Insider threat detection using supervised machine learning algorithms Insider threat detection using supervised machine learning algorithms
Insider threats refer to abnormal actions taken by individuals with privileged access, compromising system data’s confidentiality, integrity, and availability. They pose significant cybersecurity risks, leading to substantial losses for several organizations. Detecting insider threats is crucial due...
Saved in:
| Published in | Telecommunication systems Vol. 87; no. 4; pp. 899 - 915 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.12.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1018-4864 1572-9451 |
| DOI | 10.1007/s11235-023-01085-3 |
Cover
| Abstract | Insider threats refer to abnormal actions taken by individuals with privileged access, compromising system data’s confidentiality, integrity, and availability. They pose significant cybersecurity risks, leading to substantial losses for several organizations. Detecting insider threats is crucial due to the imbalance in their datasets. Moreover, the performance of existing works has been evaluated on various datasets and problem settings, making it challenging to compare the effectiveness of different algorithms and offer recommendations to decision-makers. Furthermore, no existing work investigates the impact of changing hyperparameters. This paper aims to objectively assess the performance of various supervised machine learning algorithms for detecting insider threats under the same setting. We precisely evaluate the performance of various supervised machine learning algorithms on a balanced dataset using the same feature extraction method. Additionally, we explore the impact of hyperparameter tuning on performance within the balanced dataset. Finally, we investigate the performance of different algorithms in the context of imbalanced datasets under various conditions. We conduct all the experiments in the publicly available CERT r4.2 dataset. The results show that supervised learning with a balanced dataset in RF obtains the best accuracy and F1-score of 95.9% compared with existing works, such as, DNN, LSTM Autoencoder and User Behavior Analysis. |
|---|---|
| AbstractList | Insider threats refer to abnormal actions taken by individuals with privileged access, compromising system data’s confidentiality, integrity, and availability. They pose significant cybersecurity risks, leading to substantial losses for several organizations. Detecting insider threats is crucial due to the imbalance in their datasets. Moreover, the performance of existing works has been evaluated on various datasets and problem settings, making it challenging to compare the effectiveness of different algorithms and offer recommendations to decision-makers. Furthermore, no existing work investigates the impact of changing hyperparameters. This paper aims to objectively assess the performance of various supervised machine learning algorithms for detecting insider threats under the same setting. We precisely evaluate the performance of various supervised machine learning algorithms on a balanced dataset using the same feature extraction method. Additionally, we explore the impact of hyperparameter tuning on performance within the balanced dataset. Finally, we investigate the performance of different algorithms in the context of imbalanced datasets under various conditions. We conduct all the experiments in the publicly available CERT r4.2 dataset. The results show that supervised learning with a balanced dataset in RF obtains the best accuracy and F1-score of 95.9% compared with existing works, such as, DNN, LSTM Autoencoder and User Behavior Analysis. |
| Author | Yin, Jiao Manoharan, Phavithra Wang, Hua Ye, Wenjie Zhang, Yanchun |
| Author_xml | – sequence: 1 givenname: Phavithra surname: Manoharan fullname: Manoharan, Phavithra organization: School of Computer Science and Technology, Zhejiang Normal University – sequence: 2 givenname: Jiao surname: Yin fullname: Yin, Jiao email: jiao.yin@vu.edu.au organization: School of Computer Science and Technology, Zhejiang Normal University – sequence: 3 givenname: Hua surname: Wang fullname: Wang, Hua organization: School of Computer Science and Technology, Zhejiang Normal University – sequence: 4 givenname: Yanchun surname: Zhang fullname: Zhang, Yanchun organization: School of Computer Science and Technology, Zhejiang Normal University, Department of New Networks, Peng Cheng Laboratory, Institute for Sustainable Industries and Liveable Cities, Victoria University – sequence: 5 givenname: Wenjie surname: Ye fullname: Ye, Wenjie organization: School of Computer Science and Technology, Zhejiang Normal University |
| BookMark | eNp9kEFLAzEQhYNUsK3-AU8LnqOZZLObHKVULRS86Dlkd6dtSputSVbw37vrCoKHnmZg3jcz783IxLceCbkFdg-MlQ8RgAtJGReUAVOSigsyBVlyqnMJk75noGiuivyKzGLcMzZgekqWKx9dgyFLu4A2ZQ0mrJNrfdZF57dZ7E4YPl3EJjvaeuc8Zge0wQ8ze9i2waXdMV6Ty409RLz5rXPy_rR8W7zQ9evzavG4prUAnaiEvC5Ky1mpoNa84hVKrq3KN1DJoqlA64qDsljnVhQl07nmEoVtSiwKKVDMyd249xTajw5jMvu2C74_aQTkoBVwVfQqNarq0MYYcGNql-xgKgXrDgaYGdybMTTTh2Z-QjOiR_k_9BTc0Yav85AYodiL_RbD31dnqG9u54Ce |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3369906 crossref_primary_10_1007_s10462_024_10890_4 crossref_primary_10_1007_s10207_025_01002_6 crossref_primary_10_1007_s11280_024_01275_2 crossref_primary_10_3390_fi17020093 |
| Cites_doi | 10.1109/MILCOM.2018.8599790 10.24251/HICSS.2017.319 10.1109/ACCESS.2020.2990195 10.1145/3417978 10.1145/2939672.2939785 10.1109/SPW.2013.37 10.11575/PRISM/10182 10.32604/cmc.2022.019289 10.1145/2995959.2995964 10.1007/s11280-019-00704-x 10.1214/ss/998929476 10.1007/s11235-022-00957-4 10.1109/CSCI46756.2018.00025 10.1016/j.cosrev.2022.100500 10.1007/978-3-031-23020-2_5 10.1145/1645953.1646166 10.1109/NSS.2010.13 10.1109/JAS.2022.105860 10.1145/3139923.3139929 10.1007/978-3-319-93698-7_4 10.1145/3445945.3445958 10.1007/s11235-022-00986-z 10.1007/978-3-642-23644-0_10 10.1109/ICGI.2017.37 10.1109/COMST.2018.2885561 10.1109/TII.2022.3192027 10.1109/TBDATA.2016.2599928 10.1007/s13755-023-00212-3 10.1007/s11280-020-00813-y 10.1016/j.future.2010.07.007 10.1109/COMST.2018.2800740 10.1109/Trustcom/BigDataSE/ICESS.2017.227 10.1109/SPW.2018.00043 10.1145/3406601.3406610 10.1007/978-3-030-90888-1_12 10.1109/TIFS.2019.2932228 10.1007/978-3-030-39469-1_19 10.1109/SSCI44817.2019.9003134 10.1007/978-3-030-31729-4_11 10.1007/s11235-021-00850-6 10.1007/978-3-031-09640-2_17 10.1007/978-3-319-18032-8_15 10.1109/JPROC.2020.2993293 10.1109/TSMCA.2003.819917 10.1109/MILCOM47813.2019.9020760 10.1109/ACCESS.2021.3118297 10.1145/3290688.3290692 10.1109/JAS.2021.1004261 10.1145/3512345 10.1109/TNSM.2020.2967721 10.1093/comjnl/bxr028 10.1007/978-981-15-6318-8_45 10.1007/s11280-022-01076-5 10.1002/cpe.3286 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Dec 2024 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Dec 2024 |
| DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s11235-023-01085-3 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1572-9451 |
| EndPage | 915 |
| ExternalDocumentID | 10_1007_s11235_023_01085_3 |
| GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29Q 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 88I 8FE 8FG 8FL 8FW 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW LAK LLZTM M0C M2P M4Y MA- MK~ ML~ MS~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I OAM OVD P19 P2P P62 P9O PF0 PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCF SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ZYFGU ~A9 ~EX AAYXX ABBRH ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PQGLB PUEGO 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c319t-514c67a20781c92b2be529a84f1b56db199b218aec4a367094925e3ad7e6653e3 |
| IEDL.DBID | AGYKE |
| ISSN | 1018-4864 |
| IngestDate | Fri Jul 25 23:11:36 EDT 2025 Wed Oct 01 03:17:42 EDT 2025 Thu Apr 24 23:00:16 EDT 2025 Mon Mar 03 15:05:47 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Insider threat Imbalanced dataset Cybersecurity Supervised learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-514c67a20781c92b2be529a84f1b56db199b218aec4a367094925e3ad7e6653e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3141981286 |
| PQPubID | 45633 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_3141981286 crossref_citationtrail_10_1007_s11235_023_01085_3 crossref_primary_10_1007_s11235_023_01085_3 springer_journals_10_1007_s11235_023_01085_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20241200 2024-12-00 20241201 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 20241200 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | Modelling, Analysis, Design and Management |
| PublicationTitle | Telecommunication systems |
| PublicationTitleAbbrev | Telecommun Syst |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | X Sun (1085_CR29) 2011; 27 G Lin (1085_CR5) 2020; 108 H Kavusi (1085_CR16) 2023; 82 1085_CR21 T Huang (1085_CR11) 2019; 24 S Kok (1085_CR22) 2019; 19 1085_CR25 1085_CR27 1085_CR26 J Qiu (1085_CR7) 2020; 53 1085_CR61 1085_CR60 1085_CR18 X Feng (1085_CR2) 2022; 10 1085_CR10 F Zhang (1085_CR55) 2020; 23 1085_CR53 1085_CR12 H Wang (1085_CR19) 2016; 28 1085_CR56 1085_CR9 1085_CR58 1085_CR8 1085_CR13 1085_CR59 1085_CR50 1085_CR52 1085_CR51 Y Chen (1085_CR57) 2023; 11 H Wang (1085_CR24) 2003; 33 L Liu (1085_CR38) 2018; 20 1085_CR43 1085_CR45 1085_CR44 DC Le (1085_CR42) 2020; 17 1085_CR46 1085_CR49 M Humayun (1085_CR17) 2022; 71 1085_CR48 1085_CR1 1085_CR41 1085_CR40 Y Wang (1085_CR54) 2016; 4 X Sun (1085_CR23) 2012; 55 1085_CR39 J Zhang (1085_CR3) 2021; 9 X Chen (1085_CR6) 2019; 15 N Sun (1085_CR4) 2018; 21 1085_CR32 1085_CR31 1085_CR34 1085_CR33 1085_CR36 1085_CR35 1085_CR37 X Zhu (1085_CR15) 2022; 54 X Hu (1085_CR14) 2022; 46 1085_CR30 H Wang (1085_CR20) 2020; 23 A Kim (1085_CR28) 2020; 8 R Nasir (1085_CR47) 2021; 9 |
| References_xml | – ident: 1085_CR39 doi: 10.1109/MILCOM.2018.8599790 – ident: 1085_CR26 – ident: 1085_CR44 doi: 10.24251/HICSS.2017.319 – volume: 8 start-page: 78847 year: 2020 ident: 1085_CR28 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2990195 – volume: 53 start-page: 1 issue: 6 year: 2020 ident: 1085_CR7 publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/3417978 – ident: 1085_CR53 doi: 10.1145/2939672.2939785 – ident: 1085_CR52 doi: 10.1109/SPW.2013.37 – ident: 1085_CR35 doi: 10.11575/PRISM/10182 – volume: 71 start-page: 5039 year: 2022 ident: 1085_CR17 publication-title: Computers, Materials and Continua doi: 10.32604/cmc.2022.019289 – ident: 1085_CR41 doi: 10.1145/2995959.2995964 – volume: 23 start-page: 951 year: 2020 ident: 1085_CR20 publication-title: World Wide Web doi: 10.1007/s11280-019-00704-x – ident: 1085_CR34 doi: 10.1214/ss/998929476 – volume: 82 start-page: 27 issue: 1 year: 2023 ident: 1085_CR16 publication-title: Telecommunication Systems doi: 10.1007/s11235-022-00957-4 – ident: 1085_CR50 doi: 10.1109/CSCI46756.2018.00025 – volume: 46 year: 2022 ident: 1085_CR14 publication-title: Computer Science Review doi: 10.1016/j.cosrev.2022.100500 – ident: 1085_CR1 doi: 10.1007/978-3-031-23020-2_5 – ident: 1085_CR27 – ident: 1085_CR18 doi: 10.1145/1645953.1646166 – ident: 1085_CR48 – ident: 1085_CR12 doi: 10.1109/NSS.2010.13 – volume: 10 start-page: 25 issue: 1 year: 2022 ident: 1085_CR2 publication-title: IEEE/CAA Journal of Automatica Sinica doi: 10.1109/JAS.2022.105860 – ident: 1085_CR36 doi: 10.1145/3139923.3139929 – ident: 1085_CR58 doi: 10.1007/978-3-319-93698-7_4 – ident: 1085_CR46 doi: 10.1145/3445945.3445958 – ident: 1085_CR21 doi: 10.1007/s11235-022-00986-z – ident: 1085_CR33 doi: 10.1007/978-3-642-23644-0_10 – ident: 1085_CR59 doi: 10.1109/ICGI.2017.37 – volume: 21 start-page: 1744 issue: 2 year: 2018 ident: 1085_CR4 publication-title: IEEE Communications Surveys and Tutorials doi: 10.1109/COMST.2018.2885561 – ident: 1085_CR10 doi: 10.1109/TII.2022.3192027 – ident: 1085_CR30 – volume: 4 start-page: 418 issue: 3 year: 2016 ident: 1085_CR54 publication-title: IEEE Transactions on Big Data doi: 10.1109/TBDATA.2016.2599928 – volume: 11 start-page: 8 issue: 1 year: 2023 ident: 1085_CR57 publication-title: Health Information Science and Systems doi: 10.1007/s13755-023-00212-3 – volume: 23 start-page: 2957 year: 2020 ident: 1085_CR55 publication-title: World Wide Web doi: 10.1007/s11280-020-00813-y – volume: 27 start-page: 348 issue: 3 year: 2011 ident: 1085_CR29 publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2010.07.007 – volume: 20 start-page: 1397 issue: 2 year: 2018 ident: 1085_CR38 publication-title: IEEE Communications Surveys and Tutorials doi: 10.1109/COMST.2018.2800740 – ident: 1085_CR43 doi: 10.1109/Trustcom/BigDataSE/ICESS.2017.227 – volume: 19 start-page: 136 issue: 2 year: 2019 ident: 1085_CR22 publication-title: International Journal of Computer Science and Network Security – ident: 1085_CR45 doi: 10.1109/SPW.2018.00043 – ident: 1085_CR60 doi: 10.1145/3406601.3406610 – ident: 1085_CR25 doi: 10.1007/978-3-030-90888-1_12 – volume: 15 start-page: 987 year: 2019 ident: 1085_CR6 publication-title: IEEE Transactions on Information Forensics and Security doi: 10.1109/TIFS.2019.2932228 – ident: 1085_CR56 doi: 10.1007/978-3-030-39469-1_19 – ident: 1085_CR8 doi: 10.1109/SSCI44817.2019.9003134 – ident: 1085_CR31 doi: 10.1007/978-3-030-31729-4_11 – ident: 1085_CR13 doi: 10.1007/s11235-021-00850-6 – ident: 1085_CR37 doi: 10.1007/978-3-031-09640-2_17 – ident: 1085_CR40 doi: 10.1007/978-3-319-18032-8_15 – volume: 24 start-page: 508 issue: 3 year: 2019 ident: 1085_CR11 publication-title: IEEE Transactions on Evolutionary Computation – volume: 108 start-page: 1825 issue: 10 year: 2020 ident: 1085_CR5 publication-title: Proceedings of the IEEE doi: 10.1109/JPROC.2020.2993293 – volume: 33 start-page: 697 issue: 6 year: 2003 ident: 1085_CR24 publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans doi: 10.1109/TSMCA.2003.819917 – ident: 1085_CR51 doi: 10.1109/MILCOM47813.2019.9020760 – volume: 9 start-page: 143266 year: 2021 ident: 1085_CR47 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3118297 – ident: 1085_CR49 doi: 10.1145/3290688.3290692 – volume: 9 start-page: 377 issue: 3 year: 2021 ident: 1085_CR3 publication-title: IEEE/CAA Journal of Automatica Sinica doi: 10.1109/JAS.2021.1004261 – volume: 54 start-page: 1 issue: 11s year: 2022 ident: 1085_CR15 publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/3512345 – volume: 17 start-page: 30 issue: 1 year: 2020 ident: 1085_CR42 publication-title: IEEE Transactions on Network and Service Management doi: 10.1109/TNSM.2020.2967721 – volume: 55 start-page: 422 issue: 4 year: 2012 ident: 1085_CR23 publication-title: The Computer Journal doi: 10.1093/comjnl/bxr028 – ident: 1085_CR61 doi: 10.1007/978-981-15-6318-8_45 – ident: 1085_CR32 doi: 10.1007/978-3-642-23644-0_10 – ident: 1085_CR9 doi: 10.1007/s11280-022-01076-5 – volume: 28 start-page: 600 issue: 3 year: 2016 ident: 1085_CR19 publication-title: Concurrency and Computation: Practice and Experience doi: 10.1002/cpe.3286 |
| SSID | ssj0010079 |
| Score | 2.3975863 |
| Snippet | Insider threats refer to abnormal actions taken by individuals with privileged access, compromising system data’s confidentiality, integrity, and availability.... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 899 |
| SubjectTerms | Algorithms Artificial Intelligence Availability Business and Management Computer Communication Networks Cybersecurity Datasets IT in Business Machine learning Original Paper Performance evaluation Probability Theory and Stochastic Processes Supervised learning Threat evaluation |
| Subtitle | Insider threat detection using supervised machine learning algorithms |
| Title | Insider threat detection using supervised machine learning algorithms |
| URI | https://link.springer.com/article/10.1007/s11235-023-01085-3 https://www.proquest.com/docview/3141981286 |
| Volume | 87 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1572-9451 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010079 issn: 1018-4864 databaseCode: AFBBN dateStart: 19970601 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1572-9451 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010079 issn: 1018-4864 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1572-9451 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010079 issn: 1018-4864 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4IXPTg24gi2YM3XcI-utAjMeAr8WQTPDXd7RaMUAgtF3-9u32AEjXh3N1NO_uYbzvffANwHbpt5ZjTEZvLQxfzSGosjZ_HiisW0Y62EmOWbfEiHjz-NHSGRVJYUrLdy5BkdlKvk91sWic2PsZcfy1lnlWglultVaHWu3977q-iB6a5m0U5if1ZJniRLPP7KD8d0hplbgRGM38zOACvfNOcZvLRWqaypT43RBy3_ZRD2C8AKOrlK-YIdnR8DHvfZAlPoP-YF_FE6dhCShTqNCNsxciy5EcoWc7tCZPoEE0zLqZGRfGJEQomo9niPR1Pk1PwBv3XuwdclFvAyuzDFBvopEQnoFb-R7lUUqkd6gZdHhHpiFAS15UGEARa8SCTfbO6hpoFYUcL4TDNzqAaz2J9DohFigRERxZ_8nZoRiEiMliGhUQLylkdSGlzXxVa5LYkxsRfqyhbE_nGRH5mIt_0uVn1medKHP-2bpRT6Re7MvEZ4cQ1iKYr6nBbzsz68d-jXWzX_BJ2qcE-OeulAdV0sdRXBrukslks1SZUPNr7AiRw4iU |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UD-rB-DOiqD140yZ07Qo7EgMBRU6QcGvWrgMTGYSN_9_XbmNq1MTz2nd4Xfu-9n3vewjdR0FT-3A6Erg8tAmPlSEK4jzRXLPYaxkrMWbZFiPRn_DnqT8tisLSku1epiTdSV0Vu9myTgIxBq6_ljLPdtGeFbCyivkTr7PNHcDgwOU4qX0qE7wolfnZxtdwVGHMb2lRF216x-iogIm4k6_rCdoxySk6_CQeeIa6g7zVJs7mFvjhyGSOVpVgy2Wf4XSzsudAaiK8cIxJg4sWETMcvs-W67dsvkjP0aTXHT_1SdEUgWjYLRkBgKNFK_SsSI8OPOUp43tB2OYxVb6IFA0CBWE7NJqHTpzNqg8aFkYtI4TPDLtAtWSZmEuEWaxpSE1sUSJvRmCFihgQB4uoER5ndURL30hdKIbbxhXvstI6tv6U4E_p_ClhzsN2zirXy_hzdKN0uSz2TioZ5TQA3NEWdfRYLkP1-XdrV_8bfof2--PXoRwORi_X6MADtJLzVBqolq035gbQRqZu3c_1AYJRxzE |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UE6MH48-IovbgTRvo2hV2JAoBNcSDJNyatevABAaB8f_72m0OjZp43msPrz_e173vfQ-h2yhoaB9uRwKPhxbhsTJEQZwnmmsWe01jJcYs22IgekP-NPJHG1X8ju1epCSzmgar0pSk9UUU18vCN1viSSDewFPY0ufZNtrhVigBdvTQa3_mEcA4cPlOan-bCZ6Xzfw8x9fQVOLNbylSF3m6h-ggh4y4na3xEdoyyTHa3xASPEGdftZ2E6cTCwJxZFJHsUqw5bWP8Wq9sHfCykR45tiTBuftIsY4nI7ny_d0MludomG38_bQI3mDBKLh5KQEwI4WzdCzgj068JSnjO8FYYvHVPkiUjQIFITw0GgeOqE2q0RoWBg1jRA-M-wMVZJ5Ys4RZrGmITWxRYy8EcEsVMSAPlhEjfA4qyJa-EbqXD3cNrGYylL32PpTgj-l86eEMXefYxaZdsaf1rXC5TI_RyvJKKcBYJCWqKL7YhnKz7_PdvE_8xu0-_rYlS_9wfMl2vMAuGSUlRqqpMu1uQLgkaprt7c-AG5vy20 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insider+threat+detection+using+supervised+machine+learning+algorithms&rft.jtitle=Telecommunication+systems&rft.au=Manoharan%2C+Phavithra&rft.au=Yin%2C+Jiao&rft.au=Wang%2C+Hua&rft.au=Zhang%2C+Yanchun&rft.date=2024-12-01&rft.pub=Springer+US&rft.issn=1018-4864&rft.eissn=1572-9451&rft.volume=87&rft.issue=4&rft.spage=899&rft.epage=915&rft_id=info:doi/10.1007%2Fs11235-023-01085-3&rft.externalDocID=10_1007_s11235_023_01085_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1018-4864&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1018-4864&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1018-4864&client=summon |