Insider threat detection using supervised machine learning algorithms Insider threat detection using supervised machine learning algorithms

Insider threats refer to abnormal actions taken by individuals with privileged access, compromising system data’s confidentiality, integrity, and availability. They pose significant cybersecurity risks, leading to substantial losses for several organizations. Detecting insider threats is crucial due...

Full description

Saved in:
Bibliographic Details
Published inTelecommunication systems Vol. 87; no. 4; pp. 899 - 915
Main Authors Manoharan, Phavithra, Yin, Jiao, Wang, Hua, Zhang, Yanchun, Ye, Wenjie
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1018-4864
1572-9451
DOI10.1007/s11235-023-01085-3

Cover

Abstract Insider threats refer to abnormal actions taken by individuals with privileged access, compromising system data’s confidentiality, integrity, and availability. They pose significant cybersecurity risks, leading to substantial losses for several organizations. Detecting insider threats is crucial due to the imbalance in their datasets. Moreover, the performance of existing works has been evaluated on various datasets and problem settings, making it challenging to compare the effectiveness of different algorithms and offer recommendations to decision-makers. Furthermore, no existing work investigates the impact of changing hyperparameters. This paper aims to objectively assess the performance of various supervised machine learning algorithms for detecting insider threats under the same setting. We precisely evaluate the performance of various supervised machine learning algorithms on a balanced dataset using the same feature extraction method. Additionally, we explore the impact of hyperparameter tuning on performance within the balanced dataset. Finally, we investigate the performance of different algorithms in the context of imbalanced datasets under various conditions. We conduct all the experiments in the publicly available CERT r4.2 dataset. The results show that supervised learning with a balanced dataset in RF obtains the best accuracy and F1-score of 95.9% compared with existing works, such as, DNN, LSTM Autoencoder and User Behavior Analysis.
AbstractList Insider threats refer to abnormal actions taken by individuals with privileged access, compromising system data’s confidentiality, integrity, and availability. They pose significant cybersecurity risks, leading to substantial losses for several organizations. Detecting insider threats is crucial due to the imbalance in their datasets. Moreover, the performance of existing works has been evaluated on various datasets and problem settings, making it challenging to compare the effectiveness of different algorithms and offer recommendations to decision-makers. Furthermore, no existing work investigates the impact of changing hyperparameters. This paper aims to objectively assess the performance of various supervised machine learning algorithms for detecting insider threats under the same setting. We precisely evaluate the performance of various supervised machine learning algorithms on a balanced dataset using the same feature extraction method. Additionally, we explore the impact of hyperparameter tuning on performance within the balanced dataset. Finally, we investigate the performance of different algorithms in the context of imbalanced datasets under various conditions. We conduct all the experiments in the publicly available CERT r4.2 dataset. The results show that supervised learning with a balanced dataset in RF obtains the best accuracy and F1-score of 95.9% compared with existing works, such as, DNN, LSTM Autoencoder and User Behavior Analysis.
Author Yin, Jiao
Manoharan, Phavithra
Wang, Hua
Ye, Wenjie
Zhang, Yanchun
Author_xml – sequence: 1
  givenname: Phavithra
  surname: Manoharan
  fullname: Manoharan, Phavithra
  organization: School of Computer Science and Technology, Zhejiang Normal University
– sequence: 2
  givenname: Jiao
  surname: Yin
  fullname: Yin, Jiao
  email: jiao.yin@vu.edu.au
  organization: School of Computer Science and Technology, Zhejiang Normal University
– sequence: 3
  givenname: Hua
  surname: Wang
  fullname: Wang, Hua
  organization: School of Computer Science and Technology, Zhejiang Normal University
– sequence: 4
  givenname: Yanchun
  surname: Zhang
  fullname: Zhang, Yanchun
  organization: School of Computer Science and Technology, Zhejiang Normal University, Department of New Networks, Peng Cheng Laboratory, Institute for Sustainable Industries and Liveable Cities, Victoria University
– sequence: 5
  givenname: Wenjie
  surname: Ye
  fullname: Ye, Wenjie
  organization: School of Computer Science and Technology, Zhejiang Normal University
BookMark eNp9kEFLAzEQhYNUsK3-AU8LnqOZZLObHKVULRS86Dlkd6dtSputSVbw37vrCoKHnmZg3jcz783IxLceCbkFdg-MlQ8RgAtJGReUAVOSigsyBVlyqnMJk75noGiuivyKzGLcMzZgekqWKx9dgyFLu4A2ZQ0mrJNrfdZF57dZ7E4YPl3EJjvaeuc8Zge0wQ8ze9i2waXdMV6Ty409RLz5rXPy_rR8W7zQ9evzavG4prUAnaiEvC5Ky1mpoNa84hVKrq3KN1DJoqlA64qDsljnVhQl07nmEoVtSiwKKVDMyd249xTajw5jMvu2C74_aQTkoBVwVfQqNarq0MYYcGNql-xgKgXrDgaYGdybMTTTh2Z-QjOiR_k_9BTc0Yav85AYodiL_RbD31dnqG9u54Ce
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3369906
crossref_primary_10_1007_s10462_024_10890_4
crossref_primary_10_1007_s10207_025_01002_6
crossref_primary_10_1007_s11280_024_01275_2
crossref_primary_10_3390_fi17020093
Cites_doi 10.1109/MILCOM.2018.8599790
10.24251/HICSS.2017.319
10.1109/ACCESS.2020.2990195
10.1145/3417978
10.1145/2939672.2939785
10.1109/SPW.2013.37
10.11575/PRISM/10182
10.32604/cmc.2022.019289
10.1145/2995959.2995964
10.1007/s11280-019-00704-x
10.1214/ss/998929476
10.1007/s11235-022-00957-4
10.1109/CSCI46756.2018.00025
10.1016/j.cosrev.2022.100500
10.1007/978-3-031-23020-2_5
10.1145/1645953.1646166
10.1109/NSS.2010.13
10.1109/JAS.2022.105860
10.1145/3139923.3139929
10.1007/978-3-319-93698-7_4
10.1145/3445945.3445958
10.1007/s11235-022-00986-z
10.1007/978-3-642-23644-0_10
10.1109/ICGI.2017.37
10.1109/COMST.2018.2885561
10.1109/TII.2022.3192027
10.1109/TBDATA.2016.2599928
10.1007/s13755-023-00212-3
10.1007/s11280-020-00813-y
10.1016/j.future.2010.07.007
10.1109/COMST.2018.2800740
10.1109/Trustcom/BigDataSE/ICESS.2017.227
10.1109/SPW.2018.00043
10.1145/3406601.3406610
10.1007/978-3-030-90888-1_12
10.1109/TIFS.2019.2932228
10.1007/978-3-030-39469-1_19
10.1109/SSCI44817.2019.9003134
10.1007/978-3-030-31729-4_11
10.1007/s11235-021-00850-6
10.1007/978-3-031-09640-2_17
10.1007/978-3-319-18032-8_15
10.1109/JPROC.2020.2993293
10.1109/TSMCA.2003.819917
10.1109/MILCOM47813.2019.9020760
10.1109/ACCESS.2021.3118297
10.1145/3290688.3290692
10.1109/JAS.2021.1004261
10.1145/3512345
10.1109/TNSM.2020.2967721
10.1093/comjnl/bxr028
10.1007/978-981-15-6318-8_45
10.1007/s11280-022-01076-5
10.1002/cpe.3286
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Dec 2024
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Dec 2024
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s11235-023-01085-3
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1572-9451
EndPage 915
ExternalDocumentID 10_1007_s11235_023_01085_3
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
88I
8FE
8FG
8FL
8FW
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
LAK
LLZTM
M0C
M2P
M4Y
MA-
MK~
ML~
MS~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
OAM
OVD
P19
P2P
P62
P9O
PF0
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCF
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZYFGU
~A9
~EX
AAYXX
ABBRH
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PQGLB
PUEGO
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c319t-514c67a20781c92b2be529a84f1b56db199b218aec4a367094925e3ad7e6653e3
IEDL.DBID AGYKE
ISSN 1018-4864
IngestDate Fri Jul 25 23:11:36 EDT 2025
Wed Oct 01 03:17:42 EDT 2025
Thu Apr 24 23:00:16 EDT 2025
Mon Mar 03 15:05:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Insider threat
Imbalanced dataset
Cybersecurity
Supervised learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-514c67a20781c92b2be529a84f1b56db199b218aec4a367094925e3ad7e6653e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3141981286
PQPubID 45633
PageCount 17
ParticipantIDs proquest_journals_3141981286
crossref_citationtrail_10_1007_s11235_023_01085_3
crossref_primary_10_1007_s11235_023_01085_3
springer_journals_10_1007_s11235_023_01085_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241200
2024-12-00
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle Modelling, Analysis, Design and Management
PublicationTitle Telecommunication systems
PublicationTitleAbbrev Telecommun Syst
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References X Sun (1085_CR29) 2011; 27
G Lin (1085_CR5) 2020; 108
H Kavusi (1085_CR16) 2023; 82
1085_CR21
T Huang (1085_CR11) 2019; 24
S Kok (1085_CR22) 2019; 19
1085_CR25
1085_CR27
1085_CR26
J Qiu (1085_CR7) 2020; 53
1085_CR61
1085_CR60
1085_CR18
X Feng (1085_CR2) 2022; 10
1085_CR10
F Zhang (1085_CR55) 2020; 23
1085_CR53
1085_CR12
H Wang (1085_CR19) 2016; 28
1085_CR56
1085_CR9
1085_CR58
1085_CR8
1085_CR13
1085_CR59
1085_CR50
1085_CR52
1085_CR51
Y Chen (1085_CR57) 2023; 11
H Wang (1085_CR24) 2003; 33
L Liu (1085_CR38) 2018; 20
1085_CR43
1085_CR45
1085_CR44
DC Le (1085_CR42) 2020; 17
1085_CR46
1085_CR49
M Humayun (1085_CR17) 2022; 71
1085_CR48
1085_CR1
1085_CR41
1085_CR40
Y Wang (1085_CR54) 2016; 4
X Sun (1085_CR23) 2012; 55
1085_CR39
J Zhang (1085_CR3) 2021; 9
X Chen (1085_CR6) 2019; 15
N Sun (1085_CR4) 2018; 21
1085_CR32
1085_CR31
1085_CR34
1085_CR33
1085_CR36
1085_CR35
1085_CR37
X Zhu (1085_CR15) 2022; 54
X Hu (1085_CR14) 2022; 46
1085_CR30
H Wang (1085_CR20) 2020; 23
A Kim (1085_CR28) 2020; 8
R Nasir (1085_CR47) 2021; 9
References_xml – ident: 1085_CR39
  doi: 10.1109/MILCOM.2018.8599790
– ident: 1085_CR26
– ident: 1085_CR44
  doi: 10.24251/HICSS.2017.319
– volume: 8
  start-page: 78847
  year: 2020
  ident: 1085_CR28
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2990195
– volume: 53
  start-page: 1
  issue: 6
  year: 2020
  ident: 1085_CR7
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/3417978
– ident: 1085_CR53
  doi: 10.1145/2939672.2939785
– ident: 1085_CR52
  doi: 10.1109/SPW.2013.37
– ident: 1085_CR35
  doi: 10.11575/PRISM/10182
– volume: 71
  start-page: 5039
  year: 2022
  ident: 1085_CR17
  publication-title: Computers, Materials and Continua
  doi: 10.32604/cmc.2022.019289
– ident: 1085_CR41
  doi: 10.1145/2995959.2995964
– volume: 23
  start-page: 951
  year: 2020
  ident: 1085_CR20
  publication-title: World Wide Web
  doi: 10.1007/s11280-019-00704-x
– ident: 1085_CR34
  doi: 10.1214/ss/998929476
– volume: 82
  start-page: 27
  issue: 1
  year: 2023
  ident: 1085_CR16
  publication-title: Telecommunication Systems
  doi: 10.1007/s11235-022-00957-4
– ident: 1085_CR50
  doi: 10.1109/CSCI46756.2018.00025
– volume: 46
  year: 2022
  ident: 1085_CR14
  publication-title: Computer Science Review
  doi: 10.1016/j.cosrev.2022.100500
– ident: 1085_CR1
  doi: 10.1007/978-3-031-23020-2_5
– ident: 1085_CR27
– ident: 1085_CR18
  doi: 10.1145/1645953.1646166
– ident: 1085_CR48
– ident: 1085_CR12
  doi: 10.1109/NSS.2010.13
– volume: 10
  start-page: 25
  issue: 1
  year: 2022
  ident: 1085_CR2
  publication-title: IEEE/CAA Journal of Automatica Sinica
  doi: 10.1109/JAS.2022.105860
– ident: 1085_CR36
  doi: 10.1145/3139923.3139929
– ident: 1085_CR58
  doi: 10.1007/978-3-319-93698-7_4
– ident: 1085_CR46
  doi: 10.1145/3445945.3445958
– ident: 1085_CR21
  doi: 10.1007/s11235-022-00986-z
– ident: 1085_CR33
  doi: 10.1007/978-3-642-23644-0_10
– ident: 1085_CR59
  doi: 10.1109/ICGI.2017.37
– volume: 21
  start-page: 1744
  issue: 2
  year: 2018
  ident: 1085_CR4
  publication-title: IEEE Communications Surveys and Tutorials
  doi: 10.1109/COMST.2018.2885561
– ident: 1085_CR10
  doi: 10.1109/TII.2022.3192027
– ident: 1085_CR30
– volume: 4
  start-page: 418
  issue: 3
  year: 2016
  ident: 1085_CR54
  publication-title: IEEE Transactions on Big Data
  doi: 10.1109/TBDATA.2016.2599928
– volume: 11
  start-page: 8
  issue: 1
  year: 2023
  ident: 1085_CR57
  publication-title: Health Information Science and Systems
  doi: 10.1007/s13755-023-00212-3
– volume: 23
  start-page: 2957
  year: 2020
  ident: 1085_CR55
  publication-title: World Wide Web
  doi: 10.1007/s11280-020-00813-y
– volume: 27
  start-page: 348
  issue: 3
  year: 2011
  ident: 1085_CR29
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2010.07.007
– volume: 20
  start-page: 1397
  issue: 2
  year: 2018
  ident: 1085_CR38
  publication-title: IEEE Communications Surveys and Tutorials
  doi: 10.1109/COMST.2018.2800740
– ident: 1085_CR43
  doi: 10.1109/Trustcom/BigDataSE/ICESS.2017.227
– volume: 19
  start-page: 136
  issue: 2
  year: 2019
  ident: 1085_CR22
  publication-title: International Journal of Computer Science and Network Security
– ident: 1085_CR45
  doi: 10.1109/SPW.2018.00043
– ident: 1085_CR60
  doi: 10.1145/3406601.3406610
– ident: 1085_CR25
  doi: 10.1007/978-3-030-90888-1_12
– volume: 15
  start-page: 987
  year: 2019
  ident: 1085_CR6
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2019.2932228
– ident: 1085_CR56
  doi: 10.1007/978-3-030-39469-1_19
– ident: 1085_CR8
  doi: 10.1109/SSCI44817.2019.9003134
– ident: 1085_CR31
  doi: 10.1007/978-3-030-31729-4_11
– ident: 1085_CR13
  doi: 10.1007/s11235-021-00850-6
– ident: 1085_CR37
  doi: 10.1007/978-3-031-09640-2_17
– ident: 1085_CR40
  doi: 10.1007/978-3-319-18032-8_15
– volume: 24
  start-page: 508
  issue: 3
  year: 2019
  ident: 1085_CR11
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 108
  start-page: 1825
  issue: 10
  year: 2020
  ident: 1085_CR5
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2020.2993293
– volume: 33
  start-page: 697
  issue: 6
  year: 2003
  ident: 1085_CR24
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans
  doi: 10.1109/TSMCA.2003.819917
– ident: 1085_CR51
  doi: 10.1109/MILCOM47813.2019.9020760
– volume: 9
  start-page: 143266
  year: 2021
  ident: 1085_CR47
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3118297
– ident: 1085_CR49
  doi: 10.1145/3290688.3290692
– volume: 9
  start-page: 377
  issue: 3
  year: 2021
  ident: 1085_CR3
  publication-title: IEEE/CAA Journal of Automatica Sinica
  doi: 10.1109/JAS.2021.1004261
– volume: 54
  start-page: 1
  issue: 11s
  year: 2022
  ident: 1085_CR15
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/3512345
– volume: 17
  start-page: 30
  issue: 1
  year: 2020
  ident: 1085_CR42
  publication-title: IEEE Transactions on Network and Service Management
  doi: 10.1109/TNSM.2020.2967721
– volume: 55
  start-page: 422
  issue: 4
  year: 2012
  ident: 1085_CR23
  publication-title: The Computer Journal
  doi: 10.1093/comjnl/bxr028
– ident: 1085_CR61
  doi: 10.1007/978-981-15-6318-8_45
– ident: 1085_CR32
  doi: 10.1007/978-3-642-23644-0_10
– ident: 1085_CR9
  doi: 10.1007/s11280-022-01076-5
– volume: 28
  start-page: 600
  issue: 3
  year: 2016
  ident: 1085_CR19
  publication-title: Concurrency and Computation: Practice and Experience
  doi: 10.1002/cpe.3286
SSID ssj0010079
Score 2.3975863
Snippet Insider threats refer to abnormal actions taken by individuals with privileged access, compromising system data’s confidentiality, integrity, and availability....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 899
SubjectTerms Algorithms
Artificial Intelligence
Availability
Business and Management
Computer Communication Networks
Cybersecurity
Datasets
IT in Business
Machine learning
Original Paper
Performance evaluation
Probability Theory and Stochastic Processes
Supervised learning
Threat evaluation
Subtitle Insider threat detection using supervised machine learning algorithms
Title Insider threat detection using supervised machine learning algorithms
URI https://link.springer.com/article/10.1007/s11235-023-01085-3
https://www.proquest.com/docview/3141981286
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1572-9451
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010079
  issn: 1018-4864
  databaseCode: AFBBN
  dateStart: 19970601
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1572-9451
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010079
  issn: 1018-4864
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1572-9451
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010079
  issn: 1018-4864
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4IXPTg24gi2YM3XcI-utAjMeAr8WQTPDXd7RaMUAgtF3-9u32AEjXh3N1NO_uYbzvffANwHbpt5ZjTEZvLQxfzSGosjZ_HiisW0Y62EmOWbfEiHjz-NHSGRVJYUrLdy5BkdlKvk91sWic2PsZcfy1lnlWglultVaHWu3977q-iB6a5m0U5if1ZJniRLPP7KD8d0hplbgRGM38zOACvfNOcZvLRWqaypT43RBy3_ZRD2C8AKOrlK-YIdnR8DHvfZAlPoP-YF_FE6dhCShTqNCNsxciy5EcoWc7tCZPoEE0zLqZGRfGJEQomo9niPR1Pk1PwBv3XuwdclFvAyuzDFBvopEQnoFb-R7lUUqkd6gZdHhHpiFAS15UGEARa8SCTfbO6hpoFYUcL4TDNzqAaz2J9DohFigRERxZ_8nZoRiEiMliGhUQLylkdSGlzXxVa5LYkxsRfqyhbE_nGRH5mIt_0uVn1medKHP-2bpRT6Re7MvEZ4cQ1iKYr6nBbzsz68d-jXWzX_BJ2qcE-OeulAdV0sdRXBrukslks1SZUPNr7AiRw4iU
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UD-rB-DOiqD140yZ07Qo7EgMBRU6QcGvWrgMTGYSN_9_XbmNq1MTz2nd4Xfu-9n3vewjdR0FT-3A6Erg8tAmPlSEK4jzRXLPYaxkrMWbZFiPRn_DnqT8tisLSku1epiTdSV0Vu9myTgIxBq6_ljLPdtGeFbCyivkTr7PNHcDgwOU4qX0qE7wolfnZxtdwVGHMb2lRF216x-iogIm4k6_rCdoxySk6_CQeeIa6g7zVJs7mFvjhyGSOVpVgy2Wf4XSzsudAaiK8cIxJg4sWETMcvs-W67dsvkjP0aTXHT_1SdEUgWjYLRkBgKNFK_SsSI8OPOUp43tB2OYxVb6IFA0CBWE7NJqHTpzNqg8aFkYtI4TPDLtAtWSZmEuEWaxpSE1sUSJvRmCFihgQB4uoER5ndURL30hdKIbbxhXvstI6tv6U4E_p_ClhzsN2zirXy_hzdKN0uSz2TioZ5TQA3NEWdfRYLkP1-XdrV_8bfof2--PXoRwORi_X6MADtJLzVBqolq035gbQRqZu3c_1AYJRxzE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UE6MH48-IovbgTRvo2hV2JAoBNcSDJNyatevABAaB8f_72m0OjZp43msPrz_e173vfQ-h2yhoaB9uRwKPhxbhsTJEQZwnmmsWe01jJcYs22IgekP-NPJHG1X8ju1epCSzmgar0pSk9UUU18vCN1viSSDewFPY0ufZNtrhVigBdvTQa3_mEcA4cPlOan-bCZ6Xzfw8x9fQVOLNbylSF3m6h-ggh4y4na3xEdoyyTHa3xASPEGdftZ2E6cTCwJxZFJHsUqw5bWP8Wq9sHfCykR45tiTBuftIsY4nI7ny_d0MludomG38_bQI3mDBKLh5KQEwI4WzdCzgj068JSnjO8FYYvHVPkiUjQIFITw0GgeOqE2q0RoWBg1jRA-M-wMVZJ5Ys4RZrGmITWxRYy8EcEsVMSAPlhEjfA4qyJa-EbqXD3cNrGYylL32PpTgj-l86eEMXefYxaZdsaf1rXC5TI_RyvJKKcBYJCWqKL7YhnKz7_PdvE_8xu0-_rYlS_9wfMl2vMAuGSUlRqqpMu1uQLgkaprt7c-AG5vy20
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insider+threat+detection+using+supervised+machine+learning+algorithms&rft.jtitle=Telecommunication+systems&rft.au=Manoharan%2C+Phavithra&rft.au=Yin%2C+Jiao&rft.au=Wang%2C+Hua&rft.au=Zhang%2C+Yanchun&rft.date=2024-12-01&rft.pub=Springer+US&rft.issn=1018-4864&rft.eissn=1572-9451&rft.volume=87&rft.issue=4&rft.spage=899&rft.epage=915&rft_id=info:doi/10.1007%2Fs11235-023-01085-3&rft.externalDocID=10_1007_s11235_023_01085_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1018-4864&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1018-4864&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1018-4864&client=summon