeric data, and the robustness of the improved model has been improved. |
| Author | Li, Xuetao Sun, Yi |
| Author_xml | – sequence: 1 givenname: Xuetao surname: Li fullname: Li, Xuetao organization: School of Economics and Management, Hubei University of Automotive Technology – sequence: 2 givenname: Yi surname: Sun fullname: Sun, Yi email: suny@ucas.ac.cn organization: School of Economics and Management, University of Chinese Academy of Sciences |
| BookMark | eNp9kE1LAzEQhoNUsFb_gKcFz6uTr25yrMUvKIii55DNZuvWbbImKeK_N7qC4KGnYZj3mZn3PUYT551F6AzDBQaoLiMAJ7gEAiUwyUUpD9AUM0pLClxM0BQky-M5o0foOMYNALC54FP0uBiGvjM6dd4Vvi2erm4KZ3dB97mkDx_eCj-kbpv7aNdb69Io1f3ahy69bovOFSbYpktFyCO3PkGHre6jPf2tM_Ryc_28vCtXD7f3y8WqNBTLVHKGLW2NbMBqS_Gcypa0HGMqas1rQUhT6xpMQxoOnFLZGCo046JqK2MqWtMZOh_3DsG_72xMauN3weWTinBGhWSCVFlFRpUJPsZgWzWE7CZ8KgzqOzo1RqdydOonOiUzJP5Bpht9p6C7fj9KRzTmO25tw99Xe6gvuh6FiQ |
| CitedBy_id | crossref_primary_10_1016_j_rinp_2023_106672 crossref_primary_10_1007_s11356_023_28195_4 crossref_primary_10_1186_s40854_024_00696_2 crossref_primary_10_1155_2023_9604454 crossref_primary_10_1016_j_heliyon_2023_e18074 crossref_primary_10_1007_s11042_023_16971_w crossref_primary_10_1007_s42235_023_00408_z crossref_primary_10_7717_peerj_cs_1956 crossref_primary_10_1007_s11277_024_11038_x crossref_primary_10_1111_1477_8947_12470 crossref_primary_10_1111_1477_8947_12473 crossref_primary_10_1007_s40747_023_01137_w crossref_primary_10_3390_su15129499 crossref_primary_10_1109_ACCESS_2024_3474301 crossref_primary_10_3390_sym15071438 crossref_primary_10_54691_bcpbm_v36i_3490 crossref_primary_10_1007_s11227_023_05466_y crossref_primary_10_1371_journal_pone_0295802 crossref_primary_10_1109_ACCESS_2023_3309007 crossref_primary_10_1016_j_isci_2023_107896 crossref_primary_10_1016_j_resourpol_2024_105184 crossref_primary_10_1007_s11277_024_11199_9 crossref_primary_10_1007_s10462_023_10601_5 crossref_primary_10_1007_s11277_024_11018_1 crossref_primary_10_1016_j_chaos_2024_115192 crossref_primary_10_1016_j_heliyon_2024_e25950 crossref_primary_10_1007_s11277_024_11247_4 crossref_primary_10_1007_s11277_024_11240_x crossref_primary_10_1007_s11356_024_32216_1 crossref_primary_10_1038_s41598_023_37952_x crossref_primary_10_3390_app13095322 crossref_primary_10_1631_FITEE_2300668 crossref_primary_10_1007_s11356_023_28846_6 crossref_primary_10_2478_jaiscr_2024_0018 crossref_primary_10_1038_s41598_024_62477_2 crossref_primary_10_3390_pr11061689 crossref_primary_10_1093_comnet_cnae001 crossref_primary_10_1016_j_heliyon_2024_e30134 crossref_primary_10_1080_03610918_2024_2362306 crossref_primary_10_1002_for_3080 crossref_primary_10_1016_j_compbiomed_2024_108442 crossref_primary_10_1007_s00521_021_06186_1 crossref_primary_10_1007_s12530_023_09547_4 crossref_primary_10_1007_s11356_023_30520_w crossref_primary_10_1080_00207721_2024_2367079 crossref_primary_10_1109_ACCESS_2024_3409420 crossref_primary_10_3390_su15076131 crossref_primary_10_1007_s11277_024_11020_7 crossref_primary_10_3390_math10152679 crossref_primary_10_1007_s10668_024_04472_1 crossref_primary_10_1007_s11042_024_19054_6 crossref_primary_10_37394_232018_2022_10_9 crossref_primary_10_7717_peerj_cs_1931 crossref_primary_10_1007_s42235_024_00555_x crossref_primary_10_1038_s41598_024_71220_w crossref_primary_10_1371_journal_pone_0299666 crossref_primary_10_1007_s11276_023_03483_6 crossref_primary_10_1007_s11356_023_28590_x crossref_primary_10_3390_su16083280 crossref_primary_10_1007_s10479_024_05849_1 crossref_primary_10_1007_s10479_024_06076_4 crossref_primary_10_1111_nrm_12411 crossref_primary_10_1016_j_heliyon_2024_e34787 crossref_primary_10_1080_10407790_2024_2338422 crossref_primary_10_1016_j_seta_2023_103287 crossref_primary_10_1016_j_heliyon_2023_e19431 crossref_primary_10_1109_ACCESS_2023_3311027 crossref_primary_10_1016_j_heliyon_2023_e23255 crossref_primary_10_1007_s10723_023_09720_8 crossref_primary_10_1016_j_psep_2023_03_055 crossref_primary_10_1007_s11831_024_10110_w crossref_primary_10_1016_j_compbiomed_2023_106948 crossref_primary_10_3389_fenrg_2024_1385311 crossref_primary_10_3390_forecast7010001 crossref_primary_10_1016_j_suscom_2023_100899 crossref_primary_10_3390_axioms13020109 crossref_primary_10_3934_math_2024994 crossref_primary_10_1007_s10723_023_09735_1 crossref_primary_10_1016_j_heliyon_2024_e32650 crossref_primary_10_1007_s11071_024_09706_5 crossref_primary_10_1109_ACCESS_2024_3454669 crossref_primary_10_1016_j_compbiomed_2023_107197 crossref_primary_10_32604_cmes_2023_030896 crossref_primary_10_1109_ACCESS_2024_3481034 crossref_primary_10_4018_IJSWIS_326120 crossref_primary_10_1371_journal_pone_0288740 crossref_primary_10_1007_s11846_024_00761_1 crossref_primary_10_1007_s10639_024_12736_6 crossref_primary_10_1016_j_cmpb_2023_107745 crossref_primary_10_1007_s10723_023_09710_w crossref_primary_10_1002_poi3_365 crossref_primary_10_3934_math_2023866 crossref_primary_10_1177_03611981241262316 crossref_primary_10_3934_math_20231017 crossref_primary_10_1016_j_engappai_2024_109203 crossref_primary_10_1007_s10257_023_00665_9 crossref_primary_10_7717_peerj_cs_2044 crossref_primary_10_1016_j_rinp_2024_107601 crossref_primary_10_1007_s00500_024_09639_6 crossref_primary_10_3390_s24144554 crossref_primary_10_1109_ACCESS_2024_3411717 crossref_primary_10_1109_ACCESS_2023_3298105 crossref_primary_10_2478_amns_2024_3000 crossref_primary_10_1016_j_heliyon_2024_e33965 crossref_primary_10_1111_exsy_13460 crossref_primary_10_2478_amns_2023_2_01310 crossref_primary_10_1007_s00521_024_10214_1 crossref_primary_10_1007_s13132_024_01938_5 crossref_primary_10_3233_JIFS_230048 crossref_primary_10_1111_1477_8947_12560 crossref_primary_10_1111_1477_8947_12442 crossref_primary_10_1007_s00500_023_09079_8 crossref_primary_10_1016_j_rinp_2024_107420 crossref_primary_10_1093_comnet_cnae015 crossref_primary_10_1371_journal_pone_0306639 crossref_primary_10_1007_s11356_023_31554_w crossref_primary_10_1007_s11356_023_26302_z crossref_primary_10_1016_j_bspc_2023_105423 crossref_primary_10_1007_s10723_024_09768_0 crossref_primary_10_1155_2022_7826838 crossref_primary_10_1016_j_asej_2024_102807 crossref_primary_10_1016_j_eij_2024_100438 crossref_primary_10_1016_j_neucom_2023_126467 crossref_primary_10_1109_ACCESS_2024_3416391 crossref_primary_10_4236_ajibm_2023_139052 crossref_primary_10_1007_s10472_023_09901_x crossref_primary_10_1007_s10489_024_05889_x crossref_primary_10_1007_s40996_023_01121_x crossref_primary_10_1155_2023_6643772 crossref_primary_10_1016_j_heliyon_2024_e29182 crossref_primary_10_1093_comnet_cnae012 crossref_primary_10_1111_1477_8947_12456 crossref_primary_10_1016_j_heliyon_2024_e38279 crossref_primary_10_1007_s00500_023_09571_1 crossref_primary_10_1016_j_resourpol_2024_105082 crossref_primary_10_3390_electronics12132929 crossref_primary_10_1177_21582440231181388 crossref_primary_10_1007_s10723_024_09750_w crossref_primary_10_1016_j_compeleceng_2023_108814 crossref_primary_10_3934_math_2024159 crossref_primary_10_1007_s11042_024_20307_7 crossref_primary_10_3390_su151712988 crossref_primary_10_1007_s11042_023_16382_x crossref_primary_10_1007_s40747_023_01183_4 crossref_primary_10_1371_journal_pone_0305092 crossref_primary_10_1007_s11276_023_03546_8 crossref_primary_10_1515_econ_2022_0086 crossref_primary_10_1016_j_chemosphere_2023_138980 |
| Cites_doi | 10.1016/j.ejor.2015.05.050 10.1016/j.cogsys.2018.07.023 10.1016/j.ejor.2018.11.029 10.1016/j.asoc.2018.07.005 10.1016/j.eswa.2016.07.017 10.1016/j.asoc.2016.02.025 10.1371/journal.pone.0117844 10.3390/su8050433 10.1016/j.eswa.2014.08.029 10.1016/j.eswa.2017.10.022 10.1016/j.pacfin.2015.03.002 10.1016/j.ejor.2015.01.033 10.1016/j.dss.2016.06.014 10.1016/j.ejor.2015.07.013 10.1007/s10845-013-0853-8 10.4018/IJIIT.2016010103 10.2991/mse-17.2017.57 10.1155/2015/945359 10.1109/ICSCTI.2015.7489612 10.1109/SIU.2018.8404405 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag London Ltd., part of Springer Nature 2020 Springer-Verlag London Ltd., part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2020 – notice: Springer-Verlag London Ltd., part of Springer Nature 2020. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s00521-020-04958-9 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 8235 |
| ExternalDocumentID | 10_1007_s00521_020_04958_9 |
| GrantInformation_xml | – fundername: National Nature Science Foundation of China (NSFC) grantid: No.71673265 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-541e3fc9d0eae31639f2f51138ba5b822dbab0cd2d505339dc38a4587f7cc73b3 |
| IEDL.DBID | U2A |
| ISSN | 0941-0643 |
| IngestDate | Fri Jul 25 02:36:04 EDT 2025 Wed Oct 01 02:25:59 EDT 2025 Thu Apr 24 23:09:24 EDT 2025 Fri Feb 21 02:48:59 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Keywords | Classification data Credit grading Radial basis function neural network Optimal segmentation method |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-541e3fc9d0eae31639f2f51138ba5b822dbab0cd2d505339dc38a4587f7cc73b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2543894827 |
| PQPubID | 2043988 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_2543894827 crossref_primary_10_1007_s00521_020_04958_9 crossref_citationtrail_10_1007_s00521_020_04958_9 springer_journals_10_1007_s00521_020_04958_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20210700 2021-07-00 20210701 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 7 year: 2021 text: 20210700 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2021 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Guo, Zhou, Luo, Liu, Xiong (CR5) 2016; 249 CR2 Waemustafa, Sukri (CR4) 2015; 5 Serrano-Cinca, Gutiérrez-Nieto (CR10) 2016; 89 Zhu, Xie, Sun, Wang, Yan (CR18) 2016; 8 Angilella, Mazzù (CR3) 2015; 244 Ala’raj, Abbod (CR12) 2016; 64 Fernandes, Artes (CR1) 2016; 249 Sohn, Kim, Yoon (CR9) 2016; 43 CR14 CR13 Wang, Xu, Zhou (CR11) 2015; 10 CR23 Djeundje, Crook (CR8) 2019; 275 Jiang, Ching, Yiu, Qiu (CR16) 2018; 71 Harris (CR17) 2015; 42 Fu, Zhu (CR19) 2016; 348 Arundina, Omar, Kartiwi (CR20) 2015; 34 Jiang, Wang, Wang, Ding (CR6) 2017; 266 Grace, Williams (CR22) 2016; 12 Mohamad, Zain, Bazin, Udin (CR21) 2015; 26 Xia, Liu, Da, Xie (CR7) 2018; 93 Huang, Liu, Ren (CR15) 2018; 52 Y Xia (4958_CR7) 2018; 93 M Ala’raj (4958_CR12) 2016; 64 Y Guo (4958_CR5) 2016; 249 C Serrano-Cinca (4958_CR10) 2016; 89 GB Fernandes (4958_CR1) 2016; 249 S Angilella (4958_CR3) 2015; 244 VB Djeundje (4958_CR8) 2019; 275 T Harris (4958_CR17) 2015; 42 SY Sohn (4958_CR9) 2016; 43 A Mohamad (4958_CR21) 2015; 26 H Jiang (4958_CR16) 2018; 71 Y Zhu (4958_CR18) 2016; 8 W Waemustafa (4958_CR4) 2015; 5 4958_CR14 C Jiang (4958_CR6) 2017; 266 4958_CR13 Y Fu (4958_CR19) 2016; 348 AM Grace (4958_CR22) 2016; 12 H Wang (4958_CR11) 2015; 10 4958_CR23 4958_CR2 X Huang (4958_CR15) 2018; 52 T Arundina (4958_CR20) 2015; 34 |
| References_xml | – volume: 249 start-page: 417 issue: 2 year: 2016 end-page: 426 ident: CR5 article-title: Instance-based credit risk assessment for investment decisions in P2P lending publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2015.05.050 – volume: 52 start-page: 317 year: 2018 end-page: 324 ident: CR15 article-title: Enterprise credit risk evaluation based on neural network algorithm publication-title: Cogn Syst Res doi: 10.1016/j.cogsys.2018.07.023 – volume: 275 start-page: 319 issue: 1 year: 2019 end-page: 333 ident: CR8 article-title: Dynamic survival models with varying coefficients for credit risks publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2018.11.029 – volume: 71 start-page: 407 year: 2018 end-page: 417 ident: CR16 article-title: Stationary Mahalanobis kernel SVM for credit risk evaluation publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.07.005 – volume: 64 start-page: 36 year: 2016 end-page: 55 ident: CR12 article-title: A new hybrid ensemble credit scoring model based on classifiers consensus system approach publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.07.017 – volume: 43 start-page: 150 year: 2016 end-page: 158 ident: CR9 article-title: Technology credit scoring model with fuzzy logistic regression publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2016.02.025 – volume: 10 start-page: e0117844 issue: 2 year: 2015 ident: CR11 article-title: Large unbalanced credit scoring using lasso-logistic regression ensemble publication-title: PloS One doi: 10.1371/journal.pone.0117844 – volume: 348 start-page: 74 year: 2016 end-page: 83 ident: CR19 article-title: Network supplier credit evaluation model based on big data publication-title: J Central Univ Financ Econ – ident: CR14 – ident: CR2 – volume: 8 start-page: 433 issue: 5 year: 2016 ident: CR18 article-title: Predicting China’s SME credit risk in supply chain financing by logistic regression, artificial neural network and hybrid models publication-title: Sustainability doi: 10.3390/su8050433 – volume: 5 start-page: 476 issue: 2 year: 2015 end-page: 481 ident: CR4 article-title: Bank specific and macroeconomics dynamic determinants of credit risk in Islamic banks and conventional banks publication-title: Int J Econ Financ Issues – ident: CR13 – volume: 42 start-page: 741 issue: 2 year: 2015 end-page: 750 ident: CR17 article-title: Credit scoring using the clustered support vector machine publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.08.029 – volume: 93 start-page: 182 year: 2018 end-page: 199 ident: CR7 article-title: A novel heterogeneous ensemble credit scoring model based on bstacking approach publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.10.022 – volume: 266 start-page: 1 issue: 2–3 year: 2017 end-page: 19 ident: CR6 article-title: Loan default prediction by combining soft information extracted from descriptive text in online peer-to-peer lending publication-title: Ann Oper Res – volume: 34 start-page: 273 year: 2015 end-page: 292 ident: CR20 article-title: The predictive accuracy of Sukuk ratings; multinomial logistic and neural network inferences publication-title: Pacific-Basin Financ J doi: 10.1016/j.pacfin.2015.03.002 – volume: 244 start-page: 540 issue: 2 year: 2015 end-page: 554 ident: CR3 article-title: The financing of innovative SMEs: a multicriteria credit rating model publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2015.01.033 – volume: 89 start-page: 113 year: 2016 end-page: 122 ident: CR10 article-title: The use of profit scoring as an alternative to credit scoring systems in peer-to-peer (P2P) lending publication-title: Decis Support Syst doi: 10.1016/j.dss.2016.06.014 – ident: CR23 – volume: 249 start-page: 517 issue: 2 year: 2016 end-page: 524 ident: CR1 article-title: Spatial dependence in credit risk and its improvement in credit scoring publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2015.07.013 – volume: 26 start-page: 1247 issue: 6 year: 2015 end-page: 1252 ident: CR21 article-title: A process prediction model based on Cuckoo algorithm for abrasive waterjet machining publication-title: J Intell Manuf doi: 10.1007/s10845-013-0853-8 – volume: 12 start-page: 47 issue: 1 year: 2016 end-page: 62 ident: CR22 article-title: Comparative analysis of neural network and fuzzy logic techniques in credit risk evaluation publication-title: Int J Intell Inf Technol (IJIIT) doi: 10.4018/IJIIT.2016010103 – volume: 89 start-page: 113 year: 2016 ident: 4958_CR10 publication-title: Decis Support Syst doi: 10.1016/j.dss.2016.06.014 – volume: 26 start-page: 1247 issue: 6 year: 2015 ident: 4958_CR21 publication-title: J Intell Manuf doi: 10.1007/s10845-013-0853-8 – volume: 71 start-page: 407 year: 2018 ident: 4958_CR16 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.07.005 – volume: 64 start-page: 36 year: 2016 ident: 4958_CR12 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.07.017 – volume: 93 start-page: 182 year: 2018 ident: 4958_CR7 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.10.022 – volume: 244 start-page: 540 issue: 2 year: 2015 ident: 4958_CR3 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2015.01.033 – volume: 275 start-page: 319 issue: 1 year: 2019 ident: 4958_CR8 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2018.11.029 – volume: 52 start-page: 317 year: 2018 ident: 4958_CR15 publication-title: Cogn Syst Res doi: 10.1016/j.cogsys.2018.07.023 – volume: 249 start-page: 517 issue: 2 year: 2016 ident: 4958_CR1 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2015.07.013 – volume: 42 start-page: 741 issue: 2 year: 2015 ident: 4958_CR17 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.08.029 – ident: 4958_CR14 doi: 10.2991/mse-17.2017.57 – volume: 8 start-page: 433 issue: 5 year: 2016 ident: 4958_CR18 publication-title: Sustainability doi: 10.3390/su8050433 – volume: 12 start-page: 47 issue: 1 year: 2016 ident: 4958_CR22 publication-title: Int J Intell Inf Technol (IJIIT) doi: 10.4018/IJIIT.2016010103 – volume: 5 start-page: 476 issue: 2 year: 2015 ident: 4958_CR4 publication-title: Int J Econ Financ Issues – volume: 10 start-page: e0117844 issue: 2 year: 2015 ident: 4958_CR11 publication-title: PloS One doi: 10.1371/journal.pone.0117844 – volume: 249 start-page: 417 issue: 2 year: 2016 ident: 4958_CR5 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2015.05.050 – ident: 4958_CR23 doi: 10.1155/2015/945359 – ident: 4958_CR2 doi: 10.1109/ICSCTI.2015.7489612 – volume: 266 start-page: 1 issue: 2–3 year: 2017 ident: 4958_CR6 publication-title: Ann Oper Res – ident: 4958_CR13 doi: 10.1109/SIU.2018.8404405 – volume: 34 start-page: 273 year: 2015 ident: 4958_CR20 publication-title: Pacific-Basin Financ J doi: 10.1016/j.pacfin.2015.03.002 – volume: 348 start-page: 74 year: 2016 ident: 4958_CR19 publication-title: J Central Univ Financ Econ – volume: 43 start-page: 150 year: 2016 ident: 4958_CR9 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2016.02.025 |
| SSID | ssj0004685 |
| Score | 2.6042054 |
| Snippet | Credit rating is an important part of bank credit risk management. Since the traditional radial basis function network model is more susceptible to outliers... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 8227 |
| SubjectTerms | Algorithms Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Credit ratings Data Mining and Knowledge Discovery Image Processing and Computer Vision Neural networks Outliers (statistics) Probability and Statistics in Computer Science Radial basis function Risk management Robustness (mathematics) S. I : Intelligent Computing Methodologies in Machine learning for IoT Applications Segmentation Special Issue on Intelligent Computing Methodologies in Machine learning for IoT Applications |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60Xrz4FqtVcvCmi22yz4NIKxYRLCoK3pa8thba3WrX_-_MNmtVsMfdTQI7SSaTZL7vAzjlui1DG1mvHUXSw_VYeLGfoTOUnMfaD43qEHb4fhDevvh3r8HrCgxqLAylVdY-sXLUptB0Rn5BoO04IdLKq-m7R6pRdLtaS2hIJ61gLiuKsVVY48SM1YC13s3g4ekHUrIS6cQ9DeX7-MLBaCowHZ2Q4ltO6Y5JgG7g91K1iD__XJlWK1F_CzZcCMm68z7fhhWb78BmLc_A3Gzdhcfu4nKaFRl76vUZ0Vdi3Xye_M0KdBgTfJ7Z4cSBkHImx0P88fJtwkY5I0LRUclonOTDPXjp3zxf33pOQcHTOLVKL_A7VmQ6MW0rrcDQK8l4hiGWiJUMFMYGRknV1oabgDC5idEiln4QR1mkdSSU2IdGXuT2ABixAuFuMpZKRL4SIcY1NuQqCWRgSGKzCZ3aWKl29OKkcjFOv4mRKwOnaOC0MnCaNOHsu850Tq6xtHSr7oPUTbRZuhgWTTiv-2Xx-f_WDpe3dgTrnLJXqsTcFjTKj097jOFHqU7cmPoCXxfUhA priority: 102 providerName: ProQuest |
| Title | Application of RBF neural network optimal segmentation algorithm in credit rating |
| URI | https://link.springer.com/article/10.1007/s00521-020-04958-9 https://www.proquest.com/docview/2543894827 |
| Volume | 33 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3058 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ADMLS dateStart: 19930301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: 8FG dateStart: 20180401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH8RuHjx24gi6cGbLhntuo8jGAbRSJRIgqel7TokgWFg_v--jg3UqImnZVnbw2vf1_p-vwdwRZUtXO1py_Y8YaE_ZpbvJGgMBaW-ctxYtgx2-GHg9kfO3ZiPC1DYqqx2L68kc0u9AbuZP5iY-lJTjhhwVNMK1Lih88JTPKLtT2jIvBEn5i2mpsdhBVTm5zW-uqNtjPntWjT3NuEB7BVhImmv9_UQdnR6BPtlCwZSaOQxPLW3F9BkkZBhJySGohLnpusCb7JAozDH95WezAugUUrEbLJYTrPXOZmmxJCGTjNizkI6OYFR2H2-7VtFlwRLofpkFndamiUqiG0tNMPwKkhogmEU86XgEv1_LIW0VUxjbnC3QayYLxzue4mnlMckO4Vqukj1GRDD_IMZoy8k8xzJXIxdtEtlwAWPTRvNOrRKYUWqoBA3nSxm0Yb8OBdwhAKOcgFHQR2uN3Pe1gQaf45ulHsQFcq0igxe3w8MX2kdbsp92X7-fbXz_w2_gF1qKlbyYtwGVLPlu77EkCOTTaj4Ya8JtXbv5b6Lz0538Dhs5ufuA6Qmzug |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JThtBEC2xHMKFQEKEWUIfklMywu7u2Q4IAcEym5UgkLhNehtjCY8BT4T4Ob6NqnEPJkhw4zhL96G6pqp6ut57AN-4aarIxS5oxrEKMB-LIJE5BkPFeWJkZHWLsMMn3ahzLg8vwospeKixMNRWWcfEKlDboaF_5JsE2k5SIq3cvr4JSDWKTldrCQ3lpRXsVkUx5oEdR-7-Drdwo62DX7je3zlv75_tdQKvMhAYdL8yCGXLidyktumUE1iepDnPsQwRiVahxvxptdJNY7kNCbeaWiMSJcMkzmNjYqEFzjsNs1LIFDd_s7v73d-nz5CZlSgo7qGov0gKD9upwHv0RxbvcmqvTEMMO_-nxkm9--KItsp87QWY9yUr2xn72CJMueITfKzlIJiPDp_hz87kMJwNc3a622ZEl4lji3GzORtigBrg9cj1Bh70VDB11UNDl5cD1i8YEZj2S0Z-WfSW4PxdbPkFZoph4ZaBEQsR7l4TpUUstYiwjnIR12moQkuSng1o1cbKjKczJ1WNq-yJiLkycIYGzioDZ2kDfjyNuR6Tebz59lq9Bpn_sEfZxA0b8LNel8nj12dbeXu2DfjQOTs5zo4PukerMMepc6ZqCl6DmfL2n1vH0qfUX71_Mfj73i79CE6XEfk |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSIgLO6JQwAduEDW14yzHskRlqwBRqTfLdpxSqU2qNvw_4yxtQYDEMfJyGM_Yz_G8NwidE2ULV3vasj1PWHAeU8t3YtgMBSG-ctxItgx3-KnrdnrOfZ_1l1j8ebZ79SRZcBqMSlOSNSdR3JwT38zfTLgGE5OaGDAI2VW05hihBPDoHmkvMSPzopxwhzH5PQ4taTM_z_H1aFrgzW9PpPnJE26jzRIy4naxxjtoRSe7aKsqx4DL6NxDL-3FYzROY_x6FWIjVwljkyLZG6ewQYzhe6YH45J0lGAxGqTTYfY-xsMEGwHRYYaNXySDfdQLb9-uO1ZZMcFSEEqZxZyWprEKIlsLTQFqBTGJAVJRXwomAQtEUkhbRSRihoMbRIr6wmG-F3tKeVTSA1RL0kQfImxUgOD26AtJPUdSF3CMdokMmGCRKalZR63KWFyVcuKmqsWIz4WQcwNzMDDPDcyDOrqYj5kUYhp_9m5Ua8DLwJpxw933A6NdWkeX1bosmn-f7eh_3c_Q-vNNyB_vug_HaIOYRJY8R7eBatn0Q58AEsnkae5sn-ez0fw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+RBF+neural+network+optimal+segmentation+algorithm+in+credit+rating&rft.jtitle=Neural+computing+%26+applications&rft.au=Li%2C+Xuetao&rft.au=Sun%2C+Yi&rft.date=2021-07-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=33&rft.issue=14&rft.spage=8227&rft.epage=8235&rft_id=info:doi/10.1007%2Fs00521-020-04958-9&rft.externalDocID=10_1007_s00521_020_04958_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |