One dimensional quaternion linear canonical transform in probability theory
The quaternion linear canonical transform is considered as central piece in different fields like applied mathematics, engineering, computer sciences, and statistics. In this work, we have introduced the one-dimensional quaternion linear canonical transform, which is a generalization of the quaterni...
Saved in:
Published in | Signal, image and video processing Vol. 18; no. 12; pp. 9419 - 9430 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.12.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1863-1703 1863-1711 |
DOI | 10.1007/s11760-024-03556-9 |
Cover
Abstract | The quaternion linear canonical transform is considered as central piece in different fields like applied mathematics, engineering, computer sciences, and statistics. In this work, we have introduced the one-dimensional quaternion linear canonical transform, which is a generalization of the quaternion Fourier transform. We explore the characteristic function within the framework of quaternion algebra, elucidating its essential properties. Building on this foundation, we derive the expected value and variance, offering deeper insights into the probabilistic structures associated with the quaternions. |
---|---|
AbstractList | The quaternion linear canonical transform is considered as central piece in different fields like applied mathematics, engineering, computer sciences, and statistics. In this work, we have introduced the one-dimensional quaternion linear canonical transform, which is a generalization of the quaternion Fourier transform. We explore the characteristic function within the framework of quaternion algebra, elucidating its essential properties. Building on this foundation, we derive the expected value and variance, offering deeper insights into the probabilistic structures associated with the quaternions. |
Author | Ismoiljonovich, Fayzullayev Djamshid Siddiqui, Saima Samad, Muhammad Adnan |
Author_xml | – sequence: 1 givenname: Saima surname: Siddiqui fullname: Siddiqui, Saima email: saimasiddiqui07@gmail.com organization: Department of Mathematics, Fergana Polytechnic Institute – sequence: 2 givenname: Muhammad Adnan surname: Samad fullname: Samad, Muhammad Adnan organization: Electrical Engineering, Electrical Mechanics and Electrical Technologies Department, Fergana Polytechnic Institute – sequence: 3 givenname: Fayzullayev Djamshid surname: Ismoiljonovich fullname: Ismoiljonovich, Fayzullayev Djamshid organization: Department of Mathematics, Fergana Polytechnic Institute |
BookMark | eNp9kMtOAyEYhYmpibX2BVyRuEa5zHBZmkatsUk3uiYMwyjNlGmBLvr2omM0cVE2QDjfzznnEkzCEBwA1wTfEozFXSJEcIwwrRBmdc2ROgNTIjlDRBAy-T1jdgHmKW1wWYwKyeUUvKyDg63fupD8EEwP9weTXQzlAnsfnInQmvKft-UtRxNSN8Qt9AHu4tCYxvc-H2H-cEM8XoHzzvTJzX_2GXh7fHhdLNFq_fS8uF8hy4jKqOpoxVqqhKwka0nTOG5EqzpuFK9NbanBQmLOjWww5a2rVGOJLRGIUEJIwWbgZpxbLOwPLmW9GQ6xmE-aEVqVTpTiRSVHlY1DStF12vpscglWYvheE6y_2tNje7q0p7_b06qg9B-6i35r4vE0xEYoFXF4d_HP1QnqE1vdg6Q |
CitedBy_id | crossref_primary_10_3390_math13020195 crossref_primary_10_3390_fractalfract8120748 |
Cites_doi | 10.1007/s00006-007-0037-8 10.1007/s41478-023-00585-4 10.1016/j.amc.2015.09.045 10.1063/1.1665805 10.1007/s10851-007-0004-y 10.1080/17476933.2018.1427080 10.1016/j.ijleo.2021.166914 10.1007/s11760-024-03157-6 10.1016/j.ijleo.2016.09.069 10.3390/math10081217 10.1109/TIP.2006.884955 10.3390/electronics11223775 10.1007/s00006-022-01224-0 10.1007/s00006-013-0412-6 10.1007/s11760-020-01728-x 10.1155/2013/162769 10.1016/j.ins.2017.09.057 10.3390/math11092056 10.3390/sym15040815 10.1007/978-1-4939-3028-9 10.3390/sym14071359 10.1016/j.camwa.2008.05.032 10.1016/j.sigpro.2008.04.012 10.1007/s00034-022-02241-x 10.1111/sapm.12211 10.1007/s00006-015-0620-3 10.1364/JOSA.60.001168 10.1007/978-0-85729-760-0 10.3390/sym16030257 10.1142/S0219691322500357 10.1109/ICWAPR.2012.6294808 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1007/s11760-024-03556-9 |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1863-1711 |
EndPage | 9430 |
ExternalDocumentID | 10_1007_s11760_024_03556_9 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .VR 06D 0R~ 123 1N0 203 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 875 8TC 95- 95. 95~ AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P9O PF0 PT4 QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 YLTOR Z45 Z5O Z7R Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ JQ2 |
ID | FETCH-LOGICAL-c319t-4f243d2978483d1bbe6a7d9f6a965a5c2a078066a8b026de49bc1c86317977873 |
IEDL.DBID | U2A |
ISSN | 1863-1703 |
IngestDate | Thu Sep 25 00:50:07 EDT 2025 Tue Jul 01 03:24:23 EDT 2025 Thu Apr 24 23:02:01 EDT 2025 Fri Feb 21 02:36:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Quaternion characteristic function Quaternion linear canonical transform Quaternion probability density function Quaternion variance |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-4f243d2978483d1bbe6a7d9f6a965a5c2a078066a8b026de49bc1c86317977873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3124100996 |
PQPubID | 2044169 |
PageCount | 12 |
ParticipantIDs | proquest_journals_3124100996 crossref_citationtrail_10_1007_s11760_024_03556_9 crossref_primary_10_1007_s11760_024_03556_9 springer_journals_10_1007_s11760_024_03556_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Signal, image and video processing |
PublicationTitleAbbrev | SIViP |
PublicationYear | 2024 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Huang, Li, Gao (CR25) 2023; 11 Xu, Li (CR7) 2013 Ekasasmita, Bahri, Bachtiar, Rahim, Nur (CR4) 2023; 15 Fan, Li, Liu, Zhao (CR16) 2022; 14 Hitzer (CR30) 2007; 17 Bhat, Sheikh (CR19) 2022; 32 Fu, Li (CR29) 2013; 23 Hitzer (CR31) 2016; 3 Equations (CR20) 2018; 141 CR33 CR10 Healy, Kutay, Ozaktas, Sheridan (CR6) 2016 Bahri, Hitzer, Hayashi, Ashino (CR26) 2008; 56 Golabek, Welcer, Szczepanski, Krawczyk, Zajdel, Borodacz (CR23) 2022; 11 Bahri, Amir, Resnawati, Lande (CR9) 2018; 48 Bhat, Sheikh (CR14) 2023; 42 Moshinsky, Quesne (CR2) 1971; 12 Bie, Schepper, Ell, Rubrecht, Sangwine (CR11) 2015; 271 Roopkumar (CR13) 2016; 127 Bhat, Dar (CR32) 2023; 31 Siddiqui, Li (CR34) 2021; 244 Cheng, Kou (CR35) 2018; 64 CR3 Greenblatt, Agaian (CR24) 2018; 423 Collins (CR1) 1970; 60 CR5 Hamilton (CR21) 1866 Li, Gao, Li (CR15) 2021; 15 Ell, Sangwine (CR8) 2007; 16 Siddiqui, Li, Samad (CR18) 2024 CR22 Siddiqui, Li, Samad (CR17) 2022; 10 Bayro-Corrochano, Trujillo, Naranjo (CR28) 2007; 28 Guanlei, Xiaotong, Xiaogang (CR12) 2008; 88 Bahri, Ashino, Vaillancourt (CR27) 2013; 2013 3556_CR22 X Fan (3556_CR16) 2022; 14 SA Collins Jr (3556_CR1) 1970; 60 M Bahri (3556_CR9) 2018; 48 ZW Li (3556_CR15) 2021; 15 YA Bhat (3556_CR19) 2022; 32 W Ekasasmita (3556_CR4) 2023; 15 M Bahri (3556_CR27) 2013; 2013 E Hitzer (3556_CR30) 2007; 17 D Cheng (3556_CR35) 2018; 64 HD Bie (3556_CR11) 2015; 271 E Hitzer (3556_CR31) 2016; 3 S Siddiqui (3556_CR34) 2021; 244 R Roopkumar (3556_CR13) 2016; 127 C Huang (3556_CR25) 2023; 11 W Hamilton (3556_CR21) 1866 3556_CR10 3556_CR33 TA Ell (3556_CR8) 2007; 16 S Siddiqui (3556_CR18) 2024 Y Fu (3556_CR29) 2013; 23 Linear Quaternion Differential Equations (3556_CR20) 2018; 141 M Bahri (3556_CR26) 2008; 56 X Guanlei (3556_CR12) 2008; 88 AB Greenblatt (3556_CR24) 2018; 423 M Golabek (3556_CR23) 2022; 11 MY Bhat (3556_CR32) 2023; 31 3556_CR3 YA Bhat (3556_CR14) 2023; 42 3556_CR5 JJ Healy (3556_CR6) 2016 TZ Xu (3556_CR7) 2013 E Bayro-Corrochano (3556_CR28) 2007; 28 S Siddiqui (3556_CR17) 2022; 10 M Moshinsky (3556_CR2) 1971; 12 |
References_xml | – ident: CR22 – volume: 17 start-page: 497 year: 2007 end-page: 517 ident: CR30 article-title: Quaternion fourier transform on quaternion fields and generalizations publication-title: Adv. Appl. Clifford Algebra doi: 10.1007/s00006-007-0037-8 – volume: 31 start-page: 2613 year: 2023 end-page: 2622 ident: CR32 article-title: Quaternion offset linear canonical transform in one-dimensional setting publication-title: J Anal doi: 10.1007/s41478-023-00585-4 – volume: 271 start-page: 581 year: 2015 end-page: 593 ident: CR11 article-title: Connecting spatial and frequency domains for the quaternion Fourier transform publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2015.09.045 – volume: 12 start-page: 1772 issue: 8 year: 1971 end-page: 1780 ident: CR2 article-title: Linear canonical transformations and their unitary representations publication-title: J. Math. Phys. doi: 10.1063/1.1665805 – volume: 28 start-page: 179 year: 2007 end-page: 190 ident: CR28 article-title: Quaternion fourier descriptors for the preprocessing and recognition of spoken words using images of spatiotemporal representations publication-title: J. Math. Imag. Vis. doi: 10.1007/s10851-007-0004-y – volume: 48 start-page: 184 year: 2018 end-page: 190 ident: CR9 article-title: The quaternion domain Fourier transform and its application in mathematical statistics publication-title: IAENG Int. J. Appl. Math – ident: CR10 – volume: 64 start-page: 223 year: 2018 end-page: 242 ident: CR35 article-title: Plancherel theorem and quaternion Fourier transform for square integrable functions publication-title: Complex Var. Elliptic Equ. doi: 10.1080/17476933.2018.1427080 – ident: CR33 – volume: 244 year: 2021 ident: CR34 article-title: Quaternionic one-dimensional linear canonical transform publication-title: Optik doi: 10.1016/j.ijleo.2021.166914 – year: 2024 ident: CR18 article-title: Generalized sampling expansion for the quaternion linear canonical transform publication-title: Signal Image Video Process. doi: 10.1007/s11760-024-03157-6 – volume: 127 start-page: 11657 year: 2016 end-page: 11661 ident: CR13 article-title: Quaternionic one-dimensional fractional fourier transform publication-title: Optik doi: 10.1016/j.ijleo.2016.09.069 – volume: 10 start-page: 1217 year: 2022 ident: CR17 article-title: New sampling expansion related to derivatives in quaternion fourier transform domain publication-title: Mathematics doi: 10.3390/math10081217 – volume: 16 start-page: 22 year: 2007 end-page: 35 ident: CR8 article-title: Hypercomplex Fourier transforms of color images publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2006.884955 – year: 2013 ident: CR7 publication-title: Linear Canonical Transform and Its Applications – volume: 11 start-page: 3775 year: 2022 ident: CR23 article-title: Quaternion attitude control system of highly maneuverable aircraft publication-title: Electronics doi: 10.3390/electronics11223775 – volume: 32 start-page: 43 year: 2022 ident: CR19 article-title: Quaternionic linear canonical wave packet transform publication-title: Adv. Appl. Clifford Algebras doi: 10.1007/s00006-022-01224-0 – volume: 23 start-page: 837 year: 2013 end-page: 848 ident: CR29 article-title: Paley-Wiener and Boas theorems for the quaternion fourier transform publication-title: Adv. Appl. Clifford Algebr doi: 10.1007/s00006-013-0412-6 – volume: 15 start-page: 103 year: 2021 end-page: 110 ident: CR15 article-title: A new kind of convolution, correlation and product theorems related to quaternion linear canonical transform publication-title: SIViP doi: 10.1007/s11760-020-01728-x – year: 1866 ident: CR21 publication-title: Elements of Quaternions – volume: 2013 year: 2013 ident: CR27 article-title: Convolution theorems for quaternion fourier transform: properties and applications publication-title: Abstr. Appl. Anal. doi: 10.1155/2013/162769 – volume: 423 start-page: 326 year: 2018 end-page: 342 ident: CR24 article-title: Introducing quaternion multi-valued neural networks with numerical examples publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.09.057 – ident: CR3 – volume: 11 start-page: 2056 year: 2023 ident: CR25 article-title: Review of quaternion-based color image processing methods publication-title: Mathematics doi: 10.3390/math11092056 – volume: 15 start-page: 815 year: 2023 ident: CR4 article-title: One-dimensional quaternion fourier transform with application to probability theory publication-title: Symmetry doi: 10.3390/sym15040815 – year: 2016 ident: CR6 publication-title: Linear Canonical Transforms: Theory and Applications doi: 10.1007/978-1-4939-3028-9 – ident: CR5 – volume: 14 start-page: 1359 year: 2022 ident: CR16 article-title: Solving quaternion linear system based on semi-tensor product of quaternion matrices publication-title: Symmetry doi: 10.3390/sym14071359 – volume: 56 start-page: 2398 year: 2008 end-page: 2410 ident: CR26 article-title: An uncertainty principle for quaternion Fourier transform publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2008.05.032 – volume: 88 start-page: 2511 year: 2008 end-page: 2517 ident: CR12 article-title: Fractional quaternion Fourier transform, convolution and correlation publication-title: Signal Process. doi: 10.1016/j.sigpro.2008.04.012 – volume: 42 start-page: 2872 year: 2023 end-page: 2896 ident: CR14 article-title: Windowed octonionic fourier transform publication-title: Circuits Syst. Signal Process. doi: 10.1007/s00034-022-02241-x – volume: 141 start-page: 3 year: 2018 end-page: 45 ident: CR20 article-title: Kou, Kit Ian, Xia, Yong-Hui publication-title: Basic Theory and Fundamental Results doi: 10.1111/sapm.12211 – volume: 3 start-page: 969 year: 2016 end-page: 984 ident: CR31 article-title: The quaternion domain fourier transform and its properties publication-title: Adv. Appl. Clifford Algebra doi: 10.1007/s00006-015-0620-3 – volume: 60 start-page: 1772 year: 1970 end-page: 1780 ident: CR1 article-title: Lens-system diffraction integral written in terms of matrix optics publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSA.60.001168 – volume: 11 start-page: 3775 year: 2022 ident: 3556_CR23 publication-title: Electronics doi: 10.3390/electronics11223775 – volume: 56 start-page: 2398 year: 2008 ident: 3556_CR26 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2008.05.032 – volume: 2013 year: 2013 ident: 3556_CR27 publication-title: Abstr. Appl. Anal. doi: 10.1155/2013/162769 – volume: 60 start-page: 1772 year: 1970 ident: 3556_CR1 publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSA.60.001168 – ident: 3556_CR22 doi: 10.1007/978-0-85729-760-0 – volume: 15 start-page: 103 year: 2021 ident: 3556_CR15 publication-title: SIViP doi: 10.1007/s11760-020-01728-x – year: 2024 ident: 3556_CR18 publication-title: Signal Image Video Process. doi: 10.1007/s11760-024-03157-6 – volume: 423 start-page: 326 year: 2018 ident: 3556_CR24 publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.09.057 – volume-title: Linear Canonical Transforms: Theory and Applications year: 2016 ident: 3556_CR6 doi: 10.1007/978-1-4939-3028-9 – volume: 88 start-page: 2511 year: 2008 ident: 3556_CR12 publication-title: Signal Process. doi: 10.1016/j.sigpro.2008.04.012 – volume: 17 start-page: 497 year: 2007 ident: 3556_CR30 publication-title: Adv. Appl. Clifford Algebra doi: 10.1007/s00006-007-0037-8 – volume-title: Elements of Quaternions year: 1866 ident: 3556_CR21 – volume-title: Linear Canonical Transform and Its Applications year: 2013 ident: 3556_CR7 – volume: 244 year: 2021 ident: 3556_CR34 publication-title: Optik doi: 10.1016/j.ijleo.2021.166914 – volume: 271 start-page: 581 year: 2015 ident: 3556_CR11 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2015.09.045 – ident: 3556_CR5 doi: 10.3390/sym16030257 – volume: 48 start-page: 184 year: 2018 ident: 3556_CR9 publication-title: IAENG Int. J. Appl. Math – ident: 3556_CR33 doi: 10.1142/S0219691322500357 – volume: 141 start-page: 3 year: 2018 ident: 3556_CR20 publication-title: Basic Theory and Fundamental Results doi: 10.1111/sapm.12211 – ident: 3556_CR3 – volume: 12 start-page: 1772 issue: 8 year: 1971 ident: 3556_CR2 publication-title: J. Math. Phys. doi: 10.1063/1.1665805 – volume: 64 start-page: 223 year: 2018 ident: 3556_CR35 publication-title: Complex Var. Elliptic Equ. doi: 10.1080/17476933.2018.1427080 – ident: 3556_CR10 doi: 10.1109/ICWAPR.2012.6294808 – volume: 32 start-page: 43 year: 2022 ident: 3556_CR19 publication-title: Adv. Appl. Clifford Algebras doi: 10.1007/s00006-022-01224-0 – volume: 42 start-page: 2872 year: 2023 ident: 3556_CR14 publication-title: Circuits Syst. Signal Process. doi: 10.1007/s00034-022-02241-x – volume: 28 start-page: 179 year: 2007 ident: 3556_CR28 publication-title: J. Math. Imag. Vis. doi: 10.1007/s10851-007-0004-y – volume: 3 start-page: 969 year: 2016 ident: 3556_CR31 publication-title: Adv. Appl. Clifford Algebra doi: 10.1007/s00006-015-0620-3 – volume: 31 start-page: 2613 year: 2023 ident: 3556_CR32 publication-title: J Anal doi: 10.1007/s41478-023-00585-4 – volume: 15 start-page: 815 year: 2023 ident: 3556_CR4 publication-title: Symmetry doi: 10.3390/sym15040815 – volume: 14 start-page: 1359 year: 2022 ident: 3556_CR16 publication-title: Symmetry doi: 10.3390/sym14071359 – volume: 11 start-page: 2056 year: 2023 ident: 3556_CR25 publication-title: Mathematics doi: 10.3390/math11092056 – volume: 23 start-page: 837 year: 2013 ident: 3556_CR29 publication-title: Adv. Appl. Clifford Algebr doi: 10.1007/s00006-013-0412-6 – volume: 16 start-page: 22 year: 2007 ident: 3556_CR8 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2006.884955 – volume: 127 start-page: 11657 year: 2016 ident: 3556_CR13 publication-title: Optik doi: 10.1016/j.ijleo.2016.09.069 – volume: 10 start-page: 1217 year: 2022 ident: 3556_CR17 publication-title: Mathematics doi: 10.3390/math10081217 |
SSID | ssj0000327868 |
Score | 2.3480773 |
Snippet | The quaternion linear canonical transform is considered as central piece in different fields like applied mathematics, engineering, computer sciences, and... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 9419 |
SubjectTerms | Applications of mathematics Characteristic functions Computer Imaging Computer Science Fourier transforms Image Processing and Computer Vision Multimedia Information Systems Original Paper Pattern Recognition and Graphics Probability theory Quaternions Signal,Image and Speech Processing Statistical analysis Vision |
Title | One dimensional quaternion linear canonical transform in probability theory |
URI | https://link.springer.com/article/10.1007/s11760-024-03556-9 https://www.proquest.com/docview/3124100996 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9RuOjBD9SIIunBmzZZt67djmBAIhEvkuBpadeSmBhUGAf-e1_3AWrUxNOyrG2WX_v6fv14vwdwyZiV1rOaIvs1lEea0Uhznwok49z3jJTKxQ7fj8RgzO8m4aQMCltUt92rI8l8pt4EuzEpPIo-hXroJAWNt6EeOj0pHMVjv7PeWfECX0ZFDFwknP6mF5TRMj8389UjbWjmt5PR3OH0D2CvZIqkU3TtIWzZWQP2qywMpDTKBux-khQ8guHDzBLjJPsLuQ3yvlRuzw9fiGOUak4QzNc8GpJkFWslzzPiUssUot0rkoc3ro5h3O893gxomTCBpmhJGeVTnwfGx4UhjwLDtLZCSRNPhYpFqMLUV0gIkGOoSOPSy1ge65SlCBJapUTLDU6ghn9gT4FYhNHGIa7GbMy5CRRSAymtNgLnBD1lTWAVaElaqom7pBYvyUYH2QGdINBJDnQSN-FqXeet0NL4s3Sr6ouktKtFEiAdYY7ViiZcV_2z-fx7a2f_K34OO74bIvm9lRbUsvnSXiD7yHQb6p1-tztyz9unYa-dD74PKtDQ5w |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYCBRwFRKOCBDSzFiWMnY4WoCn2wtFK3yI5dCQkVaNOh_55zHi0gQGJM4kTR2ef7zvb3HcA1Y1Zaz2qK6NdQHmlGI819KhCMc98zUirHHe4PRGfEH8fhuCSFzavT7tWWZD5Tr8luTAqPYkyhHgZJQeNN2HLbjC7lGvmt1cqKh7eiggMXCae_6QUlW-bnz3yNSGuY-W1nNA847QPYK5EiaRVdewgbdlqH_aoKAymdsg67nyQFj6D7NLXEOMn-Qm6DvC-UW_PDC-IQpZoRNOZrzoYkWYVayfOUuNIyhWj3kuT0xuUxjNr3w7sOLQsm0BQ9KaN84vPA-JgY8igwTGsrlDTxRKhYhCpMfYWAADGGijSmXsbyWKcsRSOhV0r03OAEavgH9hSIRTPaOMRszMacm0AhNJDSaiNwTtAT1gBWGS1JSzVxV9TiJVnrIDtDJ2joJDd0EjfgZvXOW6Gl8WfrZtUXSelX8yRAOMIcqhUNuK36Z_3496-d_a_5FWx3hv1e0nsYdM9hx3fDJT_D0oRaNlvYC0Qimb7MB94H6ZHQug |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BKyE4sBQQZfWBGxjixLWTIwLKUrYDSHCK7NiVEKiUkh7K1zPOQgABEuIYxbEcjz3zvLw3AJuMWWk9qymiX0N5qBkNNfepQDDOfc9IqRx3-PxCHN_w09vW7QcWf3bbvTySzDkNTqWpl-72TXe3Ir4xKTyK8YV6GDAFjcahzl0OiRrU947uOtU-ixf4MswZcaFwapxeUHBnvq_oc3yqQOeXc9Is_LRnQJUNz2-dPOwMU72TvH7RdPzPn83CdIFNyV4-mOZgzPYaMFPmfSCFG2jA1AcRw3noXPYsMS5JQC7wQZ6Hyu0y4gNxGFYNCJrvKeNfkrTEyeS-R1wym1wmfEQyQuVoAW7ah9f7x7RI0UATnLsp5V2fB8bHpSgPA8O0tkJJE3WFikRLtRJfIQRBVKNCjYs9Y3mkE5agIdAPSPQVwSLUsAV2CYhFU9mohes_G3FuAoVgREqrjUAvpLusCaw0TJwU-uUujcZjXCkvu76Lse_irO_iqAlb79_0c_WOX0uvlvaOi5n8EgcIgJjD0aIJ26X5qtc_17b8t-IbMHF10I7PTi46KzDpuwGQXZpZhVo6GNo1hD6pXi9G9xv2FfaX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One+dimensional+quaternion+linear+canonical+transform+in+probability+theory&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Siddiqui%2C+Saima&rft.au=Samad%2C+Muhammad+Adnan&rft.au=Ismoiljonovich%2C+Fayzullayev+Djamshid&rft.date=2024-12-01&rft.pub=Springer+London&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=18&rft.issue=12&rft.spage=9419&rft.epage=9430&rft_id=info:doi/10.1007%2Fs11760-024-03556-9&rft.externalDocID=10_1007_s11760_024_03556_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon |