A Feature Selection Algorithm Based on Equal Interval Division and Minimal-Redundancy–Maximal-Relevance
Minimal-redundancy–maximal-relevance (mRMR) algorithm is a typical feature selection algorithm. To select the feature which has minimal redundancy with the selected features and maximal relevance with the class label, the objective function of mRMR subtracts the average value of mutual information b...
Saved in:
| Published in | Neural processing letters Vol. 51; no. 2; pp. 1237 - 1263 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.04.2020
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1370-4621 1573-773X |
| DOI | 10.1007/s11063-019-10144-3 |
Cover
| Abstract | Minimal-redundancy–maximal-relevance (mRMR) algorithm is a typical feature selection algorithm. To select the feature which has minimal redundancy with the selected features and maximal relevance with the class label, the objective function of mRMR subtracts the average value of mutual information between features from mutual information between features and the class label, and selects the feature with the maximum difference. However, the problem is that the feature with the maximum difference is not always the feature with minimal redundancy maximal relevance. To solve the problem, the objective function of mRMR is first analyzed and a constraint condition that determines whether the objective function can guarantee the effectiveness of the selected features is achieved. Then, for the case where the objective function is not accurate, an idea of equal interval division is proposed and combined with ranking to process the interval of mutual information between features and the class label, and that of the average value of mutual information between features. Finally, a feature selection algorithm based on equal interval division and minimal-redundancy–maximal-relevance (EID–mRMR) is proposed. To validate the performance of EID–mRMR, we compare it with several incremental feature selection algorithms based on mutual information and other feature selection algorithms. Experimental results demonstrate that the EID–mRMR algorithm can achieve better feature selection performance. |
|---|---|
| AbstractList | Minimal-redundancy–maximal-relevance (mRMR) algorithm is a typical feature selection algorithm. To select the feature which has minimal redundancy with the selected features and maximal relevance with the class label, the objective function of mRMR subtracts the average value of mutual information between features from mutual information between features and the class label, and selects the feature with the maximum difference. However, the problem is that the feature with the maximum difference is not always the feature with minimal redundancy maximal relevance. To solve the problem, the objective function of mRMR is first analyzed and a constraint condition that determines whether the objective function can guarantee the effectiveness of the selected features is achieved. Then, for the case where the objective function is not accurate, an idea of equal interval division is proposed and combined with ranking to process the interval of mutual information between features and the class label, and that of the average value of mutual information between features. Finally, a feature selection algorithm based on equal interval division and minimal-redundancy–maximal-relevance (EID–mRMR) is proposed. To validate the performance of EID–mRMR, we compare it with several incremental feature selection algorithms based on mutual information and other feature selection algorithms. Experimental results demonstrate that the EID–mRMR algorithm can achieve better feature selection performance. |
| Author | Guo, Jichang Xiao, Lijun Gu, Xiangyuan Ming, Tao Li, Chongyi |
| Author_xml | – sequence: 1 givenname: Xiangyuan surname: Gu fullname: Gu, Xiangyuan organization: School of Electrical and Information Engineering, Tianjin University – sequence: 2 givenname: Jichang surname: Guo fullname: Guo, Jichang email: jcguo@tju.edu.cn organization: School of Electrical and Information Engineering, Tianjin University – sequence: 3 givenname: Lijun surname: Xiao fullname: Xiao, Lijun organization: School of Electrical and Information Engineering, Tianjin University – sequence: 4 givenname: Tao surname: Ming fullname: Ming, Tao organization: School of Electrical and Information Engineering, Tianjin University – sequence: 5 givenname: Chongyi surname: Li fullname: Li, Chongyi organization: The Department of Computer Science, City University of Hong Kong |
| BookMark | eNp9kMtKAzEUhoNU0Kov4GrAdTSZM53LsmqrBUXwAu5CTE40ZZqxyUzRne_gG_okpk5BcOHqHH7-71z-IRm4xiEhh5wdc8aKk8A5y4EyXlHOeJZR2CK7fFQALQp4HMQeCkazPOU7ZBjCnLGIpWyX2HEyRdl2HpM7rFG1tnHJuH5uvG1fFsmpDKiTKE2WnayTmWvRr2Jzblc2rK3S6eTaOruQNb1F3TktnXr_-vi8lm8bscZV1HCfbBtZBzzY1D3yMJ3cn13Sq5uL2dn4iirgVUtHoIwcsVzmTyqrdKk1mCrnRmNuWJVhloNCKLQpR0VmFBpeygqVrFRuAEuAPXLUz331zbLD0Ip503kXV4q04iVkkEIZXWXvUr4JwaMRyrZy_X3rpa0FZ2IdrOiDFTFY8ROsWC9I_6CvPr7q3_-HoIdCNLtn9L9X_UN9Axzcj20 |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3205618 crossref_primary_10_1007_s10489_020_01936_5 crossref_primary_10_1007_s11517_021_02385_z crossref_primary_10_1007_s11063_020_10307_7 crossref_primary_10_1155_2022_7022168 crossref_primary_10_1007_s10489_021_02412_4 crossref_primary_10_1186_s12911_022_01980_w crossref_primary_10_1007_s11042_023_15821_z crossref_primary_10_1007_s10489_023_05142_x crossref_primary_10_1007_s11063_021_10720_6 crossref_primary_10_3390_ijms242115570 crossref_primary_10_1016_j_jnlssr_2024_08_001 crossref_primary_10_1007_s00500_021_05800_7 crossref_primary_10_1007_s11063_024_11440_3 crossref_primary_10_1007_s10489_022_04398_z |
| Cites_doi | 10.1016/j.knosys.2013.09.019 10.1109/ICIP.2012.6466804 10.1109/TGRS.2014.2324971 10.1016/j.neucom.2015.06.016 10.1016/j.patcog.2012.11.025 10.1109/TKDE.2016.2563436 10.1016/j.eswa.2011.07.048 10.1016/j.patrec.2018.06.005 10.1109/TCYB.2015.2415032 10.1016/j.patcog.2018.02.020 10.1016/j.patcog.2013.04.021 10.1007/s00521-014-1571-7 10.1109/72.298224 10.1109/72.977291 10.1007/s10115-012-0487-8 10.3115/1075527.1075574 10.1007/3-540-57868-4_57 10.1016/j.patcog.2015.02.025 10.1016/j.patcog.2015.11.007 10.1007/s00521-017-2959-y 10.1007/s00521-013-1368-0 10.1016/j.ins.2010.05.037 10.1109/TKDE.2017.2650906 10.1016/j.ins.2015.02.031 10.1016/j.knosys.2012.10.001 10.1016/j.eswa.2014.04.033 10.1145/1656274.1656278 10.1109/TNN.2008.2005601 10.1109/JPROC.2012.2229082 10.1145/2623330.2623611 10.1007/s11063-016-9569-z 10.1016/j.eswa.2015.07.007 10.1109/TPAMI.2005.159 10.1007/s11063-010-9143-z 10.1016/j.eswa.2014.04.019 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Copyright Springer Nature B.V. Apr 2020 |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Copyright Springer Nature B.V. Apr 2020 |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ |
| DOI | 10.1007/s11063-019-10144-3 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection ProQuest One Psychology Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-773X |
| EndPage | 1263 |
| ExternalDocumentID | 10_1007_s11063_019_10144_3 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61771334 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -4Z -5F -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AAOBN AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMOR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACACY ACBXY ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFGXO AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA C24 C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PSYQQ PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 Z8M Z8R Z8U Z8W Z92 ZMTXR ~EX 77I AASML AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFHIU AGQPQ AHPBZ AHWEU AIXLP AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-53cfa506a6bc49d8dd3f961fde6f094e463ce37df8574fcef18a9eca9c6f3e833 |
| IEDL.DBID | BENPR |
| ISSN | 1370-4621 |
| IngestDate | Sat Oct 18 23:13:57 EDT 2025 Wed Oct 01 01:56:24 EDT 2025 Thu Apr 24 23:13:25 EDT 2025 Fri Feb 21 02:36:34 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Minimal-redundancy–maximal-relevance Equal interval division Feature selection Mutual information |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-53cfa506a6bc49d8dd3f961fde6f094e463ce37df8574fcef18a9eca9c6f3e833 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2918343238 |
| PQPubID | 2043838 |
| PageCount | 27 |
| ParticipantIDs | proquest_journals_2918343238 crossref_citationtrail_10_1007_s11063_019_10144_3 crossref_primary_10_1007_s11063_019_10144_3 springer_journals_10_1007_s11063_019_10144_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20200400 2020-04-00 20200401 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 4 year: 2020 text: 20200400 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Neural processing letters |
| PublicationTitleAbbrev | Neural Process Lett |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Jia, Kuo, Crawford (CR12) 2013; 101 Zhang, Chan, Biggio, Yeung, Roli (CR10) 2016; 46 CR18 CR36 Kwak, Choi (CR30) 2002; 13 Bennasar, Hicks, Setchi (CR40) 2015; 42 Sun, Liu, Xu, Chen, Han, Wang (CR39) 2013; 37 Fei, Kraus, Zoubir (CR9) 2015; 53 CR33 Duda, Hart, Stork (CR34) 2001 Wang, Li, Li (CR31) 2015; 307 Fleuret (CR38) 2004; 5 Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (CR28) 2009; 11 Gao, Hu, Zhang (CR45) 2018; 79 Tan, Tsang, Wang (CR1) 2014; 15 Unler, Murat, Chinnam (CR23) 2011; 181 Foithong, Pinngern, Attachoo (CR32) 2012; 39 Estevez, Tesmer, Perez, Zurada (CR15) 2009; 20 Wang, Wei, Yang, Wang (CR44) 2017; 29 Wang, Wu, Kong, Li, Zhang (CR5) 2013; 46 CR8 CR29 Tang, Kay, He (CR7) 2016; 28 CR27 Han, Ren (CR21) 2015; 168 CR26 Vinh, Zhou, Chan, Bailey (CR43) 2016; 53 CR25 Brown, Pocock, Zhao, Lujan (CR16) 2012; 13 Veronica, Noelia, Amparo (CR11) 2013; 34 Peng, Long, Ding (CR19) 2005; 27 Zhao, Wang, Yin, Li, Wang (CR14) 2016; 27 Zeng, Zhang, Zhang, Yin (CR41) 2015; 48 CR42 Hoque, Bhattacharyya, Kalita (CR20) 2014; 41 Tiwari, Singh, Kaur (CR4) 2017; 28 Lin, Chen, Wu (CR13) 2014; 41 Herman, Zhang, Wang, Ye, Chen (CR37) 2013; 46 Zhang, Ding, Li (CR22) 2008; 9 Rodriguez-Lujan, Huerta, Elkan, Cruz (CR35) 2010; 11 Cataron, Andonie (CR2) 2010; 32 Borja, Veronica, Amparo (CR3) 2017; 46 Battiti (CR24) 1994; 5 Shang, Li, Feng, Jiang, Fan (CR6) 2013; 54 Vergara, Estevez (CR17) 2014; 24 Gao, Hu, Zhang, He (CR46) 2018; 112 YH Zhao (10144_CR14) 2016; 27 X Sun (10144_CR39) 2013; 37 HC Peng (10144_CR19) 2005; 27 J Wang (10144_CR44) 2017; 29 N Hoque (10144_CR20) 2014; 41 A Unler (10144_CR23) 2011; 181 RO Duda (10144_CR34) 2001 10144_CR25 B Tang (10144_CR7) 2016; 28 N Kwak (10144_CR30) 2002; 13 G Brown (10144_CR16) 2012; 13 M Bennasar (10144_CR40) 2015; 42 S Tiwari (10144_CR4) 2017; 28 WF Gao (10144_CR46) 2018; 112 MK Tan (10144_CR1) 2014; 15 10144_CR42 SP Borja (10144_CR3) 2017; 46 R Battiti (10144_CR24) 1994; 5 ZL Zeng (10144_CR41) 2015; 48 JR Vergara (10144_CR17) 2014; 24 XP Jia (10144_CR12) 2013; 101 CX Shang (10144_CR6) 2013; 54 10144_CR18 Y Zhang (10144_CR22) 2008; 9 S Foithong (10144_CR32) 2012; 39 A Cataron (10144_CR2) 2010; 32 M Hall (10144_CR28) 2009; 11 JZ Wang (10144_CR5) 2013; 46 T Fei (10144_CR9) 2015; 53 ZC Wang (10144_CR31) 2015; 307 M Han (10144_CR21) 2015; 168 10144_CR36 10144_CR33 CH Lin (10144_CR13) 2014; 41 NX Vinh (10144_CR43) 2016; 53 10144_CR29 WF Gao (10144_CR45) 2018; 79 F Zhang (10144_CR10) 2016; 46 F Fleuret (10144_CR38) 2004; 5 PA Estevez (10144_CR15) 2009; 20 10144_CR27 G Herman (10144_CR37) 2013; 46 10144_CR26 BC Veronica (10144_CR11) 2013; 34 10144_CR8 I Rodriguez-Lujan (10144_CR35) 2010; 11 |
| References_xml | – volume: 181 start-page: 4625 issue: 20 year: 2011 end-page: 4641 ident: CR23 article-title: m PSO: a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification publication-title: Inf Sci – ident: CR18 – volume: 15 start-page: 1371 year: 2014 end-page: 1429 ident: CR1 article-title: Towards ultrahigh dimensional feature selection for big data publication-title: J Mach Learn Res – volume: 34 start-page: 483 issue: 3 year: 2013 end-page: 519 ident: CR11 article-title: A review of feature selection methods on synthetic data publication-title: Knowl Inf Syst – volume: 46 start-page: 1616 issue: 6 year: 2013 end-page: 1627 ident: CR5 article-title: Maximum weight and minimum redundancy: a novel framework for feature subset selection publication-title: Pattern Recognit – volume: 5 start-page: 537 issue: 4 year: 1994 end-page: 550 ident: CR24 article-title: Using mutual information for selecting features in supervised neural net learning publication-title: IEEE Trans Neural Netw – volume: 11 start-page: 1491 year: 2010 end-page: 1516 ident: CR35 article-title: Quadratic programming feature selection publication-title: J Mach Learn Res – volume: 79 start-page: 328 year: 2018 end-page: 339 ident: CR45 article-title: Class-specific mutual information variation for feature selection publication-title: Pattern Recognit – year: 2001 ident: CR34 publication-title: Pattern classification – volume: 24 start-page: 175 issue: 1 year: 2014 end-page: 186 ident: CR17 article-title: A review of feature selection methods based on mutual information publication-title: Neural Comput Appl – ident: CR33 – volume: 46 start-page: 1 year: 2017 end-page: 24 ident: CR3 article-title: Testing different ensemble configurations for feature selection publication-title: Neural Process Lett – volume: 13 start-page: 27 year: 2012 end-page: 66 ident: CR16 article-title: Conditional likelihood maximisation: a unifying framework for information theoretic feature selection publication-title: J Mach Learn Res – volume: 27 start-page: 155 issue: 1 year: 2016 end-page: 166 ident: CR14 article-title: Improving ELM-based microarray data classification by diversified sequence features selection publication-title: Neural Comput Appl – volume: 307 start-page: 73 year: 2015 end-page: 88 ident: CR31 article-title: A multi-objective evolutionary algorithm for feature selection based on mutual information with a new redundancy measure publication-title: Inf Sci – volume: 11 start-page: 10 issue: 1 year: 2009 end-page: 18 ident: CR28 article-title: The weka data mining software: an update publication-title: ACM SIGKDD Explor Newsl – volume: 37 start-page: 541 year: 2013 end-page: 549 ident: CR39 article-title: Feature selection using dynamic weights for classification publication-title: Knowl-Based Syst – ident: CR29 – volume: 42 start-page: 8520 issue: 22 year: 2015 end-page: 8532 ident: CR40 article-title: Feature selection using joint mutual information maximisation publication-title: Expert Syst Appl – volume: 13 start-page: 143 issue: 1 year: 2002 end-page: 159 ident: CR30 article-title: Input feature selection for classification problems publication-title: IEEE Trans Neural Netw – volume: 5 start-page: 1531 year: 2004 end-page: 1555 ident: CR38 article-title: Fast binary feature selection with conditional mutual information publication-title: J Mach Learn Res – ident: CR8 – volume: 112 start-page: 70 year: 2018 end-page: 74 ident: CR46 article-title: Feature selection considering the composition of feature relevancy publication-title: Pattern Recognit Lett – volume: 28 start-page: 2915 issue: 10 year: 2017 end-page: 2930 ident: CR4 article-title: An approach for feature selection using local searching and global optimization techniques publication-title: Neural Comput Appl – ident: CR25 – volume: 9 start-page: 1 issue: 2 year: 2008 end-page: 10 ident: CR22 article-title: Gene selection algorithm by combining reliefF and mRMR publication-title: BMC Genom – ident: CR27 – ident: CR42 – volume: 41 start-page: 6611 issue: 15 year: 2014 end-page: 6621 ident: CR13 article-title: Study of image retrieval and classification based on adaptive features using genetic algorithm feature selection publication-title: Expert Syst Appl – volume: 53 start-page: 46 year: 2016 end-page: 58 ident: CR43 article-title: Can high-order dependencies improve mutual information based feature selection publication-title: Pattern Recognit – volume: 168 start-page: 47 year: 2015 end-page: 54 ident: CR21 article-title: Global mutual information-based feature selection approach using single-objective and multi-objective optimization publication-title: Neurocomputing – volume: 39 start-page: 574 issue: 1 year: 2012 end-page: 584 ident: CR32 article-title: Feature subset selection wrapper based on mutual information and rough sets publication-title: Expert Syst Appl – volume: 28 start-page: 2508 issue: 9 year: 2016 end-page: 2521 ident: CR7 article-title: Toward optimal feature selection in naive Bayes for text categorization publication-title: IEEE Trans Knowl Data Eng – volume: 29 start-page: 828 issue: 4 year: 2017 end-page: 841 ident: CR44 article-title: Feature selection by maximizing independent classification information publication-title: IEEE Trans Knowl Data Eng – volume: 27 start-page: 1226 issue: 8 year: 2005 end-page: 1238 ident: CR19 article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance and min-redundancy publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 54 start-page: 298 year: 2013 end-page: 309 ident: CR6 article-title: Feature selection via maximizing global information gain for text classification publication-title: Knowl-Based Syst – volume: 20 start-page: 189 issue: 2 year: 2009 end-page: 201 ident: CR15 article-title: Normalized mutual information feature selection publication-title: IEEE Trans Neural Netw – volume: 41 start-page: 6371 issue: 14 year: 2014 end-page: 6385 ident: CR20 article-title: MIFS-ND: a mutual information-based feature selection method publication-title: Expert Syst Appl – volume: 46 start-page: 766 issue: 3 year: 2016 end-page: 777 ident: CR10 article-title: Adversarial feature selection against evasion attacks publication-title: IEEE Trans Cybern – volume: 53 start-page: 505 issue: 1 year: 2015 end-page: 518 ident: CR9 article-title: Contributions to automatic target recognition systems for underwater mine classification publication-title: IEEE Trans Geosci Remote Sens – volume: 101 start-page: 676 issue: 3 year: 2013 end-page: 697 ident: CR12 article-title: Feature mining for hyperspectral image classification publication-title: Proc IEEE – volume: 46 start-page: 3315 issue: 12 year: 2013 end-page: 3327 ident: CR37 article-title: Mutual information-based method for selecting informative feature sets publication-title: Pattern Recognit – ident: CR36 – volume: 48 start-page: 2656 issue: 8 year: 2015 end-page: 2666 ident: CR41 article-title: A novel feature selection method considering feature interaction publication-title: Pattern Recognit – volume: 32 start-page: 59 issue: 1 year: 2010 end-page: 73 ident: CR2 article-title: Energy supervised relevance neural gas for feature ranking publication-title: Neural Process Lett – ident: CR26 – volume: 54 start-page: 298 year: 2013 ident: 10144_CR6 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2013.09.019 – ident: 10144_CR8 doi: 10.1109/ICIP.2012.6466804 – volume: 53 start-page: 505 issue: 1 year: 2015 ident: 10144_CR9 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2014.2324971 – volume: 168 start-page: 47 year: 2015 ident: 10144_CR21 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.016 – volume: 46 start-page: 1616 issue: 6 year: 2013 ident: 10144_CR5 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2012.11.025 – volume: 11 start-page: 1491 year: 2010 ident: 10144_CR35 publication-title: J Mach Learn Res – volume: 15 start-page: 1371 year: 2014 ident: 10144_CR1 publication-title: J Mach Learn Res – volume: 28 start-page: 2508 issue: 9 year: 2016 ident: 10144_CR7 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2016.2563436 – volume: 39 start-page: 574 issue: 1 year: 2012 ident: 10144_CR32 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.07.048 – volume: 112 start-page: 70 year: 2018 ident: 10144_CR46 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2018.06.005 – volume: 46 start-page: 766 issue: 3 year: 2016 ident: 10144_CR10 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2015.2415032 – volume: 5 start-page: 1531 year: 2004 ident: 10144_CR38 publication-title: J Mach Learn Res – volume: 79 start-page: 328 year: 2018 ident: 10144_CR45 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2018.02.020 – volume: 46 start-page: 3315 issue: 12 year: 2013 ident: 10144_CR37 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2013.04.021 – volume: 27 start-page: 155 issue: 1 year: 2016 ident: 10144_CR14 publication-title: Neural Comput Appl doi: 10.1007/s00521-014-1571-7 – volume-title: Pattern classification year: 2001 ident: 10144_CR34 – volume: 5 start-page: 537 issue: 4 year: 1994 ident: 10144_CR24 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.298224 – volume: 13 start-page: 143 issue: 1 year: 2002 ident: 10144_CR30 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.977291 – volume: 34 start-page: 483 issue: 3 year: 2013 ident: 10144_CR11 publication-title: Knowl Inf Syst doi: 10.1007/s10115-012-0487-8 – ident: 10144_CR18 doi: 10.3115/1075527.1075574 – ident: 10144_CR29 – ident: 10144_CR42 – ident: 10144_CR33 doi: 10.1007/3-540-57868-4_57 – volume: 48 start-page: 2656 issue: 8 year: 2015 ident: 10144_CR41 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2015.02.025 – ident: 10144_CR27 – volume: 53 start-page: 46 year: 2016 ident: 10144_CR43 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2015.11.007 – ident: 10144_CR25 – volume: 28 start-page: 2915 issue: 10 year: 2017 ident: 10144_CR4 publication-title: Neural Comput Appl doi: 10.1007/s00521-017-2959-y – volume: 24 start-page: 175 issue: 1 year: 2014 ident: 10144_CR17 publication-title: Neural Comput Appl doi: 10.1007/s00521-013-1368-0 – volume: 181 start-page: 4625 issue: 20 year: 2011 ident: 10144_CR23 publication-title: Inf Sci doi: 10.1016/j.ins.2010.05.037 – volume: 29 start-page: 828 issue: 4 year: 2017 ident: 10144_CR44 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2017.2650906 – volume: 307 start-page: 73 year: 2015 ident: 10144_CR31 publication-title: Inf Sci doi: 10.1016/j.ins.2015.02.031 – volume: 37 start-page: 541 year: 2013 ident: 10144_CR39 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2012.10.001 – volume: 41 start-page: 6611 issue: 15 year: 2014 ident: 10144_CR13 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.04.033 – volume: 13 start-page: 27 year: 2012 ident: 10144_CR16 publication-title: J Mach Learn Res – volume: 11 start-page: 10 issue: 1 year: 2009 ident: 10144_CR28 publication-title: ACM SIGKDD Explor Newsl doi: 10.1145/1656274.1656278 – volume: 20 start-page: 189 issue: 2 year: 2009 ident: 10144_CR15 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2008.2005601 – volume: 101 start-page: 676 issue: 3 year: 2013 ident: 10144_CR12 publication-title: Proc IEEE doi: 10.1109/JPROC.2012.2229082 – ident: 10144_CR36 doi: 10.1145/2623330.2623611 – volume: 46 start-page: 1 year: 2017 ident: 10144_CR3 publication-title: Neural Process Lett doi: 10.1007/s11063-016-9569-z – volume: 42 start-page: 8520 issue: 22 year: 2015 ident: 10144_CR40 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.07.007 – volume: 27 start-page: 1226 issue: 8 year: 2005 ident: 10144_CR19 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2005.159 – ident: 10144_CR26 – volume: 32 start-page: 59 issue: 1 year: 2010 ident: 10144_CR2 publication-title: Neural Process Lett doi: 10.1007/s11063-010-9143-z – volume: 41 start-page: 6371 issue: 14 year: 2014 ident: 10144_CR20 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.04.019 – volume: 9 start-page: 1 issue: 2 year: 2008 ident: 10144_CR22 publication-title: BMC Genom |
| SSID | ssj0010020 |
| Score | 2.31232 |
| Snippet | Minimal-redundancy–maximal-relevance (mRMR) algorithm is a typical feature selection algorithm. To select the feature which has minimal redundancy with the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1237 |
| SubjectTerms | Algorithms Artificial Intelligence Codes Complex Systems Computational Intelligence Computer Science Feature selection Labels Lattice theory Optimization algorithms Random variables Redundancy |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLCy8EYWCPLCBpSZ2nHgM0KpCKgNQqVvk-AGV2hT1ITHyH_iH_BLObtIKBEiMcRwPdz7fd_F9dwidqxhgZ8QkMSzOCdNCk0QzTjTE13moLMRjjo3cveOdHrvtR_2SFDatst2rK0l_Uq_IbhC9uNwfQVx_WUboOtqIXDkv2MW9MF3eHTgE5MOsuEkYD4OSKvPzGl_d0QpjfrsW9d6mvYO2SpiI04Ved9GaKfbQdtWCAZcWuY8GKXYgbj4x-MF3tAEx43T4NIaY_3mEr8BHaQxDLUeexP73H2wtfDNYcMqxLDTuDorBSA7JvXGMMnfafry9d-VrOTg0PkvgAPXarcfrDim7JxAFZjUjEVVWRk0uea6Y0InW1AoeWG24hZjOME6VobG2SRQzq4wNEimMkkJxS01C6SGqFePCHCGcg_akpTQIBDgzquE5FwZMN4-1K1lYR0ElxEyVpcVdh4thtiqK7ASfgeAzL_iM1tHF8puXRWGNP2c3Kt1kpZFNs1DAecQogI46uqz0tXr9-2rH_5t-gjZDF2X7fJ0Gqs0mc3MKUGSWn_md9wnybdVf priority: 102 providerName: Springer Nature |
| Title | A Feature Selection Algorithm Based on Equal Interval Division and Minimal-Redundancy–Maximal-Relevance |
| URI | https://link.springer.com/article/10.1007/s11063-019-10144-3 https://www.proquest.com/docview/2918343238 |
| Volume | 51 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-773X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010020 issn: 1370-4621 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-773X dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0010020 issn: 1370-4621 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1573-773X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010020 issn: 1370-4621 databaseCode: AAJSJ dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-773X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010020 issn: 1370-4621 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-773X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010020 issn: 1370-4621 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB61uxcuvBELZeUDN7BoYseJDwilsNsKtCtUWKmcIsePstI2LWUrceQ_8A_5Jcx4na5Aosc4jqXMwzNjz8wH8NyW6HYW0nAvy5ZLpx2vnFTcYXzd5jZgPEbVyLO5OlrI9yfFyQ7M-1oYSqvs98S4UbtzS2fkr3KNwicFWpg3F984oUbR7WoPoWEStIJ7HVuM7cIwp85YAxgeTOYfj6_vFcg7iiFYuc-lyrNURrMppsPoiHKLNCf8WsnF36Zq63_-c2UaLdH0LtxOLiSrNzy_Bzu-uw93engGlrT1ASxrRg7e1aVnnyLaDbKA1atT_Kv11zN2gPbLMRyaUGEli0eDKHbs3XJTb85M59hs2S3PzIofe6o2o534989fM_MjDa58zCB4CIvp5PPbI56QFbhFlVvzQthgin1lVGuldpVzImiVBedVwHjPSyWsF6ULVVHKYH3IKqO9NdqqIHwlxCMYdOedfwysRc6aIESWaTR0wuFzqz2qdVs6amc4gqwnYmNT23FCv1g124bJRPgGCd9EwjdiBC-uv7nYNN24cfZez5smKeD3ZisuI3jZ82v7-v-rPbl5tadwK6eIO-bu7MFgfXnln6Fbsm7HsFtND8cwrA-_fJiMk-Th6CKv_wCGO-J2 |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4QOOjFt3EVtQ960o7MdE_P9IGYRZYswm4MQsJt7OkHbrIMCEvUm__B_-OP8ZdY1dvDRhO5cZyex6Hqm6r6uusB8MKWGHYW0nAvy4ZLpx2vnFTcIb9uchuQj1E18mishgfy_WFxuAS_uloYSqvsbGI01O7E0h75m1wj-KRAD_P29AunqVF0utqN0DBptIJbjy3GUmHHjv_-FSnc-fr2Jur7ZZ5vDfbfDXmaMsAtwm_GC2GDKdaUUY2V2lXOiaBVFpxXAbmPl0pYL0oXqqKUwfqQVUZ7a7RVQfiKNkTRBaxIITWSv5WNwfjD3uU5BkVjkfKVa1yqPEtlO_PiPWRjlMukOc3LlVz87RoX8e4_R7TR823dgVspZGX9OcbuwpJv78HtbhwES9bhPkz6jALKizPPPsbpOqhy1p8eoRRnn4_ZBvpLx3BpQIWcLG5FIszZ5mRe385M69ho0k6OzZTveapuI8v_-8fPkfmWFqc-Ziw8gINrkfFDWG5PWv8IWINIMkGILNPoWIXD60Z7NCNN6ah9Yg-yToi1TW3OadrGtF40aCbB1yj4Ogq-Fj14dfnO6bzJx5VPr3a6qdMPf14v4NmD152-Frf__7XHV3_tOdwY7o92693t8c4TuJkT2495Q6uwPDu78E8xJJo1zxLuGHy6bqj_AaVLHnA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYJMSFHVFWH7iBVRI7TnwstBVbKwRU6i1yvEClEhAUiSP_wB_yJYzdpAUESBzjOD7MeDxv4nkzCO2qGGBnxCQxLM4I00KTRDNONMTXWagsxGOOjdxq8-MOO-1G3U8sfp_tXl5JDjkNrkpTPqg-aFsdE98gknF5QIK4XrOM0Ek0zVyhBNjRnbA2ukdwaMiHXPEBYTwMCtrMz2t8dU1jvPntitR7nuYCmisgI64NdbyIJky-hObLdgy4sM5l1KthB-ieHw2-8t1tQOS41r-5h_j_9g4fgr_SGIYajkiJ_a9A2Ga43hvyy7HMNW718t6d7JNL49hl7uR9f31ryZdisG98xsAK6jQb10fHpOikQBSY2IBEVFkZHXDJM8WETrSmVvDAasMtxHeGcaoMjbVNophZZWyQSGGUFIpbahJKV9FUfp-bNYQz0KS0lAaBAMdGNTxnwoAZZ7F25QsrKCiFmKqizLjrdtFPxwWSneBTEHzqBZ_SCtobffMwLLLx5-zNUjdpYXBPaSjgbGIUAEgF7Zf6Gr_-fbX1_03fQTMX9WZ6ftI-20CzoQu-fRrPJpoaPD6bLUAog2zbb8IPtyLchw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Feature+Selection+Algorithm+Based+on+Equal+Interval+Division+and+Minimal-Redundancy%E2%80%93Maximal-Relevance&rft.jtitle=Neural+processing+letters&rft.date=2020-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1370-4621&rft.eissn=1573-773X&rft.volume=51&rft.issue=2&rft.spage=1237&rft.epage=1263&rft_id=info:doi/10.1007%2Fs11063-019-10144-3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1370-4621&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1370-4621&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1370-4621&client=summon |