Hybrid pixel-feature fusion system for multimodal medical images

Multimodal medical image fusion aims to reduce insignificant information and improve clinical diagnosis accuracy. The purpose of image fusion is to retain salient image features and detail information of multiple source images to yield a more informative fused image. A hybrid algorithm based on both...

Full description

Saved in:
Bibliographic Details
Published inJournal of ambient intelligence and humanized computing Vol. 12; no. 6; pp. 6001 - 6018
Main Authors Tawfik, Nahed, Elnemr, Heba A., Fakhr, Mahmoud, Dessouky, Moawad I., Abd El-Samie, Fathi E.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1868-5137
1868-5145
DOI10.1007/s12652-020-02154-0

Cover

Abstract Multimodal medical image fusion aims to reduce insignificant information and improve clinical diagnosis accuracy. The purpose of image fusion is to retain salient image features and detail information of multiple source images to yield a more informative fused image. A hybrid algorithm based on both pixel and feature levels of multimodal medical image fusion is presented in this paper. For the pixel-level fusion, the source images are decomposed into low- and high-frequency components using Discrete Wavelet Transform (DWT), and then the low-frequency coefficients are fused using maximum fusion rule. Thereafter, the curvelet transform is applied on the high-frequency coefficients. The obtained high-frequency subbands (fine scale) are fused using Principal Component Analysis (PCA) fusion rule. On the other hand, the feature-level fusion is accomplished by extracting various features form the coarse and detail subbands and using them for the fusion process. These features involve mean, variance, entropy, visibility, and standard deviation. Thereafter, the inverse curvelet transform is implemented on the fused high-frequency coefficients, and finally the resultant fused image is acquired by applying the inverse DWT on the fused low- and high-frequency components. The proposed method is evaluated and implemented on different pairs of medical image modalities. The results demonstrate that the proposed method improves the quality of the final fused image in terms of Mutual Information ( MI ), Correlation Coefficient ( CC ), entropy, Structural Similarity index ( SSIM ), Edge Strength Similarity for Image quality ( ESSIM ), Peak Signal-to-Noise Ratio ( PSNR ), and edge-based similarity measure ( Q AB / F ).
AbstractList Multimodal medical image fusion aims to reduce insignificant information and improve clinical diagnosis accuracy. The purpose of image fusion is to retain salient image features and detail information of multiple source images to yield a more informative fused image. A hybrid algorithm based on both pixel and feature levels of multimodal medical image fusion is presented in this paper. For the pixel-level fusion, the source images are decomposed into low- and high-frequency components using Discrete Wavelet Transform (DWT), and then the low-frequency coefficients are fused using maximum fusion rule. Thereafter, the curvelet transform is applied on the high-frequency coefficients. The obtained high-frequency subbands (fine scale) are fused using Principal Component Analysis (PCA) fusion rule. On the other hand, the feature-level fusion is accomplished by extracting various features form the coarse and detail subbands and using them for the fusion process. These features involve mean, variance, entropy, visibility, and standard deviation. Thereafter, the inverse curvelet transform is implemented on the fused high-frequency coefficients, and finally the resultant fused image is acquired by applying the inverse DWT on the fused low- and high-frequency components. The proposed method is evaluated and implemented on different pairs of medical image modalities. The results demonstrate that the proposed method improves the quality of the final fused image in terms of Mutual Information ( MI ), Correlation Coefficient ( CC ), entropy, Structural Similarity index ( SSIM ), Edge Strength Similarity for Image quality ( ESSIM ), Peak Signal-to-Noise Ratio ( PSNR ), and edge-based similarity measure ( Q AB / F ).
Multimodal medical image fusion aims to reduce insignificant information and improve clinical diagnosis accuracy. The purpose of image fusion is to retain salient image features and detail information of multiple source images to yield a more informative fused image. A hybrid algorithm based on both pixel and feature levels of multimodal medical image fusion is presented in this paper. For the pixel-level fusion, the source images are decomposed into low- and high-frequency components using Discrete Wavelet Transform (DWT), and then the low-frequency coefficients are fused using maximum fusion rule. Thereafter, the curvelet transform is applied on the high-frequency coefficients. The obtained high-frequency subbands (fine scale) are fused using Principal Component Analysis (PCA) fusion rule. On the other hand, the feature-level fusion is accomplished by extracting various features form the coarse and detail subbands and using them for the fusion process. These features involve mean, variance, entropy, visibility, and standard deviation. Thereafter, the inverse curvelet transform is implemented on the fused high-frequency coefficients, and finally the resultant fused image is acquired by applying the inverse DWT on the fused low- and high-frequency components. The proposed method is evaluated and implemented on different pairs of medical image modalities. The results demonstrate that the proposed method improves the quality of the final fused image in terms of Mutual Information (MI), Correlation Coefficient (CC), entropy, Structural Similarity index (SSIM), Edge Strength Similarity for Image quality (ESSIM), Peak Signal-to-Noise Ratio (PSNR), and edge-based similarity measure (QAB/F).
Author Elnemr, Heba A.
Fakhr, Mahmoud
Dessouky, Moawad I.
Abd El-Samie, Fathi E.
Tawfik, Nahed
Author_xml – sequence: 1
  givenname: Nahed
  surname: Tawfik
  fullname: Tawfik, Nahed
  email: nahedtawfik@eri.sci.eg
  organization: Computers and Systems Department, Electronics Research Institute
– sequence: 2
  givenname: Heba A.
  surname: Elnemr
  fullname: Elnemr, Heba A.
  organization: Computers and Systems Department, Electronics Research Institute
– sequence: 3
  givenname: Mahmoud
  surname: Fakhr
  fullname: Fakhr, Mahmoud
  organization: Computers and Systems Department, Electronics Research Institute
– sequence: 4
  givenname: Moawad I.
  surname: Dessouky
  fullname: Dessouky, Moawad I.
  organization: Electronics and Electrical Communications Department, Faculty of Electronic Engineering, Menoufia University
– sequence: 5
  givenname: Fathi E.
  surname: Abd El-Samie
  fullname: Abd El-Samie, Fathi E.
  organization: Electronics and Electrical Communications Department, Faculty of Electronic Engineering, Menoufia University, Department of Information Technology, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University
BookMark eNp9kEtLAzEQx4NUsNZ-AU8Lnlfz2OzjphRthYIXPYfsZqak7KMmWbDf3uiKgocODDOH_28e_0sy64ceCLlm9JZRWtx5xnPJU8ppTCazlJ6ROSvzMpUsk7PfXhQXZOn9nsYQlWCMzcn95lg7a5KD_YA2RdBhdJDg6O3QJ_7oA3QJDi7pxjbYbjC6TTowtonVdnoH_oqco249LH_qgrw9Pb6uNun2Zf28etimjWBViNtNjijQSKzLnKOEHHSmK-RVAwxqzExtCoGZLlGUXOicUlMww5GaRlAjFuRmmntww_sIPqj9MLo-rlS8YpWkhciKqConVeMG7x2gamzQIT4TnLatYlR9WaYmy1S0TH1bpmhE-T_04OKL7ngaEhPko7jfgfu76gT1CbPugL0
CitedBy_id crossref_primary_10_1016_j_bspc_2023_104824
crossref_primary_10_1109_ACCESS_2021_3119347
crossref_primary_10_1155_2022_8544591
crossref_primary_10_1007_s10278_021_00554_y
crossref_primary_10_1007_s10489_024_05431_z
crossref_primary_10_32604_cmes_2024_057889
crossref_primary_10_1155_2022_1534440
crossref_primary_10_3390_s22083099
crossref_primary_10_1007_s11042_023_15913_w
crossref_primary_10_1038_s41598_022_22442_3
crossref_primary_10_1016_j_bspc_2023_104740
crossref_primary_10_1038_s41598_024_71225_5
Cites_doi 10.1007/s11277-017-4958-9
10.1016/j.knosys.2017.05.017
10.1109/access.2019.2898111
10.1002/ima.22268
10.1016/j.sigpro.2018.08.002
10.1016/j.bspc.2017.10.001
10.1109/TIM.2018.2838778
10.1007/s10586-018-2026-1
10.1155/2015/486532
10.1109/LSP.2013.2244081
10.1137/05064182X
10.1016/j.jvcir.2016.06.021
10.1007/s11548-017-1692-4
10.1049/iet-cvi.2015.0251
10.1016/j.neucom.2016.06.036
10.1007/s00500-019-04011-5
10.4236/cs.2016.78179
10.1016/j.inffus.2013.12.002
10.1109/JSEN.2016.2533864
10.1016/j.inffus.2014.09.004
10.1155/2018/2806047
10.1016/j.procs.2015.10.057
10.1007/s11042-020-08834-5
10.1016/j.neucom.2017.01.006
10.1007/s11760-018-1303-z
10.1016/j.bspc.2016.06.013
10.5120/17691-8656
10.1016/j.bspc.2014.11.009
10.1016/j.bspc.2017.02.005
10.1016/j.neucom.2015.01.025
10.1007/978-3-540-87734-9-75
10.1016/j.eij.2015.09.002
10.1117/2.1200708.0824
10.22111/IJFS.2019.4482
10.1016/j.bspc.2017.01.003
10.1016/j.ijleo.2018.12.028
10.1109/JSEN.2015.2465935
10.1109/JSEN.2018.2822712
10.51983/ajeat-2013.2.1.643
10.1109/ICASSP.2006.1660497
10.1117/12.2205483
10.23919/ICIF.2017.8009769
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2021
Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s12652-020-02154-0
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1868-5145
EndPage 6018
ExternalDocumentID 10_1007_s12652_020_02154_0
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29~
2JY
2VQ
30V
4.4
406
408
409
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
AUKKA
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
BSONS
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9P
PT4
QOS
R89
R9I
RLLFE
ROL
RSV
S1Z
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
WK8
Z45
Z5O
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-51d6ff3fd5fb862f5e6ea4a9f29ce1ebf4dbd73f4a8f3823a600d71d2f0dc30d3
IEDL.DBID AGYKE
ISSN 1868-5137
IngestDate Fri Jul 25 23:24:13 EDT 2025
Wed Oct 01 03:06:40 EDT 2025
Thu Apr 24 22:56:03 EDT 2025
Fri Feb 21 02:48:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Medical image fusion
Wavelet transform
Medical imaging modalities
Feature-level fusion
Pixel-level fusion
Curvelet transform
PCA
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-51d6ff3fd5fb862f5e6ea4a9f29ce1ebf4dbd73f4a8f3823a600d71d2f0dc30d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2919507347
PQPubID 2043913
PageCount 18
ParticipantIDs proquest_journals_2919507347
crossref_citationtrail_10_1007_s12652_020_02154_0
crossref_primary_10_1007_s12652_020_02154_0
springer_journals_10_1007_s12652_020_02154_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210600
2021-06-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 6
  year: 2021
  text: 20210600
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Journal of ambient intelligence and humanized computing
PublicationTitleAbbrev J Ambient Intell Human Comput
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Daniel, Anitha, Kamaleshwaran, Rani (CR12) 2017; 34
Zhang, Feng, Wang, Xue (CR43) 2013; 20
Srivastava, Khare, Prakash (CR36) 2016; 10
Singh, Gupta, Anand, Kumar (CR35) 2015; 18
Arif, Wang (CR3) 2020; 24
Liu, Mei, Du (CR23) 2018; 40
Aishwarya, Bennila Thangammal (CR1) 2018; 28
Mazaheri, Sulaiman, Wirza (CR26) 2015
CR17
Yin, Liu, Liu, Chen (CR42) 2018
Reena Benjamin, Jayasree (CR33) 2018; 13
Liu, Liu, Wang (CR19) 2015; 24
Zong, Qiu (CR45) 2017; 34
Haribabu, Hima Bindu (CR14) 2017; 9
Jin, Chen, Hou (CR16) 2018; 153
Yang, Que, Huang, Lin (CR41) 2016; 16
Ramlal, Sachdeva, Kamal, Niranjan (CR32) 2018; 12
Zhu, Chai, Yin (CR44) 2016; 214
Ashiba, Mansour, Ahmed (CR4) 2018; 99
Anandan, Sabeenian (CR2) 2016; 07
Nava (CR27) 2007
Liu, Mei, Du (CR21) 2017; 235
Malviya, Saxena (CR24) 2014; 101
Xia, Chen, Chen, Chen (CR39) 2018
Xia, Yin, Wang (CR40) 2018; 1
Qi, Wang, Zhu (CR31) 2019; 7
Manchanda, Sharma (CR25) 2016; 40
CR28
Patil, Sale, Joshi (CR29) 2013; 2
CR9
Sharma, Saroliya (CR34) 2013; 4
Bhavana, Krishnappa (CR7) 2015; 70
Daniel (CR10) 2018; 18
Li, Li, Cai, Li (CR18) 2008; 5264
CR22
Tirupal, Chandra Mohan, Srinivas Kumar (CR38) 2019; 16
Bhatnagar, Wu, Liu (CR6) 2015; 157
El-Gamal, Elmogy, Atwan (CR13) 2016; 17
Liu, Mei, Du (CR20) 2016; 30
Tawfik, Elnemr, Fakhr, Dessouky (CR37) 2020
Bhateja, Patel, Krishn (CR5) 2015; 15
Daniel, Anitha, Gnanaraj (CR11) 2017; 131
Prakash, Park, Khare (CR30) 2019; 182
James, Dasarathy (CR15) 2014; 19
Candès, Demanet, Donoho, Ying (CR8) 2005; 5
N Aishwarya (2154_CR1) 2018; 28
2154_CR28
2154_CR22
V Bhavana (2154_CR7) 2015; 70
2154_CR9
FE-ZA El-Gamal (2154_CR13) 2016; 17
S Mazaheri (2154_CR26) 2015
T Tirupal (2154_CR38) 2019; 16
K Xia (2154_CR40) 2018; 1
J Reena Benjamin (2154_CR33) 2018; 13
E Daniel (2154_CR12) 2017; 34
G Qi (2154_CR31) 2019; 7
E Daniel (2154_CR11) 2017; 131
P Anandan (2154_CR2) 2016; 07
P Malviya (2154_CR24) 2014; 101
V Patil (2154_CR29) 2013; 2
R Nava (2154_CR27) 2007
E Candès (2154_CR8) 2005; 5
O Prakash (2154_CR30) 2019; 182
Z Zhu (2154_CR44) 2016; 214
Y Liu (2154_CR19) 2015; 24
SD Ramlal (2154_CR32) 2018; 12
E Daniel (2154_CR10) 2018; 18
X Jin (2154_CR16) 2018; 153
M Arif (2154_CR3) 2020; 24
2154_CR17
G Bhatnagar (2154_CR6) 2015; 157
M Manchanda (2154_CR25) 2016; 40
M Yin (2154_CR42) 2018
V Bhateja (2154_CR5) 2015; 15
X Liu (2154_CR20) 2016; 30
M Li (2154_CR18) 2008; 5264
X Zhang (2154_CR43) 2013; 20
HI Ashiba (2154_CR4) 2018; 99
N Tawfik (2154_CR37) 2020
S Singh (2154_CR35) 2015; 18
Y Yang (2154_CR41) 2016; 16
X Liu (2154_CR21) 2017; 235
A Sharma (2154_CR34) 2013; 4
AP James (2154_CR15) 2014; 19
M Haribabu (2154_CR14) 2017; 9
J Zong (2154_CR45) 2017; 34
R Srivastava (2154_CR36) 2016; 10
J Xia (2154_CR39) 2018
X Liu (2154_CR23) 2018; 40
References_xml – volume: 99
  start-page: 619
  year: 2018
  end-page: 636
  ident: CR4
  article-title: Enhancement of infrared images based on efficient histogram processing
  publication-title: Wirel Pers Commun
  doi: 10.1007/s11277-017-4958-9
– ident: CR22
– volume: 131
  start-page: 58
  year: 2017
  end-page: 69
  ident: CR11
  article-title: Optimum laplacian wavelet mask based medical image using hybrid cuckoo search—grey wolf optimization algorithm
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2017.05.017
– volume: 7
  start-page: 1
  year: 2019
  ident: CR31
  article-title: A phase congruency and local Laplacian energy based multi-modality medical image fusion method in NSCT domain
  publication-title: IEEE Access
  doi: 10.1109/access.2019.2898111
– volume: 4
  start-page: 2319
  year: 2013
  end-page: 7064
  ident: CR34
  article-title: A brief review of different image fusion algorithm
  publication-title: Int J Sci Res
– volume: 28
  start-page: 175
  year: 2018
  end-page: 185
  ident: CR1
  article-title: A novel multimodal medical image fusion using sparse representation and modified spatial frequency
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.22268
– volume: 153
  start-page: 379
  year: 2018
  end-page: 395
  ident: CR16
  article-title: Multimodal sensor medical image fusion based on nonsubsampled Shearlet transform and S-PCNNs in HSV space
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2018.08.002
– volume: 40
  start-page: 343
  year: 2018
  end-page: 350
  ident: CR23
  article-title: Multi-modality medical image fusion based on image decomposition framework and nonsubsampled shearlet transform
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2017.10.001
– year: 2018
  ident: CR42
  article-title: Medical image fusion with parameter-adaptive pulse coupled-neural network in nonsubsampled Shearlet transform domain
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2018.2838778
– volume: 1
  start-page: 1
  year: 2018
  end-page: 13
  ident: CR40
  article-title: A novel improved deep convolutional neural network model for medical image fusion
  publication-title: Cluster Comput
  doi: 10.1007/s10586-018-2026-1
– year: 2015
  ident: CR26
  article-title: Hybrid pixel-based method for cardiac ultrasound fusion based on integration of PCA and DWT
  publication-title: Comput Math Methods Med
  doi: 10.1155/2015/486532
– volume: 20
  start-page: 319
  year: 2013
  end-page: 322
  ident: CR43
  article-title: Edge strength similarity for image quality assessment
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2013.2244081
– volume: 5
  start-page: 861
  year: 2005
  end-page: 899
  ident: CR8
  article-title: Fast discrete Curvelet transforms
  publication-title: Multiscale Model Simul
  doi: 10.1137/05064182X
– volume: 40
  start-page: 197
  year: 2016
  end-page: 217
  ident: CR25
  article-title: A novel method of multimodal medical image fusion using fuzzy transform
  publication-title: J Vis Commun Image Represent
  doi: 10.1016/j.jvcir.2016.06.021
– volume: 13
  start-page: 229
  year: 2018
  end-page: 240
  ident: CR33
  article-title: Improved medical image fusion based on cascaded PCA and shift invariant wavelet transforms
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-017-1692-4
– volume: 10
  start-page: 513
  year: 2016
  end-page: 527
  ident: CR36
  article-title: Local energy-based multimodal medical image fusion in Curvelet domain
  publication-title: IET Comput Vis
  doi: 10.1049/iet-cvi.2015.0251
– volume: 214
  start-page: 471
  year: 2016
  end-page: 482
  ident: CR44
  article-title: A novel dictionary learning approach for multi-modality medical image fusion
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.06.036
– volume: 24
  start-page: 1815
  year: 2020
  end-page: 1836
  ident: CR3
  article-title: Fast Curvelet transform through genetic algorithm for multimodal medical image fusion
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-04011-5
– volume: 07
  start-page: 2059
  year: 2016
  end-page: 2069
  ident: CR2
  article-title: Medical image compression using wrapping based fast discrete Curvelet transform and arithmetic coding
  publication-title: Circuits Syst
  doi: 10.4236/cs.2016.78179
– volume: 19
  start-page: 4
  year: 2014
  end-page: 19
  ident: CR15
  article-title: Medical image fusion: a survey of the state of the art
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2013.12.002
– volume: 16
  start-page: 3735
  year: 2016
  end-page: 3745
  ident: CR41
  article-title: Multimodal sensor medical image fusion based on type-2 fuzzy logic in NSCT domain
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2016.2533864
– volume: 24
  start-page: 147
  year: 2015
  end-page: 164
  ident: CR19
  article-title: A general framework for image fusion based on multi-scale transform and sparse representation
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2014.09.004
– year: 2018
  ident: CR39
  article-title: Medical image fusion based on sparse representation and PCNN in NSCT domain
  publication-title: Comput Math Methods Med
  doi: 10.1155/2018/2806047
– volume: 70
  start-page: 625
  year: 2015
  end-page: 631
  ident: CR7
  article-title: Multi-modality medical image fusion using discrete Wavelet transform
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2015.10.057
– year: 2020
  ident: CR37
  article-title: Survey study of multimodality medical image fusion methods
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-08834-5
– volume: 235
  start-page: 131
  year: 2017
  end-page: 139
  ident: CR21
  article-title: Structure tensor and nonsubsampled shearlet transform based algorithm for CT and MRI image fusion
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.006
– volume: 12
  start-page: 1479
  year: 2018
  end-page: 1487
  ident: CR32
  article-title: Multimodal medical image fusion using non-subsampled shearlet transform and pulse coupled neural network incorporated with morphological gradient
  publication-title: Signal, Image Video Process
  doi: 10.1007/s11760-018-1303-z
– volume: 2
  start-page: 40
  year: 2013
  end-page: 46
  ident: CR29
  article-title: Image fusion methods and quality assessment parameters
  publication-title: Asian J Eng Appl Technol
– ident: CR17
– volume: 30
  start-page: 140
  year: 2016
  end-page: 148
  ident: CR20
  article-title: Multimodality medical image fusion algorithm based on gradient minimization smoothing filter and pulse coupled neural network
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2016.06.013
– volume: 101
  start-page: 19
  year: 2014
  end-page: 22
  ident: CR24
  article-title: An improved image fusion technique based on texture feature optimization using Wavelet transform and particle of swarm optimization (POS)
  publication-title: Int J Comput Appl
  doi: 10.5120/17691-8656
– volume: 18
  start-page: 91
  year: 2015
  end-page: 101
  ident: CR35
  article-title: Nonsubsampled shearlet based CT and MR medical image fusion using biologically inspired spiking neural network
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2014.11.009
– volume: 34
  start-page: 195
  year: 2017
  end-page: 205
  ident: CR45
  article-title: Medical image fusion based on sparse representation of classified image patches
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2017.02.005
– volume: 157
  start-page: 143
  year: 2015
  end-page: 152
  ident: CR6
  article-title: A new contrast based multimodal medical image fusion framework
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.01.025
– ident: CR9
– volume: 5264
  start-page: 658
  year: 2008
  end-page: 665
  ident: CR18
  article-title: A novel pixel-level and feature-level combined multisensor image fusion scheme
  publication-title: Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics)
  doi: 10.1007/978-3-540-87734-9-75
– volume: 9
  start-page: 453
  issue: 42
  year: 2017
  end-page: 460
  ident: CR14
  article-title: Feature level based multimodal medical image fusion with hadamard transform
  publication-title: Int J Control Theory Appl
– volume: 17
  start-page: 99
  year: 2016
  end-page: 124
  ident: CR13
  article-title: Current trends in medical image registration and fusion
  publication-title: Egypt Inf J
  doi: 10.1016/j.eij.2015.09.002
– year: 2007
  ident: CR27
  article-title: Mutual information improves image fusion quality assessments
  publication-title: SPIE Newsroom
  doi: 10.1117/2.1200708.0824
– volume: 16
  start-page: 33
  year: 2019
  end-page: 48
  ident: CR38
  article-title: Multimodal medical image fusion based on yager’s intuitionistic fuzzy sets
  publication-title: Iran J Fuzzy Syst
  doi: 10.22111/IJFS.2019.4482
– volume: 34
  start-page: 36
  year: 2017
  end-page: 43
  ident: CR12
  article-title: Optimum spectrum mask based medical image fusion using Gray Wolf Optimization
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2017.01.003
– ident: CR28
– volume: 182
  start-page: 995
  year: 2019
  end-page: 1014
  ident: CR30
  article-title: Multiscale fusion of multimodal medical images using lifting scheme based biorthogonal wavelet transform
  publication-title: Optik (Stuttg)
  doi: 10.1016/j.ijleo.2018.12.028
– volume: 15
  start-page: 6783
  year: 2015
  end-page: 6790
  ident: CR5
  article-title: Multimodal medical image sensor fusion framework using cascade of Wavelet and Contourlet transform domains
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2015.2465935
– volume: 18
  start-page: 6804
  year: 2018
  end-page: 6811
  ident: CR10
  article-title: Optimum Wavelet-based homomorphic medical image fusion using hybrid genetic-Grey Wolf optimization algorithm
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2018.2822712
– volume: 182
  start-page: 995
  year: 2019
  ident: 2154_CR30
  publication-title: Optik (Stuttg)
  doi: 10.1016/j.ijleo.2018.12.028
– volume: 2
  start-page: 40
  year: 2013
  ident: 2154_CR29
  publication-title: Asian J Eng Appl Technol
  doi: 10.51983/ajeat-2013.2.1.643
– volume: 10
  start-page: 513
  year: 2016
  ident: 2154_CR36
  publication-title: IET Comput Vis
  doi: 10.1049/iet-cvi.2015.0251
– volume: 30
  start-page: 140
  year: 2016
  ident: 2154_CR20
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2016.06.013
– volume: 1
  start-page: 1
  year: 2018
  ident: 2154_CR40
  publication-title: Cluster Comput
  doi: 10.1007/s10586-018-2026-1
– volume: 101
  start-page: 19
  year: 2014
  ident: 2154_CR24
  publication-title: Int J Comput Appl
  doi: 10.5120/17691-8656
– year: 2015
  ident: 2154_CR26
  publication-title: Comput Math Methods Med
  doi: 10.1155/2015/486532
– volume: 13
  start-page: 229
  year: 2018
  ident: 2154_CR33
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-017-1692-4
– volume: 24
  start-page: 147
  year: 2015
  ident: 2154_CR19
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2014.09.004
– volume: 214
  start-page: 471
  year: 2016
  ident: 2154_CR44
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.06.036
– ident: 2154_CR28
– volume: 18
  start-page: 91
  year: 2015
  ident: 2154_CR35
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2014.11.009
– volume: 157
  start-page: 143
  year: 2015
  ident: 2154_CR6
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.01.025
– volume: 18
  start-page: 6804
  year: 2018
  ident: 2154_CR10
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2018.2822712
– volume: 70
  start-page: 625
  year: 2015
  ident: 2154_CR7
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2015.10.057
– volume: 40
  start-page: 197
  year: 2016
  ident: 2154_CR25
  publication-title: J Vis Commun Image Represent
  doi: 10.1016/j.jvcir.2016.06.021
– volume: 28
  start-page: 175
  year: 2018
  ident: 2154_CR1
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.22268
– ident: 2154_CR9
  doi: 10.1109/ICASSP.2006.1660497
– ident: 2154_CR17
  doi: 10.1117/12.2205483
– year: 2007
  ident: 2154_CR27
  publication-title: SPIE Newsroom
  doi: 10.1117/2.1200708.0824
– volume: 99
  start-page: 619
  year: 2018
  ident: 2154_CR4
  publication-title: Wirel Pers Commun
  doi: 10.1007/s11277-017-4958-9
– volume: 20
  start-page: 319
  year: 2013
  ident: 2154_CR43
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2013.2244081
– volume: 16
  start-page: 3735
  year: 2016
  ident: 2154_CR41
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2016.2533864
– volume: 5
  start-page: 861
  year: 2005
  ident: 2154_CR8
  publication-title: Multiscale Model Simul
  doi: 10.1137/05064182X
– volume: 131
  start-page: 58
  year: 2017
  ident: 2154_CR11
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2017.05.017
– volume: 07
  start-page: 2059
  year: 2016
  ident: 2154_CR2
  publication-title: Circuits Syst
  doi: 10.4236/cs.2016.78179
– volume: 4
  start-page: 2319
  year: 2013
  ident: 2154_CR34
  publication-title: Int J Sci Res
– volume: 9
  start-page: 453
  issue: 42
  year: 2017
  ident: 2154_CR14
  publication-title: Int J Control Theory Appl
– year: 2018
  ident: 2154_CR39
  publication-title: Comput Math Methods Med
  doi: 10.1155/2018/2806047
– volume: 34
  start-page: 195
  year: 2017
  ident: 2154_CR45
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2017.02.005
– volume: 7
  start-page: 1
  year: 2019
  ident: 2154_CR31
  publication-title: IEEE Access
  doi: 10.1109/access.2019.2898111
– volume: 40
  start-page: 343
  year: 2018
  ident: 2154_CR23
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2017.10.001
– volume: 15
  start-page: 6783
  year: 2015
  ident: 2154_CR5
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2015.2465935
– volume: 17
  start-page: 99
  year: 2016
  ident: 2154_CR13
  publication-title: Egypt Inf J
  doi: 10.1016/j.eij.2015.09.002
– volume: 24
  start-page: 1815
  year: 2020
  ident: 2154_CR3
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-04011-5
– volume: 12
  start-page: 1479
  year: 2018
  ident: 2154_CR32
  publication-title: Signal, Image Video Process
  doi: 10.1007/s11760-018-1303-z
– volume: 5264
  start-page: 658
  year: 2008
  ident: 2154_CR18
  publication-title: Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics)
  doi: 10.1007/978-3-540-87734-9-75
– volume: 153
  start-page: 379
  year: 2018
  ident: 2154_CR16
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2018.08.002
– year: 2020
  ident: 2154_CR37
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-08834-5
– volume: 19
  start-page: 4
  year: 2014
  ident: 2154_CR15
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2013.12.002
– volume: 16
  start-page: 33
  year: 2019
  ident: 2154_CR38
  publication-title: Iran J Fuzzy Syst
  doi: 10.22111/IJFS.2019.4482
– ident: 2154_CR22
  doi: 10.23919/ICIF.2017.8009769
– year: 2018
  ident: 2154_CR42
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2018.2838778
– volume: 235
  start-page: 131
  year: 2017
  ident: 2154_CR21
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.006
– volume: 34
  start-page: 36
  year: 2017
  ident: 2154_CR12
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2017.01.003
SSID ssj0000393111
Score 2.288671
Snippet Multimodal medical image fusion aims to reduce insignificant information and improve clinical diagnosis accuracy. The purpose of image fusion is to retain...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6001
SubjectTerms Algorithms
Artificial Intelligence
Computational Intelligence
Computer vision
Correlation coefficients
Decomposition
Dictionaries
Discrete Wavelet Transform
Engineering
Entropy
Hybrid systems
Image acquisition
Image quality
Medical imaging
Methods
Neural networks
Original Research
Pixels
Principal components analysis
Regions
Robotics and Automation
Signal quality
Signal to noise ratio
Similarity
Tomography
User Interfaces and Human Computer Interaction
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA61vXgRRcVqlRy8aXA3ySbNQXzRUgSLiIXelmweUOhL24L-ezP7aFGw590dlkkyM5nH9yF0qRlTQlJGtEgU4SZcd5S0GRHWmkRIx6iBaeSXvugN-PMwGdZQv5qFgbbKyibmhtrODOTIb6gCwlLJuLybfxBgjYLqakWhoUtqBXubQ4ztoAYFZKw6ajx2-q9v66wLTKLGOSkvwMSTJGaynKQp5umoSCiBGxW4Qk6i395qE4L-qZrmzqi7j_bKKBI_FMt-gGpueojue98wfoXnoy83Jt7lkJ3YryAfhgvEZhxCVJz3EE5mNgiYFGUaPJoEs7I4QoNu5_2pR0qCBGLCyVmG37fCe-Zt4rNwM_GJE05zrTxVxsUOevAyK5nnuu2h3qdDdGNlbKmPrGGRZceoPp1N3QnCinur2sLZqK24iVyIWpLMZ15pbqz2uoniShGpKdHDgcRinG5wj0F5aVBemisvjZroav3NvMDO2Pp2q9JvWp6jRbpZ9Sa6rnS-efy_tNPt0s7QLoXmlDyd0kL15efKnYfoYpldlFvmB-WKyxU
  priority: 102
  providerName: ProQuest
Title Hybrid pixel-feature fusion system for multimodal medical images
URI https://link.springer.com/article/10.1007/s12652-020-02154-0
https://www.proquest.com/docview/2919507347
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1868-5145
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000393111
  issn: 1868-5137
  databaseCode: AFBBN
  dateStart: 20100301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1868-5145
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0000393111
  issn: 1868-5137
  databaseCode: BENPR
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1868-5145
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000393111
  issn: 1868-5137
  databaseCode: AGYKE
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1868-5145
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000393111
  issn: 1868-5137
  databaseCode: U2A
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH5oe9GDu1itkoM3HUlmJpPMzSrWolhEDOgpTGaBoq3FtqD-emeyGBUVPAWSySN5s7z9ewD7ghDOIkyQYCFHVFpzh0cqQ0wpGbJIEyxdNfJVn_USenEX3pVFYZMq270KSeYndV3shlmIkTN3nJyiyBrqzRxvqwHNzvn9Ze1bcfWmQd5614HBozAgUVkv8zOhrzKpVjS_xUZzkdNdhqT62CLT5OFoNs2O5Ns3HMf__s0KLJU6qNcpFs0qzOnRGix-QiZch-Peqyvl8saDF_2IjM7hPz0zc741r0B_9qy66-X5iMMnZckNi5CPNxjaI2qyAUn37Pa0h8pmC0jaXTi1TFLMGGJUaDJr5ZhQMy2o4AZzqQPt8vkyFRFDRWxc7FBYTUlFgcLGV5L4imxCY_Q00lvgcWoUj5lWfsyp9LXVgMLMZIYLKpUwogVBxe5UlkjkriHGY1pjKDvupJY7ac6d1G_Bwcc74wKH48_R7WoW03JPTlLMXcvbiNCoBYfVpNSPf6e2_b_hO7CAXeJL7qppQ2P6PNO7VnOZZnswH3fP98rlaq8nZ_3rG3s3wZ13L5XmNg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT9tAFH6iyYFeUCuKGrbOAU5lVHtmPM4cIkoLUVgSoQokbu54FgmJLJAgyp_jt3WeFyKQ4Jaz7Wfp8_Ob7-0AO5pzJVPGqZaJosIEd0elNqfSWpPI1HFmsBu5P5C9S3FylVwtwVPdC4NllbVNLAy1HRuMkf9gCheWplyk-5NbilujMLtar9DQ1WoF2ylGjFWNHafu8SG4cNPO8WH43ruMdY8ufvdotWWAmqB-M5rEVnrPvU18Hui9T5x0WmjlmTIudljIltuUe6HbHpNmOlAEm8aW-cgaHlke5H6ApuBCBeev-etocP7nOcqDna9xsQQYx9KHd_G06twp-_eYTBhFDw6PXkGjl6fjnPK-ytIWh1_3E6xUrJUclGr2GZbcaBV-9h6x3YtMrv-5G-pdMSKU-HuMv5FyQjQJlJgUNYvDsQ0ChmVaiFwPgxmbfoHLhUC1Bo3ReOS-AlHCW9WWzkZtJUzkAktKcp97pYWx2usWxDUQmammlePSjJtsPmcZwcsCeFkBXha14PvzM5NyVse7d2_W-GbVfzvN5lrWgr0a8_nlt6Wtvy_tGyz3Lvpn2dnx4HQDPjIsjClCOZvQmN3du63AbGb5dqU-BP4uWmP_A56vCoQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA5SQfQgrlitOgdvGjqTbZqbRS11Kx4s9BYyWaDQToudgv57k1naKip4nsyDeUnmrd_3ALiQGHMWIwwloxwS5cIdHusEMq0VZbHBSHk08nOPdfvkYUAHKyj-vNu9KkkWmAbP0pRmzam2zSXwDTGKoA99vM0i0AXt68QTJbgT3UftRZbFI0-jfAivp4WHNMJxiZz5WcxX67R0Ob9VSXPj09kB26XXGLSLbd4FaybdA1srXIL74Lr74cFXwXT4bkbQmpywM7Bznw0LCr7mwDmoQd5BOJ5oJ25cFGmC4dj9VGYHoN-5e73pwnI8AlTu3mTuYzSzFltNbeLiEksNM5JIbhFXJjK-Ay_RMbZEtqyv9knn2-g40siGWuFQ40NQSyepOQIBJ1bzFjM6bHGiQuN8FprYxHJJlJZW1kFUqUWokjvcj7AYiSXrsVelcKoUuSpFWAeXi3emBXPGn6sblbZFeYtmAnE_pDbGJK6Dq2oHlo9_l3b8v-XnYOPltiOe7nuPJ2AT-a6VPM_SALXsbW5OnduRJWf5yfoEQJrNAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+pixel-feature+fusion+system+for+multimodal+medical+images&rft.jtitle=Journal+of+ambient+intelligence+and+humanized+computing&rft.au=Tawfik%2C+Nahed&rft.au=Elnemr%2C+Heba+A.&rft.au=Fakhr%2C+Mahmoud&rft.au=Dessouky%2C+Moawad+I.&rft.date=2021-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1868-5137&rft.eissn=1868-5145&rft.volume=12&rft.issue=6&rft.spage=6001&rft.epage=6018&rft_id=info:doi/10.1007%2Fs12652-020-02154-0&rft.externalDocID=10_1007_s12652_020_02154_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-5137&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-5137&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-5137&client=summon