Greedy Guarantees for Non-submodular Function Maximization Under Independent System Constraint with Applications
We study the problems of maximizing a monotone non-submodular function subject to two types of constraints, either an independent system constraint or a p -matroid constraint. These problems often occur in the context of combinatorial optimization, operations research, economics and especially, mach...
Saved in:
Published in | Journal of optimization theory and applications Vol. 196; no. 2; pp. 516 - 543 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0022-3239 1573-2878 |
DOI | 10.1007/s10957-022-02145-5 |
Cover
Abstract | We study the problems of maximizing a monotone non-submodular function subject to two types of constraints, either an independent system constraint or a
p
-matroid constraint. These problems often occur in the context of combinatorial optimization, operations research, economics and especially, machine learning and data science. Using the generalized curvature
α
and the submodularity ratio
γ
or the diminishing returns ratio
ξ
, we analyze the performances of the widely used greedy algorithm, which yields theoretical approximation guarantees of
1
α
[
1
-
(
1
-
α
γ
K
)
k
]
and
ξ
p
+
α
ξ
for the two types of constraints, respectively, where
k
,
K
are, respectively, the minimum and maximum cardinalities of a maximal independent set in the independent system, and
p
is the minimum number of matroids such that the independent system can be expressed as the intersection of
p
matroids. When the constraint is a cardinality one, our result maintains the same approximation ratio as that in Bian et al. (Proceedings of the 34th international conference on machine learning, pp 498–507, 2017); however, the proof is much simpler owning to the new definition of the greedy curvature. In the case of a single matroid constraint, our result is competitive compared with the existing ones in Chen et al. (Proceedings of the 35th international conference on machine learning, pp 804–813, 2018) and Gatmiry and Rodriguez (Non-submodular function maximization subject to a matroid constraint, with applications, 2018.
arXiv:1811.07863v4
). In addition, we bound the generalized curvature, the submodularity ratio and the diminishing returns ratio for several important real-world applications. Computational experiments are also provided supporting our analyses. |
---|---|
AbstractList | We study the problems of maximizing a monotone non-submodular function subject to two types of constraints, either an independent system constraint or a
p
-matroid constraint. These problems often occur in the context of combinatorial optimization, operations research, economics and especially, machine learning and data science. Using the generalized curvature
α
and the submodularity ratio
γ
or the diminishing returns ratio
ξ
, we analyze the performances of the widely used greedy algorithm, which yields theoretical approximation guarantees of
1
α
[
1
-
(
1
-
α
γ
K
)
k
]
and
ξ
p
+
α
ξ
for the two types of constraints, respectively, where
k
,
K
are, respectively, the minimum and maximum cardinalities of a maximal independent set in the independent system, and
p
is the minimum number of matroids such that the independent system can be expressed as the intersection of
p
matroids. When the constraint is a cardinality one, our result maintains the same approximation ratio as that in Bian et al. (Proceedings of the 34th international conference on machine learning, pp 498–507, 2017); however, the proof is much simpler owning to the new definition of the greedy curvature. In the case of a single matroid constraint, our result is competitive compared with the existing ones in Chen et al. (Proceedings of the 35th international conference on machine learning, pp 804–813, 2018) and Gatmiry and Rodriguez (Non-submodular function maximization subject to a matroid constraint, with applications, 2018.
arXiv:1811.07863v4
). In addition, we bound the generalized curvature, the submodularity ratio and the diminishing returns ratio for several important real-world applications. Computational experiments are also provided supporting our analyses. We study the problems of maximizing a monotone non-submodular function subject to two types of constraints, either an independent system constraint or a p-matroid constraint. These problems often occur in the context of combinatorial optimization, operations research, economics and especially, machine learning and data science. Using the generalized curvature α and the submodularity ratio γ or the diminishing returns ratio ξ, we analyze the performances of the widely used greedy algorithm, which yields theoretical approximation guarantees of 1α[1-(1-αγK)k] and ξp+αξ for the two types of constraints, respectively, where k, K are, respectively, the minimum and maximum cardinalities of a maximal independent set in the independent system, and p is the minimum number of matroids such that the independent system can be expressed as the intersection of p matroids. When the constraint is a cardinality one, our result maintains the same approximation ratio as that in Bian et al. (Proceedings of the 34th international conference on machine learning, pp 498–507, 2017); however, the proof is much simpler owning to the new definition of the greedy curvature. In the case of a single matroid constraint, our result is competitive compared with the existing ones in Chen et al. (Proceedings of the 35th international conference on machine learning, pp 804–813, 2018) and Gatmiry and Rodriguez (Non-submodular function maximization subject to a matroid constraint, with applications, 2018. arXiv:1811.07863v4). In addition, we bound the generalized curvature, the submodularity ratio and the diminishing returns ratio for several important real-world applications. Computational experiments are also provided supporting our analyses. |
Author | Wang, Wei Yang, Zishen Shi, Majun |
Author_xml | – sequence: 1 givenname: Majun surname: Shi fullname: Shi, Majun organization: School of Mathematics and Statistics, Xi’an Jiaotong University – sequence: 2 givenname: Zishen surname: Yang fullname: Yang, Zishen organization: School of Mathematics and Statistics, Xi’an Jiaotong University – sequence: 3 givenname: Wei surname: Wang fullname: Wang, Wei email: wang_weiw@163.com organization: School of Mathematics and Statistics, Xi’an Jiaotong University |
BookMark | eNp9kEFPAyEQhYmpiW31D3gi8bw6QFl2j6bR2qTqQXsmLMvqNi2swEbrr5e2JiYeemAIM-9jXt4IDayzBqFLAtcEQNwEAiUXGVCaDpnwjJ-gIeGCZbQQxQANYTdilJVnaBTCCgDKQkyGqJt5Y-otnvXKKxuNCbhxHj85m4W-2ri6XyuP73urY-ssflRf7ab9VvvH0tbG43mqnUnFRvyyDdFs8NTZEL1qU-ezje_4tuvWrd5D4RydNmodzMXvPUbL-7vX6UO2eJ7Np7eLTDNSxowD0SavGBeKaCoq3gjeVJQUFdSghVBU5UQXlQLKObCGMlqXteaQlzz1azZGV4d_O-8-ehOiXLne27RSUiFyWkDOaVIVB5X2LgRvGqnbuDe687-WBOQuX3nIV6YQ5T5fyRNK_6GdbzfKb49D7ACFJLZvxv-5OkL9AEDWkRU |
CitedBy_id | crossref_primary_10_1007_s10898_024_01371_7 crossref_primary_10_1016_j_dam_2024_09_022 crossref_primary_10_1016_j_disc_2024_114287 |
Cites_doi | 10.1145/1374376.1374389 10.1561/2200000044 10.1007/s10878-020-00672-3 10.1007/BF01588971 10.1016/0166-218X(84)90003-9 10.1007/978-3-642-17572-5_20 10.1137/130920277 10.1007/978-3-540-72792-7_15 10.1137/090750020 10.1007/s10898-019-00840-8 10.1016/S0167-5060(08)70322-4 10.1137/080733991 10.1007/978-3-030-26176-4_54 10.1145/1536414.1536459 10.1080/00029890.2004.11920060 10.1142/S0217595921400017 10.1137/1.9781611973730.76 10.1007/BFb0121195 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7WY 7WZ 7XB 87Z 88I 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KR7 L.- L6V L7M L~C L~D M0C M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS Q9U |
DOI | 10.1007/s10957-022-02145-5 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1573-2878 |
EndPage | 543 |
ExternalDocumentID | 10_1007_s10957_022_02145_5 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11971376 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM OVD P19 P2P P62 P9R PF0 PKN PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS TWZ U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 VOH W23 W48 WH7 WK8 YLTOR YQT Z45 Z7R Z7S Z7U Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8U Z8W Z92 ZCG ZMTXR ZWQNP ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7TB 7XB 8FD 8FK FR3 JQ2 KR7 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U |
ID | FETCH-LOGICAL-c319t-501ce6b357a1c27b5f75fb218b0d0c77a2a61c8ba025503f232d9dc506951c8d3 |
IEDL.DBID | BENPR |
ISSN | 0022-3239 |
IngestDate | Sat Aug 23 14:34:34 EDT 2025 Wed Oct 01 04:33:58 EDT 2025 Thu Apr 24 23:10:34 EDT 2025 Fri Feb 21 02:45:21 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Greedy algorithm Independent system matroid Non-submodular function |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-501ce6b357a1c27b5f75fb218b0d0c77a2a61c8ba025503f232d9dc506951c8d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2776280652 |
PQPubID | 48247 |
PageCount | 28 |
ParticipantIDs | proquest_journals_2776280652 crossref_citationtrail_10_1007_s10957_022_02145_5 crossref_primary_10_1007_s10957_022_02145_5 springer_journals_10_1007_s10957_022_02145_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230200 2023-02-00 20230201 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 2 year: 2023 text: 20230200 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of optimization theory and applications |
PublicationTitleAbbrev | J Optim Theory Appl |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Das, A., Kempe, D.: Submodular meets spectral: greedy algorithms for subset selection, sparse approximation and dictionary selection. In: Proceedings of the 28th International Conference on Machine Learning, pp. 1057–1064 (2011) DuDZKoKIHuXDDesign and Analysis of Approximation Algorithms2012New YorkSpringer1237.68009 Kulesza, A., Taskar, B.: Determinantal point processes for machine learning. Found. Trends® Mach. Learn. 5(2–3), 123–286 (2012) Feldman, M., Harshaw, C., Karbasi, A.: Greed is good: near-optimal submodular maximization via greedy optimization. In: Proceedings of the 30th Conference on Learning Theory, vol. 65, pp. 758–784 (2017) Gupta, A., Roth, A., Schoenebeck, G., Talwar, K.: Constrained non-monotone submodular maximization: offline and secretary algorithms. In: Proceedings of the 6th International Workshop on Internet and Network Economics, vol. 6484, pp. 246–257 (2010) KorteBHausmannDAn analysis of the greedy heuristic for independence systemsAnn. Discrete Math.1978242165745006890392.90058 NemhauserGLWolseyLAFisherMLAn analysis of approximations for maximizing submodular set functions-IMath. Program.19781412652945038660374.90045 WangYJDuDLJiangYJZhangXZNon-submodular maximization with matroid and knapsack constraintsAsia Pac. J. Oper. Res.20213805214000143227911484.90120 Sviridenko, M., Vondrák, J., Ward, J.: Optimal approximation for submodular and supermodular optimization with bounded curvature. In: Proceedings of the 26th ACM-SIAM Symposium on Discrete Algorithms, pp. 1134–1148 (2015) HwangS-GCauchy’s interlace theorem for eigenvalues of Hermitian matricesAm. Math. Mon.2004111215715920427641050.15008 Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Non-monotone submodular maximization under matroid and knapsack constraints. In: Proceedings of the 41st ACM-SIAM Symposium on Theory of Computing, pp. 323–332 (2009) CalinescuGChekuriCPálMVondrákJMaximizing a monotone submodular function subject to a matroid constraintSIAM J. Comput.20114061740176628631931234.68459 FisherMLNemhauserGLWolseyLAAn analysis of approximations for maximizing submodular set functions-IIMath. Program. Study1978873875103690408.90085 ConfortiMCornuéjolsGSubmodular functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the Rado-Edmonds theoremDiscrete Appl. Math.1984732512747368900533.90062 ShiMJYangZSKimDYWangWNon-monotone submodular function maximization under k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-system constraintJ. Comb. Optim.2021411128142142046471468.90115 WangYJXuDCWangYSZhangDMNon-submodular maximization on massive data streamsJ. Glob. Optim.20207672974340783761441.90130 Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set function subject to a matroid constraint (extended abstract). In: Proceedings of the 12th Conference on Integer Programming and Combinatorial Optimization, vol. 4513, pp. 182–196 (2007) VondrákJSubmodularity and curvature: the optimal algorithmRIMS Kokyuroku Bessatsu2009B2325326627993251219.68109 ElenbergERKhannaRDimakisAGNegahbanSRestricted strong convexity implies weak submodularityAnn. Stat.2016466B3539356838526611401.68262 LeeJMirrokniVSNagarajanVSviridenkoMMaximizing non-monotone submodular functions under matroid or knapsack constraintsSIAM J. Discrete Math.2010234205320781207.68445 Gatmiry, K., Rodriguez, M.G.: Non-submodular function maximization subject to a matroid constraint, with applications (2018). arXiv:1811.07863v4 Bian, A.A., Buhmann, J.M., Krause, A., Tschiatschek, S.: Guarantees for greedy maximization of non-submodular functions with applications. In: Proceedings of the 34th International Conference on Machine Learning, pp. 498–507 (2017) Vondrák, J.: Optimal approximation for the submodular welfare problem in the value oracle model. In: Proceedings of the 40th ACM Symposium on Theory of Computing, pp. 67–74 (2008) Chen, L., Feldman, M., Karbasi, A.: Weakly submodular maximization beyond cardinality constraints: does randomization help greedy? In: Proceedings of the 35th International Conference on Machine Learning, pp. 804–813 (2018) FilmusYWardJMonotone submodular maximization over a matroid via non-oblivious local searchSIAM J. Comput.201343251454231830501307.68098 Zhang, Z.N., Liu, B., Wang, Y.S., Xu, D.C., Zhang, D.M.: Greedy algorithm for maximization of non-submodular functions subject to knapsack constraint. In: Proceedings of the 26th International Computing and Combinatorics Conference, pp. 651–662 (2019) MJ Shi (2145_CR20) 2021; 41 DZ Du (2145_CR7) 2012 ER Elenberg (2145_CR8) 2016; 46 2145_CR22 Y Filmus (2145_CR10) 2013; 43 2145_CR21 J Lee (2145_CR17) 2010; 23 2145_CR26 YJ Wang (2145_CR24) 2021; 38 YJ Wang (2145_CR25) 2020; 76 M Conforti (2145_CR2) 1984; 7 G Calinescu (2145_CR4) 2011; 40 GL Nemhauser (2145_CR19) 1978; 14 B Korte (2145_CR15) 1978; 2 2145_CR12 ML Fisher (2145_CR11) 1978; 8 2145_CR18 2145_CR9 2145_CR16 2145_CR13 2145_CR6 2145_CR5 J Vondrák (2145_CR23) 2009; B23 2145_CR3 2145_CR1 S-G Hwang (2145_CR14) 2004; 111 |
References_xml | – reference: Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set function subject to a matroid constraint (extended abstract). In: Proceedings of the 12th Conference on Integer Programming and Combinatorial Optimization, vol. 4513, pp. 182–196 (2007) – reference: ElenbergERKhannaRDimakisAGNegahbanSRestricted strong convexity implies weak submodularityAnn. Stat.2016466B3539356838526611401.68262 – reference: CalinescuGChekuriCPálMVondrákJMaximizing a monotone submodular function subject to a matroid constraintSIAM J. Comput.20114061740176628631931234.68459 – reference: FisherMLNemhauserGLWolseyLAAn analysis of approximations for maximizing submodular set functions-IIMath. Program. Study1978873875103690408.90085 – reference: NemhauserGLWolseyLAFisherMLAn analysis of approximations for maximizing submodular set functions-IMath. Program.19781412652945038660374.90045 – reference: Sviridenko, M., Vondrák, J., Ward, J.: Optimal approximation for submodular and supermodular optimization with bounded curvature. In: Proceedings of the 26th ACM-SIAM Symposium on Discrete Algorithms, pp. 1134–1148 (2015) – reference: FilmusYWardJMonotone submodular maximization over a matroid via non-oblivious local searchSIAM J. Comput.201343251454231830501307.68098 – reference: WangYJXuDCWangYSZhangDMNon-submodular maximization on massive data streamsJ. Glob. Optim.20207672974340783761441.90130 – reference: Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Non-monotone submodular maximization under matroid and knapsack constraints. In: Proceedings of the 41st ACM-SIAM Symposium on Theory of Computing, pp. 323–332 (2009) – reference: Vondrák, J.: Optimal approximation for the submodular welfare problem in the value oracle model. In: Proceedings of the 40th ACM Symposium on Theory of Computing, pp. 67–74 (2008) – reference: LeeJMirrokniVSNagarajanVSviridenkoMMaximizing non-monotone submodular functions under matroid or knapsack constraintsSIAM J. Discrete Math.2010234205320781207.68445 – reference: Chen, L., Feldman, M., Karbasi, A.: Weakly submodular maximization beyond cardinality constraints: does randomization help greedy? In: Proceedings of the 35th International Conference on Machine Learning, pp. 804–813 (2018) – reference: VondrákJSubmodularity and curvature: the optimal algorithmRIMS Kokyuroku Bessatsu2009B2325326627993251219.68109 – reference: ConfortiMCornuéjolsGSubmodular functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the Rado-Edmonds theoremDiscrete Appl. Math.1984732512747368900533.90062 – reference: Gatmiry, K., Rodriguez, M.G.: Non-submodular function maximization subject to a matroid constraint, with applications (2018). arXiv:1811.07863v4 – reference: Kulesza, A., Taskar, B.: Determinantal point processes for machine learning. Found. Trends® Mach. Learn. 5(2–3), 123–286 (2012) – reference: WangYJDuDLJiangYJZhangXZNon-submodular maximization with matroid and knapsack constraintsAsia Pac. J. Oper. Res.20213805214000143227911484.90120 – reference: Gupta, A., Roth, A., Schoenebeck, G., Talwar, K.: Constrained non-monotone submodular maximization: offline and secretary algorithms. In: Proceedings of the 6th International Workshop on Internet and Network Economics, vol. 6484, pp. 246–257 (2010) – reference: DuDZKoKIHuXDDesign and Analysis of Approximation Algorithms2012New YorkSpringer1237.68009 – reference: HwangS-GCauchy’s interlace theorem for eigenvalues of Hermitian matricesAm. Math. Mon.2004111215715920427641050.15008 – reference: KorteBHausmannDAn analysis of the greedy heuristic for independence systemsAnn. Discrete Math.1978242165745006890392.90058 – reference: Zhang, Z.N., Liu, B., Wang, Y.S., Xu, D.C., Zhang, D.M.: Greedy algorithm for maximization of non-submodular functions subject to knapsack constraint. In: Proceedings of the 26th International Computing and Combinatorics Conference, pp. 651–662 (2019) – reference: Das, A., Kempe, D.: Submodular meets spectral: greedy algorithms for subset selection, sparse approximation and dictionary selection. In: Proceedings of the 28th International Conference on Machine Learning, pp. 1057–1064 (2011) – reference: ShiMJYangZSKimDYWangWNon-monotone submodular function maximization under k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-system constraintJ. Comb. Optim.2021411128142142046471468.90115 – reference: Feldman, M., Harshaw, C., Karbasi, A.: Greed is good: near-optimal submodular maximization via greedy optimization. In: Proceedings of the 30th Conference on Learning Theory, vol. 65, pp. 758–784 (2017) – reference: Bian, A.A., Buhmann, J.M., Krause, A., Tschiatschek, S.: Guarantees for greedy maximization of non-submodular functions with applications. In: Proceedings of the 34th International Conference on Machine Learning, pp. 498–507 (2017) – ident: 2145_CR22 doi: 10.1145/1374376.1374389 – ident: 2145_CR16 doi: 10.1561/2200000044 – volume-title: Design and Analysis of Approximation Algorithms year: 2012 ident: 2145_CR7 – ident: 2145_CR9 – volume: 41 start-page: 128 issue: 1 year: 2021 ident: 2145_CR20 publication-title: J. Comb. Optim. doi: 10.1007/s10878-020-00672-3 – ident: 2145_CR1 – ident: 2145_CR5 – volume: 46 start-page: 3539 issue: 6B year: 2016 ident: 2145_CR8 publication-title: Ann. Stat. – volume: 14 start-page: 265 issue: 1 year: 1978 ident: 2145_CR19 publication-title: Math. Program. doi: 10.1007/BF01588971 – volume: 7 start-page: 251 issue: 3 year: 1984 ident: 2145_CR2 publication-title: Discrete Appl. Math. doi: 10.1016/0166-218X(84)90003-9 – ident: 2145_CR13 doi: 10.1007/978-3-642-17572-5_20 – volume: 43 start-page: 514 issue: 2 year: 2013 ident: 2145_CR10 publication-title: SIAM J. Comput. doi: 10.1137/130920277 – ident: 2145_CR3 doi: 10.1007/978-3-540-72792-7_15 – volume: 23 start-page: 2053 issue: 4 year: 2010 ident: 2145_CR17 publication-title: SIAM J. Discrete Math. doi: 10.1137/090750020 – volume: 76 start-page: 729 year: 2020 ident: 2145_CR25 publication-title: J. Glob. Optim. doi: 10.1007/s10898-019-00840-8 – volume: 2 start-page: 65 issue: 421 year: 1978 ident: 2145_CR15 publication-title: Ann. Discrete Math. doi: 10.1016/S0167-5060(08)70322-4 – volume: 40 start-page: 1740 issue: 6 year: 2011 ident: 2145_CR4 publication-title: SIAM J. Comput. doi: 10.1137/080733991 – ident: 2145_CR26 doi: 10.1007/978-3-030-26176-4_54 – ident: 2145_CR18 doi: 10.1145/1536414.1536459 – ident: 2145_CR6 – volume: 111 start-page: 157 issue: 2 year: 2004 ident: 2145_CR14 publication-title: Am. Math. Mon. doi: 10.1080/00029890.2004.11920060 – volume: 38 start-page: 2140001 issue: 05 year: 2021 ident: 2145_CR24 publication-title: Asia Pac. J. Oper. Res. doi: 10.1142/S0217595921400017 – ident: 2145_CR21 doi: 10.1137/1.9781611973730.76 – volume: 8 start-page: 73 year: 1978 ident: 2145_CR11 publication-title: Math. Program. Study doi: 10.1007/BFb0121195 – volume: B23 start-page: 253 year: 2009 ident: 2145_CR23 publication-title: RIMS Kokyuroku Bessatsu – ident: 2145_CR12 |
SSID | ssj0009874 |
Score | 2.3759546 |
Snippet | We study the problems of maximizing a monotone non-submodular function subject to two types of constraints, either an independent system constraint or a
p... We study the problems of maximizing a monotone non-submodular function subject to two types of constraints, either an independent system constraint or a... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 516 |
SubjectTerms | Applications of Mathematics Approximation Calculus of Variations and Optimal Control; Optimization Combinatorial analysis Curvature Engineering Greedy algorithms International conferences Machine learning Mathematical analysis Mathematics Mathematics and Statistics Maximization Operations research Operations Research/Decision Theory Optimization Theory of Computation |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAG1EoyAMbuEqdOHbGCrUUUDtRqUxR_IiEgLQiqQT8euw82lIBUrdEcSzHd_Z9zt19B3CpuTa7XCywIoHGHjFX3BzgsGI8jiKXS0fZBOfB0O-PvPsxHZdJYWkV7V65JPOdeinZLaAM2-hzy_NFMd2EOjXwmNag3rl9euguyHZ5xb5MsEvcoEyW-b2XnwZpgTJXHKO5ventwqgaaRFm8tKaZaIlv1ZIHNf9lD3YKQEo6hQasw8bOjmA7SVaQnM3mHO5pocwtaE56hNZZbJi0CkyQBcNJwlOjTGdKBvIinrGPloZo0H08fxWJneivKoSupuX2s1QwZCObJ3QvDpFhuyfYNRZ8qMfwajXfbzp47JOA5ZmAWeYOm2pfeFSFrUlYYLGjMbCYAfhKEcyFpHIb0suInt-cdzYgDgVKEkd38A7yZV7DLVkkugTQD5lmgoea1d7HrFMNYTGsTQGJeCe1qIB7UpYoSxJzO1oX8MF_bKd29DMbZjPbUgbcDV_Z1pQePzbulnpQFgu5zQkzNgM64ImDbiuRLp4_Hdvp-s1P4MtW86-iApvQi17n-lzA3oycVHq-DfcPPhd priority: 102 providerName: Springer Nature |
Title | Greedy Guarantees for Non-submodular Function Maximization Under Independent System Constraint with Applications |
URI | https://link.springer.com/article/10.1007/s10957-022-02145-5 https://www.proquest.com/docview/2776280652 |
Volume | 196 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-2878 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009874 issn: 0022-3239 databaseCode: AFBBN dateStart: 19670701 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-2878 dateEnd: 20241005 omitProxy: true ssIdentifier: ssj0009874 issn: 0022-3239 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-2878 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009874 issn: 0022-3239 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-2878 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009874 issn: 0022-3239 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swED5B-7I9oAGbVmCVH3gDi9SJY-cBTe3UwECNEKISe4riH5GQoC00SNt_jy91GkAaT0nkxIp89t3Zd_d9AIdWWqflSkUNSyyNmLuTbgNHjZBlUYRSBwYLnCdZfD6NLm757QZkTS0MplU2OrFW1Gau8Yz8hAm3bDEKyH4uHimyRmF0taHQKDy1gjmtIcY2oYsqOepAdzTOrq5bGF7Z4DIzGrIw8WU0vpgu4YJiC-KIccrfmqrW_3wXMq0tUfoFtrwLSYYrmW_Dhp3twOdXwILuabJGY13uwgKTa8w_gtMBB9IuiXNVSTaf0aUzh3ODqagkdRYOpUQmxd-7B1-eSWpeJPJ7TZZbkRXGOUGmz5pfoiJ4lkuGryLhX2Gajm9-nVPPtEC1W4IV5cFA21iFXBQDzYTipeClctZfBSbQQhSsiAdaqgJ3IEFYOjfMJEbzIHYOmpYm_Aad2XxmvwOJubBcydKGNooYYs0wXpbamYRERtaqHgyaQc21hyHHv73PWwBlFETuBJHXgsh5D47W3yxWIBwfvn3QyCr3C3KZt9OnB8eN_Nrm__e293Fv-_AJCehXedwH0Kmenu0P56ZUqg-bMj3rQ3eYjkYZXs_-XI77fka61ikbvgAdA-nx |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2V7QE4INqCulCoD_RULLJOHDuHChXoapd2Vwi1Um8h_oiEBLtLkwr65_htzGSdTanU3npL5MSKPJOZZ8_MG4A3Xnu0cqXhTmSeJwKvNG7guFO6LIpY28hRgfNkmo7Oks_n8nwN_ra1MJRW2drExlC7uaUz8ndC4W9LUUDxfvGLU9coiq62LTSK0FrBHTQUY6Gw49hf_cYtXHUw_oTy3hNieHT6ccRDlwFuUf1qLqOB9amJpSoGVigjSyVLg57PRC6yShWiSAdWm4LQdxSXCEFc5qyMUgQnVrsY530A6wg7RNKD9Q9H0y9fO9pf3fJACx6LOAtlO6F4L5OK0wjxlkku_3eNHd69EaJtPN_wKTwJkJUdLnVsA9b8bBMeXyMyxLvJiv212oIFJfO4K0bqR4LzFUNozKbzGa_Q_c4dpb6yIXpU0go2Kf58_xnKQVnTh4mNV815a7bkVGfUWbTpZ1EzOjtmh9ci78_g7F7W_Dn0ZvOZ3waWSuWl0aWPfZII4rYRsiwtuqBMJ96bPgzaRc1toD2nr_2Rd4TNJIgcBZE3gshlH_ZX7yyWpB93Pr3TyioPBqDKO3Xtw9tWft3w7bO9uHu2XXg4Op2c5Cfj6fFLeCQQci1zyHegV19c-lcIkWrzOughg2_3rfr_AFA6ITg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVkJwQJSHuqVQH-gJrGadOHYOCFWUtNt2Vxyo1FuIXxIS7C4kFfSv8euYyWNTkNpbb4mSWJHns2dsz3wfwGuvPc5ywXAnMs8TgVcaF3DcKR3KMtY2clTgPJ2lx-fJyYW8WIM_fS0MpVX2c2IzUbuFpT3yfaFw2NIpoNgPXVrEp8P8_fIHJwUpOmnt5TRaiJz6q1-4fKveTQ7R1ntC5B8_fzjmncIAtwi9mstobH1qYqnKsRXKyKBkMOj1TOQiq1QpynRstSkp8o7igOGHy5yVUYqBidUuxnbvwYaKcalHVer50UD4q3sGaMFjEWddwU5XtpdJxekJMZZJLv91ikOk-9_hbOPz8sfwqAtW2UGLrk1Y8_Mn8PAahSHeTVe8r9VTWFIaj7tiBDwyma8YBsVstpjzCh3vwlHSK8vRlxIe2LT8_fV7VwjKGgUmNlnJ8tasZVNnpCnaKFnUjHaN2cG1M_dncH4nPf4c1ueLud8ClkrlpdHBxz5JBLHaCBmCReeT6cR7M4Jx36mF7QjP6W-_FQNVMxmiQEMUjSEKOYI3q2-WLd3HrW_v9LYquqFfFQNQR_C2t9_w-ObWtm9vbRfuI-CLs8ns9AU8INX7Nnl8B9brn5f-JcZGtXnVgJDBl7tG_V9a-x7T |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Greedy+Guarantees+for+Non-submodular+Function+Maximization+Under+Independent+System+Constraint+with+Applications&rft.jtitle=Journal+of+optimization+theory+and+applications&rft.au=Shi%2C+Majun&rft.au=Yang%2C+Zishen&rft.au=Wang%2C+Wei&rft.date=2023-02-01&rft.issn=0022-3239&rft.eissn=1573-2878&rft.volume=196&rft.issue=2&rft.spage=516&rft.epage=543&rft_id=info:doi/10.1007%2Fs10957-022-02145-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10957_022_02145_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3239&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3239&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3239&client=summon |