Hybrid pixel-feature fusion system for multimodal medical images
Multimodal medical image fusion aims to reduce insignificant information and improve clinical diagnosis accuracy. The purpose of image fusion is to retain salient image features and detail information of multiple source images to yield a more informative fused image. A hybrid algorithm based on both...
Saved in:
| Published in | Journal of ambient intelligence and humanized computing Vol. 12; no. 6; pp. 6001 - 6018 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2021
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1868-5137 1868-5145 |
| DOI | 10.1007/s12652-020-02154-0 |
Cover
| Abstract | Multimodal medical image fusion aims to reduce insignificant information and improve clinical diagnosis accuracy. The purpose of image fusion is to retain salient image features and detail information of multiple source images to yield a more informative fused image. A hybrid algorithm based on both pixel and feature levels of multimodal medical image fusion is presented in this paper. For the pixel-level fusion, the source images are decomposed into low- and high-frequency components using Discrete Wavelet Transform (DWT), and then the low-frequency coefficients are fused using maximum fusion rule. Thereafter, the curvelet transform is applied on the high-frequency coefficients. The obtained high-frequency subbands (fine scale) are fused using Principal Component Analysis (PCA) fusion rule. On the other hand, the feature-level fusion is accomplished by extracting various features form the coarse and detail subbands and using them for the fusion process. These features involve mean, variance, entropy, visibility, and standard deviation. Thereafter, the inverse curvelet transform is implemented on the fused high-frequency coefficients, and finally the resultant fused image is acquired by applying the inverse DWT on the fused low- and high-frequency components. The proposed method is evaluated and implemented on different pairs of medical image modalities. The results demonstrate that the proposed method improves the quality of the final fused image in terms of Mutual Information (
MI
), Correlation Coefficient (
CC
), entropy, Structural Similarity index (
SSIM
), Edge Strength Similarity for Image quality (
ESSIM
), Peak Signal-to-Noise Ratio (
PSNR
), and edge-based similarity measure (
Q
AB
/
F
). |
|---|---|
| AbstractList | Multimodal medical image fusion aims to reduce insignificant information and improve clinical diagnosis accuracy. The purpose of image fusion is to retain salient image features and detail information of multiple source images to yield a more informative fused image. A hybrid algorithm based on both pixel and feature levels of multimodal medical image fusion is presented in this paper. For the pixel-level fusion, the source images are decomposed into low- and high-frequency components using Discrete Wavelet Transform (DWT), and then the low-frequency coefficients are fused using maximum fusion rule. Thereafter, the curvelet transform is applied on the high-frequency coefficients. The obtained high-frequency subbands (fine scale) are fused using Principal Component Analysis (PCA) fusion rule. On the other hand, the feature-level fusion is accomplished by extracting various features form the coarse and detail subbands and using them for the fusion process. These features involve mean, variance, entropy, visibility, and standard deviation. Thereafter, the inverse curvelet transform is implemented on the fused high-frequency coefficients, and finally the resultant fused image is acquired by applying the inverse DWT on the fused low- and high-frequency components. The proposed method is evaluated and implemented on different pairs of medical image modalities. The results demonstrate that the proposed method improves the quality of the final fused image in terms of Mutual Information (
MI
), Correlation Coefficient (
CC
), entropy, Structural Similarity index (
SSIM
), Edge Strength Similarity for Image quality (
ESSIM
), Peak Signal-to-Noise Ratio (
PSNR
), and edge-based similarity measure (
Q
AB
/
F
). Multimodal medical image fusion aims to reduce insignificant information and improve clinical diagnosis accuracy. The purpose of image fusion is to retain salient image features and detail information of multiple source images to yield a more informative fused image. A hybrid algorithm based on both pixel and feature levels of multimodal medical image fusion is presented in this paper. For the pixel-level fusion, the source images are decomposed into low- and high-frequency components using Discrete Wavelet Transform (DWT), and then the low-frequency coefficients are fused using maximum fusion rule. Thereafter, the curvelet transform is applied on the high-frequency coefficients. The obtained high-frequency subbands (fine scale) are fused using Principal Component Analysis (PCA) fusion rule. On the other hand, the feature-level fusion is accomplished by extracting various features form the coarse and detail subbands and using them for the fusion process. These features involve mean, variance, entropy, visibility, and standard deviation. Thereafter, the inverse curvelet transform is implemented on the fused high-frequency coefficients, and finally the resultant fused image is acquired by applying the inverse DWT on the fused low- and high-frequency components. The proposed method is evaluated and implemented on different pairs of medical image modalities. The results demonstrate that the proposed method improves the quality of the final fused image in terms of Mutual Information (MI), Correlation Coefficient (CC), entropy, Structural Similarity index (SSIM), Edge Strength Similarity for Image quality (ESSIM), Peak Signal-to-Noise Ratio (PSNR), and edge-based similarity measure (QAB/F). |
| Author | Elnemr, Heba A. Fakhr, Mahmoud Dessouky, Moawad I. Abd El-Samie, Fathi E. Tawfik, Nahed |
| Author_xml | – sequence: 1 givenname: Nahed surname: Tawfik fullname: Tawfik, Nahed email: nahedtawfik@eri.sci.eg organization: Computers and Systems Department, Electronics Research Institute – sequence: 2 givenname: Heba A. surname: Elnemr fullname: Elnemr, Heba A. organization: Computers and Systems Department, Electronics Research Institute – sequence: 3 givenname: Mahmoud surname: Fakhr fullname: Fakhr, Mahmoud organization: Computers and Systems Department, Electronics Research Institute – sequence: 4 givenname: Moawad I. surname: Dessouky fullname: Dessouky, Moawad I. organization: Electronics and Electrical Communications Department, Faculty of Electronic Engineering, Menoufia University – sequence: 5 givenname: Fathi E. surname: Abd El-Samie fullname: Abd El-Samie, Fathi E. organization: Electronics and Electrical Communications Department, Faculty of Electronic Engineering, Menoufia University, Department of Information Technology, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University |
| BookMark | eNp9kEtLAzEQx4NUsNZ-AU8Lnlfz2OzjphRthYIXPYfsZqak7KMmWbDf3uiKgocODDOH_28e_0sy64ceCLlm9JZRWtx5xnPJU8ppTCazlJ6ROSvzMpUsk7PfXhQXZOn9nsYQlWCMzcn95lg7a5KD_YA2RdBhdJDg6O3QJ_7oA3QJDi7pxjbYbjC6TTowtonVdnoH_oqco249LH_qgrw9Pb6uNun2Zf28etimjWBViNtNjijQSKzLnKOEHHSmK-RVAwxqzExtCoGZLlGUXOicUlMww5GaRlAjFuRmmntww_sIPqj9MLo-rlS8YpWkhciKqConVeMG7x2gamzQIT4TnLatYlR9WaYmy1S0TH1bpmhE-T_04OKL7ngaEhPko7jfgfu76gT1CbPugL0 |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2023_104824 crossref_primary_10_1109_ACCESS_2021_3119347 crossref_primary_10_1155_2022_8544591 crossref_primary_10_1007_s10278_021_00554_y crossref_primary_10_1007_s10489_024_05431_z crossref_primary_10_32604_cmes_2024_057889 crossref_primary_10_1155_2022_1534440 crossref_primary_10_3390_s22083099 crossref_primary_10_1007_s11042_023_15913_w crossref_primary_10_1038_s41598_022_22442_3 crossref_primary_10_1016_j_bspc_2023_104740 crossref_primary_10_1038_s41598_024_71225_5 |
| Cites_doi | 10.1007/s11277-017-4958-9 10.1016/j.knosys.2017.05.017 10.1109/access.2019.2898111 10.1002/ima.22268 10.1016/j.sigpro.2018.08.002 10.1016/j.bspc.2017.10.001 10.1109/TIM.2018.2838778 10.1007/s10586-018-2026-1 10.1155/2015/486532 10.1109/LSP.2013.2244081 10.1137/05064182X 10.1016/j.jvcir.2016.06.021 10.1007/s11548-017-1692-4 10.1049/iet-cvi.2015.0251 10.1016/j.neucom.2016.06.036 10.1007/s00500-019-04011-5 10.4236/cs.2016.78179 10.1016/j.inffus.2013.12.002 10.1109/JSEN.2016.2533864 10.1016/j.inffus.2014.09.004 10.1155/2018/2806047 10.1016/j.procs.2015.10.057 10.1007/s11042-020-08834-5 10.1016/j.neucom.2017.01.006 10.1007/s11760-018-1303-z 10.1016/j.bspc.2016.06.013 10.5120/17691-8656 10.1016/j.bspc.2014.11.009 10.1016/j.bspc.2017.02.005 10.1016/j.neucom.2015.01.025 10.1007/978-3-540-87734-9-75 10.1016/j.eij.2015.09.002 10.1117/2.1200708.0824 10.22111/IJFS.2019.4482 10.1016/j.bspc.2017.01.003 10.1016/j.ijleo.2018.12.028 10.1109/JSEN.2015.2465935 10.1109/JSEN.2018.2822712 10.51983/ajeat-2013.2.1.643 10.1109/ICASSP.2006.1660497 10.1117/12.2205483 10.23919/ICIF.2017.8009769 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2021 Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s12652-020-02154-0 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1868-5145 |
| EndPage | 6018 |
| ExternalDocumentID | 10_1007_s12652_020_02154_0 |
| GroupedDBID | -EM 06D 0R~ 0VY 1N0 203 29~ 2JY 2VQ 30V 4.4 406 408 409 40D 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ARAPS AUKKA AXYYD AYJHY BENPR BGLVJ BGNMA BSONS CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 H13 HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ K7- KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9J P2P P9P PT4 QOS R89 R9I RLLFE ROL RSV S1Z S27 S3B SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VFIZW W48 WK8 Z45 Z5O Z7R Z7X Z83 Z88 ZMTXR ~A9 AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-51d6ff3fd5fb862f5e6ea4a9f29ce1ebf4dbd73f4a8f3823a600d71d2f0dc30d3 |
| IEDL.DBID | AGYKE |
| ISSN | 1868-5137 |
| IngestDate | Fri Jul 25 23:24:13 EDT 2025 Wed Oct 01 03:06:40 EDT 2025 Thu Apr 24 22:56:03 EDT 2025 Fri Feb 21 02:48:02 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Medical image fusion Wavelet transform Medical imaging modalities Feature-level fusion Pixel-level fusion Curvelet transform PCA |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-51d6ff3fd5fb862f5e6ea4a9f29ce1ebf4dbd73f4a8f3823a600d71d2f0dc30d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2919507347 |
| PQPubID | 2043913 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_2919507347 crossref_citationtrail_10_1007_s12652_020_02154_0 crossref_primary_10_1007_s12652_020_02154_0 springer_journals_10_1007_s12652_020_02154_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20210600 2021-06-00 20210601 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 6 year: 2021 text: 20210600 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Journal of ambient intelligence and humanized computing |
| PublicationTitleAbbrev | J Ambient Intell Human Comput |
| PublicationYear | 2021 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Daniel, Anitha, Kamaleshwaran, Rani (CR12) 2017; 34 Zhang, Feng, Wang, Xue (CR43) 2013; 20 Srivastava, Khare, Prakash (CR36) 2016; 10 Singh, Gupta, Anand, Kumar (CR35) 2015; 18 Arif, Wang (CR3) 2020; 24 Liu, Mei, Du (CR23) 2018; 40 Aishwarya, Bennila Thangammal (CR1) 2018; 28 Mazaheri, Sulaiman, Wirza (CR26) 2015 CR17 Yin, Liu, Liu, Chen (CR42) 2018 Reena Benjamin, Jayasree (CR33) 2018; 13 Liu, Liu, Wang (CR19) 2015; 24 Zong, Qiu (CR45) 2017; 34 Haribabu, Hima Bindu (CR14) 2017; 9 Jin, Chen, Hou (CR16) 2018; 153 Yang, Que, Huang, Lin (CR41) 2016; 16 Ramlal, Sachdeva, Kamal, Niranjan (CR32) 2018; 12 Zhu, Chai, Yin (CR44) 2016; 214 Ashiba, Mansour, Ahmed (CR4) 2018; 99 Anandan, Sabeenian (CR2) 2016; 07 Nava (CR27) 2007 Liu, Mei, Du (CR21) 2017; 235 Malviya, Saxena (CR24) 2014; 101 Xia, Chen, Chen, Chen (CR39) 2018 Xia, Yin, Wang (CR40) 2018; 1 Qi, Wang, Zhu (CR31) 2019; 7 Manchanda, Sharma (CR25) 2016; 40 CR28 Patil, Sale, Joshi (CR29) 2013; 2 CR9 Sharma, Saroliya (CR34) 2013; 4 Bhavana, Krishnappa (CR7) 2015; 70 Daniel (CR10) 2018; 18 Li, Li, Cai, Li (CR18) 2008; 5264 CR22 Tirupal, Chandra Mohan, Srinivas Kumar (CR38) 2019; 16 Bhatnagar, Wu, Liu (CR6) 2015; 157 El-Gamal, Elmogy, Atwan (CR13) 2016; 17 Liu, Mei, Du (CR20) 2016; 30 Tawfik, Elnemr, Fakhr, Dessouky (CR37) 2020 Bhateja, Patel, Krishn (CR5) 2015; 15 Daniel, Anitha, Gnanaraj (CR11) 2017; 131 Prakash, Park, Khare (CR30) 2019; 182 James, Dasarathy (CR15) 2014; 19 Candès, Demanet, Donoho, Ying (CR8) 2005; 5 N Aishwarya (2154_CR1) 2018; 28 2154_CR28 2154_CR22 V Bhavana (2154_CR7) 2015; 70 2154_CR9 FE-ZA El-Gamal (2154_CR13) 2016; 17 S Mazaheri (2154_CR26) 2015 T Tirupal (2154_CR38) 2019; 16 K Xia (2154_CR40) 2018; 1 J Reena Benjamin (2154_CR33) 2018; 13 E Daniel (2154_CR12) 2017; 34 G Qi (2154_CR31) 2019; 7 E Daniel (2154_CR11) 2017; 131 P Anandan (2154_CR2) 2016; 07 P Malviya (2154_CR24) 2014; 101 V Patil (2154_CR29) 2013; 2 R Nava (2154_CR27) 2007 E Candès (2154_CR8) 2005; 5 O Prakash (2154_CR30) 2019; 182 Z Zhu (2154_CR44) 2016; 214 Y Liu (2154_CR19) 2015; 24 SD Ramlal (2154_CR32) 2018; 12 E Daniel (2154_CR10) 2018; 18 X Jin (2154_CR16) 2018; 153 M Arif (2154_CR3) 2020; 24 2154_CR17 G Bhatnagar (2154_CR6) 2015; 157 M Manchanda (2154_CR25) 2016; 40 M Yin (2154_CR42) 2018 V Bhateja (2154_CR5) 2015; 15 X Liu (2154_CR20) 2016; 30 M Li (2154_CR18) 2008; 5264 X Zhang (2154_CR43) 2013; 20 HI Ashiba (2154_CR4) 2018; 99 N Tawfik (2154_CR37) 2020 S Singh (2154_CR35) 2015; 18 Y Yang (2154_CR41) 2016; 16 X Liu (2154_CR21) 2017; 235 A Sharma (2154_CR34) 2013; 4 AP James (2154_CR15) 2014; 19 M Haribabu (2154_CR14) 2017; 9 J Zong (2154_CR45) 2017; 34 R Srivastava (2154_CR36) 2016; 10 J Xia (2154_CR39) 2018 X Liu (2154_CR23) 2018; 40 |
| References_xml | – volume: 99 start-page: 619 year: 2018 end-page: 636 ident: CR4 article-title: Enhancement of infrared images based on efficient histogram processing publication-title: Wirel Pers Commun doi: 10.1007/s11277-017-4958-9 – ident: CR22 – volume: 131 start-page: 58 year: 2017 end-page: 69 ident: CR11 article-title: Optimum laplacian wavelet mask based medical image using hybrid cuckoo search—grey wolf optimization algorithm publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2017.05.017 – volume: 7 start-page: 1 year: 2019 ident: CR31 article-title: A phase congruency and local Laplacian energy based multi-modality medical image fusion method in NSCT domain publication-title: IEEE Access doi: 10.1109/access.2019.2898111 – volume: 4 start-page: 2319 year: 2013 end-page: 7064 ident: CR34 article-title: A brief review of different image fusion algorithm publication-title: Int J Sci Res – volume: 28 start-page: 175 year: 2018 end-page: 185 ident: CR1 article-title: A novel multimodal medical image fusion using sparse representation and modified spatial frequency publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.22268 – volume: 153 start-page: 379 year: 2018 end-page: 395 ident: CR16 article-title: Multimodal sensor medical image fusion based on nonsubsampled Shearlet transform and S-PCNNs in HSV space publication-title: Signal Process doi: 10.1016/j.sigpro.2018.08.002 – volume: 40 start-page: 343 year: 2018 end-page: 350 ident: CR23 article-title: Multi-modality medical image fusion based on image decomposition framework and nonsubsampled shearlet transform publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2017.10.001 – year: 2018 ident: CR42 article-title: Medical image fusion with parameter-adaptive pulse coupled-neural network in nonsubsampled Shearlet transform domain publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2018.2838778 – volume: 1 start-page: 1 year: 2018 end-page: 13 ident: CR40 article-title: A novel improved deep convolutional neural network model for medical image fusion publication-title: Cluster Comput doi: 10.1007/s10586-018-2026-1 – year: 2015 ident: CR26 article-title: Hybrid pixel-based method for cardiac ultrasound fusion based on integration of PCA and DWT publication-title: Comput Math Methods Med doi: 10.1155/2015/486532 – volume: 20 start-page: 319 year: 2013 end-page: 322 ident: CR43 article-title: Edge strength similarity for image quality assessment publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2013.2244081 – volume: 5 start-page: 861 year: 2005 end-page: 899 ident: CR8 article-title: Fast discrete Curvelet transforms publication-title: Multiscale Model Simul doi: 10.1137/05064182X – volume: 40 start-page: 197 year: 2016 end-page: 217 ident: CR25 article-title: A novel method of multimodal medical image fusion using fuzzy transform publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2016.06.021 – volume: 13 start-page: 229 year: 2018 end-page: 240 ident: CR33 article-title: Improved medical image fusion based on cascaded PCA and shift invariant wavelet transforms publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-017-1692-4 – volume: 10 start-page: 513 year: 2016 end-page: 527 ident: CR36 article-title: Local energy-based multimodal medical image fusion in Curvelet domain publication-title: IET Comput Vis doi: 10.1049/iet-cvi.2015.0251 – volume: 214 start-page: 471 year: 2016 end-page: 482 ident: CR44 article-title: A novel dictionary learning approach for multi-modality medical image fusion publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.06.036 – volume: 24 start-page: 1815 year: 2020 end-page: 1836 ident: CR3 article-title: Fast Curvelet transform through genetic algorithm for multimodal medical image fusion publication-title: Soft Comput doi: 10.1007/s00500-019-04011-5 – volume: 07 start-page: 2059 year: 2016 end-page: 2069 ident: CR2 article-title: Medical image compression using wrapping based fast discrete Curvelet transform and arithmetic coding publication-title: Circuits Syst doi: 10.4236/cs.2016.78179 – volume: 19 start-page: 4 year: 2014 end-page: 19 ident: CR15 article-title: Medical image fusion: a survey of the state of the art publication-title: Inf Fusion doi: 10.1016/j.inffus.2013.12.002 – volume: 16 start-page: 3735 year: 2016 end-page: 3745 ident: CR41 article-title: Multimodal sensor medical image fusion based on type-2 fuzzy logic in NSCT domain publication-title: IEEE Sens J doi: 10.1109/JSEN.2016.2533864 – volume: 24 start-page: 147 year: 2015 end-page: 164 ident: CR19 article-title: A general framework for image fusion based on multi-scale transform and sparse representation publication-title: Inf Fusion doi: 10.1016/j.inffus.2014.09.004 – year: 2018 ident: CR39 article-title: Medical image fusion based on sparse representation and PCNN in NSCT domain publication-title: Comput Math Methods Med doi: 10.1155/2018/2806047 – volume: 70 start-page: 625 year: 2015 end-page: 631 ident: CR7 article-title: Multi-modality medical image fusion using discrete Wavelet transform publication-title: Proc Comput Sci doi: 10.1016/j.procs.2015.10.057 – year: 2020 ident: CR37 article-title: Survey study of multimodality medical image fusion methods publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-08834-5 – volume: 235 start-page: 131 year: 2017 end-page: 139 ident: CR21 article-title: Structure tensor and nonsubsampled shearlet transform based algorithm for CT and MRI image fusion publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.01.006 – volume: 12 start-page: 1479 year: 2018 end-page: 1487 ident: CR32 article-title: Multimodal medical image fusion using non-subsampled shearlet transform and pulse coupled neural network incorporated with morphological gradient publication-title: Signal, Image Video Process doi: 10.1007/s11760-018-1303-z – volume: 2 start-page: 40 year: 2013 end-page: 46 ident: CR29 article-title: Image fusion methods and quality assessment parameters publication-title: Asian J Eng Appl Technol – ident: CR17 – volume: 30 start-page: 140 year: 2016 end-page: 148 ident: CR20 article-title: Multimodality medical image fusion algorithm based on gradient minimization smoothing filter and pulse coupled neural network publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2016.06.013 – volume: 101 start-page: 19 year: 2014 end-page: 22 ident: CR24 article-title: An improved image fusion technique based on texture feature optimization using Wavelet transform and particle of swarm optimization (POS) publication-title: Int J Comput Appl doi: 10.5120/17691-8656 – volume: 18 start-page: 91 year: 2015 end-page: 101 ident: CR35 article-title: Nonsubsampled shearlet based CT and MR medical image fusion using biologically inspired spiking neural network publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2014.11.009 – volume: 34 start-page: 195 year: 2017 end-page: 205 ident: CR45 article-title: Medical image fusion based on sparse representation of classified image patches publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2017.02.005 – volume: 157 start-page: 143 year: 2015 end-page: 152 ident: CR6 article-title: A new contrast based multimodal medical image fusion framework publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.01.025 – ident: CR9 – volume: 5264 start-page: 658 year: 2008 end-page: 665 ident: CR18 article-title: A novel pixel-level and feature-level combined multisensor image fusion scheme publication-title: Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) doi: 10.1007/978-3-540-87734-9-75 – volume: 9 start-page: 453 issue: 42 year: 2017 end-page: 460 ident: CR14 article-title: Feature level based multimodal medical image fusion with hadamard transform publication-title: Int J Control Theory Appl – volume: 17 start-page: 99 year: 2016 end-page: 124 ident: CR13 article-title: Current trends in medical image registration and fusion publication-title: Egypt Inf J doi: 10.1016/j.eij.2015.09.002 – year: 2007 ident: CR27 article-title: Mutual information improves image fusion quality assessments publication-title: SPIE Newsroom doi: 10.1117/2.1200708.0824 – volume: 16 start-page: 33 year: 2019 end-page: 48 ident: CR38 article-title: Multimodal medical image fusion based on yager’s intuitionistic fuzzy sets publication-title: Iran J Fuzzy Syst doi: 10.22111/IJFS.2019.4482 – volume: 34 start-page: 36 year: 2017 end-page: 43 ident: CR12 article-title: Optimum spectrum mask based medical image fusion using Gray Wolf Optimization publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2017.01.003 – ident: CR28 – volume: 182 start-page: 995 year: 2019 end-page: 1014 ident: CR30 article-title: Multiscale fusion of multimodal medical images using lifting scheme based biorthogonal wavelet transform publication-title: Optik (Stuttg) doi: 10.1016/j.ijleo.2018.12.028 – volume: 15 start-page: 6783 year: 2015 end-page: 6790 ident: CR5 article-title: Multimodal medical image sensor fusion framework using cascade of Wavelet and Contourlet transform domains publication-title: IEEE Sens J doi: 10.1109/JSEN.2015.2465935 – volume: 18 start-page: 6804 year: 2018 end-page: 6811 ident: CR10 article-title: Optimum Wavelet-based homomorphic medical image fusion using hybrid genetic-Grey Wolf optimization algorithm publication-title: IEEE Sens J doi: 10.1109/JSEN.2018.2822712 – volume: 182 start-page: 995 year: 2019 ident: 2154_CR30 publication-title: Optik (Stuttg) doi: 10.1016/j.ijleo.2018.12.028 – volume: 2 start-page: 40 year: 2013 ident: 2154_CR29 publication-title: Asian J Eng Appl Technol doi: 10.51983/ajeat-2013.2.1.643 – volume: 10 start-page: 513 year: 2016 ident: 2154_CR36 publication-title: IET Comput Vis doi: 10.1049/iet-cvi.2015.0251 – volume: 30 start-page: 140 year: 2016 ident: 2154_CR20 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2016.06.013 – volume: 1 start-page: 1 year: 2018 ident: 2154_CR40 publication-title: Cluster Comput doi: 10.1007/s10586-018-2026-1 – volume: 101 start-page: 19 year: 2014 ident: 2154_CR24 publication-title: Int J Comput Appl doi: 10.5120/17691-8656 – year: 2015 ident: 2154_CR26 publication-title: Comput Math Methods Med doi: 10.1155/2015/486532 – volume: 13 start-page: 229 year: 2018 ident: 2154_CR33 publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-017-1692-4 – volume: 24 start-page: 147 year: 2015 ident: 2154_CR19 publication-title: Inf Fusion doi: 10.1016/j.inffus.2014.09.004 – volume: 214 start-page: 471 year: 2016 ident: 2154_CR44 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.06.036 – ident: 2154_CR28 – volume: 18 start-page: 91 year: 2015 ident: 2154_CR35 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2014.11.009 – volume: 157 start-page: 143 year: 2015 ident: 2154_CR6 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.01.025 – volume: 18 start-page: 6804 year: 2018 ident: 2154_CR10 publication-title: IEEE Sens J doi: 10.1109/JSEN.2018.2822712 – volume: 70 start-page: 625 year: 2015 ident: 2154_CR7 publication-title: Proc Comput Sci doi: 10.1016/j.procs.2015.10.057 – volume: 40 start-page: 197 year: 2016 ident: 2154_CR25 publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2016.06.021 – volume: 28 start-page: 175 year: 2018 ident: 2154_CR1 publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.22268 – ident: 2154_CR9 doi: 10.1109/ICASSP.2006.1660497 – ident: 2154_CR17 doi: 10.1117/12.2205483 – year: 2007 ident: 2154_CR27 publication-title: SPIE Newsroom doi: 10.1117/2.1200708.0824 – volume: 99 start-page: 619 year: 2018 ident: 2154_CR4 publication-title: Wirel Pers Commun doi: 10.1007/s11277-017-4958-9 – volume: 20 start-page: 319 year: 2013 ident: 2154_CR43 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2013.2244081 – volume: 16 start-page: 3735 year: 2016 ident: 2154_CR41 publication-title: IEEE Sens J doi: 10.1109/JSEN.2016.2533864 – volume: 5 start-page: 861 year: 2005 ident: 2154_CR8 publication-title: Multiscale Model Simul doi: 10.1137/05064182X – volume: 131 start-page: 58 year: 2017 ident: 2154_CR11 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2017.05.017 – volume: 07 start-page: 2059 year: 2016 ident: 2154_CR2 publication-title: Circuits Syst doi: 10.4236/cs.2016.78179 – volume: 4 start-page: 2319 year: 2013 ident: 2154_CR34 publication-title: Int J Sci Res – volume: 9 start-page: 453 issue: 42 year: 2017 ident: 2154_CR14 publication-title: Int J Control Theory Appl – year: 2018 ident: 2154_CR39 publication-title: Comput Math Methods Med doi: 10.1155/2018/2806047 – volume: 34 start-page: 195 year: 2017 ident: 2154_CR45 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2017.02.005 – volume: 7 start-page: 1 year: 2019 ident: 2154_CR31 publication-title: IEEE Access doi: 10.1109/access.2019.2898111 – volume: 40 start-page: 343 year: 2018 ident: 2154_CR23 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2017.10.001 – volume: 15 start-page: 6783 year: 2015 ident: 2154_CR5 publication-title: IEEE Sens J doi: 10.1109/JSEN.2015.2465935 – volume: 17 start-page: 99 year: 2016 ident: 2154_CR13 publication-title: Egypt Inf J doi: 10.1016/j.eij.2015.09.002 – volume: 24 start-page: 1815 year: 2020 ident: 2154_CR3 publication-title: Soft Comput doi: 10.1007/s00500-019-04011-5 – volume: 12 start-page: 1479 year: 2018 ident: 2154_CR32 publication-title: Signal, Image Video Process doi: 10.1007/s11760-018-1303-z – volume: 5264 start-page: 658 year: 2008 ident: 2154_CR18 publication-title: Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) doi: 10.1007/978-3-540-87734-9-75 – volume: 153 start-page: 379 year: 2018 ident: 2154_CR16 publication-title: Signal Process doi: 10.1016/j.sigpro.2018.08.002 – year: 2020 ident: 2154_CR37 publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-08834-5 – volume: 19 start-page: 4 year: 2014 ident: 2154_CR15 publication-title: Inf Fusion doi: 10.1016/j.inffus.2013.12.002 – volume: 16 start-page: 33 year: 2019 ident: 2154_CR38 publication-title: Iran J Fuzzy Syst doi: 10.22111/IJFS.2019.4482 – ident: 2154_CR22 doi: 10.23919/ICIF.2017.8009769 – year: 2018 ident: 2154_CR42 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2018.2838778 – volume: 235 start-page: 131 year: 2017 ident: 2154_CR21 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.01.006 – volume: 34 start-page: 36 year: 2017 ident: 2154_CR12 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2017.01.003 |
| SSID | ssj0000393111 |
| Score | 2.288671 |
| Snippet | Multimodal medical image fusion aims to reduce insignificant information and improve clinical diagnosis accuracy. The purpose of image fusion is to retain... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 6001 |
| SubjectTerms | Algorithms Artificial Intelligence Computational Intelligence Computer vision Correlation coefficients Decomposition Dictionaries Discrete Wavelet Transform Engineering Entropy Hybrid systems Image acquisition Image quality Medical imaging Methods Neural networks Original Research Pixels Principal components analysis Regions Robotics and Automation Signal quality Signal to noise ratio Similarity Tomography User Interfaces and Human Computer Interaction Wavelet transforms |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA61vXgRRcVqlRy8aXA3ySbNQXzRUgSLiIXelmweUOhL24L-ezP7aFGw590dlkkyM5nH9yF0qRlTQlJGtEgU4SZcd5S0GRHWmkRIx6iBaeSXvugN-PMwGdZQv5qFgbbKyibmhtrODOTIb6gCwlLJuLybfxBgjYLqakWhoUtqBXubQ4ztoAYFZKw6ajx2-q9v66wLTKLGOSkvwMSTJGaynKQp5umoSCiBGxW4Qk6i395qE4L-qZrmzqi7j_bKKBI_FMt-gGpueojue98wfoXnoy83Jt7lkJ3YryAfhgvEZhxCVJz3EE5mNgiYFGUaPJoEs7I4QoNu5_2pR0qCBGLCyVmG37fCe-Zt4rNwM_GJE05zrTxVxsUOevAyK5nnuu2h3qdDdGNlbKmPrGGRZceoPp1N3QnCinur2sLZqK24iVyIWpLMZ15pbqz2uoniShGpKdHDgcRinG5wj0F5aVBemisvjZroav3NvMDO2Pp2q9JvWp6jRbpZ9Sa6rnS-efy_tNPt0s7QLoXmlDyd0kL15efKnYfoYpldlFvmB-WKyxU priority: 102 providerName: ProQuest |
| Title | Hybrid pixel-feature fusion system for multimodal medical images |
| URI | https://link.springer.com/article/10.1007/s12652-020-02154-0 https://www.proquest.com/docview/2919507347 |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1868-5145 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000393111 issn: 1868-5137 databaseCode: AFBBN dateStart: 20100301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1868-5145 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0000393111 issn: 1868-5137 databaseCode: BENPR dateStart: 20100301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1868-5145 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000393111 issn: 1868-5137 databaseCode: AGYKE dateStart: 20100101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1868-5145 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000393111 issn: 1868-5137 databaseCode: U2A dateStart: 20100301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH5oe9GDu1itkoM3HUlmJpPMzSrWolhEDOgpTGaBoq3FtqD-emeyGBUVPAWSySN5s7z9ewD7ghDOIkyQYCFHVFpzh0cqQ0wpGbJIEyxdNfJVn_USenEX3pVFYZMq270KSeYndV3shlmIkTN3nJyiyBrqzRxvqwHNzvn9Ze1bcfWmQd5614HBozAgUVkv8zOhrzKpVjS_xUZzkdNdhqT62CLT5OFoNs2O5Ns3HMf__s0KLJU6qNcpFs0qzOnRGix-QiZch-Peqyvl8saDF_2IjM7hPz0zc741r0B_9qy66-X5iMMnZckNi5CPNxjaI2qyAUn37Pa0h8pmC0jaXTi1TFLMGGJUaDJr5ZhQMy2o4AZzqQPt8vkyFRFDRWxc7FBYTUlFgcLGV5L4imxCY_Q00lvgcWoUj5lWfsyp9LXVgMLMZIYLKpUwogVBxe5UlkjkriHGY1pjKDvupJY7ac6d1G_Bwcc74wKH48_R7WoW03JPTlLMXcvbiNCoBYfVpNSPf6e2_b_hO7CAXeJL7qppQ2P6PNO7VnOZZnswH3fP98rlaq8nZ_3rG3s3wZ13L5XmNg |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT9tAFH6iyYFeUCuKGrbOAU5lVHtmPM4cIkoLUVgSoQokbu54FgmJLJAgyp_jt3WeFyKQ4Jaz7Wfp8_Ob7-0AO5pzJVPGqZaJosIEd0elNqfSWpPI1HFmsBu5P5C9S3FylVwtwVPdC4NllbVNLAy1HRuMkf9gCheWplyk-5NbilujMLtar9DQ1WoF2ylGjFWNHafu8SG4cNPO8WH43ruMdY8ufvdotWWAmqB-M5rEVnrPvU18Hui9T5x0WmjlmTIudljIltuUe6HbHpNmOlAEm8aW-cgaHlke5H6ApuBCBeev-etocP7nOcqDna9xsQQYx9KHd_G06twp-_eYTBhFDw6PXkGjl6fjnPK-ytIWh1_3E6xUrJUclGr2GZbcaBV-9h6x3YtMrv-5G-pdMSKU-HuMv5FyQjQJlJgUNYvDsQ0ChmVaiFwPgxmbfoHLhUC1Bo3ReOS-AlHCW9WWzkZtJUzkAktKcp97pYWx2usWxDUQmammlePSjJtsPmcZwcsCeFkBXha14PvzM5NyVse7d2_W-GbVfzvN5lrWgr0a8_nlt6Wtvy_tGyz3Lvpn2dnx4HQDPjIsjClCOZvQmN3du63AbGb5dqU-BP4uWmP_A56vCoQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA5SQfQgrlitOgdvGjqTbZqbRS11Kx4s9BYyWaDQToudgv57k1naKip4nsyDeUnmrd_3ALiQGHMWIwwloxwS5cIdHusEMq0VZbHBSHk08nOPdfvkYUAHKyj-vNu9KkkWmAbP0pRmzam2zSXwDTGKoA99vM0i0AXt68QTJbgT3UftRZbFI0-jfAivp4WHNMJxiZz5WcxX67R0Ob9VSXPj09kB26XXGLSLbd4FaybdA1srXIL74Lr74cFXwXT4bkbQmpywM7Bznw0LCr7mwDmoQd5BOJ5oJ25cFGmC4dj9VGYHoN-5e73pwnI8AlTu3mTuYzSzFltNbeLiEksNM5JIbhFXJjK-Ay_RMbZEtqyv9knn2-g40siGWuFQ40NQSyepOQIBJ1bzFjM6bHGiQuN8FprYxHJJlJZW1kFUqUWokjvcj7AYiSXrsVelcKoUuSpFWAeXi3emBXPGn6sblbZFeYtmAnE_pDbGJK6Dq2oHlo9_l3b8v-XnYOPltiOe7nuPJ2AT-a6VPM_SALXsbW5OnduRJWf5yfoEQJrNAg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+pixel-feature+fusion+system+for+multimodal+medical+images&rft.jtitle=Journal+of+ambient+intelligence+and+humanized+computing&rft.au=Tawfik%2C+Nahed&rft.au=Elnemr%2C+Heba+A.&rft.au=Fakhr%2C+Mahmoud&rft.au=Dessouky%2C+Moawad+I.&rft.date=2021-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1868-5137&rft.eissn=1868-5145&rft.volume=12&rft.issue=6&rft.spage=6001&rft.epage=6018&rft_id=info:doi/10.1007%2Fs12652-020-02154-0&rft.externalDocID=10_1007_s12652_020_02154_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-5137&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-5137&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-5137&client=summon |