Application of RBF neural network optimal segmentation algorithm in credit rating

Credit rating is an important part of bank credit risk management. Since the traditional radial basis function network model is more susceptible to outliers and cannot effectively process the classification data, it is very sensitive in terms of the initial center and class width of the selected mod...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 33; no. 14; pp. 8227 - 8235
Main Authors Li, Xuetao, Sun, Yi
Format Journal Article
LanguageEnglish
Published London Springer London 01.07.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-020-04958-9

Cover

Abstract Credit rating is an important part of bank credit risk management. Since the traditional radial basis function network model is more susceptible to outliers and cannot effectively process the classification data, it is very sensitive in terms of the initial center and class width of the selected model. This paper mainly studies the application of the radial basis function neural network model combined with the optimal segmentation algorithm in the personal loan credit rating model of banks or other financial institutions. The optimal segmentation algorithm is improved and applied to the training of RBF neural network parameters in this paper to increase the center and width of the class, and the center and width of the RBF network model are further improved. Finally, the adaptive selection of the number of hidden nodes is realized by using the differential objective function of the class to adjust dynamically the structure of the radial basis function network model, which is used to establish the credit rating model. The experimental results show that the improved model has higher precision when dealing with non-numeric data, and the robustness of the improved model has been improved.
AbstractList Credit rating is an important part of bank credit risk management. Since the traditional radial basis function network model is more susceptible to outliers and cannot effectively process the classification data, it is very sensitive in terms of the initial center and class width of the selected model. This paper mainly studies the application of the radial basis function neural network model combined with the optimal segmentation algorithm in the personal loan credit rating model of banks or other financial institutions. The optimal segmentation algorithm is improved and applied to the training of RBF neural network parameters in this paper to increase the center and width of the class, and the center and width of the RBF network model are further improved. Finally, the adaptive selection of the number of hidden nodes is realized by using the differential objective function of the class to adjust dynamically the structure of the radial basis function network model, which is used to establish the credit rating model. The experimental results show that the improved model has higher precision when dealing with non-numeric data, and the robustness of the improved model has been improved.
Author Li, Xuetao
Sun, Yi
Author_xml – sequence: 1
  givenname: Xuetao
  surname: Li
  fullname: Li, Xuetao
  organization: School of Economics and Management, Hubei University of Automotive Technology
– sequence: 2
  givenname: Yi
  surname: Sun
  fullname: Sun, Yi
  email: suny@ucas.ac.cn
  organization: School of Economics and Management, University of Chinese Academy of Sciences
BookMark eNp9kE1LAzEQhoNUsFb_gKcFz6uTr25yrMUvKIii55DNZuvWbbImKeK_N7qC4KGnYZj3mZn3PUYT551F6AzDBQaoLiMAJ7gEAiUwyUUpD9AUM0pLClxM0BQky-M5o0foOMYNALC54FP0uBiGvjM6dd4Vvi2erm4KZ3dB97mkDx_eCj-kbpv7aNdb69Io1f3ahy69bovOFSbYpktFyCO3PkGHre6jPf2tM_Ryc_28vCtXD7f3y8WqNBTLVHKGLW2NbMBqS_Gcypa0HGMqas1rQUhT6xpMQxoOnFLZGCo046JqK2MqWtMZOh_3DsG_72xMauN3weWTinBGhWSCVFlFRpUJPsZgWzWE7CZ8KgzqOzo1RqdydOonOiUzJP5Bpht9p6C7fj9KRzTmO25tw99Xe6gvuh6FiQ
CitedBy_id crossref_primary_10_1016_j_rinp_2023_106672
crossref_primary_10_1007_s11356_023_28195_4
crossref_primary_10_1186_s40854_024_00696_2
crossref_primary_10_1155_2023_9604454
crossref_primary_10_1016_j_heliyon_2023_e18074
crossref_primary_10_1007_s11042_023_16971_w
crossref_primary_10_1007_s42235_023_00408_z
crossref_primary_10_7717_peerj_cs_1956
crossref_primary_10_1007_s11277_024_11038_x
crossref_primary_10_1111_1477_8947_12470
crossref_primary_10_1111_1477_8947_12473
crossref_primary_10_1007_s40747_023_01137_w
crossref_primary_10_3390_su15129499
crossref_primary_10_1109_ACCESS_2024_3474301
crossref_primary_10_3390_sym15071438
crossref_primary_10_54691_bcpbm_v36i_3490
crossref_primary_10_1007_s11227_023_05466_y
crossref_primary_10_1371_journal_pone_0295802
crossref_primary_10_1109_ACCESS_2023_3309007
crossref_primary_10_1016_j_isci_2023_107896
crossref_primary_10_1016_j_resourpol_2024_105184
crossref_primary_10_1007_s11277_024_11199_9
crossref_primary_10_1007_s10462_023_10601_5
crossref_primary_10_1007_s11277_024_11018_1
crossref_primary_10_1016_j_chaos_2024_115192
crossref_primary_10_1016_j_heliyon_2024_e25950
crossref_primary_10_1007_s11277_024_11247_4
crossref_primary_10_1007_s11277_024_11240_x
crossref_primary_10_1007_s11356_024_32216_1
crossref_primary_10_1038_s41598_023_37952_x
crossref_primary_10_3390_app13095322
crossref_primary_10_1631_FITEE_2300668
crossref_primary_10_1007_s11356_023_28846_6
crossref_primary_10_2478_jaiscr_2024_0018
crossref_primary_10_1038_s41598_024_62477_2
crossref_primary_10_3390_pr11061689
crossref_primary_10_1093_comnet_cnae001
crossref_primary_10_1016_j_heliyon_2024_e30134
crossref_primary_10_1080_03610918_2024_2362306
crossref_primary_10_1002_for_3080
crossref_primary_10_1016_j_compbiomed_2024_108442
crossref_primary_10_1007_s00521_021_06186_1
crossref_primary_10_1007_s12530_023_09547_4
crossref_primary_10_1007_s11356_023_30520_w
crossref_primary_10_1080_00207721_2024_2367079
crossref_primary_10_1109_ACCESS_2024_3409420
crossref_primary_10_3390_su15076131
crossref_primary_10_1007_s11277_024_11020_7
crossref_primary_10_3390_math10152679
crossref_primary_10_1007_s10668_024_04472_1
crossref_primary_10_1007_s11042_024_19054_6
crossref_primary_10_37394_232018_2022_10_9
crossref_primary_10_7717_peerj_cs_1931
crossref_primary_10_1007_s42235_024_00555_x
crossref_primary_10_1038_s41598_024_71220_w
crossref_primary_10_1371_journal_pone_0299666
crossref_primary_10_1007_s11276_023_03483_6
crossref_primary_10_1007_s11356_023_28590_x
crossref_primary_10_3390_su16083280
crossref_primary_10_1007_s10479_024_05849_1
crossref_primary_10_1007_s10479_024_06076_4
crossref_primary_10_1111_nrm_12411
crossref_primary_10_1016_j_heliyon_2024_e34787
crossref_primary_10_1080_10407790_2024_2338422
crossref_primary_10_1016_j_seta_2023_103287
crossref_primary_10_1016_j_heliyon_2023_e19431
crossref_primary_10_1109_ACCESS_2023_3311027
crossref_primary_10_1016_j_heliyon_2023_e23255
crossref_primary_10_1007_s10723_023_09720_8
crossref_primary_10_1016_j_psep_2023_03_055
crossref_primary_10_1007_s11831_024_10110_w
crossref_primary_10_1016_j_compbiomed_2023_106948
crossref_primary_10_3389_fenrg_2024_1385311
crossref_primary_10_3390_forecast7010001
crossref_primary_10_1016_j_suscom_2023_100899
crossref_primary_10_3390_axioms13020109
crossref_primary_10_3934_math_2024994
crossref_primary_10_1007_s10723_023_09735_1
crossref_primary_10_1016_j_heliyon_2024_e32650
crossref_primary_10_1007_s11071_024_09706_5
crossref_primary_10_1109_ACCESS_2024_3454669
crossref_primary_10_1016_j_compbiomed_2023_107197
crossref_primary_10_32604_cmes_2023_030896
crossref_primary_10_1109_ACCESS_2024_3481034
crossref_primary_10_4018_IJSWIS_326120
crossref_primary_10_1371_journal_pone_0288740
crossref_primary_10_1007_s11846_024_00761_1
crossref_primary_10_1007_s10639_024_12736_6
crossref_primary_10_1016_j_cmpb_2023_107745
crossref_primary_10_1007_s10723_023_09710_w
crossref_primary_10_1002_poi3_365
crossref_primary_10_3934_math_2023866
crossref_primary_10_1177_03611981241262316
crossref_primary_10_3934_math_20231017
crossref_primary_10_1016_j_engappai_2024_109203
crossref_primary_10_1007_s10257_023_00665_9
crossref_primary_10_7717_peerj_cs_2044
crossref_primary_10_1016_j_rinp_2024_107601
crossref_primary_10_1007_s00500_024_09639_6
crossref_primary_10_3390_s24144554
crossref_primary_10_1109_ACCESS_2024_3411717
crossref_primary_10_1109_ACCESS_2023_3298105
crossref_primary_10_2478_amns_2024_3000
crossref_primary_10_1016_j_heliyon_2024_e33965
crossref_primary_10_1111_exsy_13460
crossref_primary_10_2478_amns_2023_2_01310
crossref_primary_10_1007_s00521_024_10214_1
crossref_primary_10_1007_s13132_024_01938_5
crossref_primary_10_3233_JIFS_230048
crossref_primary_10_1111_1477_8947_12560
crossref_primary_10_1111_1477_8947_12442
crossref_primary_10_1007_s00500_023_09079_8
crossref_primary_10_1016_j_rinp_2024_107420
crossref_primary_10_1093_comnet_cnae015
crossref_primary_10_1371_journal_pone_0306639
crossref_primary_10_1007_s11356_023_31554_w
crossref_primary_10_1007_s11356_023_26302_z
crossref_primary_10_1016_j_bspc_2023_105423
crossref_primary_10_1007_s10723_024_09768_0
crossref_primary_10_1155_2022_7826838
crossref_primary_10_1016_j_asej_2024_102807
crossref_primary_10_1016_j_eij_2024_100438
crossref_primary_10_1016_j_neucom_2023_126467
crossref_primary_10_1109_ACCESS_2024_3416391
crossref_primary_10_4236_ajibm_2023_139052
crossref_primary_10_1007_s10472_023_09901_x
crossref_primary_10_1007_s10489_024_05889_x
crossref_primary_10_1007_s40996_023_01121_x
crossref_primary_10_1155_2023_6643772
crossref_primary_10_1016_j_heliyon_2024_e29182
crossref_primary_10_1093_comnet_cnae012
crossref_primary_10_1111_1477_8947_12456
crossref_primary_10_1016_j_heliyon_2024_e38279
crossref_primary_10_1007_s00500_023_09571_1
crossref_primary_10_1016_j_resourpol_2024_105082
crossref_primary_10_3390_electronics12132929
crossref_primary_10_1177_21582440231181388
crossref_primary_10_1007_s10723_024_09750_w
crossref_primary_10_1016_j_compeleceng_2023_108814
crossref_primary_10_3934_math_2024159
crossref_primary_10_1007_s11042_024_20307_7
crossref_primary_10_3390_su151712988
crossref_primary_10_1007_s11042_023_16382_x
crossref_primary_10_1007_s40747_023_01183_4
crossref_primary_10_1371_journal_pone_0305092
crossref_primary_10_1007_s11276_023_03546_8
crossref_primary_10_1515_econ_2022_0086
crossref_primary_10_1016_j_chemosphere_2023_138980
Cites_doi 10.1016/j.ejor.2015.05.050
10.1016/j.cogsys.2018.07.023
10.1016/j.ejor.2018.11.029
10.1016/j.asoc.2018.07.005
10.1016/j.eswa.2016.07.017
10.1016/j.asoc.2016.02.025
10.1371/journal.pone.0117844
10.3390/su8050433
10.1016/j.eswa.2014.08.029
10.1016/j.eswa.2017.10.022
10.1016/j.pacfin.2015.03.002
10.1016/j.ejor.2015.01.033
10.1016/j.dss.2016.06.014
10.1016/j.ejor.2015.07.013
10.1007/s10845-013-0853-8
10.4018/IJIIT.2016010103
10.2991/mse-17.2017.57
10.1155/2015/945359
10.1109/ICSCTI.2015.7489612
10.1109/SIU.2018.8404405
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2020
Springer-Verlag London Ltd., part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2020
– notice: Springer-Verlag London Ltd., part of Springer Nature 2020.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-020-04958-9
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 8235
ExternalDocumentID 10_1007_s00521_020_04958_9
GrantInformation_xml – fundername: National Nature Science Foundation of China (NSFC)
  grantid: No.71673265
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-541e3fc9d0eae31639f2f51138ba5b822dbab0cd2d505339dc38a4587f7cc73b3
IEDL.DBID U2A
ISSN 0941-0643
IngestDate Fri Jul 25 02:36:04 EDT 2025
Wed Oct 01 02:25:59 EDT 2025
Thu Apr 24 23:09:24 EDT 2025
Fri Feb 21 02:48:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Classification data
Credit grading
Radial basis function neural network
Optimal segmentation method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-541e3fc9d0eae31639f2f51138ba5b822dbab0cd2d505339dc38a4587f7cc73b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2543894827
PQPubID 2043988
PageCount 9
ParticipantIDs proquest_journals_2543894827
crossref_primary_10_1007_s00521_020_04958_9
crossref_citationtrail_10_1007_s00521_020_04958_9
springer_journals_10_1007_s00521_020_04958_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210700
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 7
  year: 2021
  text: 20210700
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2021
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Guo, Zhou, Luo, Liu, Xiong (CR5) 2016; 249
CR2
Waemustafa, Sukri (CR4) 2015; 5
Serrano-Cinca, Gutiérrez-Nieto (CR10) 2016; 89
Zhu, Xie, Sun, Wang, Yan (CR18) 2016; 8
Angilella, Mazzù (CR3) 2015; 244
Ala’raj, Abbod (CR12) 2016; 64
Fernandes, Artes (CR1) 2016; 249
Sohn, Kim, Yoon (CR9) 2016; 43
CR14
CR13
Wang, Xu, Zhou (CR11) 2015; 10
CR23
Djeundje, Crook (CR8) 2019; 275
Jiang, Ching, Yiu, Qiu (CR16) 2018; 71
Harris (CR17) 2015; 42
Fu, Zhu (CR19) 2016; 348
Arundina, Omar, Kartiwi (CR20) 2015; 34
Jiang, Wang, Wang, Ding (CR6) 2017; 266
Grace, Williams (CR22) 2016; 12
Mohamad, Zain, Bazin, Udin (CR21) 2015; 26
Xia, Liu, Da, Xie (CR7) 2018; 93
Huang, Liu, Ren (CR15) 2018; 52
Y Xia (4958_CR7) 2018; 93
M Ala’raj (4958_CR12) 2016; 64
Y Guo (4958_CR5) 2016; 249
C Serrano-Cinca (4958_CR10) 2016; 89
GB Fernandes (4958_CR1) 2016; 249
S Angilella (4958_CR3) 2015; 244
VB Djeundje (4958_CR8) 2019; 275
T Harris (4958_CR17) 2015; 42
SY Sohn (4958_CR9) 2016; 43
A Mohamad (4958_CR21) 2015; 26
H Jiang (4958_CR16) 2018; 71
Y Zhu (4958_CR18) 2016; 8
W Waemustafa (4958_CR4) 2015; 5
4958_CR14
C Jiang (4958_CR6) 2017; 266
4958_CR13
Y Fu (4958_CR19) 2016; 348
AM Grace (4958_CR22) 2016; 12
H Wang (4958_CR11) 2015; 10
4958_CR23
4958_CR2
X Huang (4958_CR15) 2018; 52
T Arundina (4958_CR20) 2015; 34
References_xml – volume: 249
  start-page: 417
  issue: 2
  year: 2016
  end-page: 426
  ident: CR5
  article-title: Instance-based credit risk assessment for investment decisions in P2P lending
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2015.05.050
– volume: 52
  start-page: 317
  year: 2018
  end-page: 324
  ident: CR15
  article-title: Enterprise credit risk evaluation based on neural network algorithm
  publication-title: Cogn Syst Res
  doi: 10.1016/j.cogsys.2018.07.023
– volume: 275
  start-page: 319
  issue: 1
  year: 2019
  end-page: 333
  ident: CR8
  article-title: Dynamic survival models with varying coefficients for credit risks
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2018.11.029
– volume: 71
  start-page: 407
  year: 2018
  end-page: 417
  ident: CR16
  article-title: Stationary Mahalanobis kernel SVM for credit risk evaluation
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.07.005
– volume: 64
  start-page: 36
  year: 2016
  end-page: 55
  ident: CR12
  article-title: A new hybrid ensemble credit scoring model based on classifiers consensus system approach
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.07.017
– volume: 43
  start-page: 150
  year: 2016
  end-page: 158
  ident: CR9
  article-title: Technology credit scoring model with fuzzy logistic regression
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2016.02.025
– volume: 10
  start-page: e0117844
  issue: 2
  year: 2015
  ident: CR11
  article-title: Large unbalanced credit scoring using lasso-logistic regression ensemble
  publication-title: PloS One
  doi: 10.1371/journal.pone.0117844
– volume: 348
  start-page: 74
  year: 2016
  end-page: 83
  ident: CR19
  article-title: Network supplier credit evaluation model based on big data
  publication-title: J Central Univ Financ Econ
– ident: CR14
– ident: CR2
– volume: 8
  start-page: 433
  issue: 5
  year: 2016
  ident: CR18
  article-title: Predicting China’s SME credit risk in supply chain financing by logistic regression, artificial neural network and hybrid models
  publication-title: Sustainability
  doi: 10.3390/su8050433
– volume: 5
  start-page: 476
  issue: 2
  year: 2015
  end-page: 481
  ident: CR4
  article-title: Bank specific and macroeconomics dynamic determinants of credit risk in Islamic banks and conventional banks
  publication-title: Int J Econ Financ Issues
– ident: CR13
– volume: 42
  start-page: 741
  issue: 2
  year: 2015
  end-page: 750
  ident: CR17
  article-title: Credit scoring using the clustered support vector machine
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.08.029
– volume: 93
  start-page: 182
  year: 2018
  end-page: 199
  ident: CR7
  article-title: A novel heterogeneous ensemble credit scoring model based on bstacking approach
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.10.022
– volume: 266
  start-page: 1
  issue: 2–3
  year: 2017
  end-page: 19
  ident: CR6
  article-title: Loan default prediction by combining soft information extracted from descriptive text in online peer-to-peer lending
  publication-title: Ann Oper Res
– volume: 34
  start-page: 273
  year: 2015
  end-page: 292
  ident: CR20
  article-title: The predictive accuracy of Sukuk ratings; multinomial logistic and neural network inferences
  publication-title: Pacific-Basin Financ J
  doi: 10.1016/j.pacfin.2015.03.002
– volume: 244
  start-page: 540
  issue: 2
  year: 2015
  end-page: 554
  ident: CR3
  article-title: The financing of innovative SMEs: a multicriteria credit rating model
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2015.01.033
– volume: 89
  start-page: 113
  year: 2016
  end-page: 122
  ident: CR10
  article-title: The use of profit scoring as an alternative to credit scoring systems in peer-to-peer (P2P) lending
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2016.06.014
– ident: CR23
– volume: 249
  start-page: 517
  issue: 2
  year: 2016
  end-page: 524
  ident: CR1
  article-title: Spatial dependence in credit risk and its improvement in credit scoring
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2015.07.013
– volume: 26
  start-page: 1247
  issue: 6
  year: 2015
  end-page: 1252
  ident: CR21
  article-title: A process prediction model based on Cuckoo algorithm for abrasive waterjet machining
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-013-0853-8
– volume: 12
  start-page: 47
  issue: 1
  year: 2016
  end-page: 62
  ident: CR22
  article-title: Comparative analysis of neural network and fuzzy logic techniques in credit risk evaluation
  publication-title: Int J Intell Inf Technol (IJIIT)
  doi: 10.4018/IJIIT.2016010103
– volume: 89
  start-page: 113
  year: 2016
  ident: 4958_CR10
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2016.06.014
– volume: 26
  start-page: 1247
  issue: 6
  year: 2015
  ident: 4958_CR21
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-013-0853-8
– volume: 71
  start-page: 407
  year: 2018
  ident: 4958_CR16
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.07.005
– volume: 64
  start-page: 36
  year: 2016
  ident: 4958_CR12
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.07.017
– volume: 93
  start-page: 182
  year: 2018
  ident: 4958_CR7
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.10.022
– volume: 244
  start-page: 540
  issue: 2
  year: 2015
  ident: 4958_CR3
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2015.01.033
– volume: 275
  start-page: 319
  issue: 1
  year: 2019
  ident: 4958_CR8
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2018.11.029
– volume: 52
  start-page: 317
  year: 2018
  ident: 4958_CR15
  publication-title: Cogn Syst Res
  doi: 10.1016/j.cogsys.2018.07.023
– volume: 249
  start-page: 517
  issue: 2
  year: 2016
  ident: 4958_CR1
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2015.07.013
– volume: 42
  start-page: 741
  issue: 2
  year: 2015
  ident: 4958_CR17
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.08.029
– ident: 4958_CR14
  doi: 10.2991/mse-17.2017.57
– volume: 8
  start-page: 433
  issue: 5
  year: 2016
  ident: 4958_CR18
  publication-title: Sustainability
  doi: 10.3390/su8050433
– volume: 12
  start-page: 47
  issue: 1
  year: 2016
  ident: 4958_CR22
  publication-title: Int J Intell Inf Technol (IJIIT)
  doi: 10.4018/IJIIT.2016010103
– volume: 5
  start-page: 476
  issue: 2
  year: 2015
  ident: 4958_CR4
  publication-title: Int J Econ Financ Issues
– volume: 10
  start-page: e0117844
  issue: 2
  year: 2015
  ident: 4958_CR11
  publication-title: PloS One
  doi: 10.1371/journal.pone.0117844
– volume: 249
  start-page: 417
  issue: 2
  year: 2016
  ident: 4958_CR5
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2015.05.050
– ident: 4958_CR23
  doi: 10.1155/2015/945359
– ident: 4958_CR2
  doi: 10.1109/ICSCTI.2015.7489612
– volume: 266
  start-page: 1
  issue: 2–3
  year: 2017
  ident: 4958_CR6
  publication-title: Ann Oper Res
– ident: 4958_CR13
  doi: 10.1109/SIU.2018.8404405
– volume: 34
  start-page: 273
  year: 2015
  ident: 4958_CR20
  publication-title: Pacific-Basin Financ J
  doi: 10.1016/j.pacfin.2015.03.002
– volume: 348
  start-page: 74
  year: 2016
  ident: 4958_CR19
  publication-title: J Central Univ Financ Econ
– volume: 43
  start-page: 150
  year: 2016
  ident: 4958_CR9
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2016.02.025
SSID ssj0004685
Score 2.6042054
Snippet Credit rating is an important part of bank credit risk management. Since the traditional radial basis function network model is more susceptible to outliers...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8227
SubjectTerms Algorithms
Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Credit ratings
Data Mining and Knowledge Discovery
Image Processing and Computer Vision
Neural networks
Outliers (statistics)
Probability and Statistics in Computer Science
Radial basis function
Risk management
Robustness (mathematics)
S. I : Intelligent Computing Methodologies in Machine learning for IoT Applications
Segmentation
Special Issue on Intelligent Computing Methodologies in Machine learning for IoT Applications
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60Xrz4FqtVcvCmi22yz4NIKxYRLCoK3pa8thba3WrX_-_MNmtVsMfdTQI7SSaTZL7vAzjlui1DG1mvHUXSw_VYeLGfoTOUnMfaD43qEHb4fhDevvh3r8HrCgxqLAylVdY-sXLUptB0Rn5BoO04IdLKq-m7R6pRdLtaS2hIJ61gLiuKsVVY48SM1YC13s3g4ekHUrIS6cQ9DeX7-MLBaCowHZ2Q4ltO6Y5JgG7g91K1iD__XJlWK1F_CzZcCMm68z7fhhWb78BmLc_A3Gzdhcfu4nKaFRl76vUZ0Vdi3Xye_M0KdBgTfJ7Z4cSBkHImx0P88fJtwkY5I0LRUclonOTDPXjp3zxf33pOQcHTOLVKL_A7VmQ6MW0rrcDQK8l4hiGWiJUMFMYGRknV1oabgDC5idEiln4QR1mkdSSU2IdGXuT2ABixAuFuMpZKRL4SIcY1NuQqCWRgSGKzCZ3aWKl29OKkcjFOv4mRKwOnaOC0MnCaNOHsu850Tq6xtHSr7oPUTbRZuhgWTTiv-2Xx-f_WDpe3dgTrnLJXqsTcFjTKj097jOFHqU7cmPoCXxfUhA
  priority: 102
  providerName: ProQuest
Title Application of RBF neural network optimal segmentation algorithm in credit rating
URI https://link.springer.com/article/10.1007/s00521-020-04958-9
https://www.proquest.com/docview/2543894827
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ADMLS
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: 8FG
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH8RuHjx24gi6cGbLhntuo8jGAbRSJRIgqel7TokgWFg_v--jg3UqImnZVnbw2vf1_p-vwdwRZUtXO1py_Y8YaE_ZpbvJGgMBaW-ctxYtgx2-GHg9kfO3ZiPC1DYqqx2L68kc0u9AbuZP5iY-lJTjhhwVNMK1Lih88JTPKLtT2jIvBEn5i2mpsdhBVTm5zW-uqNtjPntWjT3NuEB7BVhImmv9_UQdnR6BPtlCwZSaOQxPLW3F9BkkZBhJySGohLnpusCb7JAozDH95WezAugUUrEbLJYTrPXOZmmxJCGTjNizkI6OYFR2H2-7VtFlwRLofpkFndamiUqiG0tNMPwKkhogmEU86XgEv1_LIW0VUxjbnC3QayYLxzue4mnlMckO4Vqukj1GRDD_IMZoy8k8xzJXIxdtEtlwAWPTRvNOrRKYUWqoBA3nSxm0Yb8OBdwhAKOcgFHQR2uN3Pe1gQaf45ulHsQFcq0igxe3w8MX2kdbsp92X7-fbXz_w2_gF1qKlbyYtwGVLPlu77EkCOTTaj4Ya8JtXbv5b6Lz0538Dhs5ufuA6Qmzug
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JThtBEC2xHMKFQEKEWUIfklMywu7u2Q4IAcEym5UgkLhNehtjCY8BT4T4Ob6NqnEPJkhw4zhL96G6pqp6ut57AN-4aarIxS5oxrEKMB-LIJE5BkPFeWJkZHWLsMMn3ahzLg8vwospeKixMNRWWcfEKlDboaF_5JsE2k5SIq3cvr4JSDWKTldrCQ3lpRXsVkUx5oEdR-7-Drdwo62DX7je3zlv75_tdQKvMhAYdL8yCGXLidyktumUE1iepDnPsQwRiVahxvxptdJNY7kNCbeaWiMSJcMkzmNjYqEFzjsNs1LIFDd_s7v73d-nz5CZlSgo7qGov0gKD9upwHv0RxbvcmqvTEMMO_-nxkm9--KItsp87QWY9yUr2xn72CJMueITfKzlIJiPDp_hz87kMJwNc3a622ZEl4lji3GzORtigBrg9cj1Bh70VDB11UNDl5cD1i8YEZj2S0Z-WfSW4PxdbPkFZoph4ZaBEQsR7l4TpUUstYiwjnIR12moQkuSng1o1cbKjKczJ1WNq-yJiLkycIYGzioDZ2kDfjyNuR6Tebz59lq9Bpn_sEfZxA0b8LNel8nj12dbeXu2DfjQOTs5zo4PukerMMepc6ZqCl6DmfL2n1vH0qfUX71_Mfj73i79CE6XEfk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSIgLO6JQwAduEDW14yzHskRlqwBRqTfLdpxSqU2qNvw_4yxtQYDEMfJyGM_Yz_G8NwidE2ULV3vasj1PWHAeU8t3YtgMBSG-ctxItgx3-KnrdnrOfZ_1l1j8ebZ79SRZcBqMSlOSNSdR3JwT38zfTLgGE5OaGDAI2VW05hihBPDoHmkvMSPzopxwhzH5PQ4taTM_z_H1aFrgzW9PpPnJE26jzRIy4naxxjtoRSe7aKsqx4DL6NxDL-3FYzROY_x6FWIjVwljkyLZG6ewQYzhe6YH45J0lGAxGqTTYfY-xsMEGwHRYYaNXySDfdQLb9-uO1ZZMcFSEEqZxZyWprEKIlsLTQFqBTGJAVJRXwomAQtEUkhbRSRihoMbRIr6wmG-F3tKeVTSA1RL0kQfImxUgOD26AtJPUdSF3CMdokMmGCRKalZR63KWFyVcuKmqsWIz4WQcwNzMDDPDcyDOrqYj5kUYhp_9m5Ua8DLwJpxw933A6NdWkeX1bosmn-f7eh_3c_Q-vNNyB_vug_HaIOYRJY8R7eBatn0Q58AEsnkae5sn-ez0fw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+RBF+neural+network+optimal+segmentation+algorithm+in+credit+rating&rft.jtitle=Neural+computing+%26+applications&rft.au=Li%2C+Xuetao&rft.au=Sun%2C+Yi&rft.date=2021-07-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=33&rft.issue=14&rft.spage=8227&rft.epage=8235&rft_id=info:doi/10.1007%2Fs00521-020-04958-9&rft.externalDocID=10_1007_s00521_020_04958_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon