Greedy Guarantees for Non-submodular Function Maximization Under Independent System Constraint with Applications

We study the problems of maximizing a monotone non-submodular function subject to two types of constraints, either an independent system constraint or a p -matroid constraint. These problems often occur in the context of combinatorial optimization, operations research, economics and especially, mach...

Full description

Saved in:
Bibliographic Details
Published inJournal of optimization theory and applications Vol. 196; no. 2; pp. 516 - 543
Main Authors Shi, Majun, Yang, Zishen, Wang, Wei
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0022-3239
1573-2878
DOI10.1007/s10957-022-02145-5

Cover

Abstract We study the problems of maximizing a monotone non-submodular function subject to two types of constraints, either an independent system constraint or a p -matroid constraint. These problems often occur in the context of combinatorial optimization, operations research, economics and especially, machine learning and data science. Using the generalized curvature α and the submodularity ratio γ or the diminishing returns ratio ξ , we analyze the performances of the widely used greedy algorithm, which yields theoretical approximation guarantees of 1 α [ 1 - ( 1 - α γ K ) k ] and ξ p + α ξ for the two types of constraints, respectively, where k ,  K are, respectively, the minimum and maximum cardinalities of a maximal independent set in the independent system, and p is the minimum number of matroids such that the independent system can be expressed as the intersection of p matroids. When the constraint is a cardinality one, our result maintains the same approximation ratio as that in Bian et al. (Proceedings of the 34th international conference on machine learning, pp 498–507, 2017); however, the proof is much simpler owning to the new definition of the greedy curvature. In the case of a single matroid constraint, our result is competitive compared with the existing ones in Chen et al. (Proceedings of the 35th international conference on machine learning, pp 804–813, 2018) and Gatmiry and Rodriguez (Non-submodular function maximization subject to a matroid constraint, with applications, 2018. arXiv:1811.07863v4 ). In addition, we bound the generalized curvature, the submodularity ratio and the diminishing returns ratio for several important real-world applications. Computational experiments are also provided supporting our analyses.
AbstractList We study the problems of maximizing a monotone non-submodular function subject to two types of constraints, either an independent system constraint or a p -matroid constraint. These problems often occur in the context of combinatorial optimization, operations research, economics and especially, machine learning and data science. Using the generalized curvature α and the submodularity ratio γ or the diminishing returns ratio ξ , we analyze the performances of the widely used greedy algorithm, which yields theoretical approximation guarantees of 1 α [ 1 - ( 1 - α γ K ) k ] and ξ p + α ξ for the two types of constraints, respectively, where k ,  K are, respectively, the minimum and maximum cardinalities of a maximal independent set in the independent system, and p is the minimum number of matroids such that the independent system can be expressed as the intersection of p matroids. When the constraint is a cardinality one, our result maintains the same approximation ratio as that in Bian et al. (Proceedings of the 34th international conference on machine learning, pp 498–507, 2017); however, the proof is much simpler owning to the new definition of the greedy curvature. In the case of a single matroid constraint, our result is competitive compared with the existing ones in Chen et al. (Proceedings of the 35th international conference on machine learning, pp 804–813, 2018) and Gatmiry and Rodriguez (Non-submodular function maximization subject to a matroid constraint, with applications, 2018. arXiv:1811.07863v4 ). In addition, we bound the generalized curvature, the submodularity ratio and the diminishing returns ratio for several important real-world applications. Computational experiments are also provided supporting our analyses.
We study the problems of maximizing a monotone non-submodular function subject to two types of constraints, either an independent system constraint or a p-matroid constraint. These problems often occur in the context of combinatorial optimization, operations research, economics and especially, machine learning and data science. Using the generalized curvature α and the submodularity ratio γ or the diminishing returns ratio ξ, we analyze the performances of the widely used greedy algorithm, which yields theoretical approximation guarantees of 1α[1-(1-αγK)k] and ξp+αξ for the two types of constraints, respectively, where k, K are, respectively, the minimum and maximum cardinalities of a maximal independent set in the independent system, and p is the minimum number of matroids such that the independent system can be expressed as the intersection of p matroids. When the constraint is a cardinality one, our result maintains the same approximation ratio as that in Bian et al. (Proceedings of the 34th international conference on machine learning, pp 498–507, 2017); however, the proof is much simpler owning to the new definition of the greedy curvature. In the case of a single matroid constraint, our result is competitive compared with the existing ones in Chen et al. (Proceedings of the 35th international conference on machine learning, pp 804–813, 2018) and Gatmiry and Rodriguez (Non-submodular function maximization subject to a matroid constraint, with applications, 2018. arXiv:1811.07863v4). In addition, we bound the generalized curvature, the submodularity ratio and the diminishing returns ratio for several important real-world applications. Computational experiments are also provided supporting our analyses.
Author Wang, Wei
Yang, Zishen
Shi, Majun
Author_xml – sequence: 1
  givenname: Majun
  surname: Shi
  fullname: Shi, Majun
  organization: School of Mathematics and Statistics, Xi’an Jiaotong University
– sequence: 2
  givenname: Zishen
  surname: Yang
  fullname: Yang, Zishen
  organization: School of Mathematics and Statistics, Xi’an Jiaotong University
– sequence: 3
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  email: wang_weiw@163.com
  organization: School of Mathematics and Statistics, Xi’an Jiaotong University
BookMark eNp9kEFPAyEQhYmpiW31D3gi8bw6QFl2j6bR2qTqQXsmLMvqNi2swEbrr5e2JiYeemAIM-9jXt4IDayzBqFLAtcEQNwEAiUXGVCaDpnwjJ-gIeGCZbQQxQANYTdilJVnaBTCCgDKQkyGqJt5Y-otnvXKKxuNCbhxHj85m4W-2ri6XyuP73urY-ssflRf7ab9VvvH0tbG43mqnUnFRvyyDdFs8NTZEL1qU-ezje_4tuvWrd5D4RydNmodzMXvPUbL-7vX6UO2eJ7Np7eLTDNSxowD0SavGBeKaCoq3gjeVJQUFdSghVBU5UQXlQLKObCGMlqXteaQlzz1azZGV4d_O-8-ehOiXLne27RSUiFyWkDOaVIVB5X2LgRvGqnbuDe687-WBOQuX3nIV6YQ5T5fyRNK_6GdbzfKb49D7ACFJLZvxv-5OkL9AEDWkRU
CitedBy_id crossref_primary_10_1007_s10898_024_01371_7
crossref_primary_10_1016_j_dam_2024_09_022
crossref_primary_10_1016_j_disc_2024_114287
Cites_doi 10.1145/1374376.1374389
10.1561/2200000044
10.1007/s10878-020-00672-3
10.1007/BF01588971
10.1016/0166-218X(84)90003-9
10.1007/978-3-642-17572-5_20
10.1137/130920277
10.1007/978-3-540-72792-7_15
10.1137/090750020
10.1007/s10898-019-00840-8
10.1016/S0167-5060(08)70322-4
10.1137/080733991
10.1007/978-3-030-26176-4_54
10.1145/1536414.1536459
10.1080/00029890.2004.11920060
10.1142/S0217595921400017
10.1137/1.9781611973730.76
10.1007/BFb0121195
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7TB
7WY
7WZ
7XB
87Z
88I
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KR7
L.-
L6V
L7M
L~C
L~D
M0C
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1007/s10957-022-02145-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2878
EndPage 543
ExternalDocumentID 10_1007_s10957_022_02145_5
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11971376
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PKN
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
TWZ
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
VOH
W23
W48
WH7
WK8
YLTOR
YQT
Z45
Z7R
Z7S
Z7U
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZCG
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7TB
7XB
8FD
8FK
FR3
JQ2
KR7
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-501ce6b357a1c27b5f75fb218b0d0c77a2a61c8ba025503f232d9dc506951c8d3
IEDL.DBID BENPR
ISSN 0022-3239
IngestDate Sat Aug 23 14:34:34 EDT 2025
Wed Oct 01 04:33:58 EDT 2025
Thu Apr 24 23:10:34 EDT 2025
Fri Feb 21 02:45:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Greedy algorithm
Independent system
matroid
Non-submodular function
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-501ce6b357a1c27b5f75fb218b0d0c77a2a61c8ba025503f232d9dc506951c8d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2776280652
PQPubID 48247
PageCount 28
ParticipantIDs proquest_journals_2776280652
crossref_citationtrail_10_1007_s10957_022_02145_5
crossref_primary_10_1007_s10957_022_02145_5
springer_journals_10_1007_s10957_022_02145_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230200
2023-02-00
20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 2
  year: 2023
  text: 20230200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of optimization theory and applications
PublicationTitleAbbrev J Optim Theory Appl
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Das, A., Kempe, D.: Submodular meets spectral: greedy algorithms for subset selection, sparse approximation and dictionary selection. In: Proceedings of the 28th International Conference on Machine Learning, pp. 1057–1064 (2011)
DuDZKoKIHuXDDesign and Analysis of Approximation Algorithms2012New YorkSpringer1237.68009
Kulesza, A., Taskar, B.: Determinantal point processes for machine learning. Found. Trends® Mach. Learn. 5(2–3), 123–286 (2012)
Feldman, M., Harshaw, C., Karbasi, A.: Greed is good: near-optimal submodular maximization via greedy optimization. In: Proceedings of the 30th Conference on Learning Theory, vol. 65, pp. 758–784 (2017)
Gupta, A., Roth, A., Schoenebeck, G., Talwar, K.: Constrained non-monotone submodular maximization: offline and secretary algorithms. In: Proceedings of the 6th International Workshop on Internet and Network Economics, vol. 6484, pp. 246–257 (2010)
KorteBHausmannDAn analysis of the greedy heuristic for independence systemsAnn. Discrete Math.1978242165745006890392.90058
NemhauserGLWolseyLAFisherMLAn analysis of approximations for maximizing submodular set functions-IMath. Program.19781412652945038660374.90045
WangYJDuDLJiangYJZhangXZNon-submodular maximization with matroid and knapsack constraintsAsia Pac. J. Oper. Res.20213805214000143227911484.90120
Sviridenko, M., Vondrák, J., Ward, J.: Optimal approximation for submodular and supermodular optimization with bounded curvature. In: Proceedings of the 26th ACM-SIAM Symposium on Discrete Algorithms, pp. 1134–1148 (2015)
HwangS-GCauchy’s interlace theorem for eigenvalues of Hermitian matricesAm. Math. Mon.2004111215715920427641050.15008
Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Non-monotone submodular maximization under matroid and knapsack constraints. In: Proceedings of the 41st ACM-SIAM Symposium on Theory of Computing, pp. 323–332 (2009)
CalinescuGChekuriCPálMVondrákJMaximizing a monotone submodular function subject to a matroid constraintSIAM J. Comput.20114061740176628631931234.68459
FisherMLNemhauserGLWolseyLAAn analysis of approximations for maximizing submodular set functions-IIMath. Program. Study1978873875103690408.90085
ConfortiMCornuéjolsGSubmodular functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the Rado-Edmonds theoremDiscrete Appl. Math.1984732512747368900533.90062
ShiMJYangZSKimDYWangWNon-monotone submodular function maximization under k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-system constraintJ. Comb. Optim.2021411128142142046471468.90115
WangYJXuDCWangYSZhangDMNon-submodular maximization on massive data streamsJ. Glob. Optim.20207672974340783761441.90130
Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set function subject to a matroid constraint (extended abstract). In: Proceedings of the 12th Conference on Integer Programming and Combinatorial Optimization, vol. 4513, pp. 182–196 (2007)
VondrákJSubmodularity and curvature: the optimal algorithmRIMS Kokyuroku Bessatsu2009B2325326627993251219.68109
ElenbergERKhannaRDimakisAGNegahbanSRestricted strong convexity implies weak submodularityAnn. Stat.2016466B3539356838526611401.68262
LeeJMirrokniVSNagarajanVSviridenkoMMaximizing non-monotone submodular functions under matroid or knapsack constraintsSIAM J. Discrete Math.2010234205320781207.68445
Gatmiry, K., Rodriguez, M.G.: Non-submodular function maximization subject to a matroid constraint, with applications (2018). arXiv:1811.07863v4
Bian, A.A., Buhmann, J.M., Krause, A., Tschiatschek, S.: Guarantees for greedy maximization of non-submodular functions with applications. In: Proceedings of the 34th International Conference on Machine Learning, pp. 498–507 (2017)
Vondrák, J.: Optimal approximation for the submodular welfare problem in the value oracle model. In: Proceedings of the 40th ACM Symposium on Theory of Computing, pp. 67–74 (2008)
Chen, L., Feldman, M., Karbasi, A.: Weakly submodular maximization beyond cardinality constraints: does randomization help greedy? In: Proceedings of the 35th International Conference on Machine Learning, pp. 804–813 (2018)
FilmusYWardJMonotone submodular maximization over a matroid via non-oblivious local searchSIAM J. Comput.201343251454231830501307.68098
Zhang, Z.N., Liu, B., Wang, Y.S., Xu, D.C., Zhang, D.M.: Greedy algorithm for maximization of non-submodular functions subject to knapsack constraint. In: Proceedings of the 26th International Computing and Combinatorics Conference, pp. 651–662 (2019)
MJ Shi (2145_CR20) 2021; 41
DZ Du (2145_CR7) 2012
ER Elenberg (2145_CR8) 2016; 46
2145_CR22
Y Filmus (2145_CR10) 2013; 43
2145_CR21
J Lee (2145_CR17) 2010; 23
2145_CR26
YJ Wang (2145_CR24) 2021; 38
YJ Wang (2145_CR25) 2020; 76
M Conforti (2145_CR2) 1984; 7
G Calinescu (2145_CR4) 2011; 40
GL Nemhauser (2145_CR19) 1978; 14
B Korte (2145_CR15) 1978; 2
2145_CR12
ML Fisher (2145_CR11) 1978; 8
2145_CR18
2145_CR9
2145_CR16
2145_CR13
2145_CR6
2145_CR5
J Vondrák (2145_CR23) 2009; B23
2145_CR3
2145_CR1
S-G Hwang (2145_CR14) 2004; 111
References_xml – reference: Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set function subject to a matroid constraint (extended abstract). In: Proceedings of the 12th Conference on Integer Programming and Combinatorial Optimization, vol. 4513, pp. 182–196 (2007)
– reference: ElenbergERKhannaRDimakisAGNegahbanSRestricted strong convexity implies weak submodularityAnn. Stat.2016466B3539356838526611401.68262
– reference: CalinescuGChekuriCPálMVondrákJMaximizing a monotone submodular function subject to a matroid constraintSIAM J. Comput.20114061740176628631931234.68459
– reference: FisherMLNemhauserGLWolseyLAAn analysis of approximations for maximizing submodular set functions-IIMath. Program. Study1978873875103690408.90085
– reference: NemhauserGLWolseyLAFisherMLAn analysis of approximations for maximizing submodular set functions-IMath. Program.19781412652945038660374.90045
– reference: Sviridenko, M., Vondrák, J., Ward, J.: Optimal approximation for submodular and supermodular optimization with bounded curvature. In: Proceedings of the 26th ACM-SIAM Symposium on Discrete Algorithms, pp. 1134–1148 (2015)
– reference: FilmusYWardJMonotone submodular maximization over a matroid via non-oblivious local searchSIAM J. Comput.201343251454231830501307.68098
– reference: WangYJXuDCWangYSZhangDMNon-submodular maximization on massive data streamsJ. Glob. Optim.20207672974340783761441.90130
– reference: Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Non-monotone submodular maximization under matroid and knapsack constraints. In: Proceedings of the 41st ACM-SIAM Symposium on Theory of Computing, pp. 323–332 (2009)
– reference: Vondrák, J.: Optimal approximation for the submodular welfare problem in the value oracle model. In: Proceedings of the 40th ACM Symposium on Theory of Computing, pp. 67–74 (2008)
– reference: LeeJMirrokniVSNagarajanVSviridenkoMMaximizing non-monotone submodular functions under matroid or knapsack constraintsSIAM J. Discrete Math.2010234205320781207.68445
– reference: Chen, L., Feldman, M., Karbasi, A.: Weakly submodular maximization beyond cardinality constraints: does randomization help greedy? In: Proceedings of the 35th International Conference on Machine Learning, pp. 804–813 (2018)
– reference: VondrákJSubmodularity and curvature: the optimal algorithmRIMS Kokyuroku Bessatsu2009B2325326627993251219.68109
– reference: ConfortiMCornuéjolsGSubmodular functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the Rado-Edmonds theoremDiscrete Appl. Math.1984732512747368900533.90062
– reference: Gatmiry, K., Rodriguez, M.G.: Non-submodular function maximization subject to a matroid constraint, with applications (2018). arXiv:1811.07863v4
– reference: Kulesza, A., Taskar, B.: Determinantal point processes for machine learning. Found. Trends® Mach. Learn. 5(2–3), 123–286 (2012)
– reference: WangYJDuDLJiangYJZhangXZNon-submodular maximization with matroid and knapsack constraintsAsia Pac. J. Oper. Res.20213805214000143227911484.90120
– reference: Gupta, A., Roth, A., Schoenebeck, G., Talwar, K.: Constrained non-monotone submodular maximization: offline and secretary algorithms. In: Proceedings of the 6th International Workshop on Internet and Network Economics, vol. 6484, pp. 246–257 (2010)
– reference: DuDZKoKIHuXDDesign and Analysis of Approximation Algorithms2012New YorkSpringer1237.68009
– reference: HwangS-GCauchy’s interlace theorem for eigenvalues of Hermitian matricesAm. Math. Mon.2004111215715920427641050.15008
– reference: KorteBHausmannDAn analysis of the greedy heuristic for independence systemsAnn. Discrete Math.1978242165745006890392.90058
– reference: Zhang, Z.N., Liu, B., Wang, Y.S., Xu, D.C., Zhang, D.M.: Greedy algorithm for maximization of non-submodular functions subject to knapsack constraint. In: Proceedings of the 26th International Computing and Combinatorics Conference, pp. 651–662 (2019)
– reference: Das, A., Kempe, D.: Submodular meets spectral: greedy algorithms for subset selection, sparse approximation and dictionary selection. In: Proceedings of the 28th International Conference on Machine Learning, pp. 1057–1064 (2011)
– reference: ShiMJYangZSKimDYWangWNon-monotone submodular function maximization under k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-system constraintJ. Comb. Optim.2021411128142142046471468.90115
– reference: Feldman, M., Harshaw, C., Karbasi, A.: Greed is good: near-optimal submodular maximization via greedy optimization. In: Proceedings of the 30th Conference on Learning Theory, vol. 65, pp. 758–784 (2017)
– reference: Bian, A.A., Buhmann, J.M., Krause, A., Tschiatschek, S.: Guarantees for greedy maximization of non-submodular functions with applications. In: Proceedings of the 34th International Conference on Machine Learning, pp. 498–507 (2017)
– ident: 2145_CR22
  doi: 10.1145/1374376.1374389
– ident: 2145_CR16
  doi: 10.1561/2200000044
– volume-title: Design and Analysis of Approximation Algorithms
  year: 2012
  ident: 2145_CR7
– ident: 2145_CR9
– volume: 41
  start-page: 128
  issue: 1
  year: 2021
  ident: 2145_CR20
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-020-00672-3
– ident: 2145_CR1
– ident: 2145_CR5
– volume: 46
  start-page: 3539
  issue: 6B
  year: 2016
  ident: 2145_CR8
  publication-title: Ann. Stat.
– volume: 14
  start-page: 265
  issue: 1
  year: 1978
  ident: 2145_CR19
  publication-title: Math. Program.
  doi: 10.1007/BF01588971
– volume: 7
  start-page: 251
  issue: 3
  year: 1984
  ident: 2145_CR2
  publication-title: Discrete Appl. Math.
  doi: 10.1016/0166-218X(84)90003-9
– ident: 2145_CR13
  doi: 10.1007/978-3-642-17572-5_20
– volume: 43
  start-page: 514
  issue: 2
  year: 2013
  ident: 2145_CR10
  publication-title: SIAM J. Comput.
  doi: 10.1137/130920277
– ident: 2145_CR3
  doi: 10.1007/978-3-540-72792-7_15
– volume: 23
  start-page: 2053
  issue: 4
  year: 2010
  ident: 2145_CR17
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/090750020
– volume: 76
  start-page: 729
  year: 2020
  ident: 2145_CR25
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-019-00840-8
– volume: 2
  start-page: 65
  issue: 421
  year: 1978
  ident: 2145_CR15
  publication-title: Ann. Discrete Math.
  doi: 10.1016/S0167-5060(08)70322-4
– volume: 40
  start-page: 1740
  issue: 6
  year: 2011
  ident: 2145_CR4
  publication-title: SIAM J. Comput.
  doi: 10.1137/080733991
– ident: 2145_CR26
  doi: 10.1007/978-3-030-26176-4_54
– ident: 2145_CR18
  doi: 10.1145/1536414.1536459
– ident: 2145_CR6
– volume: 111
  start-page: 157
  issue: 2
  year: 2004
  ident: 2145_CR14
  publication-title: Am. Math. Mon.
  doi: 10.1080/00029890.2004.11920060
– volume: 38
  start-page: 2140001
  issue: 05
  year: 2021
  ident: 2145_CR24
  publication-title: Asia Pac. J. Oper. Res.
  doi: 10.1142/S0217595921400017
– ident: 2145_CR21
  doi: 10.1137/1.9781611973730.76
– volume: 8
  start-page: 73
  year: 1978
  ident: 2145_CR11
  publication-title: Math. Program. Study
  doi: 10.1007/BFb0121195
– volume: B23
  start-page: 253
  year: 2009
  ident: 2145_CR23
  publication-title: RIMS Kokyuroku Bessatsu
– ident: 2145_CR12
SSID ssj0009874
Score 2.3759546
Snippet We study the problems of maximizing a monotone non-submodular function subject to two types of constraints, either an independent system constraint or a p...
We study the problems of maximizing a monotone non-submodular function subject to two types of constraints, either an independent system constraint or a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 516
SubjectTerms Applications of Mathematics
Approximation
Calculus of Variations and Optimal Control; Optimization
Combinatorial analysis
Curvature
Engineering
Greedy algorithms
International conferences
Machine learning
Mathematical analysis
Mathematics
Mathematics and Statistics
Maximization
Operations research
Operations Research/Decision Theory
Optimization
Theory of Computation
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAG1EoyAMbuEqdOHbGCrUUUDtRqUxR_IiEgLQiqQT8euw82lIBUrdEcSzHd_Z9zt19B3CpuTa7XCywIoHGHjFX3BzgsGI8jiKXS0fZBOfB0O-PvPsxHZdJYWkV7V65JPOdeinZLaAM2-hzy_NFMd2EOjXwmNag3rl9euguyHZ5xb5MsEvcoEyW-b2XnwZpgTJXHKO5ventwqgaaRFm8tKaZaIlv1ZIHNf9lD3YKQEo6hQasw8bOjmA7SVaQnM3mHO5pocwtaE56hNZZbJi0CkyQBcNJwlOjTGdKBvIinrGPloZo0H08fxWJneivKoSupuX2s1QwZCObJ3QvDpFhuyfYNRZ8qMfwajXfbzp47JOA5ZmAWeYOm2pfeFSFrUlYYLGjMbCYAfhKEcyFpHIb0suInt-cdzYgDgVKEkd38A7yZV7DLVkkugTQD5lmgoea1d7HrFMNYTGsTQGJeCe1qIB7UpYoSxJzO1oX8MF_bKd29DMbZjPbUgbcDV_Z1pQePzbulnpQFgu5zQkzNgM64ImDbiuRLp4_Hdvp-s1P4MtW86-iApvQi17n-lzA3oycVHq-DfcPPhd
  priority: 102
  providerName: Springer Nature
Title Greedy Guarantees for Non-submodular Function Maximization Under Independent System Constraint with Applications
URI https://link.springer.com/article/10.1007/s10957-022-02145-5
https://www.proquest.com/docview/2776280652
Volume 196
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-2878
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009874
  issn: 0022-3239
  databaseCode: AFBBN
  dateStart: 19670701
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-2878
  dateEnd: 20241005
  omitProxy: true
  ssIdentifier: ssj0009874
  issn: 0022-3239
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-2878
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009874
  issn: 0022-3239
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-2878
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009874
  issn: 0022-3239
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swED5B-7I9oAGbVmCVH3gDi9SJY-cBTe3UwECNEKISe4riH5GQoC00SNt_jy91GkAaT0nkxIp89t3Zd_d9AIdWWqflSkUNSyyNmLuTbgNHjZBlUYRSBwYLnCdZfD6NLm757QZkTS0MplU2OrFW1Gau8Yz8hAm3bDEKyH4uHimyRmF0taHQKDy1gjmtIcY2oYsqOepAdzTOrq5bGF7Z4DIzGrIw8WU0vpgu4YJiC-KIccrfmqrW_3wXMq0tUfoFtrwLSYYrmW_Dhp3twOdXwILuabJGY13uwgKTa8w_gtMBB9IuiXNVSTaf0aUzh3ODqagkdRYOpUQmxd-7B1-eSWpeJPJ7TZZbkRXGOUGmz5pfoiJ4lkuGryLhX2Gajm9-nVPPtEC1W4IV5cFA21iFXBQDzYTipeClctZfBSbQQhSsiAdaqgJ3IEFYOjfMJEbzIHYOmpYm_Aad2XxmvwOJubBcydKGNooYYs0wXpbamYRERtaqHgyaQc21hyHHv73PWwBlFETuBJHXgsh5D47W3yxWIBwfvn3QyCr3C3KZt9OnB8eN_Nrm__e293Fv-_AJCehXedwH0Kmenu0P56ZUqg-bMj3rQ3eYjkYZXs_-XI77fka61ikbvgAdA-nx
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2V7QE4INqCulCoD_RULLJOHDuHChXoapd2Vwi1Um8h_oiEBLtLkwr65_htzGSdTanU3npL5MSKPJOZZ8_MG4A3Xnu0cqXhTmSeJwKvNG7guFO6LIpY28hRgfNkmo7Oks_n8nwN_ra1MJRW2drExlC7uaUz8ndC4W9LUUDxfvGLU9coiq62LTSK0FrBHTQUY6Gw49hf_cYtXHUw_oTy3hNieHT6ccRDlwFuUf1qLqOB9amJpSoGVigjSyVLg57PRC6yShWiSAdWm4LQdxSXCEFc5qyMUgQnVrsY530A6wg7RNKD9Q9H0y9fO9pf3fJACx6LOAtlO6F4L5OK0wjxlkku_3eNHd69EaJtPN_wKTwJkJUdLnVsA9b8bBMeXyMyxLvJiv212oIFJfO4K0bqR4LzFUNozKbzGa_Q_c4dpb6yIXpU0go2Kf58_xnKQVnTh4mNV815a7bkVGfUWbTpZ1EzOjtmh9ci78_g7F7W_Dn0ZvOZ3waWSuWl0aWPfZII4rYRsiwtuqBMJ96bPgzaRc1toD2nr_2Rd4TNJIgcBZE3gshlH_ZX7yyWpB93Pr3TyioPBqDKO3Xtw9tWft3w7bO9uHu2XXg4Op2c5Cfj6fFLeCQQci1zyHegV19c-lcIkWrzOughg2_3rfr_AFA6ITg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVkJwQJSHuqVQH-gJrGadOHYOCFWUtNt2Vxyo1FuIXxIS7C4kFfSv8euYyWNTkNpbb4mSWJHns2dsz3wfwGuvPc5ywXAnMs8TgVcaF3DcKR3KMtY2clTgPJ2lx-fJyYW8WIM_fS0MpVX2c2IzUbuFpT3yfaFw2NIpoNgPXVrEp8P8_fIHJwUpOmnt5TRaiJz6q1-4fKveTQ7R1ntC5B8_fzjmncIAtwi9mstobH1qYqnKsRXKyKBkMOj1TOQiq1QpynRstSkp8o7igOGHy5yVUYqBidUuxnbvwYaKcalHVer50UD4q3sGaMFjEWddwU5XtpdJxekJMZZJLv91ikOk-9_hbOPz8sfwqAtW2UGLrk1Y8_Mn8PAahSHeTVe8r9VTWFIaj7tiBDwyma8YBsVstpjzCh3vwlHSK8vRlxIe2LT8_fV7VwjKGgUmNlnJ8tasZVNnpCnaKFnUjHaN2cG1M_dncH4nPf4c1ueLud8ClkrlpdHBxz5JBLHaCBmCReeT6cR7M4Jx36mF7QjP6W-_FQNVMxmiQEMUjSEKOYI3q2-WLd3HrW_v9LYquqFfFQNQR_C2t9_w-ObWtm9vbRfuI-CLs8ns9AU8INX7Nnl8B9brn5f-JcZGtXnVgJDBl7tG_V9a-x7T
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Greedy+Guarantees+for+Non-submodular+Function+Maximization+Under+Independent+System+Constraint+with+Applications&rft.jtitle=Journal+of+optimization+theory+and+applications&rft.au=Shi%2C+Majun&rft.au=Yang%2C+Zishen&rft.au=Wang%2C+Wei&rft.date=2023-02-01&rft.issn=0022-3239&rft.eissn=1573-2878&rft.volume=196&rft.issue=2&rft.spage=516&rft.epage=543&rft_id=info:doi/10.1007%2Fs10957-022-02145-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10957_022_02145_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3239&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3239&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3239&client=summon