A Feature Selection Algorithm Based on Equal Interval Division and Minimal-Redundancy–Maximal-Relevance

Minimal-redundancy–maximal-relevance (mRMR) algorithm is a typical feature selection algorithm. To select the feature which has minimal redundancy with the selected features and maximal relevance with the class label, the objective function of mRMR subtracts the average value of mutual information b...

Full description

Saved in:
Bibliographic Details
Published inNeural processing letters Vol. 51; no. 2; pp. 1237 - 1263
Main Authors Gu, Xiangyuan, Guo, Jichang, Xiao, Lijun, Ming, Tao, Li, Chongyi
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1370-4621
1573-773X
DOI10.1007/s11063-019-10144-3

Cover

Abstract Minimal-redundancy–maximal-relevance (mRMR) algorithm is a typical feature selection algorithm. To select the feature which has minimal redundancy with the selected features and maximal relevance with the class label, the objective function of mRMR subtracts the average value of mutual information between features from mutual information between features and the class label, and selects the feature with the maximum difference. However, the problem is that the feature with the maximum difference is not always the feature with minimal redundancy maximal relevance. To solve the problem, the objective function of mRMR is first analyzed and a constraint condition that determines whether the objective function can guarantee the effectiveness of the selected features is achieved. Then, for the case where the objective function is not accurate, an idea of equal interval division is proposed and combined with ranking to process the interval of mutual information between features and the class label, and that of the average value of mutual information between features. Finally, a feature selection algorithm based on equal interval division and minimal-redundancy–maximal-relevance (EID–mRMR) is proposed. To validate the performance of EID–mRMR, we compare it with several incremental feature selection algorithms based on mutual information and other feature selection algorithms. Experimental results demonstrate that the EID–mRMR algorithm can achieve better feature selection performance.
AbstractList Minimal-redundancy–maximal-relevance (mRMR) algorithm is a typical feature selection algorithm. To select the feature which has minimal redundancy with the selected features and maximal relevance with the class label, the objective function of mRMR subtracts the average value of mutual information between features from mutual information between features and the class label, and selects the feature with the maximum difference. However, the problem is that the feature with the maximum difference is not always the feature with minimal redundancy maximal relevance. To solve the problem, the objective function of mRMR is first analyzed and a constraint condition that determines whether the objective function can guarantee the effectiveness of the selected features is achieved. Then, for the case where the objective function is not accurate, an idea of equal interval division is proposed and combined with ranking to process the interval of mutual information between features and the class label, and that of the average value of mutual information between features. Finally, a feature selection algorithm based on equal interval division and minimal-redundancy–maximal-relevance (EID–mRMR) is proposed. To validate the performance of EID–mRMR, we compare it with several incremental feature selection algorithms based on mutual information and other feature selection algorithms. Experimental results demonstrate that the EID–mRMR algorithm can achieve better feature selection performance.
Author Guo, Jichang
Xiao, Lijun
Gu, Xiangyuan
Ming, Tao
Li, Chongyi
Author_xml – sequence: 1
  givenname: Xiangyuan
  surname: Gu
  fullname: Gu, Xiangyuan
  organization: School of Electrical and Information Engineering, Tianjin University
– sequence: 2
  givenname: Jichang
  surname: Guo
  fullname: Guo, Jichang
  email: jcguo@tju.edu.cn
  organization: School of Electrical and Information Engineering, Tianjin University
– sequence: 3
  givenname: Lijun
  surname: Xiao
  fullname: Xiao, Lijun
  organization: School of Electrical and Information Engineering, Tianjin University
– sequence: 4
  givenname: Tao
  surname: Ming
  fullname: Ming, Tao
  organization: School of Electrical and Information Engineering, Tianjin University
– sequence: 5
  givenname: Chongyi
  surname: Li
  fullname: Li, Chongyi
  organization: The Department of Computer Science, City University of Hong Kong
BookMark eNp9kMtKAzEUhoNU0Kov4GrAdTSZM53LsmqrBUXwAu5CTE40ZZqxyUzRne_gG_okpk5BcOHqHH7-71z-IRm4xiEhh5wdc8aKk8A5y4EyXlHOeJZR2CK7fFQALQp4HMQeCkazPOU7ZBjCnLGIpWyX2HEyRdl2HpM7rFG1tnHJuH5uvG1fFsmpDKiTKE2WnayTmWvRr2Jzblc2rK3S6eTaOruQNb1F3TktnXr_-vi8lm8bscZV1HCfbBtZBzzY1D3yMJ3cn13Sq5uL2dn4iirgVUtHoIwcsVzmTyqrdKk1mCrnRmNuWJVhloNCKLQpR0VmFBpeygqVrFRuAEuAPXLUz331zbLD0Ip503kXV4q04iVkkEIZXWXvUr4JwaMRyrZy_X3rpa0FZ2IdrOiDFTFY8ROsWC9I_6CvPr7q3_-HoIdCNLtn9L9X_UN9Axzcj20
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3205618
crossref_primary_10_1007_s10489_020_01936_5
crossref_primary_10_1007_s11517_021_02385_z
crossref_primary_10_1007_s11063_020_10307_7
crossref_primary_10_1155_2022_7022168
crossref_primary_10_1007_s10489_021_02412_4
crossref_primary_10_1186_s12911_022_01980_w
crossref_primary_10_1007_s11042_023_15821_z
crossref_primary_10_1007_s10489_023_05142_x
crossref_primary_10_1007_s11063_021_10720_6
crossref_primary_10_3390_ijms242115570
crossref_primary_10_1016_j_jnlssr_2024_08_001
crossref_primary_10_1007_s00500_021_05800_7
crossref_primary_10_1007_s11063_024_11440_3
crossref_primary_10_1007_s10489_022_04398_z
Cites_doi 10.1016/j.knosys.2013.09.019
10.1109/ICIP.2012.6466804
10.1109/TGRS.2014.2324971
10.1016/j.neucom.2015.06.016
10.1016/j.patcog.2012.11.025
10.1109/TKDE.2016.2563436
10.1016/j.eswa.2011.07.048
10.1016/j.patrec.2018.06.005
10.1109/TCYB.2015.2415032
10.1016/j.patcog.2018.02.020
10.1016/j.patcog.2013.04.021
10.1007/s00521-014-1571-7
10.1109/72.298224
10.1109/72.977291
10.1007/s10115-012-0487-8
10.3115/1075527.1075574
10.1007/3-540-57868-4_57
10.1016/j.patcog.2015.02.025
10.1016/j.patcog.2015.11.007
10.1007/s00521-017-2959-y
10.1007/s00521-013-1368-0
10.1016/j.ins.2010.05.037
10.1109/TKDE.2017.2650906
10.1016/j.ins.2015.02.031
10.1016/j.knosys.2012.10.001
10.1016/j.eswa.2014.04.033
10.1145/1656274.1656278
10.1109/TNN.2008.2005601
10.1109/JPROC.2012.2229082
10.1145/2623330.2623611
10.1007/s11063-016-9569-z
10.1016/j.eswa.2015.07.007
10.1109/TPAMI.2005.159
10.1007/s11063-010-9143-z
10.1016/j.eswa.2014.04.019
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Copyright Springer Nature B.V. Apr 2020
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Copyright Springer Nature B.V. Apr 2020
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
DOI 10.1007/s11063-019-10144-3
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-773X
EndPage 1263
ExternalDocumentID 10_1007_s11063_019_10144_3
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61771334
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -4Z
-5F
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AAOBN
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PSYQQ
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z8M
Z8R
Z8U
Z8W
Z92
ZMTXR
~EX
77I
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-53cfa506a6bc49d8dd3f961fde6f094e463ce37df8574fcef18a9eca9c6f3e833
IEDL.DBID BENPR
ISSN 1370-4621
IngestDate Sat Oct 18 23:13:57 EDT 2025
Wed Oct 01 01:56:24 EDT 2025
Thu Apr 24 23:13:25 EDT 2025
Fri Feb 21 02:36:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Minimal-redundancy–maximal-relevance
Equal interval division
Feature selection
Mutual information
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-53cfa506a6bc49d8dd3f961fde6f094e463ce37df8574fcef18a9eca9c6f3e833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918343238
PQPubID 2043838
PageCount 27
ParticipantIDs proquest_journals_2918343238
crossref_citationtrail_10_1007_s11063_019_10144_3
crossref_primary_10_1007_s11063_019_10144_3
springer_journals_10_1007_s11063_019_10144_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200400
2020-04-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 4
  year: 2020
  text: 20200400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Neural processing letters
PublicationTitleAbbrev Neural Process Lett
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Jia, Kuo, Crawford (CR12) 2013; 101
Zhang, Chan, Biggio, Yeung, Roli (CR10) 2016; 46
CR18
CR36
Kwak, Choi (CR30) 2002; 13
Bennasar, Hicks, Setchi (CR40) 2015; 42
Sun, Liu, Xu, Chen, Han, Wang (CR39) 2013; 37
Fei, Kraus, Zoubir (CR9) 2015; 53
CR33
Duda, Hart, Stork (CR34) 2001
Wang, Li, Li (CR31) 2015; 307
Fleuret (CR38) 2004; 5
Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (CR28) 2009; 11
Gao, Hu, Zhang (CR45) 2018; 79
Tan, Tsang, Wang (CR1) 2014; 15
Unler, Murat, Chinnam (CR23) 2011; 181
Foithong, Pinngern, Attachoo (CR32) 2012; 39
Estevez, Tesmer, Perez, Zurada (CR15) 2009; 20
Wang, Wei, Yang, Wang (CR44) 2017; 29
Wang, Wu, Kong, Li, Zhang (CR5) 2013; 46
CR8
CR29
Tang, Kay, He (CR7) 2016; 28
CR27
Han, Ren (CR21) 2015; 168
CR26
Vinh, Zhou, Chan, Bailey (CR43) 2016; 53
CR25
Brown, Pocock, Zhao, Lujan (CR16) 2012; 13
Veronica, Noelia, Amparo (CR11) 2013; 34
Peng, Long, Ding (CR19) 2005; 27
Zhao, Wang, Yin, Li, Wang (CR14) 2016; 27
Zeng, Zhang, Zhang, Yin (CR41) 2015; 48
CR42
Hoque, Bhattacharyya, Kalita (CR20) 2014; 41
Tiwari, Singh, Kaur (CR4) 2017; 28
Lin, Chen, Wu (CR13) 2014; 41
Herman, Zhang, Wang, Ye, Chen (CR37) 2013; 46
Zhang, Ding, Li (CR22) 2008; 9
Rodriguez-Lujan, Huerta, Elkan, Cruz (CR35) 2010; 11
Cataron, Andonie (CR2) 2010; 32
Borja, Veronica, Amparo (CR3) 2017; 46
Battiti (CR24) 1994; 5
Shang, Li, Feng, Jiang, Fan (CR6) 2013; 54
Vergara, Estevez (CR17) 2014; 24
Gao, Hu, Zhang, He (CR46) 2018; 112
YH Zhao (10144_CR14) 2016; 27
X Sun (10144_CR39) 2013; 37
HC Peng (10144_CR19) 2005; 27
J Wang (10144_CR44) 2017; 29
N Hoque (10144_CR20) 2014; 41
A Unler (10144_CR23) 2011; 181
RO Duda (10144_CR34) 2001
10144_CR25
B Tang (10144_CR7) 2016; 28
N Kwak (10144_CR30) 2002; 13
G Brown (10144_CR16) 2012; 13
M Bennasar (10144_CR40) 2015; 42
S Tiwari (10144_CR4) 2017; 28
WF Gao (10144_CR46) 2018; 112
MK Tan (10144_CR1) 2014; 15
10144_CR42
SP Borja (10144_CR3) 2017; 46
R Battiti (10144_CR24) 1994; 5
ZL Zeng (10144_CR41) 2015; 48
JR Vergara (10144_CR17) 2014; 24
XP Jia (10144_CR12) 2013; 101
CX Shang (10144_CR6) 2013; 54
10144_CR18
Y Zhang (10144_CR22) 2008; 9
S Foithong (10144_CR32) 2012; 39
A Cataron (10144_CR2) 2010; 32
M Hall (10144_CR28) 2009; 11
JZ Wang (10144_CR5) 2013; 46
T Fei (10144_CR9) 2015; 53
ZC Wang (10144_CR31) 2015; 307
M Han (10144_CR21) 2015; 168
10144_CR36
10144_CR33
CH Lin (10144_CR13) 2014; 41
NX Vinh (10144_CR43) 2016; 53
10144_CR29
WF Gao (10144_CR45) 2018; 79
F Zhang (10144_CR10) 2016; 46
F Fleuret (10144_CR38) 2004; 5
PA Estevez (10144_CR15) 2009; 20
10144_CR27
G Herman (10144_CR37) 2013; 46
10144_CR26
BC Veronica (10144_CR11) 2013; 34
10144_CR8
I Rodriguez-Lujan (10144_CR35) 2010; 11
References_xml – volume: 181
  start-page: 4625
  issue: 20
  year: 2011
  end-page: 4641
  ident: CR23
  article-title: m PSO: a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification
  publication-title: Inf Sci
– ident: CR18
– volume: 15
  start-page: 1371
  year: 2014
  end-page: 1429
  ident: CR1
  article-title: Towards ultrahigh dimensional feature selection for big data
  publication-title: J Mach Learn Res
– volume: 34
  start-page: 483
  issue: 3
  year: 2013
  end-page: 519
  ident: CR11
  article-title: A review of feature selection methods on synthetic data
  publication-title: Knowl Inf Syst
– volume: 46
  start-page: 1616
  issue: 6
  year: 2013
  end-page: 1627
  ident: CR5
  article-title: Maximum weight and minimum redundancy: a novel framework for feature subset selection
  publication-title: Pattern Recognit
– volume: 5
  start-page: 537
  issue: 4
  year: 1994
  end-page: 550
  ident: CR24
  article-title: Using mutual information for selecting features in supervised neural net learning
  publication-title: IEEE Trans Neural Netw
– volume: 11
  start-page: 1491
  year: 2010
  end-page: 1516
  ident: CR35
  article-title: Quadratic programming feature selection
  publication-title: J Mach Learn Res
– volume: 79
  start-page: 328
  year: 2018
  end-page: 339
  ident: CR45
  article-title: Class-specific mutual information variation for feature selection
  publication-title: Pattern Recognit
– year: 2001
  ident: CR34
  publication-title: Pattern classification
– volume: 24
  start-page: 175
  issue: 1
  year: 2014
  end-page: 186
  ident: CR17
  article-title: A review of feature selection methods based on mutual information
  publication-title: Neural Comput Appl
– ident: CR33
– volume: 46
  start-page: 1
  year: 2017
  end-page: 24
  ident: CR3
  article-title: Testing different ensemble configurations for feature selection
  publication-title: Neural Process Lett
– volume: 13
  start-page: 27
  year: 2012
  end-page: 66
  ident: CR16
  article-title: Conditional likelihood maximisation: a unifying framework for information theoretic feature selection
  publication-title: J Mach Learn Res
– volume: 27
  start-page: 155
  issue: 1
  year: 2016
  end-page: 166
  ident: CR14
  article-title: Improving ELM-based microarray data classification by diversified sequence features selection
  publication-title: Neural Comput Appl
– volume: 307
  start-page: 73
  year: 2015
  end-page: 88
  ident: CR31
  article-title: A multi-objective evolutionary algorithm for feature selection based on mutual information with a new redundancy measure
  publication-title: Inf Sci
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  end-page: 18
  ident: CR28
  article-title: The weka data mining software: an update
  publication-title: ACM SIGKDD Explor Newsl
– volume: 37
  start-page: 541
  year: 2013
  end-page: 549
  ident: CR39
  article-title: Feature selection using dynamic weights for classification
  publication-title: Knowl-Based Syst
– ident: CR29
– volume: 42
  start-page: 8520
  issue: 22
  year: 2015
  end-page: 8532
  ident: CR40
  article-title: Feature selection using joint mutual information maximisation
  publication-title: Expert Syst Appl
– volume: 13
  start-page: 143
  issue: 1
  year: 2002
  end-page: 159
  ident: CR30
  article-title: Input feature selection for classification problems
  publication-title: IEEE Trans Neural Netw
– volume: 5
  start-page: 1531
  year: 2004
  end-page: 1555
  ident: CR38
  article-title: Fast binary feature selection with conditional mutual information
  publication-title: J Mach Learn Res
– ident: CR8
– volume: 112
  start-page: 70
  year: 2018
  end-page: 74
  ident: CR46
  article-title: Feature selection considering the composition of feature relevancy
  publication-title: Pattern Recognit Lett
– volume: 28
  start-page: 2915
  issue: 10
  year: 2017
  end-page: 2930
  ident: CR4
  article-title: An approach for feature selection using local searching and global optimization techniques
  publication-title: Neural Comput Appl
– ident: CR25
– volume: 9
  start-page: 1
  issue: 2
  year: 2008
  end-page: 10
  ident: CR22
  article-title: Gene selection algorithm by combining reliefF and mRMR
  publication-title: BMC Genom
– ident: CR27
– ident: CR42
– volume: 41
  start-page: 6611
  issue: 15
  year: 2014
  end-page: 6621
  ident: CR13
  article-title: Study of image retrieval and classification based on adaptive features using genetic algorithm feature selection
  publication-title: Expert Syst Appl
– volume: 53
  start-page: 46
  year: 2016
  end-page: 58
  ident: CR43
  article-title: Can high-order dependencies improve mutual information based feature selection
  publication-title: Pattern Recognit
– volume: 168
  start-page: 47
  year: 2015
  end-page: 54
  ident: CR21
  article-title: Global mutual information-based feature selection approach using single-objective and multi-objective optimization
  publication-title: Neurocomputing
– volume: 39
  start-page: 574
  issue: 1
  year: 2012
  end-page: 584
  ident: CR32
  article-title: Feature subset selection wrapper based on mutual information and rough sets
  publication-title: Expert Syst Appl
– volume: 28
  start-page: 2508
  issue: 9
  year: 2016
  end-page: 2521
  ident: CR7
  article-title: Toward optimal feature selection in naive Bayes for text categorization
  publication-title: IEEE Trans Knowl Data Eng
– volume: 29
  start-page: 828
  issue: 4
  year: 2017
  end-page: 841
  ident: CR44
  article-title: Feature selection by maximizing independent classification information
  publication-title: IEEE Trans Knowl Data Eng
– volume: 27
  start-page: 1226
  issue: 8
  year: 2005
  end-page: 1238
  ident: CR19
  article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance and min-redundancy
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 54
  start-page: 298
  year: 2013
  end-page: 309
  ident: CR6
  article-title: Feature selection via maximizing global information gain for text classification
  publication-title: Knowl-Based Syst
– volume: 20
  start-page: 189
  issue: 2
  year: 2009
  end-page: 201
  ident: CR15
  article-title: Normalized mutual information feature selection
  publication-title: IEEE Trans Neural Netw
– volume: 41
  start-page: 6371
  issue: 14
  year: 2014
  end-page: 6385
  ident: CR20
  article-title: MIFS-ND: a mutual information-based feature selection method
  publication-title: Expert Syst Appl
– volume: 46
  start-page: 766
  issue: 3
  year: 2016
  end-page: 777
  ident: CR10
  article-title: Adversarial feature selection against evasion attacks
  publication-title: IEEE Trans Cybern
– volume: 53
  start-page: 505
  issue: 1
  year: 2015
  end-page: 518
  ident: CR9
  article-title: Contributions to automatic target recognition systems for underwater mine classification
  publication-title: IEEE Trans Geosci Remote Sens
– volume: 101
  start-page: 676
  issue: 3
  year: 2013
  end-page: 697
  ident: CR12
  article-title: Feature mining for hyperspectral image classification
  publication-title: Proc IEEE
– volume: 46
  start-page: 3315
  issue: 12
  year: 2013
  end-page: 3327
  ident: CR37
  article-title: Mutual information-based method for selecting informative feature sets
  publication-title: Pattern Recognit
– ident: CR36
– volume: 48
  start-page: 2656
  issue: 8
  year: 2015
  end-page: 2666
  ident: CR41
  article-title: A novel feature selection method considering feature interaction
  publication-title: Pattern Recognit
– volume: 32
  start-page: 59
  issue: 1
  year: 2010
  end-page: 73
  ident: CR2
  article-title: Energy supervised relevance neural gas for feature ranking
  publication-title: Neural Process Lett
– ident: CR26
– volume: 54
  start-page: 298
  year: 2013
  ident: 10144_CR6
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2013.09.019
– ident: 10144_CR8
  doi: 10.1109/ICIP.2012.6466804
– volume: 53
  start-page: 505
  issue: 1
  year: 2015
  ident: 10144_CR9
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2014.2324971
– volume: 168
  start-page: 47
  year: 2015
  ident: 10144_CR21
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.016
– volume: 46
  start-page: 1616
  issue: 6
  year: 2013
  ident: 10144_CR5
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2012.11.025
– volume: 11
  start-page: 1491
  year: 2010
  ident: 10144_CR35
  publication-title: J Mach Learn Res
– volume: 15
  start-page: 1371
  year: 2014
  ident: 10144_CR1
  publication-title: J Mach Learn Res
– volume: 28
  start-page: 2508
  issue: 9
  year: 2016
  ident: 10144_CR7
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2016.2563436
– volume: 39
  start-page: 574
  issue: 1
  year: 2012
  ident: 10144_CR32
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.07.048
– volume: 112
  start-page: 70
  year: 2018
  ident: 10144_CR46
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2018.06.005
– volume: 46
  start-page: 766
  issue: 3
  year: 2016
  ident: 10144_CR10
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2015.2415032
– volume: 5
  start-page: 1531
  year: 2004
  ident: 10144_CR38
  publication-title: J Mach Learn Res
– volume: 79
  start-page: 328
  year: 2018
  ident: 10144_CR45
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2018.02.020
– volume: 46
  start-page: 3315
  issue: 12
  year: 2013
  ident: 10144_CR37
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2013.04.021
– volume: 27
  start-page: 155
  issue: 1
  year: 2016
  ident: 10144_CR14
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-014-1571-7
– volume-title: Pattern classification
  year: 2001
  ident: 10144_CR34
– volume: 5
  start-page: 537
  issue: 4
  year: 1994
  ident: 10144_CR24
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.298224
– volume: 13
  start-page: 143
  issue: 1
  year: 2002
  ident: 10144_CR30
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.977291
– volume: 34
  start-page: 483
  issue: 3
  year: 2013
  ident: 10144_CR11
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-012-0487-8
– ident: 10144_CR18
  doi: 10.3115/1075527.1075574
– ident: 10144_CR29
– ident: 10144_CR42
– ident: 10144_CR33
  doi: 10.1007/3-540-57868-4_57
– volume: 48
  start-page: 2656
  issue: 8
  year: 2015
  ident: 10144_CR41
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2015.02.025
– ident: 10144_CR27
– volume: 53
  start-page: 46
  year: 2016
  ident: 10144_CR43
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2015.11.007
– ident: 10144_CR25
– volume: 28
  start-page: 2915
  issue: 10
  year: 2017
  ident: 10144_CR4
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-2959-y
– volume: 24
  start-page: 175
  issue: 1
  year: 2014
  ident: 10144_CR17
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-013-1368-0
– volume: 181
  start-page: 4625
  issue: 20
  year: 2011
  ident: 10144_CR23
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2010.05.037
– volume: 29
  start-page: 828
  issue: 4
  year: 2017
  ident: 10144_CR44
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2017.2650906
– volume: 307
  start-page: 73
  year: 2015
  ident: 10144_CR31
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2015.02.031
– volume: 37
  start-page: 541
  year: 2013
  ident: 10144_CR39
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2012.10.001
– volume: 41
  start-page: 6611
  issue: 15
  year: 2014
  ident: 10144_CR13
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.04.033
– volume: 13
  start-page: 27
  year: 2012
  ident: 10144_CR16
  publication-title: J Mach Learn Res
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  ident: 10144_CR28
  publication-title: ACM SIGKDD Explor Newsl
  doi: 10.1145/1656274.1656278
– volume: 20
  start-page: 189
  issue: 2
  year: 2009
  ident: 10144_CR15
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2008.2005601
– volume: 101
  start-page: 676
  issue: 3
  year: 2013
  ident: 10144_CR12
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2012.2229082
– ident: 10144_CR36
  doi: 10.1145/2623330.2623611
– volume: 46
  start-page: 1
  year: 2017
  ident: 10144_CR3
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-016-9569-z
– volume: 42
  start-page: 8520
  issue: 22
  year: 2015
  ident: 10144_CR40
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.07.007
– volume: 27
  start-page: 1226
  issue: 8
  year: 2005
  ident: 10144_CR19
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2005.159
– ident: 10144_CR26
– volume: 32
  start-page: 59
  issue: 1
  year: 2010
  ident: 10144_CR2
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-010-9143-z
– volume: 41
  start-page: 6371
  issue: 14
  year: 2014
  ident: 10144_CR20
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.04.019
– volume: 9
  start-page: 1
  issue: 2
  year: 2008
  ident: 10144_CR22
  publication-title: BMC Genom
SSID ssj0010020
Score 2.31232
Snippet Minimal-redundancy–maximal-relevance (mRMR) algorithm is a typical feature selection algorithm. To select the feature which has minimal redundancy with the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1237
SubjectTerms Algorithms
Artificial Intelligence
Codes
Complex Systems
Computational Intelligence
Computer Science
Feature selection
Labels
Lattice theory
Optimization algorithms
Random variables
Redundancy
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLCy8EYWCPLCBpSZ2nHgM0KpCKgNQqVvk-AGV2hT1ITHyH_iH_BLObtIKBEiMcRwPdz7fd_F9dwidqxhgZ8QkMSzOCdNCk0QzTjTE13moLMRjjo3cveOdHrvtR_2SFDatst2rK0l_Uq_IbhC9uNwfQVx_WUboOtqIXDkv2MW9MF3eHTgE5MOsuEkYD4OSKvPzGl_d0QpjfrsW9d6mvYO2SpiI04Ved9GaKfbQdtWCAZcWuY8GKXYgbj4x-MF3tAEx43T4NIaY_3mEr8BHaQxDLUeexP73H2wtfDNYcMqxLDTuDorBSA7JvXGMMnfafry9d-VrOTg0PkvgAPXarcfrDim7JxAFZjUjEVVWRk0uea6Y0InW1AoeWG24hZjOME6VobG2SRQzq4wNEimMkkJxS01C6SGqFePCHCGcg_akpTQIBDgzquE5FwZMN4-1K1lYR0ElxEyVpcVdh4thtiqK7ASfgeAzL_iM1tHF8puXRWGNP2c3Kt1kpZFNs1DAecQogI46uqz0tXr9-2rH_5t-gjZDF2X7fJ0Gqs0mc3MKUGSWn_md9wnybdVf
  priority: 102
  providerName: Springer Nature
Title A Feature Selection Algorithm Based on Equal Interval Division and Minimal-Redundancy–Maximal-Relevance
URI https://link.springer.com/article/10.1007/s11063-019-10144-3
https://www.proquest.com/docview/2918343238
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-773X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-773X
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: AAJSJ
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB61uxcuvBELZeUDN7BoYseJDwilsNsKtCtUWKmcIsePstI2LWUrceQ_8A_5Jcx4na5Aosc4jqXMwzNjz8wH8NyW6HYW0nAvy5ZLpx2vnFTcYXzd5jZgPEbVyLO5OlrI9yfFyQ7M-1oYSqvs98S4UbtzS2fkr3KNwicFWpg3F984oUbR7WoPoWEStIJ7HVuM7cIwp85YAxgeTOYfj6_vFcg7iiFYuc-lyrNURrMppsPoiHKLNCf8WsnF36Zq63_-c2UaLdH0LtxOLiSrNzy_Bzu-uw93engGlrT1ASxrRg7e1aVnnyLaDbKA1atT_Kv11zN2gPbLMRyaUGEli0eDKHbs3XJTb85M59hs2S3PzIofe6o2o534989fM_MjDa58zCB4CIvp5PPbI56QFbhFlVvzQthgin1lVGuldpVzImiVBedVwHjPSyWsF6ULVVHKYH3IKqO9NdqqIHwlxCMYdOedfwysRc6aIESWaTR0wuFzqz2qdVs6amc4gqwnYmNT23FCv1g124bJRPgGCd9EwjdiBC-uv7nYNN24cfZez5smKeD3ZisuI3jZ82v7-v-rPbl5tadwK6eIO-bu7MFgfXnln6Fbsm7HsFtND8cwrA-_fJiMk-Th6CKv_wCGO-J2
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4QOOjFt3EVtQ960o7MdE_P9IGYRZYswm4MQsJt7OkHbrIMCEvUm__B_-OP8ZdY1dvDRhO5cZyex6Hqm6r6uusB8MKWGHYW0nAvy4ZLpx2vnFTcIb9uchuQj1E18mishgfy_WFxuAS_uloYSqvsbGI01O7E0h75m1wj-KRAD_P29AunqVF0utqN0DBptIJbjy3GUmHHjv_-FSnc-fr2Jur7ZZ5vDfbfDXmaMsAtwm_GC2GDKdaUUY2V2lXOiaBVFpxXAbmPl0pYL0oXqqKUwfqQVUZ7a7RVQfiKNkTRBaxIITWSv5WNwfjD3uU5BkVjkfKVa1yqPEtlO_PiPWRjlMukOc3LlVz87RoX8e4_R7TR823dgVspZGX9OcbuwpJv78HtbhwES9bhPkz6jALKizPPPsbpOqhy1p8eoRRnn4_ZBvpLx3BpQIWcLG5FIszZ5mRe385M69ho0k6OzZTveapuI8v_-8fPkfmWFqc-Ziw8gINrkfFDWG5PWv8IWINIMkGILNPoWIXD60Z7NCNN6ah9Yg-yToi1TW3OadrGtF40aCbB1yj4Ogq-Fj14dfnO6bzJx5VPr3a6qdMPf14v4NmD152-Frf__7XHV3_tOdwY7o92693t8c4TuJkT2495Q6uwPDu78E8xJJo1zxLuGHy6bqj_AaVLHnA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYJMSFHVFWH7iBVRI7TnwstBVbKwRU6i1yvEClEhAUiSP_wB_yJYzdpAUESBzjOD7MeDxv4nkzCO2qGGBnxCQxLM4I00KTRDNONMTXWagsxGOOjdxq8-MOO-1G3U8sfp_tXl5JDjkNrkpTPqg-aFsdE98gknF5QIK4XrOM0Ek0zVyhBNjRnbA2ukdwaMiHXPEBYTwMCtrMz2t8dU1jvPntitR7nuYCmisgI64NdbyIJky-hObLdgy4sM5l1KthB-ieHw2-8t1tQOS41r-5h_j_9g4fgr_SGIYajkiJ_a9A2Ga43hvyy7HMNW718t6d7JNL49hl7uR9f31ryZdisG98xsAK6jQb10fHpOikQBSY2IBEVFkZHXDJM8WETrSmVvDAasMtxHeGcaoMjbVNophZZWyQSGGUFIpbahJKV9FUfp-bNYQz0KS0lAaBAMdGNTxnwoAZZ7F25QsrKCiFmKqizLjrdtFPxwWSneBTEHzqBZ_SCtobffMwLLLx5-zNUjdpYXBPaSjgbGIUAEgF7Zf6Gr_-fbX1_03fQTMX9WZ6ftI-20CzoQu-fRrPJpoaPD6bLUAog2zbb8IPtyLchw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Feature+Selection+Algorithm+Based+on+Equal+Interval+Division+and+Minimal-Redundancy%E2%80%93Maximal-Relevance&rft.jtitle=Neural+processing+letters&rft.date=2020-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1370-4621&rft.eissn=1573-773X&rft.volume=51&rft.issue=2&rft.spage=1237&rft.epage=1263&rft_id=info:doi/10.1007%2Fs11063-019-10144-3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1370-4621&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1370-4621&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1370-4621&client=summon