Suspended sediment load prediction in river systems via shuffled frog-leaping algorithm and neural network
Suspended sediment load estimation is vital for the development of river initiatives, water resources management, the ecological health of rivers, determination of the economic life of dams and the quality of water resources. In this study, the potential of Feed Forward Neural Network (FFNN), Geneti...
        Saved in:
      
    
          | Published in | Earth science informatics Vol. 17; no. 4; pp. 3623 - 3649 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        01.08.2024
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1865-0473 1865-0481  | 
| DOI | 10.1007/s12145-024-01338-y | 
Cover
| Abstract | Suspended sediment load estimation is vital for the development of river initiatives, water resources management, the ecological health of rivers, determination of the economic life of dams and the quality of water resources. In this study, the potential of Feed Forward Neural Network (FFNN), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Shuffled Frog Leaping Algorithm (SFLA) models was evaluated for suspended sediment load (SSL) estimation in Yeşilırmak River. The heat map of Pearson correlation values of meteorological and hydrological parameters in 1973–2021, which significantly impacted SSL estimation, was examined to estimate SSL values. As a result of the analysis it was developed a prediction model with three different combinations of precipitation, stream flow and past SSL values (M1: streamflow, M2: streamflow and precipitation, M3: streamflow, precipitation, and SSL). The prediction accuracy of the models was visually compared with the Coefficient of Determination (R
2
), Bias Factor (BF), Mean Absolute Error (MAE), Mean Bias Error (MBE), Root Mean Square Error (RMSE), Akaike Information Criterion (AIC), Kling-Gupta Efficiency (KGE) statistical criteria and Bland-Altan plot, boxplot, scatter plot and line plot. Based on the analyses, the PSO-ANN model in the M1 model combination showed good estimation performance with an RMSE of 1739.92, MAE of 448.56, AIC of 1061.55, R
2
of 0.96, MBE of 448.56, and BF of 0.29. Similarly, the SFLA-ANN model in the M2 model combination had an RMSE of 1819.58, MAE of 520.64, AIC of 1069.9, R
2
of 0.96, MBE of 520.64, and BF of 0.19. In the M3 model combination, the SFLA-ANN model achieved an RMSE of 1423.09, MAE of 759.88, AIC of 1071.9, R
2
of 0.81, MBE of 411.31, and BF of -0.77. Overall, these models can be considered good estimators as their predicted values are generally close to the measured values. The study outputs can help ensure water structures’ effective lifespan and operation and take precautions against sediment-related disaster risks. | 
    
|---|---|
| AbstractList | Suspended sediment load estimation is vital for the development of river initiatives, water resources management, the ecological health of rivers, determination of the economic life of dams and the quality of water resources. In this study, the potential of Feed Forward Neural Network (FFNN), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Shuffled Frog Leaping Algorithm (SFLA) models was evaluated for suspended sediment load (SSL) estimation in Yeşilırmak River. The heat map of Pearson correlation values of meteorological and hydrological parameters in 1973–2021, which significantly impacted SSL estimation, was examined to estimate SSL values. As a result of the analysis it was developed a prediction model with three different combinations of precipitation, stream flow and past SSL values (M1: streamflow, M2: streamflow and precipitation, M3: streamflow, precipitation, and SSL). The prediction accuracy of the models was visually compared with the Coefficient of Determination (R2), Bias Factor (BF), Mean Absolute Error (MAE), Mean Bias Error (MBE), Root Mean Square Error (RMSE), Akaike Information Criterion (AIC), Kling-Gupta Efficiency (KGE) statistical criteria and Bland-Altan plot, boxplot, scatter plot and line plot. Based on the analyses, the PSO-ANN model in the M1 model combination showed good estimation performance with an RMSE of 1739.92, MAE of 448.56, AIC of 1061.55, R2 of 0.96, MBE of 448.56, and BF of 0.29. Similarly, the SFLA-ANN model in the M2 model combination had an RMSE of 1819.58, MAE of 520.64, AIC of 1069.9, R2 of 0.96, MBE of 520.64, and BF of 0.19. In the M3 model combination, the SFLA-ANN model achieved an RMSE of 1423.09, MAE of 759.88, AIC of 1071.9, R2 of 0.81, MBE of 411.31, and BF of -0.77. Overall, these models can be considered good estimators as their predicted values are generally close to the measured values. The study outputs can help ensure water structures’ effective lifespan and operation and take precautions against sediment-related disaster risks. Suspended sediment load estimation is vital for the development of river initiatives, water resources management, the ecological health of rivers, determination of the economic life of dams and the quality of water resources. In this study, the potential of Feed Forward Neural Network (FFNN), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Shuffled Frog Leaping Algorithm (SFLA) models was evaluated for suspended sediment load (SSL) estimation in Yeşilırmak River. The heat map of Pearson correlation values of meteorological and hydrological parameters in 1973–2021, which significantly impacted SSL estimation, was examined to estimate SSL values. As a result of the analysis it was developed a prediction model with three different combinations of precipitation, stream flow and past SSL values (M1: streamflow, M2: streamflow and precipitation, M3: streamflow, precipitation, and SSL). The prediction accuracy of the models was visually compared with the Coefficient of Determination (R 2 ), Bias Factor (BF), Mean Absolute Error (MAE), Mean Bias Error (MBE), Root Mean Square Error (RMSE), Akaike Information Criterion (AIC), Kling-Gupta Efficiency (KGE) statistical criteria and Bland-Altan plot, boxplot, scatter plot and line plot. Based on the analyses, the PSO-ANN model in the M1 model combination showed good estimation performance with an RMSE of 1739.92, MAE of 448.56, AIC of 1061.55, R 2 of 0.96, MBE of 448.56, and BF of 0.29. Similarly, the SFLA-ANN model in the M2 model combination had an RMSE of 1819.58, MAE of 520.64, AIC of 1069.9, R 2 of 0.96, MBE of 520.64, and BF of 0.19. In the M3 model combination, the SFLA-ANN model achieved an RMSE of 1423.09, MAE of 759.88, AIC of 1071.9, R 2 of 0.81, MBE of 411.31, and BF of -0.77. Overall, these models can be considered good estimators as their predicted values are generally close to the measured values. The study outputs can help ensure water structures’ effective lifespan and operation and take precautions against sediment-related disaster risks.  | 
    
| Author | Kılınç, Hüseyin Çağan Aktürk, Gaye Terzioğlu, Zeynep Özge Keblouti, Mehdi Katipoğlu, Okan Mert  | 
    
| Author_xml | – sequence: 1 givenname: Okan Mert orcidid: 0000-0001-6421-6087 surname: Katipoğlu fullname: Katipoğlu, Okan Mert email: okatipoglu@erzincan.edu.tr organization: Faculty of Engineering and Architecture, Department of Civil Engineering, Erzincan Binali Yıldırım University – sequence: 2 givenname: Gaye orcidid: 0000-0002-9477-7827 surname: Aktürk fullname: Aktürk, Gaye organization: Department of Civil Engineering, Kırıkkale University – sequence: 3 givenname: Hüseyin Çağan surname: Kılınç fullname: Kılınç, Hüseyin Çağan organization: Department of Civil Engineering, Istanbul Aydın University – sequence: 4 givenname: Zeynep Özge orcidid: 0000-0001-6230-0787 surname: Terzioğlu fullname: Terzioğlu, Zeynep Özge organization: Faculty of Engineering and Architecture, Department of Civil Engineering, Erzincan Binali Yıldırım University – sequence: 5 givenname: Mehdi orcidid: 0000-0001-6901-4097 surname: Keblouti fullname: Keblouti, Mehdi organization: Institute of Sciences and Technology, Department of Civil Engineering and Hydraulic, Abdelhafid Boussouf University Center  | 
    
| BookMark | eNp9kMtKAzEUhoMoWGtfwFXA9Wgu05nMUsQbFFyo65CZnLSp02RMMkrf3tSKggtX58L_nct_gg6dd4DQGSUXlJD6MlJGy3lBWFkQyrkotgdoQkWVW6Wghz95zY_RLEbbEk5ZxRkTE7R-GuMAToPGEbTdgEu490rjIeSyS9Y7bB0O9h0CjtuYYBPxu1U4rkZj-oyZ4JdFD2qwbolVv_TBptUGK6exgzGoPof04cPrKToyqo8w-45T9HJ783x9Xywe7x6urxZFx2mTirLljTFKKAJcaTGfdwRY26q6Y22l29IorkuY11xV0LQ1ABhdMtEJY5rWdIJP0fl-7hD82wgxybUfg8srJaekElVDeJNVYq_qgo8xgJGdTWr3bwrK9pISuTNX7s2V2Vz5Za7cZpT9QYdgNyps_4f4HopZ7JYQfq_6h_oEhHqS_w | 
    
| CitedBy_id | crossref_primary_10_2166_hydro_2024_205 crossref_primary_10_1007_s12145_024_01635_6  | 
    
| Cites_doi | 10.1191/0309133303pp340ra 10.2166/hydro.2023.230 10.15233/gfz.2015.32.2 10.1109/ACCESS.2023.3333051 10.1016/j.compag.2021.106541 10.1016/j.engappai.2023.107559 10.1016/j.asoc.2020.106560 10.1016/j.jhydrol.2008.06.013 10.3390/w15030486 10.1016/j.scitotenv.2018.05.153 10.1016/j.aeue.2011.10.004 10.2166/wcc.2023.477 10.1007/s00521-021-06550-1 10.3390/w13243539 10.1016/j.ecolind.2018.03.072 10.1007/s12034-020-02154-y 10.3390/app12178392 10.1038/s41598-024-51306-1 10.1016/s1001-6058(09)60260-2 10.1080/19942060.2021.1976280 10.1016/j.ins.2012.10.012 10.1016/j.chemolab.2020.103978 10.1007/s10661-022-10400-5 10.3390/su14063470 10.1007/s10661-015-4381-1 10.1007/s00477-018-1560-y 10.5539/cis.v3n1p180 10.1016/j.engappai.2017.01.013 10.2166/nh.2008.026 10.1080/10106049.2022.2158951 10.1061/(ASCE)1084-0699(1999)4:2(135) 10.1080/03052150500384759 10.1007/s00500-021-06281-4 10.1016/j.asoc.2014.02.010 10.1007/s00500-022-07097-6 10.1007/s12145-024-01237-2 10.1007/s12517-019-4444-7 10.5897/sre11.264 10.1007/s11269-019-02216-9 10.1007/s40996-022-00850-9 10.1016/j.neucom.2022.06.075 10.1007/s12665-021-09625-3 10.3390/s23187710 10.1016/j.catena.2019.03.042 10.2166/wcc.2022.066 10.3389/fenvs.2022.821079 10.1016/j.earscirev.2016.12.016 10.22104/AET.2024.4846.1309 10.1061/(asce)1084-0699(1998)3:1(26) 10.1016/j.agwat.2010.12.012 10.2166/wpt.2022.155 10.1007/978-981-19-7513-4_13 10.1016/j.ijepes.2014.07.073 10.1016/j.gexplo.2017.10.018 10.1016/j.catena.2020.105024 10.1016/j.advengsoft.2008.12.009 10.1007/s00500-021-05721-5 10.28991/cej-2017-00000070 10.1016/j.scitotenv.2017.09.293 10.1016/j.envsoft.2005.09.009 10.1007/s11356-021-14065-4 10.1007/s11269-016-1281-2 10.1007/s11831-021-09707-2 10.1109/tmag.2006.871426 10.3390/su12218932 10.1007/s12517-012-0550-5 10.1007/BF02478259 10.1080/09593330903112154 10.2166/ws.2021.049 10.1061/(asce)0733-9496(2003)129:3(210) 10.1038/scientificamerican0792-66 10.3390/w15203576 10.1080/19942060.2023.2192258 10.1007/s00704-016-1735-8 10.1007/s11709-019-0600-0 10.18280/ria.340608 10.1007/s40808-023-01797-0 10.1016/j.jhydrol.2012.01.026 10.3390/su15021109 10.1016/j.ijsrc.2020.10.001 10.3390/w15152704 10.1016/B978-0-444-89330-7.50005-3 10.1016/j.jhydrol.2022.127774 10.1007/978-981-19-2980-9_24 10.1007/978-981-19-4863-3_32 10.1109/ISDA.2008.346 10.1109/ICIEA.2016.7604009 10.1007/978-981-15-5397-4_75 10.1080/02626667.2020.1758703 10.1109/CEC.2007.4424823 10.1109/ICNN.1995.488968 10.1089/big.2022.0095 10.1109/COMITCon.2019.8862255  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| DBID | AAYXX CITATION 3V. 7SC 7TG 7XB 88I 8AL 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- KL. L7M L~C L~D M0N M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U  | 
    
| DOI | 10.1007/s12145-024-01338-y | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Meteorological & Geoastrophysical Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic  | 
    
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Computer Science Database | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geology | 
    
| EISSN | 1865-0481 | 
    
| EndPage | 3649 | 
    
| ExternalDocumentID | 10_1007_s12145_024_01338_y | 
    
| GroupedDBID | -5A -5G -BR -EM -Y2 -~C 06D 0R~ 0VY 1N0 203 2JN 2KG 2VQ 2~H 30V 3V. 4.4 406 408 40D 67M 67Z 6NX 88I 8FE 8FG 8FH 8TC 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACCUX ACDTI ACGFS ACGOD ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS AUKKA AXYYD AYJHY AZQEC B-. BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HMJXF HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXD IZQ J-C J0Z JBSCW JZLTJ K6V K7- KOV L8X LK5 LLZTM M0N M2P M4Y M7R MK~ NPVJJ NQJWS NU0 O9- O93 O9J P62 PCBAR PQQKQ PROAC PT4 Q2X QOS R89 RLLFE ROL RSV S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG TSK U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R ZMTXR ~02 ~A9 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7TG 7XB 8AL 8FD 8FK JQ2 KL. L7M L~C L~D PKEHL PQEST PQUKI Q9U  | 
    
| ID | FETCH-LOGICAL-c319t-4b39ffa8a0e3ad855c0e2bba7c2b6db4fa3d4e573a6e9b7eeefd428c8ff9bfc83 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1865-0473 | 
    
| IngestDate | Sat Aug 23 14:57:38 EDT 2025 Wed Oct 01 02:00:41 EDT 2025 Thu Apr 24 22:52:46 EDT 2025 Fri Feb 21 02:38:33 EST 2025  | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | Hyperparameter SFLA-ANN Meta-heuristic algorithms Optimize Prediction Suspended sediment load  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c319t-4b39ffa8a0e3ad855c0e2bba7c2b6db4fa3d4e573a6e9b7eeefd428c8ff9bfc83 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-9477-7827 0000-0001-6230-0787 0000-0001-6901-4097 0000-0001-6421-6087  | 
    
| PQID | 3106869039 | 
    
| PQPubID | 54345 | 
    
| PageCount | 27 | 
    
| ParticipantIDs | proquest_journals_3106869039 crossref_citationtrail_10_1007_s12145_024_01338_y crossref_primary_10_1007_s12145_024_01338_y springer_journals_10_1007_s12145_024_01338_y  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20240800 2024-08-00 20240801  | 
    
| PublicationDateYYYYMMDD | 2024-08-01 | 
    
| PublicationDate_xml | – month: 8 year: 2024 text: 20240800  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Dordrecht  | 
    
| PublicationTitle | Earth science informatics | 
    
| PublicationTitleAbbrev | Earth Sci Inform | 
    
| PublicationYear | 2024 | 
    
| Publisher | Springer Berlin Heidelberg Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V  | 
    
| References | Sam, Khoi (CR73) 2022; 194 Khan, Shafi, Khawaja, de la Torre Díez, Flores, Galvlán, Ashraf (CR40) 2023; 23 Pandey, Kumar, Malik, Kuriqi (CR61) 2020; 12 Bhattacharjee, Sarmah (CR13) 2014; 19 CR39 Eusuff, Lansey (CR20) 2003; 129 CR34 Yue, Liu, Zhou (CR96) 2023; 15 Maaroof, Rashid, Abdulla, Hassan, Alsadoon, Mohammadi, Khishe, Mirjalili (CR49) 2022; 29 Shadkani, Abbaspour, Samadianfard, Hashemi, Mosavi, Band (CR77) 2021; 36 Adnan, Dai, Mostafa, Islam, Kisi, Heddam, Zounemat-Kermani (CR4) 2023; 38 Das, Bhattacharjya, Kartha (CR18) 2024; 10 Gupta, Hazarika, Berlin, Sharma, Mishra (CR26) 2021; 80 Katipoğlu (CR38) 2023; 15 Tao, Abba, Al-Areeq (CR84) 2024; 129 Choubin, Darabi, Rahmati, Sajedi-Hosseini, Kløve (CR16) 2018; 615 CR48 CR45 Shadkani, Hashemi, Pak, Lahijan (CR78) 2024; 17 CR43 Melesse, Ahmad, McClain, Wang, Lim (CR51) 2011; 98 Thike, Zhao, Shi, Jin (CR85) 2020; 43 Liu, Heidari, Cai, Liang, Chen, Pan, Alsufyani, Bourouis (CR47) 2022; 503 Vercruysse, Grabowski, Rickson (CR89) 2017; 166 Wang, Sun, Li, Rahnamayan, Pan (CR91) 2013; 2013 Wang, Shi, Shi, Ni, Wang, Xu, Xu (CR90) 2018; 184 Zhang, Wai, Jiang (CR97) 2010; 22 Alp, Cigizoglu (CR6) 2007; 22 Darabi, Mohamadi, Karimidastenaei, Kisi, Ehteram, ELShafie, Torabi Haghighi (CR17) 2021; 25 Vafakhah (CR88) 2013; 6 Karami, Dadras Ajirlou, Jun, Bateni, Band, Mosavi, Moslehpour, Chau (CR36) 2022; 10 CR53 Zhao, Wang, Liu, Chen, He, Liu (CR99) 2024; 14 Fahimi, Yaseen, El-shafie (CR22) 2017; 128 Shalmani, Vaezi, Tabatabaei (CR79) 2024 Chen, Chau (CR15) 2016; 30 Zheng, Band, Karami, Karimi, Samadianfard, Shadkani, Chau, Mosavi (CR100) 2021; 15 Rahgoshay, Feiznia, Arian, Hashemi (CR67) 2019; 12 Olyaie, Banejad, Chau, Melesse (CR59) 2015; 187 CR69 Salmasi, Shadkani, Abraham, Malekzadeh (CR72) 2022; 46 Asheghi, Hosseini (CR10) 2020; 14 Kumar, Singh, Roshni (CR44) 2022; 18 Ojha, Abraham, Snášel (CR58) 2017; 60 Holland (CR31) 1992; 267 Karakoyun, Ozkis, Kodaz (CR35) 2020; 96 McCulloch, Pitts (CR50) 1943; 5 Nourani, Molajou, Tajbakhsh, Najaf (CR57) 2019; 33 Meshram, Meshram, Pourhosseini, Hasan, Islam (CR52) 2022; 26 CR76 Yuan, Chen, Lei, Yuan, Muhammad Adnan (CR95) 2018; 32 Samadianfard, Kargar, Shadkani, Hashemi, Abbaspour, Safari (CR74) 2022; 34 Adnan, Mostafa, Islam, Kisi, Kuriqi, Heddam (CR2) 2021; 191 Pour, Shui, Dehghani (CR66) 2012; 7 Kişi (CR41) 2008; 39 CR70 Shirkoohi, Doghri, Duchesne (CR81) 2021; 21 Samantaray, Biswakalyani, Singh (CR75) 2022; 26 Mohammadi, Guan, Moazenzadeh, Safari (CR54) 2021; 198 Thirumalaiah, Deo (CR86) 1998; 3 Jain, Saihjpal, Singh, Singh (CR33) 2022; 12 Sahoo, Patel, Panda, Mishra, Samantaray, Satapathy, Bhateja, Yang, Lin, Das (CR71) 2023 Jadidoleslam, Ebrahimi (CR32) 2015; 64 Abda, Zerouali, Alqurashi, Chettih, Santos, Hussein (CR1) 2021; 13 Adnan, Mostafa, Dai, Heddam, Kuriqi, Kisi (CR5) 2023; 17 CR87 Wei, Yu (CR92) 2023; 11 Kisi, Ozkan, Akay (CR42) 2012; 428–429 CR83 CR80 Kartal, Emiroglu, Katipoglu, Karakoyun (CR37) 2023; 25 Pektaş, Doğan (CR63) 2015; 32 Panahi, Ehteram, Emami (CR60) 2021; 28 Rajaee, Khani, Ravansalar (CR68) 2020; 200 CR19 Adnan, Dai, Mostafa, Parmar, Heddam, Kisi (CR3) 2022; 14 Anaraki, Achite, Farzin, Elshaboury, Al-Ansari, Elkhrachy (CR9) 2023; 15 CR14 Zhang, Zhang, Shi, Zhao, Zou (CR98) 2012; 66 CR12 Yadav, Prasad, Mojjada, Kothamasu, Joshi (CR93) 2020; 34 Altunkaynak (CR7) 2009; 40 Gupta, Sorooshian, Yapo (CR27) 2002; 4 Sivanandam, Deepa (CR82) 2008 Bai (CR11) 2010; 3 Mostafa, Kisi, Adnan, Sadeghifar, Kuriqi (CR55) 2023; 15 Halecki, Kruk, Ryczek (CR29) 2018; 91 Phillips (CR64) 2003; 27 CR28 Farzin, Anaraki, Naeimi, Zandifar (CR23) 2022; 13 CR25 Yilmaz, Aras, Nacar, Kankal (CR94) 2018; 639 CR24 Liu, Zhang, Gao, Xu, Wu, Fang (CR46) 2019; 179 Ho, Yang, Ni, Wong (CR30) 2006; 42 Motahari, Mazandaranizadeh (CR56) 2017; 3 Partal, Cigizoglu (CR62) 2008; 358 Anaraki, Kadkhodazadeh, Morshed-Bozorgdel, Farzin (CR8) 2023; 14 Poleto, Merten, Minella (CR65) 2009; 30 Eusuff, Lansey, Pasha (CR21) 2006; 38 B Choubin (1338_CR16) 2018; 615 D Gupta (1338_CR26) 2021; 80 K Pandey (1338_CR61) 2020; 12 S Shadkani (1338_CR78) 2024; 17 JD Phillips (1338_CR64) 2003; 27 H Karami (1338_CR36) 2022; 10 WS McCulloch (1338_CR50) 1943; 5 1338_CR69 M Alp (1338_CR6) 2007; 22 W Halecki (1338_CR29) 2018; 91 MG Shirkoohi (1338_CR81) 2021; 21 B Yilmaz (1338_CR94) 2018; 639 MM Eusuff (1338_CR20) 2003; 129 KK Bhattacharjee (1338_CR13) 2014; 19 RR Mostafa (1338_CR55) 2023; 15 MV Anaraki (1338_CR8) 2023; 14 S Shadkani (1338_CR77) 2021; 36 Z Zhao (1338_CR99) 2024; 14 M Rahgoshay (1338_CR67) 2019; 12 1338_CR53 T Rajaee (1338_CR68) 2020; 200 M Jadidoleslam (1338_CR32) 2015; 64 P Wei (1338_CR92) 2023; 11 K Thirumalaiah (1338_CR86) 1998; 3 W Zheng (1338_CR100) 2021; 15 RM Adnan (1338_CR5) 2023; 17 K Kumar (1338_CR44) 2022; 18 M Karakoyun (1338_CR35) 2020; 96 1338_CR87 1338_CR83 FX Zhang (1338_CR97) 2010; 22 H Tao (1338_CR84) 2024; 129 1338_CR80 S Samantaray (1338_CR75) 2022; 26 X Wang (1338_CR90) 2018; 184 RM Adnan (1338_CR3) 2022; 14 OM Katipoğlu (1338_CR38) 2023; 15 OMR Pour (1338_CR66) 2012; 7 1338_CR76 PH Thike (1338_CR85) 2020; 43 F Fahimi (1338_CR22) 2017; 128 M Motahari (1338_CR56) 2017; 3 1338_CR70 S Farzin (1338_CR23) 2022; 13 AM Melesse (1338_CR51) 2011; 98 AO Pektaş (1338_CR63) 2015; 32 1338_CR28 BB Maaroof (1338_CR49) 2022; 29 Z Yue (1338_CR96) 2023; 15 1338_CR24 1338_CR25 A Khan (1338_CR40) 2023; 23 VK Ojha (1338_CR58) 2017; 60 S Samadianfard (1338_CR74) 2022; 34 QJ Liu (1338_CR46) 2019; 179 RM Adnan (1338_CR2) 2021; 191 R Asheghi (1338_CR10) 2020; 14 E Olyaie (1338_CR59) 2015; 187 F Salmasi (1338_CR72) 2022; 46 A Yadav (1338_CR93) 2020; 34 A Altunkaynak (1338_CR7) 2009; 40 K Vercruysse (1338_CR89) 2017; 166 M Jain (1338_CR33) 2022; 12 Ö Kişi (1338_CR41) 2008; 39 X Yuan (1338_CR95) 2018; 32 1338_CR19 1338_CR12 1338_CR14 X Zhang (1338_CR98) 2012; 66 T Partal (1338_CR62) 2008; 358 Z Abda (1338_CR1) 2021; 13 AA Shalmani (1338_CR79) 2024 H Darabi (1338_CR17) 2021; 25 JH Holland (1338_CR31) 1992; 267 B Mohammadi (1338_CR54) 2021; 198 M Das (1338_CR18) 2024; 10 O Kisi (1338_CR42) 2012; 428–429 F Panahi (1338_CR60) 2021; 28 C Poleto (1338_CR65) 2009; 30 S Ho (1338_CR30) 2006; 42 HV Gupta (1338_CR27) 2002; 4 1338_CR45 MV Anaraki (1338_CR9) 2023; 15 1338_CR48 XY Chen (1338_CR15) 2016; 30 1338_CR43 MM Eusuff (1338_CR21) 2006; 38 GK Sahoo (1338_CR71) 2023 M Vafakhah (1338_CR88) 2013; 6 RM Adnan (1338_CR4) 2023; 38 V Nourani (1338_CR57) 2019; 33 Q Bai (1338_CR11) 2010; 3 SG Meshram (1338_CR52) 2022; 26 TT Sam (1338_CR73) 2022; 194 V Kartal (1338_CR37) 2023; 25 SN Sivanandam (1338_CR82) 2008 1338_CR39 Y Liu (1338_CR47) 2022; 503 1338_CR34 H Wang (1338_CR91) 2013; 2013  | 
    
| References_xml | – ident: CR45 – volume: 27 start-page: 1 issue: 1 year: 2003 end-page: 23 ident: CR64 article-title: Sources of nonlinearity and complexity in geomorphic systems publication-title: Prog Phys Geogr doi: 10.1191/0309133303pp340ra – ident: CR39 – volume: 25 start-page: 2427 issue: 6 year: 2023 end-page: 2443 ident: CR37 article-title: Prediction of scour hole characteristics caused by water jets using metaheuristic artificial bee colony-optimized neural network and pre-processing techniques publication-title: J Hydroinformatics doi: 10.2166/hydro.2023.230 – volume: 32 start-page: 27 issue: 1 year: 2015 end-page: 46 ident: CR63 article-title: Prediction of bed load via suspended sediment load using soft computing methods publication-title: Geofizika doi: 10.15233/gfz.2015.32.2 – volume: 11 start-page: 1 year: 2023 end-page: 13 ident: CR92 article-title: Improved quantum artificial bee colony algorithm-optimized artificial intelligence models for suspended sediment load predicting publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3333051 – volume: 191 year: 2021 ident: CR2 article-title: Estimating reference evapotranspiration using hybrid adaptive fuzzy inferencing coupled with heuristic algorithms publication-title: Comput Electron Agric doi: 10.1016/j.compag.2021.106541 – ident: CR80 – volume: 129 year: 2024 ident: CR84 article-title: Hybridized artificial intelligence models with nature-inspired algorithms for river flow modeling: a comprehensive review, assessment, and possible future research directions publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2023.107559 – volume: 96 year: 2020 ident: CR35 article-title: A new algorithm based on gray wolf optimizer and shuffled frog leaping algorithm to solve the multi-objective optimization problems publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106560 – volume: 358 start-page: 317 issue: 3–4 year: 2008 end-page: 331 ident: CR62 article-title: Estimation and forecasting of daily suspended sediment data using wavelet–neural networks publication-title: J Hydrol doi: 10.1016/j.jhydrol.2008.06.013 – ident: CR25 – volume: 15 issue: 3 year: 2023 ident: CR55 article-title: Modeling potential evapotranspiration by improved machine learning methods using limited climatic data publication-title: Water doi: 10.3390/w15030486 – volume: 639 start-page: 826 year: 2018 end-page: 840 ident: CR94 article-title: Estimating suspended sediment load with multivariate adaptive regression spline, teaching-learning based optimization, and artificial bee colony models publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.05.153 – volume: 66 start-page: 448 issue: 6 year: 2012 end-page: 454 ident: CR98 article-title: Power control algorithm in cognitive radio system based on modified shuffled frog leaping algorithm publication-title: AEU-International J Electron Commun doi: 10.1016/j.aeue.2011.10.004 – volume: 14 start-page: 3671 issue: 10 year: 2023 end-page: 3691 ident: CR8 article-title: Predicting rainfall response to climate change and uncertainty analysis: introducing a novel downscaling CMIP6 models technique based on the stacking ensemble machine learning publication-title: J Water Clim Change doi: 10.2166/wcc.2023.477 – volume: 34 start-page: 3033 year: 2022 end-page: 3051 ident: CR74 article-title: Hybrid models for suspended sediment prediction: optimized random forest and multi-layer perceptron through genetic algorithm and stochastic gradient descent methods publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06550-1 – volume: 13 issue: 24 year: 2021 ident: CR1 article-title: Suspended sediment load simulation during flood events using intelligent systems: a case study on semiarid regions of Mediterranean Basin publication-title: Water doi: 10.3390/w13243539 – ident: CR19 – start-page: 15 year: 2008 end-page: 37 ident: CR82 publication-title: Genetic algorithms – volume: 91 start-page: 461 year: 2018 end-page: 469 ident: CR29 article-title: Estimations of nitrate nitrogen, total phosphorus flux and suspended sediment concentration (SSC) as indicators of surface-erosion processes using an ANN (Artificial neural network) based on geomorphological parameters in mountainous catchments publication-title: Ecol Ind doi: 10.1016/j.ecolind.2018.03.072 – volume: 43 start-page: 211 issue: 1 year: 2020 ident: CR85 article-title: Significance of artificial neural network analytical models in materials’ performance prediction publication-title: Bull Mater Sci doi: 10.1007/s12034-020-02154-y – volume: 12 issue: 17 year: 2022 ident: CR33 article-title: An overview of variants and advancements of PSO algorithm publication-title: Appl Sci doi: 10.3390/app12178392 – volume: 14 start-page: 4146 issue: 1 year: 2024 ident: CR99 article-title: A modified shuffled frog leaping algorithm with inertia weight publication-title: Sci Rep doi: 10.1038/s41598-024-51306-1 – volume: 22 start-page: 582 issue: S1 year: 2010 end-page: 587 ident: CR97 article-title: Prediction of sediment transportation in deep bay (Hong Kong) using genetic algorithm publication-title: J Hydrodyn doi: 10.1016/s1001-6058(09)60260-2 – volume: 15 start-page: 1761 issue: 1 year: 2021 end-page: 1774 ident: CR100 article-title: Forecasting the discharge capacity of inflatable rubber dams using hybrid machine learning models publication-title: Eng Appl Comput Fluid Mech doi: 10.1080/19942060.2021.1976280 – volume: 2013 start-page: 119 issue: 223 year: 2013 end-page: 135 ident: CR91 article-title: Diversity enhanced particle swarm optimization with neighborhood search publication-title: Inf Sci doi: 10.1016/j.ins.2012.10.012 – volume: 200 start-page: 103978 year: 2020 ident: CR68 article-title: Artificial intelligence-based single and hybrid models for prediction of water quality in rivers: a review publication-title: Chemometr Intell Lab Syst doi: 10.1016/j.chemolab.2020.103978 – volume: 194 start-page: 700 year: 2022 ident: CR73 article-title: The responses of river discharge and sediment load to historical land-use/land-cover change in the Mekong River Basin publication-title: Environ Monit Assess doi: 10.1007/s10661-022-10400-5 – volume: 14 issue: 6 year: 2022 ident: CR3 article-title: Modeling multistep ahead dissolved oxygen concentration using improved support vector machines by a hybrid metaheuristic algorithm publication-title: Sustainability doi: 10.3390/su14063470 – volume: 187 start-page: 1 year: 2015 end-page: 22 ident: CR59 article-title: A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: a case study in United States publication-title: Environ Monit Assess doi: 10.1007/s10661-015-4381-1 – volume: 32 start-page: 2199 year: 2018 end-page: 2212 ident: CR95 article-title: Monthly runoff forecasting based on LSTM-ALO model publication-title: Stoch Env Res Risk Assess doi: 10.1007/s00477-018-1560-y – volume: 3 start-page: 180 issue: 1 year: 2010 ident: CR11 article-title: Analysis of particle swarm optimization algorithm publication-title: Comput Inform Sci doi: 10.5539/cis.v3n1p180 – volume: 60 start-page: 97 year: 2017 end-page: 116 ident: CR58 article-title: Metaheuristic design of feedforward neural networks: a review of two decades of research publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2017.01.013 – volume: 39 start-page: 27 issue: 1 year: 2008 end-page: 40 ident: CR41 article-title: River flow forecasting and estimation using different artificial neural network techniques publication-title: Hydrol Res doi: 10.2166/nh.2008.026 – volume: 38 issue: 1 year: 2023 ident: CR4 article-title: Modelling groundwater level fluctuations by ELM merged advanced metaheuristic algorithms using hydroclimatic data publication-title: Geocarto Int doi: 10.1080/10106049.2022.2158951 – volume: 4 start-page: 135 year: 2002 end-page: 143 ident: CR27 article-title: Status of automatic calibration for hydrologic models: comparison with Multilevel Expert Calibration publication-title: J Hydrol Eng doi: 10.1061/(ASCE)1084-0699(1999)4:2(135) – volume: 38 start-page: 129 issue: 2 year: 2006 end-page: 154 ident: CR21 article-title: Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization publication-title: Eng Optim doi: 10.1080/03052150500384759 – volume: 26 start-page: 911 year: 2022 end-page: 920 ident: CR52 article-title: A multi-layer perceptron (MLP)-Fire fly algorithm (FFA)-based model for sediment prediction publication-title: Soft Comput doi: 10.1007/s00500-021-06281-4 – volume: 19 start-page: 252 year: 2014 end-page: 263 ident: CR13 article-title: Shuffled frog leaping algorithm and its application to 0/1 knapsack problem publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2014.02.010 – ident: CR69 – volume: 26 start-page: 5251 year: 2022 end-page: 5273 ident: CR75 article-title: Prediction of groundwater fluctuation based on hybrid ANFIS-GWO approach in arid Watershed, India publication-title: Soft Comput doi: 10.1007/s00500-022-07097-6 – volume: 17 start-page: 1261 year: 2024 end-page: 1280 ident: CR78 article-title: Random forest and multilayer perceptron hybrid models integrated with the genetic algorithm for predicting pan evaporation of target site using a limited set of neighboring reference station data publication-title: Earth Sci Inform doi: 10.1007/s12145-024-01237-2 – volume: 12 start-page: 1 year: 2019 end-page: 14 ident: CR67 article-title: Simulation of daily suspended sediment load using an improved model of support vector machine and genetic algorithms and particle swarm publication-title: Arab J Geosci doi: 10.1007/s12517-019-4444-7 – volume: 7 start-page: 3584 year: 2012 end-page: 3604 ident: CR66 article-title: Comparision of ant colony optimization and genetic algorithm models for identifying the relation between flow discharge and suspended sediment load (Gorgan River-Iran) publication-title: Sci Res Essays doi: 10.5897/sre11.264 – volume: 33 start-page: 1769 issue: 5 year: 2019 end-page: 1784 ident: CR57 article-title: A wavelet based data mining technique for suspended sediment load modeling publication-title: Water Resour Manage doi: 10.1007/s11269-019-02216-9 – volume: 46 start-page: 2495 issue: 3 year: 2022 end-page: 2509 ident: CR72 article-title: Experimental investigation for determination of discharge coefficients for inclined slide gates and comparison with data-driven models publication-title: Iran J Sci Technol Trans Civ Eng doi: 10.1007/s40996-022-00850-9 – ident: CR83 – volume: 503 start-page: 325 year: 2022 end-page: 362 ident: CR47 article-title: Simulated annealing-based dynamic step shuffled frog leaping algorithm: optimal performance design and feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.06.075 – ident: CR24 – volume: 80 start-page: 346 issue: 9 year: 2021 ident: CR26 article-title: Artificial intelligence for suspended sediment load prediction: a review publication-title: Environ Earth Sci doi: 10.1007/s12665-021-09625-3 – ident: CR70 – volume: 23 issue: 18 year: 2023 ident: CR40 article-title: Adaptive filtering: issues, challenges, and best-fit solutions using particle swarm optimization variants publication-title: Sensors doi: 10.3390/s23187710 – volume: 179 start-page: 107 year: 2019 end-page: 118 ident: CR46 article-title: Time-frequency analysis and simulation of the watershed suspended sediment concentration based on the hilbert-huang transform (HHT) and artificial neural network (ANN) methods: a case study in the Loess Plateau of China publication-title: CATENA doi: 10.1016/j.catena.2019.03.042 – ident: CR87 – volume: 13 start-page: 2233 issue: 5 year: 2022 end-page: 2254 ident: CR23 article-title: Prediction of groundwater table and drought analysis; a new hybridization strategy based on bi-directional long short-term model and the Harris hawk optimization algorithm publication-title: J Water Clim Change doi: 10.2166/wcc.2022.066 – ident: CR12 – volume: 10 start-page: 165 year: 2022 ident: CR36 article-title: A novel approach for estimation of sediment load in dam reservoir with hybrid intelligent algorithms publication-title: Front Environ Sci doi: 10.3389/fenvs.2022.821079 – volume: 166 start-page: 38 year: 2017 end-page: 52 ident: CR89 article-title: Suspended sediment transport dynamics in rivers: multi-scale drivers of temporal variation publication-title: Earth Sci Rev doi: 10.1016/j.earscirev.2016.12.016 – year: 2024 ident: CR79 article-title: Estimating daily suspended sediment by intelligent and traditional models (Case Study: Kasalian and Rood Zard watersheds, Iran) publication-title: Adv Environ Technol doi: 10.22104/AET.2024.4846.1309 – volume: 3 start-page: 26 year: 1998 end-page: 32 ident: CR86 article-title: River stage forecasting using artificial neural networks publication-title: J Hydrol Eng doi: 10.1061/(asce)1084-0699(1998)3:1(26) – volume: 98 start-page: 855 year: 2011 end-page: 866 ident: CR51 article-title: Suspended sediment load prediction of river systems: an artificial neural network approach publication-title: Agric Water Manage doi: 10.1016/j.agwat.2010.12.012 – volume: 18 start-page: 16 issue: 1 year: 2022 end-page: 26 ident: CR44 article-title: Application of the PSO–neural network in rainfall–runoff modeling publication-title: Water Pract Technol doi: 10.2166/wpt.2022.155 – year: 2023 ident: CR71 article-title: Streamflow forecasting using Novel ANFIS-GWO Approach publication-title: Evolution in Computational Intelligence. FICTA 2022. Smart Innovation, systems and technologies doi: 10.1007/978-981-19-7513-4_13 – volume: 64 start-page: 743 year: 2015 end-page: 751 ident: CR32 article-title: Reliability constrained generation expansion planning by a modified shuffled frog leaping algorithm publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2014.07.073 – volume: 184 start-page: 110 year: 2018 end-page: 118 ident: CR90 article-title: Distribution of potentially toxic elements in sediment of the Anning River near the REE and V-Ti magnetite mines in the Panxi Rift, SW China publication-title: J Geochem Explor doi: 10.1016/j.gexplo.2017.10.018 – volume: 198 year: 2021 ident: CR54 article-title: Implementation of hybrid particle swarm optimization-differential evolution algorithms coupled with multi-layer perceptron for suspended sediment load estimation publication-title: CATENA doi: 10.1016/j.catena.2020.105024 – volume: 40 start-page: 928 issue: 9 year: 2009 end-page: 934 ident: CR7 article-title: Sediment load prediction by genetic algorithms publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2008.12.009 – volume: 25 start-page: 7609 year: 2021 end-page: 7626 ident: CR17 article-title: Prediction of daily suspended sediment load (SSL) using new optimization algorithms and soft computing models publication-title: Soft Comput doi: 10.1007/s00500-021-05721-5 – volume: 3 start-page: 35 issue: 1 year: 2017 end-page: 44 ident: CR56 article-title: Development of a PSO-ANN model for rainfall-runoff response in basins, case study: Karaj Basin publication-title: Civil Eng J doi: 10.28991/cej-2017-00000070 – volume: 615 start-page: 272 year: 2018 end-page: 281 ident: CR16 article-title: River suspended sediment modelling using the CART model: a comparative study of machine learning techniques publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.09.293 – volume: 22 start-page: 2 issue: 1 year: 2007 end-page: 13 ident: CR6 article-title: Suspended sediment load simulation by two artificial neural network methods using hydrometeorological data publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2005.09.009 – volume: 28 start-page: 48253 issue: 35 year: 2021 end-page: 48273 ident: CR60 article-title: Suspended sediment load prediction based on soft computing models and Black Widow optimization algorithm using an enhanced gamma test publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-021-14065-4 – volume: 30 start-page: 2179 year: 2016 end-page: 2194 ident: CR15 article-title: A hybrid double feedforward neural network for suspended sediment load estimation publication-title: Water Resour Manage doi: 10.1007/s11269-016-1281-2 – volume: 29 start-page: 3459 issue: 5 year: 2022 end-page: 3474 ident: CR49 article-title: Current studies and applications of shuffled frog leaping algorithm: a review publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-021-09707-2 – volume: 42 start-page: 1107 year: 2006 end-page: 1110 ident: CR30 article-title: A particle swarm optimization method with enhanced global search ability for design optimizations of electromagnetic devices publication-title: IEEE Trans Magn doi: 10.1109/tmag.2006.871426 – volume: 12 issue: 21 year: 2020 ident: CR61 article-title: Artificial neural network optimized with a genetic algorithm for seasonal groundwater table depth prediction in Uttar Pradesh, India publication-title: Sustainability doi: 10.3390/su12218932 – volume: 6 start-page: 3003 year: 2013 end-page: 3018 ident: CR88 article-title: Comparison of cokriging and adaptive neuro-fuzzy inference system models for suspended sediment load forecasting publication-title: Arab J Geosci doi: 10.1007/s12517-012-0550-5 – ident: CR43 – volume: 5 start-page: 115 year: 1943 end-page: 133 ident: CR50 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull Math Biophys doi: 10.1007/BF02478259 – volume: 30 start-page: 1145 issue: 11 year: 2009 end-page: 1153 ident: CR65 article-title: The identification of sediment sources in a small urban watershed in southern Brazil: an application of sediment fingerprinting publication-title: Environ Technol doi: 10.1080/09593330903112154 – ident: CR14 – volume: 21 start-page: 2374 issue: 5 year: 2021 end-page: 2386 ident: CR81 article-title: Short-term water demand predictions coupling an artificial neural network model and a genetic algorithm publication-title: Water Supply doi: 10.2166/ws.2021.049 – ident: CR53 – volume: 129 start-page: 210 issue: 3 year: 2003 ident: CR20 article-title: Optimization of water distribution network design using the shuffled frog leaping algorithm publication-title: J Water Resour Plann Manage doi: 10.1061/(asce)0733-9496(2003)129:3(210) – volume: 267 start-page: 66 year: 1992 end-page: 72 ident: CR31 article-title: Genetic algorithms publication-title: Sci Am doi: 10.1038/scientificamerican0792-66 – volume: 15 issue: 20 year: 2023 ident: CR9 article-title: Modeling of Monthly Rainfall–Runoff using various machine learning techniques in Wadi Ouahrane Basin, Algeria publication-title: Water doi: 10.3390/w15203576 – ident: CR48 – volume: 17 issue: 1 year: 2023 ident: CR5 article-title: Pan evaporation estimation by relevance vector machine tuned with new metaheuristic algorithms using limited climatic data publication-title: Eng Appl Comput Fluid Mech doi: 10.1080/19942060.2023.2192258 – volume: 128 start-page: 875 year: 2017 end-page: 903 ident: CR22 article-title: Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review publication-title: Theoret Appl Climatol doi: 10.1007/s00704-016-1735-8 – volume: 14 start-page: 374 year: 2020 end-page: 386 ident: CR10 article-title: Prediction of bed load sediments using different artificial neural network models publication-title: Front Struct Civ Eng doi: 10.1007/s11709-019-0600-0 – volume: 34 start-page: 745 issue: 6 year: 2020 end-page: 751 ident: CR93 article-title: Application of artificial neural network and genetic algorithm based artificial neural network models for river flow prediction publication-title: Rev Intell Artif doi: 10.18280/ria.340608 – volume: 10 start-page: 751 issue: 1 year: 2024 end-page: 765 ident: CR18 article-title: ANN-SFLA based parameter estimation method for an unsaturated–saturated simulation model publication-title: Model Earth Syst Environ doi: 10.1007/s40808-023-01797-0 – volume: 428–429 start-page: 94 year: 2012 end-page: 103 ident: CR42 article-title: Modeling discharge–sediment relationship using neural networks with artificial bee colony algorithm publication-title: J Hydrol doi: 10.1016/j.jhydrol.2012.01.026 – ident: CR34 – volume: 15 issue: 2 year: 2023 ident: CR38 article-title: Prediction of streamflow drought index for short-term hydrological drought in the semi-arid Yesilirmak Basin using Wavelet transform and artificial intelligence techniques publication-title: Sustainability doi: 10.3390/su15021109 – volume: 36 start-page: 512 issue: 4 year: 2021 end-page: 523 ident: CR77 article-title: Comparative study of multilayer perceptron-stochastic gradient descent and gradient boosted trees for predicting daily suspended sediment load: the case study of the Mississippi River, US publication-title: Int J Sedim Res doi: 10.1016/j.ijsrc.2020.10.001 – ident: CR76 – ident: CR28 – volume: 15 issue: 15 year: 2023 ident: CR96 article-title: Monthly runoff forecasting using particle swarm optimization coupled with Flower Pollination Algorithm-based deep belief networks: a Case Study in the Yalong River Basin publication-title: Water doi: 10.3390/w15152704 – volume: 91 start-page: 461 year: 2018 ident: 1338_CR29 publication-title: Ecol Ind doi: 10.1016/j.ecolind.2018.03.072 – volume: 200 start-page: 103978 year: 2020 ident: 1338_CR68 publication-title: Chemometr Intell Lab Syst doi: 10.1016/j.chemolab.2020.103978 – volume: 25 start-page: 7609 year: 2021 ident: 1338_CR17 publication-title: Soft Comput doi: 10.1007/s00500-021-05721-5 – volume: 12 issue: 17 year: 2022 ident: 1338_CR33 publication-title: Appl Sci doi: 10.3390/app12178392 – ident: 1338_CR14 – volume: 128 start-page: 875 year: 2017 ident: 1338_CR22 publication-title: Theoret Appl Climatol doi: 10.1007/s00704-016-1735-8 – volume: 11 start-page: 1 year: 2023 ident: 1338_CR92 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3333051 – volume: 32 start-page: 2199 year: 2018 ident: 1338_CR95 publication-title: Stoch Env Res Risk Assess doi: 10.1007/s00477-018-1560-y – volume: 3 start-page: 180 issue: 1 year: 2010 ident: 1338_CR11 publication-title: Comput Inform Sci doi: 10.5539/cis.v3n1p180 – volume-title: Evolution in Computational Intelligence. FICTA 2022. Smart Innovation, systems and technologies year: 2023 ident: 1338_CR71 doi: 10.1007/978-981-19-7513-4_13 – volume: 13 start-page: 2233 issue: 5 year: 2022 ident: 1338_CR23 publication-title: J Water Clim Change doi: 10.2166/wcc.2022.066 – ident: 1338_CR80 doi: 10.1016/B978-0-444-89330-7.50005-3 – volume: 33 start-page: 1769 issue: 5 year: 2019 ident: 1338_CR57 publication-title: Water Resour Manage doi: 10.1007/s11269-019-02216-9 – volume: 129 year: 2024 ident: 1338_CR84 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2023.107559 – volume: 3 start-page: 35 issue: 1 year: 2017 ident: 1338_CR56 publication-title: Civil Eng J doi: 10.28991/cej-2017-00000070 – ident: 1338_CR43 – volume: 10 start-page: 751 issue: 1 year: 2024 ident: 1338_CR18 publication-title: Model Earth Syst Environ doi: 10.1007/s40808-023-01797-0 – volume: 179 start-page: 107 year: 2019 ident: 1338_CR46 publication-title: CATENA doi: 10.1016/j.catena.2019.03.042 – ident: 1338_CR28 doi: 10.1016/j.jhydrol.2022.127774 – volume: 64 start-page: 743 year: 2015 ident: 1338_CR32 publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2014.07.073 – volume: 26 start-page: 911 year: 2022 ident: 1338_CR52 publication-title: Soft Comput doi: 10.1007/s00500-021-06281-4 – volume: 2013 start-page: 119 issue: 223 year: 2013 ident: 1338_CR91 publication-title: Inf Sci doi: 10.1016/j.ins.2012.10.012 – volume: 30 start-page: 2179 year: 2016 ident: 1338_CR15 publication-title: Water Resour Manage doi: 10.1007/s11269-016-1281-2 – ident: 1338_CR25 – ident: 1338_CR69 doi: 10.1007/978-981-19-2980-9_24 – volume: 5 start-page: 115 year: 1943 ident: 1338_CR50 publication-title: Bull Math Biophys doi: 10.1007/BF02478259 – ident: 1338_CR87 – volume: 15 issue: 2 year: 2023 ident: 1338_CR38 publication-title: Sustainability doi: 10.3390/su15021109 – volume: 187 start-page: 1 year: 2015 ident: 1338_CR59 publication-title: Environ Monit Assess doi: 10.1007/s10661-015-4381-1 – volume: 3 start-page: 26 year: 1998 ident: 1338_CR86 publication-title: J Hydrol Eng doi: 10.1061/(asce)1084-0699(1998)3:1(26) – volume: 14 start-page: 374 year: 2020 ident: 1338_CR10 publication-title: Front Struct Civ Eng doi: 10.1007/s11709-019-0600-0 – volume: 503 start-page: 325 year: 2022 ident: 1338_CR47 publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.06.075 – volume: 21 start-page: 2374 issue: 5 year: 2021 ident: 1338_CR81 publication-title: Water Supply doi: 10.2166/ws.2021.049 – volume: 39 start-page: 27 issue: 1 year: 2008 ident: 1338_CR41 publication-title: Hydrol Res doi: 10.2166/nh.2008.026 – ident: 1338_CR70 doi: 10.1007/978-981-19-4863-3_32 – volume: 194 start-page: 700 year: 2022 ident: 1338_CR73 publication-title: Environ Monit Assess doi: 10.1007/s10661-022-10400-5 – volume: 17 issue: 1 year: 2023 ident: 1338_CR5 publication-title: Eng Appl Comput Fluid Mech doi: 10.1080/19942060.2023.2192258 – volume: 428–429 start-page: 94 year: 2012 ident: 1338_CR42 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2012.01.026 – volume: 198 year: 2021 ident: 1338_CR54 publication-title: CATENA doi: 10.1016/j.catena.2020.105024 – volume: 13 issue: 24 year: 2021 ident: 1338_CR1 publication-title: Water doi: 10.3390/w13243539 – volume: 12 start-page: 1 year: 2019 ident: 1338_CR67 publication-title: Arab J Geosci doi: 10.1007/s12517-019-4444-7 – volume: 36 start-page: 512 issue: 4 year: 2021 ident: 1338_CR77 publication-title: Int J Sedim Res doi: 10.1016/j.ijsrc.2020.10.001 – volume: 96 year: 2020 ident: 1338_CR35 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106560 – volume: 129 start-page: 210 issue: 3 year: 2003 ident: 1338_CR20 publication-title: J Water Resour Plann Manage doi: 10.1061/(asce)0733-9496(2003)129:3(210) – volume: 267 start-page: 66 year: 1992 ident: 1338_CR31 publication-title: Sci Am doi: 10.1038/scientificamerican0792-66 – ident: 1338_CR48 doi: 10.1109/ISDA.2008.346 – volume: 98 start-page: 855 year: 2011 ident: 1338_CR51 publication-title: Agric Water Manage doi: 10.1016/j.agwat.2010.12.012 – volume: 6 start-page: 3003 year: 2013 ident: 1338_CR88 publication-title: Arab J Geosci doi: 10.1007/s12517-012-0550-5 – ident: 1338_CR34 – volume: 26 start-page: 5251 year: 2022 ident: 1338_CR75 publication-title: Soft Comput doi: 10.1007/s00500-022-07097-6 – volume: 32 start-page: 27 issue: 1 year: 2015 ident: 1338_CR63 publication-title: Geofizika doi: 10.15233/gfz.2015.32.2 – volume: 14 issue: 6 year: 2022 ident: 1338_CR3 publication-title: Sustainability doi: 10.3390/su14063470 – volume: 34 start-page: 3033 year: 2022 ident: 1338_CR74 publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06550-1 – volume: 28 start-page: 48253 issue: 35 year: 2021 ident: 1338_CR60 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-021-14065-4 – volume: 4 start-page: 135 year: 2002 ident: 1338_CR27 publication-title: J Hydrol Eng doi: 10.1061/(ASCE)1084-0699(1999)4:2(135) – volume: 12 issue: 21 year: 2020 ident: 1338_CR61 publication-title: Sustainability doi: 10.3390/su12218932 – volume: 10 start-page: 165 year: 2022 ident: 1338_CR36 publication-title: Front Environ Sci doi: 10.3389/fenvs.2022.821079 – volume: 60 start-page: 97 year: 2017 ident: 1338_CR58 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2017.01.013 – volume: 184 start-page: 110 year: 2018 ident: 1338_CR90 publication-title: J Geochem Explor doi: 10.1016/j.gexplo.2017.10.018 – volume: 30 start-page: 1145 issue: 11 year: 2009 ident: 1338_CR65 publication-title: Environ Technol doi: 10.1080/09593330903112154 – volume: 615 start-page: 272 year: 2018 ident: 1338_CR16 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.09.293 – volume: 7 start-page: 3584 year: 2012 ident: 1338_CR66 publication-title: Sci Res Essays doi: 10.5897/sre11.264 – volume: 22 start-page: 2 issue: 1 year: 2007 ident: 1338_CR6 publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2005.09.009 – volume: 38 issue: 1 year: 2023 ident: 1338_CR4 publication-title: Geocarto Int doi: 10.1080/10106049.2022.2158951 – volume: 80 start-page: 346 issue: 9 year: 2021 ident: 1338_CR26 publication-title: Environ Earth Sci doi: 10.1007/s12665-021-09625-3 – volume: 40 start-page: 928 issue: 9 year: 2009 ident: 1338_CR7 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2008.12.009 – volume: 34 start-page: 745 issue: 6 year: 2020 ident: 1338_CR93 publication-title: Rev Intell Artif doi: 10.18280/ria.340608 – ident: 1338_CR12 doi: 10.1109/ICIEA.2016.7604009 – volume: 27 start-page: 1 issue: 1 year: 2003 ident: 1338_CR64 publication-title: Prog Phys Geogr doi: 10.1191/0309133303pp340ra – start-page: 15 volume-title: Genetic algorithms year: 2008 ident: 1338_CR82 – volume: 14 start-page: 3671 issue: 10 year: 2023 ident: 1338_CR8 publication-title: J Water Clim Change doi: 10.2166/wcc.2023.477 – volume: 19 start-page: 252 year: 2014 ident: 1338_CR13 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2014.02.010 – volume: 15 issue: 20 year: 2023 ident: 1338_CR9 publication-title: Water doi: 10.3390/w15203576 – ident: 1338_CR76 doi: 10.1007/978-981-15-5397-4_75 – volume: 43 start-page: 211 issue: 1 year: 2020 ident: 1338_CR85 publication-title: Bull Mater Sci doi: 10.1007/s12034-020-02154-y – volume: 66 start-page: 448 issue: 6 year: 2012 ident: 1338_CR98 publication-title: AEU-International J Electron Commun doi: 10.1016/j.aeue.2011.10.004 – ident: 1338_CR53 doi: 10.1080/02626667.2020.1758703 – volume: 22 start-page: 582 issue: S1 year: 2010 ident: 1338_CR97 publication-title: J Hydrodyn doi: 10.1016/s1001-6058(09)60260-2 – volume: 15 issue: 3 year: 2023 ident: 1338_CR55 publication-title: Water doi: 10.3390/w15030486 – ident: 1338_CR83 – year: 2024 ident: 1338_CR79 publication-title: Adv Environ Technol doi: 10.22104/AET.2024.4846.1309 – volume: 18 start-page: 16 issue: 1 year: 2022 ident: 1338_CR44 publication-title: Water Pract Technol doi: 10.2166/wpt.2022.155 – volume: 15 issue: 15 year: 2023 ident: 1338_CR96 publication-title: Water doi: 10.3390/w15152704 – ident: 1338_CR24 doi: 10.1109/CEC.2007.4424823 – ident: 1338_CR39 doi: 10.1109/ICNN.1995.488968 – volume: 166 start-page: 38 year: 2017 ident: 1338_CR89 publication-title: Earth Sci Rev doi: 10.1016/j.earscirev.2016.12.016 – ident: 1338_CR19 doi: 10.1089/big.2022.0095 – volume: 25 start-page: 2427 issue: 6 year: 2023 ident: 1338_CR37 publication-title: J Hydroinformatics doi: 10.2166/hydro.2023.230 – volume: 191 year: 2021 ident: 1338_CR2 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2021.106541 – volume: 358 start-page: 317 issue: 3–4 year: 2008 ident: 1338_CR62 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2008.06.013 – volume: 23 issue: 18 year: 2023 ident: 1338_CR40 publication-title: Sensors doi: 10.3390/s23187710 – volume: 38 start-page: 129 issue: 2 year: 2006 ident: 1338_CR21 publication-title: Eng Optim doi: 10.1080/03052150500384759 – volume: 29 start-page: 3459 issue: 5 year: 2022 ident: 1338_CR49 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-021-09707-2 – volume: 639 start-page: 826 year: 2018 ident: 1338_CR94 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.05.153 – ident: 1338_CR45 doi: 10.1109/COMITCon.2019.8862255 – volume: 15 start-page: 1761 issue: 1 year: 2021 ident: 1338_CR100 publication-title: Eng Appl Comput Fluid Mech doi: 10.1080/19942060.2021.1976280 – volume: 42 start-page: 1107 year: 2006 ident: 1338_CR30 publication-title: IEEE Trans Magn doi: 10.1109/tmag.2006.871426 – volume: 46 start-page: 2495 issue: 3 year: 2022 ident: 1338_CR72 publication-title: Iran J Sci Technol Trans Civ Eng doi: 10.1007/s40996-022-00850-9 – volume: 14 start-page: 4146 issue: 1 year: 2024 ident: 1338_CR99 publication-title: Sci Rep doi: 10.1038/s41598-024-51306-1 – volume: 17 start-page: 1261 year: 2024 ident: 1338_CR78 publication-title: Earth Sci Inform doi: 10.1007/s12145-024-01237-2  | 
    
| SSID | ssib031263228 ssj0062140  | 
    
| Score | 2.3269312 | 
    
| Snippet | Suspended sediment load estimation is vital for the development of river initiatives, water resources management, the ecological health of rivers,... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 3623 | 
    
| SubjectTerms | Algorithms Amphibians Artificial neural networks Bias Disaster risk Earth and Environmental Science Earth Sciences Earth System Sciences Genetic algorithms Information Systems Applications (incl.Internet) Neural networks Ontology Parameter estimation Particle swarm optimization Precipitation Prediction models River systems Rivers Root-mean-square errors Sediment load Sediments Simulation and Modeling Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics Stream discharge Stream flow Suspended load Suspended sediments Water quality Water resources Water resources management  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60IngRn1itsgdvGmizm9exiLUIetFCb2GfbSUmJUmF_ntnN0mDooLn7OzCzOzOTGbmG4Sute6LUGqTVnchQAkD5XAlhTMQYJsFkzqwQNpPz_54Qh-n3rRuCiuaavcmJWlf6rbZzYBqO2BTIPyFwMpZb6Mdz8B5gRZP3GGjRWRgIMjdTS7Bd-u2yNAHahqQunXm5z2_mqfW5_yWJrXWZ3SA9mu3EQ8rOR-iLZUeod0HO5Z3fYzeXlaFHWYrcQHWyPzxw0nGJF7mJhFjmI8XKc5NEQauwJsL_LFguJivtE6ATOfZzEkUM-1TmCWzLF-U83fMUokN5CWcnVYF4ydoMrp_vRs79RQFR8D1Kh3KSaQ1C1lfESZDzxN95XLOAuFyX3KqGZFUeQFhvop4oJTSEmISEWodcS1Ccoo6aZaqM4SpgnhWgwfCmKA6IHwQeVIR4XF4JanPumjQMC8WNcS4mXSRxC04smF4DAyPLcPjdRfdbGiWFcDGn6t7jUzi-rIVMXiovhmsRaIuum3k1H7-fbfz_y2_QHuuVRVT_tdDnTJfqUtwSUp-ZTXwE3UB2lg priority: 102 providerName: Springer Nature  | 
    
| Title | Suspended sediment load prediction in river systems via shuffled frog-leaping algorithm and neural network | 
    
| URI | https://link.springer.com/article/10.1007/s12145-024-01338-y https://www.proquest.com/docview/3106869039  | 
    
| Volume | 17 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1865-0481 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062140 issn: 1865-0473 databaseCode: AFBBN dateStart: 20080401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1865-0481 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0062140 issn: 1865-0473 databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1865-0481 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0062140 issn: 1865-0473 databaseCode: 8FG dateStart: 20080401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1865-0481 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062140 issn: 1865-0473 databaseCode: AGYKE dateStart: 20080101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1865-0481 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062140 issn: 1865-0473 databaseCode: U2A dateStart: 20080401 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Za9tAEB4Sm0JfQnpR5zD70Ld2qa3V-RCCU2yHhJjS1pA-iT1zoMiOZQf87zOjIyaB5FXSrmB2dmdmZ-b7AL4519OxcZRW9zBAiSPLlTWa9zXaZi2Ni0og7YtJeDr1zy6Dyy2YNL0wVFbZnInlQW1mmu7If6IbEhJ7kkiO5_ecWKMou9pQaMiaWsEclRBj29D2CBmrBe2T4eT3n0bDRJ_gyb2nPEPo1S2TcRjwnh-Juq2maq4jEG-ONgzDbQzk-Pq56dr4oy9SqKVlGu3CTu1SskGlAx9gy-Yf4d24pOxdf4Lbv6uiJLo1rEBLRbeBLJtJw-YLStLQwrCbnC2oQINVwM4Fe7iRrLheOZfhMLeYXfHMSmqtYjK7QrEsr--YzA0jOEz8d14Vk3-G6Wj479cprxkWuMatt-S-EolzMpY9K6SJg0D3rKeUjLSnQqN8J4XxbRAJGdpERdZaZzBe0bFziXI6Fl-glc9y-xWYbzHWdSh9KbXvIqH6SWCs0IHCE9QPZQf6jfBSXcOPEwtGlm6Ak0ngKQo8LQWerjvw_WnMvALfePPrg2ZN0nojFulGbTrwo1mnzevXZ9t7e7Z9eO-VqkGlgAfQWi5W9hDdk6XqwnY8GnehPRj_Px92aw3Ep1Nv8AjdbObh | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVgguiKcIFNgDnGBF4l2_DhUq0JLSNkLQSr25-2yLjBPihCp_rr-tM_a6EUj01rO9a2lmvDOzM_N9AK-975vMeiqrR5igZKnj2lnDBwZ9s1HWpw2Q9v4oGR7Kr0fx0QpcdLMw1FbZnYnNQW3Hhu7I32MYkhB7ksg_TH5zYo2i6mpHoaECtYLdaCDGwmDHrlucYwpXb-x8Rn2_iaLtrYNPQx5YBrhB85txqUXuvcpU3wllszg2fRdprVIT6cRq6ZWw0sWpUInLdeqc8xZjdpN5n2tvMoH73oI1KWSOyd_ax63Rt--dRYsBwaFHV3WNJAojmlkS875MRRjjaYf5CDSco8_E9B4TR77421Uu499_SraNJ9y-D_dCCMs2W5t7ACuuegi3vzQUwYtH8PPHvG6IdS2r0TPS7SMrx8qyyZSKQmQI7KxiU2oIYS2QdM3-nClWn869L3GZn45PeOkUjXIxVZ6gGmanv5iqLCP4Tfx21TavP4bDG5H1E1itxpV7Ckw6zK09alspI30q9CCPrRMm1nhiy0T1YNAJrzAB7pxYN8piCdRMAi9Q4EUj8GLRg7dXayYt2Me1b693OinCj18XSzPtwbtOT8vH_9_t2fW7vYI7w4P9vWJvZ7T7HO5GjZlQG-I6rM6mc_cCQ6OZfhnsj8HxTZv8JYLJJIc | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gRuOF4CsuoPZBT9phd3qeB2IMuIAoMVESbmO_ikeG2WVnF7N_jV9H1TzYaCI3zjNdk1R_01XVVfUVwDvEvk0dclo9oAAlTbw03lk5sGSbrXaY1ETa3w_jvaPw63F0vATXXS8Ml1V2Z2J9ULuR5TvyTXJDYp6epLJNbMsifuwMP40vJU-Q4kxrN06jgciBn_-h8K3a2t-hvX4fBMMvv7b3ZDthQFqC3lSGRmWIOtV9r7RLo8j2fWCMTmxgYmdC1MqFPkqUjn1mEu89OvLXbYqYGbSpIrkP4GHCLO7cpT7c7bCsBkyEHtxmNOKgbc5M40j2w0S1DTxNGx_ThUuylhTYU8go538byYXn-0-ytraBw1VYaZ1X8blB21NY8uUzeLRbDweeP4fzn7OqHqnrREU2ke8dRTHSTownnA5iCIizUky4FEQ0FNKVuDrTojqdIRa0DCejE1l4zU1cQhcnpPTp6YXQpRNMvEnfLpuy9RdwdC-afgnL5aj0r0CEnqJqJD9Iaxtioswgi5xXNjJ0Voex7sGgU15uW6JznrdR5AuKZlZ4TgrPa4Xn8x58uF0zbmg-7nx7o9uTvP3lq3wB0B587PZp8fj_0tbulvYWHhPQ82_7hwfr8CSoUcL1hxuwPJ3M_GvyiabmTQ0-Ab_vG-03kA8iIQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Suspended+sediment+load+prediction+in+river+systems+via+shuffled+frog-leaping+algorithm+and+neural+network&rft.jtitle=Earth+science+informatics&rft.au=Katipo%C4%9Flu%2C+Okan+Mert&rft.au=Akt%C3%BCrk%2C+Gaye&rft.au=K%C4%B1l%C4%B1n%C3%A7%2C+H%C3%BCseyin+%C3%87a%C4%9Fan&rft.au=Terzio%C4%9Flu%2C+Zeynep+%C3%96zge&rft.date=2024-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1865-0473&rft.eissn=1865-0481&rft.volume=17&rft.issue=4&rft.spage=3623&rft.epage=3649&rft_id=info:doi/10.1007%2Fs12145-024-01338-y&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1865-0473&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1865-0473&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1865-0473&client=summon |