Parallel implementations of post-quantum leighton-Micali signature on multiple nodes

To defend against quantum computer attacks, the National Institute of Standards and Technology (NIST) has been exploring post-quantum cryptography (PQC). Now, NIST has standardized only two PQC algorithms, one of which is the Leighton-Micali signature (LMS). However, the performance of LMS limits it...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of supercomputing Vol. 80; no. 4; pp. 5042 - 5072
Main Authors Kang, Yan, Dong, Xiaoshe, Wang, Ziheng, Chen, Heng, Wang, Qiang
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0920-8542
1573-0484
DOI10.1007/s11227-023-05662-w

Cover

Abstract To defend against quantum computer attacks, the National Institute of Standards and Technology (NIST) has been exploring post-quantum cryptography (PQC). Now, NIST has standardized only two PQC algorithms, one of which is the Leighton-Micali signature (LMS). However, the performance of LMS limits its practical application. In this paper, we propose a parallel LMS implementation on multiple nodes. Considering different application scenarios, we provide two parallel schemes: algorithmic parallelism and data parallelism. The main part of our work is the two-tier parallel structure for the LMS tree. Targeting the x86/64 multiple nodes, our work introduces vectorization to present the three-tier parallel structure. We also design communication optimization, including the selection of communication primitives and the creation of communicators for multi-node running. Experimental evidence shows that our code effectively reduces the latency, and is 19.04 × faster than the fastest implementation on the same platform when running key pair generation for LMS_SHA256_M32_H20(20).
AbstractList To defend against quantum computer attacks, the National Institute of Standards and Technology (NIST) has been exploring post-quantum cryptography (PQC). Now, NIST has standardized only two PQC algorithms, one of which is the Leighton-Micali signature (LMS). However, the performance of LMS limits its practical application. In this paper, we propose a parallel LMS implementation on multiple nodes. Considering different application scenarios, we provide two parallel schemes: algorithmic parallelism and data parallelism. The main part of our work is the two-tier parallel structure for the LMS tree. Targeting the x86/64 multiple nodes, our work introduces vectorization to present the three-tier parallel structure. We also design communication optimization, including the selection of communication primitives and the creation of communicators for multi-node running. Experimental evidence shows that our code effectively reduces the latency, and is 19.04 × faster than the fastest implementation on the same platform when running key pair generation for LMS_SHA256_M32_H20(20).
To defend against quantum computer attacks, the National Institute of Standards and Technology (NIST) has been exploring post-quantum cryptography (PQC). Now, NIST has standardized only two PQC algorithms, one of which is the Leighton-Micali signature (LMS). However, the performance of LMS limits its practical application. In this paper, we propose a parallel LMS implementation on multiple nodes. Considering different application scenarios, we provide two parallel schemes: algorithmic parallelism and data parallelism. The main part of our work is the two-tier parallel structure for the LMS tree. Targeting the x86/64 multiple nodes, our work introduces vectorization to present the three-tier parallel structure. We also design communication optimization, including the selection of communication primitives and the creation of communicators for multi-node running. Experimental evidence shows that our code effectively reduces the latency, and is 19.04× faster than the fastest implementation on the same platform when running key pair generation for LMS_SHA256_M32_H20(20).
Author Kang, Yan
Wang, Ziheng
Wang, Qiang
Dong, Xiaoshe
Chen, Heng
Author_xml – sequence: 1
  givenname: Yan
  surname: Kang
  fullname: Kang, Yan
  organization: School of Computer Science and Technology, Xi’an Jiaotong University
– sequence: 2
  givenname: Xiaoshe
  surname: Dong
  fullname: Dong, Xiaoshe
  organization: School of Computer Science and Technology, Xi’an Jiaotong University
– sequence: 3
  givenname: Ziheng
  surname: Wang
  fullname: Wang, Ziheng
  organization: School of Computer Science and Technology, Xi’an Jiaotong University
– sequence: 4
  givenname: Heng
  surname: Chen
  fullname: Chen, Heng
  organization: School of Computer Science and Technology, Xi’an Jiaotong University
– sequence: 5
  givenname: Qiang
  surname: Wang
  fullname: Wang, Qiang
  email: wangqiang1989@xjtu.edu.cn
  organization: School of Computer Science and Technology, Xi’an Jiaotong University
BookMark eNp9kE1LxDAQhoMouK7-AU8Fz9F8Nu1RxC9Q9LCeQzadrlnSZE1SxH9vtYLgwdMw8D7zDs8R2g8xAEKnlJxTQtRFppQxhQnjmMi6Zvh9Dy2oVNMqGrGPFqRlBDdSsEN0lPOWECK44gu0ejbJeA--csPOwwChmOJiyFXsq13MBb-NJpRxqDy4zWuJAT86a7yrstsEU8YEVQzVMPriJr4KsYN8jA564zOc_Mwlerm5Xl3d4Yen2_urywdsOW0LFgBgObfc1G29lkasoZPAe0bXgikuOtZxYVoqa6H61tZgxbqxtrFNB0a1li_R2Xx3l-LbCLnobRxTmCo1Z7KWrWJKTik2p2yKOSfo9S65waQPTYn-sqdne3qyp7_t6fcJav5A1s1mSjLO_4_yGc1TT9hA-v3qH-oT00aI_w
CitedBy_id crossref_primary_10_1145_3659209
crossref_primary_10_1109_TC_2024_3457736
Cites_doi 10.1109/TCSI.2022.3210016
10.6028/NIST.SP.800-208
10.17487/RFC8554
10.1007/978-3-319-22174-8_20
10.1137/S0036144598347011
10.1007/978-3-030-51938-4_13
10.1007/978-3-540-88403-3_5
10.1007/0-387-34805-0_21
10.1007/978-3-642-25405-5_8
10.1007/s11227-022-04750-7
10.1109/TPDS.2022.3233348
10.1109/TNSM.2014.041614.120394
10.1109/ASP-DAC47756.2020.9045459
10.23919/DATE51398.2021.9474033
10.1109/TPDS.2020.2995562
10.1109/DSD51259.2020.00046
10.1007/978-3-319-72565-9_15
10.1109/PRDC53464.2021.00024
10.1109/TPDS.2020.3025691
10.1109/ACCESS.2022.3169784
10.1145/3567426
10.1007/3-540-36563-X_21
10.1109/ICCS.2012.25
10.1109/TCSI.2021.3115786
10.1109/ISCAS51556.2021.9401177
10.13154/tches.v2020.i2.49-72
10.1109/TC.2022.3143441
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11227-023-05662-w
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database - Proquest
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 5072
ExternalDocumentID 10_1007_s11227_023_05662_w
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2018YFB1700405
  funderid: http://dx.doi.org/10.13039/501100012166
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-c319t-4eeec33c3a696b5a4bed5e3f21b42734d2d34a915647f9c6ec4b8cc8c8dea79c3
IEDL.DBID U2A
ISSN 0920-8542
IngestDate Mon Oct 06 18:38:06 EDT 2025
Wed Oct 01 03:43:56 EDT 2025
Thu Apr 24 23:01:55 EDT 2025
Fri Feb 21 02:42:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Post-quantum cryptography
Stateful hash-based signatures
HSS
Parallel computing
LMS
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-4eeec33c3a696b5a4bed5e3f21b42734d2d34a915647f9c6ec4b8cc8c8dea79c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3256597275
PQPubID 2043774
PageCount 31
ParticipantIDs proquest_journals_3256597275
crossref_primary_10_1007_s11227_023_05662_w
crossref_citationtrail_10_1007_s11227_023_05662_w
springer_journals_10_1007_s11227_023_05662_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240300
2024-03-00
20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 3
  year: 2024
  text: 20240300
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References WangZDongXChenHKangYEfficient GPU implementations of post-quantum signature XMSSIEEE Trans Parallel Distrib Syst202334393895410.1109/TPDS.2022.3233348
McGrew D, Curcio M, Fluhrer S (2019) Leighton-Micali hash-based signatures (No. rfc8554). https://doi.org/10.17487/RFC8554
NIST (2022) Post-quantum cryptography: round 4 submissions. https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
Chen Z, Ma Y, Chen T, Lin J, Jing J (2020) Towards efficient Kyber on FPGAs: a processor for vector of polynomials. In: 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), pp 247–252. https://doi.org/10.1109/ASP-DAC47756.2020.9045459
Amiet D, Leuenberger L, Curiger A, Zbinden P (2020) FPGA-based sphincs+ implementations: mind the glitch. In: 2020 23rd Euromicro Conference on Digital System Design (DSD), pp 229–237. https://doi.org/10.1109/DSD51259.2020.00046
ThomaJPHartliefDGüneysuTAgile acceleration of stateful hash-based signatures in hardwareACM Trans Embed Comput Syst202210.1145/3567426
de Oliveira, AKD, César J (2020) An efficient software implementation of the hash-based signature scheme MSS and its variants. Progress Cryptol 366–383. https://doi.org/10.1007/978-3-319-22174-8_20
Avanzi R, Bos J, Ducas L, Kiltz E (2017) Crystals-kyber. NIST Tech Rep. https://cryptojedi.org/peter/data/nistpqc-20190823.pdf
ZhangJHuangJLiuZRoySSTime-memory trade-offs for Saber+ on memory-constrained RISC-V platformIEEE Trans Comput202271112996300710.1109/TC.2022.3143441
Groot Bruinderink L, Hülsing A (2017) “Oops, i did it again”–security of one-time signatures under two-message attacks. In: International Conference on Selected Areas in Cryptography, pp 299–322. https://doi.org/10.1007/978-3-319-72565-9_15
Lee K, Gowanlock M, Cambou B (2021) SABER-GPU: a response-based cryptography algorithm for SABER on the GPU. In: 2021 IEEE 26th Pacific Rim International Symposium on Dependable Computing (PRDC), pp 123–132. https://doi.org/10.1109/PRDC53464.2021.00024
Merkle RC (1990) A certified digital signature. In: Conference on the Theory and Application of Cryptology, pp 218–238. https://linkspringer.53yu.com/chapter/10.1007/0-387-34805-0_21
Cheng H, Großschädl J, Rønne PB, Ryan PY (2021) AVRNTRU: lightweight NTRU-based post-quantum cryptography for 8-bit AVR microcontrollers. In: 2021 Design, Automation and Test in Europe Conference and Exhibition (DATE), pp 1272–1277. https://doi.org/10.23919/DATE51398.2021.9474033
Merkle RC (1979) Secrecy, authentication, and public key systems, Stanford university. http://www.merkle.com/papers/Thesis1979.pdf
SunSZhangRMaHEfficient parallelism of post-quantum signature scheme SPHINCSIEEE Trans Parallel Distrib Syst202031112542255510.1109/TPDS.2020.2995562
Leighton FT, Micali S (1995) Large provably fast and secure digital signature schemes based on secure hash functions. https://patents.glgoo.top/patent/US5432852A/en
Kaur R, Kaur A (2012) Digital signature. In: 2012 International Conference on Computing Sciences, pp 295–301. https://doi.org/10.1109/ICCS.2012.25
Song Y, Hu X, Wang W, Tian J, Wang Z (2021) High-speed and scalable FPGA implementation of the key generation for the Leighton-Micali signature protocol. In: 2021 IEEE International Symposium on Circuits and Systems (ISCAS), pp 1–5. https://doi.org/10.1109/ISCAS51556.2021.9401177
ShorPWPolynomial-time algorithms for prime factorization and discrete logarithms on a quantum computerSIAM Rev1999412303332168454610.1137/S0036144598347011
KimYSongJSeoSCAccelerating falcon on ARMv8IEEE Access202210444464446010.1109/ACCESS.2022.3169784
Alkim E, Avanzi R, Bos J, Ducas L, de la Piedra A, Pöppelmann T (2019) Newhope (version 1.02), submission to round 2 of the NIST post-quantum project. https://newhopecrypto.org/data/NewHope_2019_04_10.pdf
Kampanakis P, Fluhrer S (2017) LMS vs XMSS: comparion of two hash-based signature standards. Cryptol ePrint Arch. https://eprint.iacr.org/2017/349
Buchmann J, Dahmen E, Schneider M (2008) Merkle tree traversal revisited. In: International Workshop on Post-quantum Cryptography, pp 63–78. https://doi.org/10.1007/978-3-540-88403-3_5
Jakobsson M, Leighton T, Micali S, Szydlo M (2003) Fractal Merkle tree representation and traversal. In: Cryptographers’ Track at the RSA Conference, pp 314–326. https://doi.org/10.1007/3-540-36563-X_21
Cooper DA, Apon DC, Dang QH, Davidson MS, Dworkin MJ, Miller CA (2020) Recommendation for stateful hash-based signature schemes, NIST Special Publication 800:208. https://csrc.nist.rip/external/nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-208.pdf
BosJWHülsingARenesJvan VredendaalCRapidly verifiable XMSS signaturesIACR Trans Cryptogr Hardw Embed Syst2021113716810.1007/978-3-319-22174-8_20
WangZDongXChenHKangYParallel SHA 256 on SW26010 many core processor for hashing of multiple messagesJ Supercomput2020792332235510.1007/s11227-022-04750-7
Buchmann J, Dahmen E, Hülsing A (2011) XMSS-a practical forward secure signature scheme based on minimal security assumptions. In: International Workshop on Post-quantum Cryptography, pp 117–129. https://doi.org/10.1007/978-3-642-25405-5_8
GuptaNJatiAChauhanAKChattopadhyayAPqc acceleration using gpus: frodokem, newhope, and kyberIEEE Trans Parallel Distrib Syst202032357558610.1109/TPDS.2020.3025691
CaoYWuYWangWLuXChenSYeJChangCHAn efficient full hardware implementation of extended Merkle signature schemeIEEE Trans Circuits Syst I Regul Pap202169268269310.1109/TCSI.2021.3115786
Song Y, Hu X, Tian J, Wang Z (2022) A high-speed FPGA-based hardware implementation for Leighton-Micali signature. In: IEEE Transactions on Circuits and Systems I: Regular Papers. https://doi.org/10.1109/TCSI.2022.3210016
Zhang N, Yang B, Chen C, Yin S, Wei S, Liu L (2020) Highly efficient architecture of NewHope-NIST on FPGA using low-complexity NTT/INTT. IACR Trans Cryptogr Hardw Embed Syst 49–72. https://doi.org/10.13154/tches.v2020.i2.49-72
Campos F, Kohlstadt T, Reith S, Stöttinger M (2020) Lms vs xmss: comparison of stateful hash-based signature schemes on arm cortex-m4. In: International Conference on Cryptology in Africa, pp 258–277. https://linkspringer.53yu.com/chapter/10.1007/978-3-030-51938-4_13
VaradharajanVTupakulaUSecurity as a service model for cloud environmentIEEE Trans Netw Serv Manag2014111607510.1109/TNSM.2014.041614.120394
5662_CR1
5662_CR4
5662_CR3
5662_CR6
5662_CR5
5662_CR8
5662_CR7
5662_CR31
5662_CR9
Z Wang (5662_CR32) 2020; 79
5662_CR17
5662_CR16
5662_CR13
V Varadharajan (5662_CR15) 2014; 11
5662_CR12
5662_CR34
5662_CR11
5662_CR10
5662_CR18
JP Thoma (5662_CR14) 2022
N Gupta (5662_CR19) 2020; 32
PW Shor (5662_CR2) 1999; 41
5662_CR20
JW Bos (5662_CR33) 2021; 1
Z Wang (5662_CR28) 2023; 34
Y Cao (5662_CR29) 2021; 69
Y Kim (5662_CR21) 2022; 10
5662_CR26
5662_CR25
5662_CR24
5662_CR23
5662_CR22
J Zhang (5662_CR27) 2022; 71
S Sun (5662_CR30) 2020; 31
References_xml – reference: Merkle RC (1990) A certified digital signature. In: Conference on the Theory and Application of Cryptology, pp 218–238. https://linkspringer.53yu.com/chapter/10.1007/0-387-34805-0_21
– reference: Kampanakis P, Fluhrer S (2017) LMS vs XMSS: comparion of two hash-based signature standards. Cryptol ePrint Arch. https://eprint.iacr.org/2017/349
– reference: Avanzi R, Bos J, Ducas L, Kiltz E (2017) Crystals-kyber. NIST Tech Rep. https://cryptojedi.org/peter/data/nistpqc-20190823.pdf
– reference: CaoYWuYWangWLuXChenSYeJChangCHAn efficient full hardware implementation of extended Merkle signature schemeIEEE Trans Circuits Syst I Regul Pap202169268269310.1109/TCSI.2021.3115786
– reference: BosJWHülsingARenesJvan VredendaalCRapidly verifiable XMSS signaturesIACR Trans Cryptogr Hardw Embed Syst2021113716810.1007/978-3-319-22174-8_20
– reference: KimYSongJSeoSCAccelerating falcon on ARMv8IEEE Access202210444464446010.1109/ACCESS.2022.3169784
– reference: de Oliveira, AKD, César J (2020) An efficient software implementation of the hash-based signature scheme MSS and its variants. Progress Cryptol 366–383. https://doi.org/10.1007/978-3-319-22174-8_20
– reference: SunSZhangRMaHEfficient parallelism of post-quantum signature scheme SPHINCSIEEE Trans Parallel Distrib Syst202031112542255510.1109/TPDS.2020.2995562
– reference: Lee K, Gowanlock M, Cambou B (2021) SABER-GPU: a response-based cryptography algorithm for SABER on the GPU. In: 2021 IEEE 26th Pacific Rim International Symposium on Dependable Computing (PRDC), pp 123–132. https://doi.org/10.1109/PRDC53464.2021.00024
– reference: WangZDongXChenHKangYEfficient GPU implementations of post-quantum signature XMSSIEEE Trans Parallel Distrib Syst202334393895410.1109/TPDS.2022.3233348
– reference: Cheng H, Großschädl J, Rønne PB, Ryan PY (2021) AVRNTRU: lightweight NTRU-based post-quantum cryptography for 8-bit AVR microcontrollers. In: 2021 Design, Automation and Test in Europe Conference and Exhibition (DATE), pp 1272–1277. https://doi.org/10.23919/DATE51398.2021.9474033
– reference: Merkle RC (1979) Secrecy, authentication, and public key systems, Stanford university. http://www.merkle.com/papers/Thesis1979.pdf
– reference: GuptaNJatiAChauhanAKChattopadhyayAPqc acceleration using gpus: frodokem, newhope, and kyberIEEE Trans Parallel Distrib Syst202032357558610.1109/TPDS.2020.3025691
– reference: Leighton FT, Micali S (1995) Large provably fast and secure digital signature schemes based on secure hash functions. https://patents.glgoo.top/patent/US5432852A/en
– reference: Campos F, Kohlstadt T, Reith S, Stöttinger M (2020) Lms vs xmss: comparison of stateful hash-based signature schemes on arm cortex-m4. In: International Conference on Cryptology in Africa, pp 258–277. https://linkspringer.53yu.com/chapter/10.1007/978-3-030-51938-4_13
– reference: Song Y, Hu X, Wang W, Tian J, Wang Z (2021) High-speed and scalable FPGA implementation of the key generation for the Leighton-Micali signature protocol. In: 2021 IEEE International Symposium on Circuits and Systems (ISCAS), pp 1–5. https://doi.org/10.1109/ISCAS51556.2021.9401177
– reference: Song Y, Hu X, Tian J, Wang Z (2022) A high-speed FPGA-based hardware implementation for Leighton-Micali signature. In: IEEE Transactions on Circuits and Systems I: Regular Papers. https://doi.org/10.1109/TCSI.2022.3210016
– reference: Buchmann J, Dahmen E, Hülsing A (2011) XMSS-a practical forward secure signature scheme based on minimal security assumptions. In: International Workshop on Post-quantum Cryptography, pp 117–129. https://doi.org/10.1007/978-3-642-25405-5_8
– reference: Groot Bruinderink L, Hülsing A (2017) “Oops, i did it again”–security of one-time signatures under two-message attacks. In: International Conference on Selected Areas in Cryptography, pp 299–322. https://doi.org/10.1007/978-3-319-72565-9_15
– reference: VaradharajanVTupakulaUSecurity as a service model for cloud environmentIEEE Trans Netw Serv Manag2014111607510.1109/TNSM.2014.041614.120394
– reference: McGrew D, Curcio M, Fluhrer S (2019) Leighton-Micali hash-based signatures (No. rfc8554). https://doi.org/10.17487/RFC8554
– reference: Buchmann J, Dahmen E, Schneider M (2008) Merkle tree traversal revisited. In: International Workshop on Post-quantum Cryptography, pp 63–78. https://doi.org/10.1007/978-3-540-88403-3_5
– reference: Zhang N, Yang B, Chen C, Yin S, Wei S, Liu L (2020) Highly efficient architecture of NewHope-NIST on FPGA using low-complexity NTT/INTT. IACR Trans Cryptogr Hardw Embed Syst 49–72. https://doi.org/10.13154/tches.v2020.i2.49-72
– reference: Amiet D, Leuenberger L, Curiger A, Zbinden P (2020) FPGA-based sphincs+ implementations: mind the glitch. In: 2020 23rd Euromicro Conference on Digital System Design (DSD), pp 229–237. https://doi.org/10.1109/DSD51259.2020.00046
– reference: Cooper DA, Apon DC, Dang QH, Davidson MS, Dworkin MJ, Miller CA (2020) Recommendation for stateful hash-based signature schemes, NIST Special Publication 800:208. https://csrc.nist.rip/external/nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-208.pdf
– reference: ThomaJPHartliefDGüneysuTAgile acceleration of stateful hash-based signatures in hardwareACM Trans Embed Comput Syst202210.1145/3567426
– reference: Alkim E, Avanzi R, Bos J, Ducas L, de la Piedra A, Pöppelmann T (2019) Newhope (version 1.02), submission to round 2 of the NIST post-quantum project. https://newhopecrypto.org/data/NewHope_2019_04_10.pdf
– reference: Chen Z, Ma Y, Chen T, Lin J, Jing J (2020) Towards efficient Kyber on FPGAs: a processor for vector of polynomials. In: 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), pp 247–252. https://doi.org/10.1109/ASP-DAC47756.2020.9045459
– reference: Kaur R, Kaur A (2012) Digital signature. In: 2012 International Conference on Computing Sciences, pp 295–301. https://doi.org/10.1109/ICCS.2012.25
– reference: NIST (2022) Post-quantum cryptography: round 4 submissions. https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
– reference: ShorPWPolynomial-time algorithms for prime factorization and discrete logarithms on a quantum computerSIAM Rev1999412303332168454610.1137/S0036144598347011
– reference: ZhangJHuangJLiuZRoySSTime-memory trade-offs for Saber+ on memory-constrained RISC-V platformIEEE Trans Comput202271112996300710.1109/TC.2022.3143441
– reference: WangZDongXChenHKangYParallel SHA 256 on SW26010 many core processor for hashing of multiple messagesJ Supercomput2020792332235510.1007/s11227-022-04750-7
– reference: Jakobsson M, Leighton T, Micali S, Szydlo M (2003) Fractal Merkle tree representation and traversal. In: Cryptographers’ Track at the RSA Conference, pp 314–326. https://doi.org/10.1007/3-540-36563-X_21
– ident: 5662_CR13
  doi: 10.1109/TCSI.2022.3210016
– ident: 5662_CR3
  doi: 10.6028/NIST.SP.800-208
– ident: 5662_CR5
– ident: 5662_CR10
  doi: 10.17487/RFC8554
– ident: 5662_CR7
– ident: 5662_CR9
– ident: 5662_CR34
  doi: 10.1007/978-3-319-22174-8_20
– volume: 41
  start-page: 303
  issue: 2
  year: 1999
  ident: 5662_CR2
  publication-title: SIAM Rev
  doi: 10.1137/S0036144598347011
– ident: 5662_CR11
  doi: 10.1007/978-3-030-51938-4_13
– ident: 5662_CR16
  doi: 10.1007/978-3-540-88403-3_5
– ident: 5662_CR6
  doi: 10.1007/0-387-34805-0_21
– ident: 5662_CR8
  doi: 10.1007/978-3-642-25405-5_8
– volume: 79
  start-page: 2332
  year: 2020
  ident: 5662_CR32
  publication-title: J Supercomput
  doi: 10.1007/s11227-022-04750-7
– volume: 34
  start-page: 938
  issue: 3
  year: 2023
  ident: 5662_CR28
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2022.3233348
– volume: 11
  start-page: 60
  issue: 1
  year: 2014
  ident: 5662_CR15
  publication-title: IEEE Trans Netw Serv Manag
  doi: 10.1109/TNSM.2014.041614.120394
– ident: 5662_CR25
  doi: 10.1109/ASP-DAC47756.2020.9045459
– ident: 5662_CR22
  doi: 10.23919/DATE51398.2021.9474033
– volume: 31
  start-page: 2542
  issue: 11
  year: 2020
  ident: 5662_CR30
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2020.2995562
– volume: 1
  start-page: 137
  year: 2021
  ident: 5662_CR33
  publication-title: IACR Trans Cryptogr Hardw Embed Syst
  doi: 10.1007/978-3-319-22174-8_20
– ident: 5662_CR31
  doi: 10.1109/DSD51259.2020.00046
– ident: 5662_CR4
  doi: 10.1007/978-3-319-72565-9_15
– ident: 5662_CR20
  doi: 10.1109/PRDC53464.2021.00024
– ident: 5662_CR17
– volume: 32
  start-page: 575
  issue: 3
  year: 2020
  ident: 5662_CR19
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2020.3025691
– volume: 10
  start-page: 44446
  year: 2022
  ident: 5662_CR21
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3169784
– year: 2022
  ident: 5662_CR14
  publication-title: ACM Trans Embed Comput Syst
  doi: 10.1145/3567426
– ident: 5662_CR18
  doi: 10.1007/3-540-36563-X_21
– ident: 5662_CR1
  doi: 10.1109/ICCS.2012.25
– volume: 69
  start-page: 682
  issue: 2
  year: 2021
  ident: 5662_CR29
  publication-title: IEEE Trans Circuits Syst I Regul Pap
  doi: 10.1109/TCSI.2021.3115786
– ident: 5662_CR12
  doi: 10.1109/ISCAS51556.2021.9401177
– ident: 5662_CR26
– ident: 5662_CR24
– ident: 5662_CR23
  doi: 10.13154/tches.v2020.i2.49-72
– volume: 71
  start-page: 2996
  issue: 11
  year: 2022
  ident: 5662_CR27
  publication-title: IEEE Trans Comput
  doi: 10.1109/TC.2022.3143441
SSID ssj0004373
Score 2.3507466
Snippet To defend against quantum computer attacks, the National Institute of Standards and Technology (NIST) has been exploring post-quantum cryptography (PQC). Now,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5042
SubjectTerms Algorithms
Cloud computing
Compilers
Computer Science
Data encryption
Design optimization
Digital signatures
Interpreters
Nodes
Parallel processing
Processor Architectures
Programming Languages
Quantum computers
Quantum cryptography
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwED7m9uKLv8XplDz4pkF7Sdr1QURlYwgbQyb4VtIkBUHb6Tb275u0jUVBn9uGcHfJfU3uvg_gXEZRKDRKyjBWlBueUmkTDQ0Mz7hKbcyg6x0eT8LRM398ES8tmPheGFdW6ffEcqPWhXJn5FfM5mYLfjESt_MP6lSj3O2ql9CQtbSCvikpxjagg44Zqw2d-8Fk-tR0SrLqzjm20-kLjnUbTdVMFyBG1OYwakFBiHT9M1U1-PPXlWmZiYY7sFVDSHJX-XwXWibfg20vz0Dq1boPs6n8dEopb-T13VeJl1FGiozMi8WSfqysXVfvpDofLXI6di57Ja6ooyT8JEVOfMkhyQttFgfwPBzMHka0FlGgyq6upTW_MYoxxWQYh6mQPDVaGJZhkHJHbaNRMy5jxxkTZbEKjeJpX6m-6msjo1ixQ2jnRW6OgKDGLFDcIgQRcZFijFnMM3FtXWP_c1F2IfD2SlTNMO6ELt6ShhvZ2TixNk5KGyfrLlx8fzOv-DX-fbvn3ZDUa22RNJHRhUvvmubx36Md_z_aCWyiRTBVwVkP2svPlTm1CGSZntVh9QV9x9gB
  priority: 102
  providerName: ProQuest
Title Parallel implementations of post-quantum leighton-Micali signature on multiple nodes
URI https://link.springer.com/article/10.1007/s11227-023-05662-w
https://www.proquest.com/docview/3256597275
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1573-0484
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: ABDBF
  dateStart: 20030501
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: ADMLS
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50vXjxLa6PJQdvGrCTpI_jruwqyi4iLuippGkKgrbq7uLfd9KHRVHBUw5NE_hmkpl2Zr4BONZB4KsUNRcYGS6tTLgmQ8M9KzNpEtIZdLXD44l_OZVX9-q-LgqbNdnuTUiyvKnbYjcPMeBkYzgZbR_5-zKsKEfnRVo8xX5bDSmquHJEW4ZKYl0q8_MaX81R62N-C4uW1ma0AWu1m8j6lVw3YcnmW7DetGBg9Ynchrsb_ea6oTyxx-cmE7zUJFZk7KWYzfnrgrBbPLPqH2iR87ETyyNziRslqScrctakFbK8SO1sB6aj4d35Ja8bJXBDJ2hOEFtrhDBC-5GfKC0TmyorMvQS6ehrUkyF1JHjhQmyyPjWyCQ0JjRhanUQGbELnbzI7R4wTDHzjCQvQAVSJRhhFslMnQmkm1Gg7oLX4BWbmkXcNbN4ilv-Y4dxTBjHJcbxexdOPt95qTg0_px92Ighrs_TLKbtffr0wUB14bQRTfv499X2_zf9AFaRvJYqyewQOvO3hT0ir2Oe9GA5HF30YKU_Ggwmbrx4uB7SOBhObm57pQp-AGJ41GE
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2V9gAXWr7EQgs-wAksyNhJ1oeqKtBqS7urCm2l3oJjO1KlNtl2d7Xqn-O3MU5sIpDoreckVjLz4hnbM-8BvNN5nqUWNReoDJdOllxToOGJk5U0JWEGfe_weJKNzuT38_R8DX7FXhhfVhnnxHaito3xe-SfBMVmSn4xT_dm19yrRvnT1SihoYO0gt1tKcZCY8exu13REm6-e_SN_P0e8fBg-nXEg8oANwS_Bb2fc0YII3SmsjLVsnQ2daLCpJSe-8WiFVIrT6qSV8pkzshyaMzQDK3TuTKCxn0AG1JIRYu_jS8Hk9MffWem6M64FX3-MJUY2na65r0EMecUMzklIRny1d-hsc93_zmibSPf4RY8Dikr2-8w9gTWXP0UNqMcBAuzwzOYnuobr8xyyS6uYlV6i2rWVGzWzBf8ekl-XF6xbj-2qfnYQ-SC-SKSlmCUNTWLJY6sbqybP4ezezHnC1ivm9q9BIYWq8RIykjSXKYlKqyUrNLPBAVaV6MeQBLtVZjAaO6FNS6LnovZ27ggGxetjYvVAD78eWbW8Xncefd2dEMR_u150SNxAB-ja_rL_x_t1d2jvYWHo-n4pDg5mhy_hkdI2VNX7LYN64ubpduh7GdRvgkQY_DzvlH9G2wDFsg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSIgLb8RgQA7cIBp1knY5TsA0Hpt22KTdqjRNpUlbO7ZO-_skfVBAgMS5aSJ9tmO3tj8jdC09z-UhSEJBKMI0C4g0joY4mkVMBUZnwPYO9_pud8Sex3z8qYs_q3YvU5J5T4NlaYrT5jyMmlXjmwPgEeNviHHgLpD1JtpilijBaPQI2lVnJM1zzMIc3-IMiraZn_f46pqqePNbijTzPJ19tFuEjLidy_gAbej4EO2V4xhwYZ1HaDiQCzsZZYons7IqPNMqnER4nixT8rYyOK5mOP8fmsSkZ0U0wbaIIyP4xEmMyxJDHCehXh6jUedxeN8lxdAEoow1pQZurRWlikpXuAGXLNAh1zQCJ2CWyiaEkDIpLEeMFwnlasWCllIt1Qq19ISiJ6gWJ7E-RRhCiBxlYBXcYzwAAZFgEb-jYG5JCrKOnBIvXxWM4nawxdSvuJAtxr7B2M8w9td1dPPxzjzn0_hzdaMUg1_Y1tI3x7vmMwg8Xke3pWiqx7_vdva_5Vdoe_DQ8V-f-i_naAdMMJPXnjVQLV2s9IUJRtLgMtO3d-1D1fk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+implementations+of+post-quantum+leighton-Micali+signature+on+multiple+nodes&rft.jtitle=The+Journal+of+supercomputing&rft.au=Kang%2C+Yan&rft.au=Dong%2C+Xiaoshe&rft.au=Wang%2C+Ziheng&rft.au=Chen%2C+Heng&rft.date=2024-03-01&rft.pub=Springer+US&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=80&rft.issue=4&rft.spage=5042&rft.epage=5072&rft_id=info:doi/10.1007%2Fs11227-023-05662-w&rft.externalDocID=10_1007_s11227_023_05662_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon