Hyper-parameter optimization of deep learning architectures using artificial bee colony (ABC) algorithm for high performance real-time automatic colorectal cancer (CRC) polyp detection
Colorectal cancer (CRC) is one of the most common and malignant types of cancer worldwide. Colonoscopy, considered the gold standard for CRC screening, allows immediate removal of polyps, which are precursors to CRC. Many computer-aided diagnosis systems (CADs) have been proposed for automatic polyp...
Saved in:
| Published in | Applied intelligence (Dordrecht, Netherlands) Vol. 53; no. 12; pp. 15603 - 15620 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.06.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0924-669X 1573-7497 |
| DOI | 10.1007/s10489-022-04299-1 |
Cover
| Abstract | Colorectal cancer (CRC) is one of the most common and malignant types of cancer worldwide. Colonoscopy, considered the gold standard for CRC screening, allows immediate removal of polyps, which are precursors to CRC. Many computer-aided diagnosis systems (CADs) have been proposed for automatic polyp detection. Most of these systems are based on traditional machine learning algorithms and their generalization ability, sensitivity and specificity are limited. On the other hand, with the widespread use of deep learning algorithms in medical image analysis and the successful results in the analysis of colonoscopy images, especially in the early and accurate detection of polyps, these problems are eliminated in recent years. In short, deep learning algorithms and applications have gained a critical role in CAD systems for real-time autonomous polyp detection. Here, we make significant improvements to object detection algorithms to improve the performance of CAD-based real-time polyp detection systems. We integrate the artificial bee colony algorithm (ABC) into the YOLO algorithm to optimize the hyper-parameters of YOLO-based algorithms. The proposed method can be easily integrated into all YOLO algorithms such as YOLOv3, YOLOv4, Scaled-YOLOv4, YOLOv5, YOLOR and YOLOv7. The proposed method improves the performance of the Scaled-YOLOv4 algorithm with an average of more than 3% increase in mAP and a more than 2% improvement in F1 value. In addition, the most comprehensive study is conducted by evaluating the performance of all existing models in the Scaled-YOLOv4 algorithm (YOLOv4s, YOLOv4m, YOLOV4-CSP, YOLOv4-P5, YOLOV4-P6 and YOLOv4-P7) on the novel SUN and PICCOLO polyp datasets. The proposed method is the first study for the optimization of YOLO-based algorithms in the literature and makes a significant contribution to the detection accuracy. |
|---|---|
| AbstractList | Colorectal cancer (CRC) is one of the most common and malignant types of cancer worldwide. Colonoscopy, considered the gold standard for CRC screening, allows immediate removal of polyps, which are precursors to CRC. Many computer-aided diagnosis systems (CADs) have been proposed for automatic polyp detection. Most of these systems are based on traditional machine learning algorithms and their generalization ability, sensitivity and specificity are limited. On the other hand, with the widespread use of deep learning algorithms in medical image analysis and the successful results in the analysis of colonoscopy images, especially in the early and accurate detection of polyps, these problems are eliminated in recent years. In short, deep learning algorithms and applications have gained a critical role in CAD systems for real-time autonomous polyp detection. Here, we make significant improvements to object detection algorithms to improve the performance of CAD-based real-time polyp detection systems. We integrate the artificial bee colony algorithm (ABC) into the YOLO algorithm to optimize the hyper-parameters of YOLO-based algorithms. The proposed method can be easily integrated into all YOLO algorithms such as YOLOv3, YOLOv4, Scaled-YOLOv4, YOLOv5, YOLOR and YOLOv7. The proposed method improves the performance of the Scaled-YOLOv4 algorithm with an average of more than 3% increase in mAP and a more than 2% improvement in F1 value. In addition, the most comprehensive study is conducted by evaluating the performance of all existing models in the Scaled-YOLOv4 algorithm (YOLOv4s, YOLOv4m, YOLOV4-CSP, YOLOv4-P5, YOLOV4-P6 and YOLOv4-P7) on the novel SUN and PICCOLO polyp datasets. The proposed method is the first study for the optimization of YOLO-based algorithms in the literature and makes a significant contribution to the detection accuracy. |
| Author | Pacal, Ishak Sahin, Omur Karaman, Ahmet Coskun, Seymanur Karaboga, Dervis Nalbantoglu, Ufuk Akay, Bahriye Basturk, Alper |
| Author_xml | – sequence: 1 givenname: Ahmet surname: Karaman fullname: Karaman, Ahmet organization: Department of Gastroenterology, Acıbadem Hospital – sequence: 2 givenname: Dervis surname: Karaboga fullname: Karaboga, Dervis organization: Department of Computer Engineering, Engineering Faculty, Erciyes University, Artificial Intelligence and Big Data Application and Research Center, Erciyes University – sequence: 3 givenname: Ishak orcidid: 0000-0001-6670-2169 surname: Pacal fullname: Pacal, Ishak email: Ishakpacal@gmail.com organization: Artificial Intelligence and Big Data Application and Research Center, Erciyes University, Department of Computer Engineering, Engineering Faculty, Igdir University – sequence: 4 givenname: Bahriye surname: Akay fullname: Akay, Bahriye organization: Department of Computer Engineering, Engineering Faculty, Erciyes University, Artificial Intelligence and Big Data Application and Research Center, Erciyes University – sequence: 5 givenname: Alper surname: Basturk fullname: Basturk, Alper organization: Department of Computer Engineering, Engineering Faculty, Erciyes University, Artificial Intelligence and Big Data Application and Research Center, Erciyes University – sequence: 6 givenname: Ufuk surname: Nalbantoglu fullname: Nalbantoglu, Ufuk organization: Department of Computer Engineering, Engineering Faculty, Erciyes University, Artificial Intelligence and Big Data Application and Research Center, Erciyes University – sequence: 7 givenname: Seymanur surname: Coskun fullname: Coskun, Seymanur organization: Department of Gastroenterology, Acıbadem Hospital – sequence: 8 givenname: Omur surname: Sahin fullname: Sahin, Omur organization: Department of Computer Engineering, Engineering Faculty, Erciyes University, Artificial Intelligence and Big Data Application and Research Center, Erciyes University |
| BookMark | eNp9kc2KFDEUhYOMYM_oC7gKuBkX0fxVVWo5NqMzMCCIgruQSifdGaqS8ia16HkyH890lyC4mNUN4ZzzXe65RBcxRYfQW0Y_MEq7j5lRqXpCOSdU8r4n7AXasKYTpJN9d4E2tOeStG3_8xW6zPmRUioEZRv0--44OyCzATO54gCnuYQpPJkSUsTJ451zMx6dgRjiHhuwh1CcLQu4jJe8_pXggw1mxINz2KYxxSO-vvm0fY_NuE8QymHCPgE-hP0BV1x9TyZah8GZkVSew2YpaapQe_ZDJdQ4exIBvt5-q1FzGo9zXedEr7u9Ri-9GbN783deoR-fb79v78jD1y_325sHYgXrC5Gt6FrfGd54qYZ2YDvlPff9rh9UIwxrROu96lizo2qgzHDZDVIqL-t16hTiCr1bc2dIvxaXi35MC8SK1FxxxmSNOanUqrKQcgbntQ3lfMMCJoyaUX3qSa896dqTPvekWbXy_6wzhMnA8XmTWE25iuPewb-tnnH9ARnPqqM |
| CitedBy_id | crossref_primary_10_1016_j_dwt_2024_100543 crossref_primary_10_1007_s13042_024_02110_w crossref_primary_10_1007_s41939_025_00834_y crossref_primary_10_3389_fonc_2024_1422942 crossref_primary_10_62347_BZIZ6358 crossref_primary_10_1007_s11548_023_02857_7 crossref_primary_10_1049_cth2_12770 crossref_primary_10_21597_jist_1265769 crossref_primary_10_3390_math13071021 crossref_primary_10_1109_ACCESS_2024_3473296 crossref_primary_10_1007_s10278_023_00797_x crossref_primary_10_1016_j_bspc_2024_107326 crossref_primary_10_1038_s41598_024_83466_5 crossref_primary_10_21597_jist_1243233 crossref_primary_10_1038_s41598_024_71302_9 crossref_primary_10_3390_buildings13041070 crossref_primary_10_1038_s41598_024_56264_2 crossref_primary_10_21597_jist_1225156 crossref_primary_10_21597_jist_1223457 crossref_primary_10_21597_jist_1501787 crossref_primary_10_3390_diagnostics14050474 crossref_primary_10_1007_s10489_024_05614_8 crossref_primary_10_1007_s11760_023_02835_1 crossref_primary_10_1109_JBHI_2023_3334240 crossref_primary_10_1007_s10278_024_01086_x crossref_primary_10_1007_s11600_024_01362_y crossref_primary_10_1038_s41598_024_53955_8 crossref_primary_10_1007_s00521_024_10910_y crossref_primary_10_1038_s41598_024_62773_x crossref_primary_10_1002_jemt_24692 crossref_primary_10_1038_s41598_025_85156_2 crossref_primary_10_1061_JCCEE5_CPENG_5905 crossref_primary_10_3389_fncom_2024_1356447 crossref_primary_10_1007_s10586_024_04532_1 crossref_primary_10_1007_s10489_024_05900_5 crossref_primary_10_46387_bjesr_1273729 crossref_primary_10_3390_technologies13020054 crossref_primary_10_1007_s00521_023_08757_w crossref_primary_10_1109_ACCESS_2024_3505619 crossref_primary_10_4015_S1016237224500315 crossref_primary_10_1038_s41598_023_49057_6 crossref_primary_10_1007_s11036_024_02313_z crossref_primary_10_3390_sym15091679 crossref_primary_10_1109_ACCESS_2024_3433483 crossref_primary_10_1007_s11042_024_18584_3 crossref_primary_10_1007_s00432_024_05968_z |
| Cites_doi | 10.1016/j.patcog.2018.05.026 10.1109/TPAMI.2016.2577031 10.1109/CVPR.2017.195 10.48550/arxiv.2011.08036 10.1016/J.CMPB.2021.106114 10.1109/ICCV.2019.00667 10.5281/ZENODO.6222936 10.1007/S00521-022-07211-7/FIGURES/4 10.1007/s00521-021-06496-4 10.1007/s10462-012-9328-0 10.1007/s10462-020-09825-6 10.1053/j.gastro.2017.04.006 10.1056/NEJMoa1309086 10.1007/s11042-020-10139-6 10.1007/s10489-022-03689-9 10.3322/caac.21660 10.48550/arxiv.1804.02767 10.1007/s10462-021-09992-0 10.1007/s12652-021-03631-w 10.3390/diagnostics12040898 10.1109/JSEN.2022.3170034 10.3390/diagnostics11101878 10.1007/978-3-319-10602-1_48 10.3390/diagnostics12082030 10.17341/gazimmfd.453677 10.1007/978-3-540-72950-1_77 10.1007/s13042-018-0811-z 10.1016/j.neucom.2015.09.116 10.1007/s11517-021-02398-8 10.3390/diagnostics11122264 10.1038/s41598-021-83788-8 10.1109/CVPR42600.2020.01079 10.1109/CVPR.2016.90 10.1016/J.COMPBIOMED.2021.104519 10.3390/diagnostics11081485 10.1016/j.bspc.2020.102231 10.1007/978-3-319-46448-0_2 10.1016/J.COMPBIOMED.2020.104003 10.1007/S42835-022-01191-3 10.1007/s00521-019-04427-y 10.1109/CVPRW50498.2020.00203 10.1016/j.compbiomed.2021.105031 10.48550/arxiv.2004.10934 10.1016/J.BSPC.2021.103168 10.1007/s00138-021-01184-8 10.3390/cancers13092074 10.1016/j.neucom.2017.05.061 10.5114/pg.2018.81072 10.3390/app112210982 10.1007/978-3-030-58080-3_308-1 10.1109/ICCV.2015.169 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PSYQQ PTHSS Q9U |
| DOI | 10.1007/s10489-022-04299-1 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection (LUT) ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (ProQuest) Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest One Psychology Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7497 |
| EndPage | 15620 |
| ExternalDocumentID | 10_1007_s10489_022_04299_1 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZMTXR ZY4 ~A9 ~EX 77I AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c319t-46376f7a25f48b6b1d8ff2f9d9b853a1536ff8715d08b01a247b448f430144833 |
| IEDL.DBID | U2A |
| ISSN | 0924-669X |
| IngestDate | Fri Jul 25 12:21:47 EDT 2025 Wed Oct 01 04:09:59 EDT 2025 Thu Apr 24 23:08:17 EDT 2025 Fri Feb 21 02:43:11 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Deep learning Hyper-parameter optimization Artificial bee colony Real-time polyp detection YOLOv4 Colorectal cancer |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-46376f7a25f48b6b1d8ff2f9d9b853a1536ff8715d08b01a247b448f430144833 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6670-2169 |
| PQID | 2821148533 |
| PQPubID | 326365 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_2821148533 crossref_citationtrail_10_1007_s10489_022_04299_1 crossref_primary_10_1007_s10489_022_04299_1 springer_journals_10_1007_s10489_022_04299_1 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20230600 2023-06-00 20230601 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 6 year: 2023 text: 20230600 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Boston |
| PublicationSubtitle | The International Journal of Research on Intelligent Systems for Real Life Complex Problems |
| PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
| PublicationTitleAbbrev | Appl Intell |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | OzcanTBasturkATransfer learning-based convolutional neural networks with heuristic optimization for hand gesture recognitionNeural Comput Appl2019318955897010.1007/s00521-019-04427-y ErkanUToktasAUstunDHyperparameter optimization of deep CNN classifier for plant species identification using artificial bee colony algorithmJ Ambient Intell Human Comput20221310.1007/s12652-021-03631-w Guo Y, Liu Y, Oerlemans A et al (2016) Deep learning for visual understanding: a review. Neurocomputing 187:27–48. https://doi.org/10.1016/j.neucom.2015.09.116 Lin TY, Maire M, Belongie S et al (2014) Microsoft COCO: common objects in context. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 8693 LNCS, pp 740–755. https://doi.org/10.1007/978-3-319-10602-1_48 Jocher G, Chaurasia A, Stoken A et al (2022) ultralytics/yolov5: v6.1 - TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference. https://doi.org/10.5281/ZENODO.6222936 Corley DA, Jensen CD, Marks AR et al (2014) Adenoma detection rate and risk of colorectal cancer and death A BS TR AC T. N Engl J Med 14:1298–1306. https://doi.org/10.1056/NEJMoa1309086 OzkokFOCelikMA hybrid CNN-LSTM model for high resolution melting curve classificationBiomed Signal Process Control20227110316810.1016/J.BSPC.2021.103168 AlexeyAB/darknet : YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet). https://github.com/AlexeyAB/darknet. Accessed 2 Apr 2021 AliMAliRMulti-input dual-stream capsule network for improved lung and colon cancer classificationDiagnostics20211111810.3390/diagnostics11081485 Lee J-N, · J-WC, Cho H-C (2022) Improvement of colon polyp detection performance by modifying the multi-scale network structure and data augmentation. J Electr Eng Technol 2022:1–9. https://doi.org/10.1007/S42835-022-01191-3 KilicarslanSCelikMSahinafakHybrid models based on genetic algorithm and deep learning algorithms for nutritional Anemia disease classificationBiomed Signal Process Control2021631746809410.1016/j.bspc.2020.102231 Karaboga D, Basturk B (2007) Artificial Bee Colony (ABC) optimization algorithm for solving constrained optimization problems, pp 789–798 KatochSChauhanSSKumarVA review on genetic algorithm: past, present, and futureMultimed Tools Appl2021808091812610.1007/s11042-020-10139-6 Wan J, Chen B, Yu Y (2021) Polyp detection from colorectum images by using attentive YOLOv5. Diagnostics 11:2264. https://doi.org/10.3390/diagnostics11122264 Bochkovskiy A, Wang C-Y, Liao H-YM (2020) YOLOv4: optimal speed and accuracy of object detection. https://doi.org/10.48550/arxiv.2004.10934 BanharnsakunATowards improving the convolutional neural networks for deep learning using the distributed artificial bee colony methodInt J Mach Learn Cybern2019101301131110.1007/s13042-018-0811-z Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660 BoraKBhuyanMKKasugaiKComputational learning of features for automated colonic polyp classificationSci Rep20211111610.1038/s41598-021-83788-8 Wang C-Y, Yeh I-H, Liao H-YM (2021) You only learn one representation: unified network for multiple tasks, pp 1–11 KhanASohailAZahooraUA survey of the recent architectures of deep convolutional neural networksArtif Intell Rev2020535455551610.1007/s10462-020-09825-6 Wang CY, Bochkovskiy A, Liao HYM (2020) Scaled-YOLOv4: scaling cross stage partial network. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp 13024–13033. https://doi.org/10.48550/arxiv.2011.08036 KiliçarslanSCelikMKAF + RSigELU: a nonlinear and kernel-based activation function for deep neural networksNeural Comput Appl202234139091392310.1007/S00521-022-07211-7/FIGURES/4 WongKinYiu/ScaledYOLOv4 at yolov4-large. https://github.com/WongKinYiu/ScaledYOLOv4/tree/yolov4-large. Accessed 2 Apr 2021 Chollet F (2017) Xception: deep learning with depthwise separable convolutions. Proc – 30th IEEE Conf Comput Vis Pattern Recognition, CVPR 2017, pp 1800–1807. https://doi.org/10.1109/CVPR.2017.195 Liu W, Anguelov D, Erhan D et al (2016) SSD: single shot multibox detector. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). 9905 LNCS, pp 21–37. https://doi.org/10.1007/978-3-319-46448-0_2 Tan M, Pang R, Le QV (2020) EfficientDet: scalable and efficient object detection. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit, pp 10778–10787. https://doi.org/10.1109/CVPR42600.2020.01079 IşıkGArtunerHTurkish dialect recognition in terms of prosodic by long short-term memory neural networksJ Fac Eng Archit Gazi Univ20203521322410.17341/gazimmfd.453677 Redmon J, Farhadi A (2018) YOLOv3: an incremental improvement. https://doi.org/10.48550/arxiv.1804.02767 ZhangRZhengYPoonCCYPolyp detection during colonoscopy using a regression-based convolutional neural network with a trackerPattern Recognit20188320921910.1016/j.patcog.2018.05.026 Hoang MC, Nguyen KT, Kim J et al (2021) Automated bowel polyp detection based on actively controlled capsule endoscopy: feasibility studycs 11:1878. https://doi.org/10.3390/diagnostics11101878 Pacal I, Karaboga D (2021) A robust real-time deep learning based automatic polyp detection system. Comput Biol Med 134. https://doi.org/10.1016/J.COMPBIOMED.2021.104519 PacalIKaramanAKarabogaDAn efficient real-time colonic polyp detection with YOLO algorithms trained by using negative samples and large datasetsComput Biol Med202214110503110.1016/j.compbiomed.2021.105031 TamangLDKimBWDeep learning approaches to colorectal cancer diagnosis: a reviewAppl Sci2021111098210.3390/app112210982 Reboiro-Jato A, Glez-Peña M, Lee K-S et al (2022) Citation: Nogueira-Rodríguez performance of convolutional neural networks for polyp localization on public colonoscopy image datasets. https://doi.org/10.3390/diagnostics12040898 Pacal I, Karaboga D, Basturk A et al (2020) A comprehensive review of deep learning in colon cancer. Comput Biol Med 126. https://doi.org/10.1016/J.COMPBIOMED.2020.104003 Girshick R, Proc (2015) IEEE Int Conf Comput Vis 2015 Inter, pp 1440–1448. https://doi.org/10.1109/ICCV.2015.169 LiewWSTangTBLinCHLuCKAutomatic colonic polyp detection using integration of modified deep residual convolutional neural network and ensemble learning approachesComput Methods Programs Biomed202120610611410.1016/J.CMPB.2021.106114 AkayBKarabogaDAkayRA comprehensive survey on optimizing deep learning models by metaheuristicsArtif Intell Rev20225582989410.1007/s10462-021-09992-0 Souaidi M, El Ansari M (2022) Multi-scale hybrid network for polyp detection in wireless capsule endoscopy and colonoscopy images. Diagnostics (Basel) 12(8):2030. https://doi.org/10.3390/diagnostics12082030 DurakSBayramBBakırmanTDeep neural network approaches for detecting gastric polyps in endoscopic imagesMed Biol Eng Comput2021591563157410.1007/s11517-021-02398-8 Wang CY, Mark Liao HY, Wu YH et al (2020) CSPNet: a new backbone that can enhance learning capability of CNN. IEEE Comput Soc Conf Comput Vis Pattern Recognit Work 2020-June, pp 1571–1580. https://doi.org/10.1109/CVPRW50498.2020.00203 YounasFUsmanMYanWQA deep ensemble learning method for colorectal polyp classification with optimized network parametersApp Intell202210.1007/s10489-022-03689-9 Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2014) A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif Intell Rev 42:21–57. https://doi.org/10.1007/s10462-012-9328-0 Rawla P, Sunkara T, Barsouk A (2019) Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Prz Gastroenterol 14:89–103. https://doi.org/10.5114/pg.2018.81072 TheodosiAOuzounisSKostopoulosSDesign of a hybrid deep learning system for discriminating between low- and high-grade colorectal cancer lesions, using microscopy images of IHC stained for AIB1 expression biopsy materialMach Vis Appl20213211710.1007/s00138-021-01184-8 Sánchez-Peralta LF, Pagador JB, Sánchez-Margallo FM (2021) Artificial intelligence for colorectal polyps in colonoscopy. Artif Intell Med:1–15. https://doi.org/10.1007/978-3-030-58080-3_308-1 BademHBasturkACaliskanAYukselMEA new efficient training strategy for deep neural networks by hybridization of artificial bee colony and limited–memory BFGS optimization algorithmsNeurocomputing201726650652610.1016/j.neucom.2017.05.061 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 2016-Decem, pp 770–778. https://doi.org/10.1109/CVPR.2016.90 Qian Z, Jing W, Lv Y, Zhang W (2022) Automatic polyp detection by combining conditional generative adversarial network and modified you-only-look-once. IEEE Sens J 22. https://doi.org/10.1109/JSEN.2022.3170034 SchieleSArndtTTMartinBDeep learning prediction of metastasis in locally advanced colon cancer using binary histologic tumor imagesCancers (Basel)202113207410.3390/cancers13092074 Kaminski MF, Wieszczy P, Rupinski M et al (2017) Increased rate of adenoma detection associates with reduced risk of colorectal cancer and death. Gastroenterology 153:98–105. https://doi.org/10.1053/j.gastro.2017.04.006 Duan K, Bai S, Xie L et al (2019) CenterNet: keypoint triplets for object detection. Proc IEEE Int Conf Comput Vis 2019-October, pp 6568–6577. https://doi.org/10.1109/ICCV.2019.00667 Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39:1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031 Nogueira-Rodríguez A, Domínguez-Carbajales R, Campos-Tato F et al (2021) Real-time polyp detection model using convolutional neural networks. Neural Comput Appl 4. https://doi.org/10.1007/s00521-021-06496-4 4299_CR50 4299_CR10 4299_CR54 4299_CR53 4299_CR52 4299_CR51 R Zhang (4299_CR18) 2018; 83 H Badem (4299_CR44) 2017; 266 S Kilicarslan (4299_CR17) 2021; 63 4299_CR16 G Işık (4299_CR6) 2020; 35 4299_CR19 S Kiliçarslan (4299_CR8) 2022; 34 S Katoch (4299_CR45) 2021; 80 S Schiele (4299_CR13) 2021; 13 M Ali (4299_CR14) 2021; 11 4299_CR21 I Pacal (4299_CR30) 2022; 141 4299_CR20 B Akay (4299_CR38) 2022; 55 4299_CR25 A Banharnsakun (4299_CR41) 2019; 10 4299_CR22 4299_CR29 WS Liew (4299_CR23) 2021; 206 4299_CR28 4299_CR27 4299_CR26 LD Tamang (4299_CR15) 2021; 11 4299_CR1 4299_CR2 4299_CR3 4299_CR4 4299_CR31 4299_CR7 4299_CR36 4299_CR35 4299_CR34 4299_CR33 A Theodosi (4299_CR12) 2021; 32 4299_CR39 4299_CR37 F Younas (4299_CR24) 2022 U Erkan (4299_CR40) 2022; 1 4299_CR43 4299_CR47 T Ozcan (4299_CR42) 2019; 31 4299_CR46 4299_CR49 4299_CR48 FO Ozkok (4299_CR9) 2022; 71 K Bora (4299_CR11) 2021; 11 A Khan (4299_CR5) 2020; 53 S Durak (4299_CR32) 2021; 59 |
| References_xml | – reference: Nogueira-Rodríguez A, Domínguez-Carbajales R, Campos-Tato F et al (2021) Real-time polyp detection model using convolutional neural networks. Neural Comput Appl 4. https://doi.org/10.1007/s00521-021-06496-4 – reference: OzkokFOCelikMA hybrid CNN-LSTM model for high resolution melting curve classificationBiomed Signal Process Control20227110316810.1016/J.BSPC.2021.103168 – reference: BademHBasturkACaliskanAYukselMEA new efficient training strategy for deep neural networks by hybridization of artificial bee colony and limited–memory BFGS optimization algorithmsNeurocomputing201726650652610.1016/j.neucom.2017.05.061 – reference: KiliçarslanSCelikMKAF + RSigELU: a nonlinear and kernel-based activation function for deep neural networksNeural Comput Appl202234139091392310.1007/S00521-022-07211-7/FIGURES/4 – reference: Karaboga D, Basturk B (2007) Artificial Bee Colony (ABC) optimization algorithm for solving constrained optimization problems, pp 789–798 – reference: BoraKBhuyanMKKasugaiKComputational learning of features for automated colonic polyp classificationSci Rep20211111610.1038/s41598-021-83788-8 – reference: Lee J-N, · J-WC, Cho H-C (2022) Improvement of colon polyp detection performance by modifying the multi-scale network structure and data augmentation. J Electr Eng Technol 2022:1–9. https://doi.org/10.1007/S42835-022-01191-3 – reference: WongKinYiu/ScaledYOLOv4 at yolov4-large. https://github.com/WongKinYiu/ScaledYOLOv4/tree/yolov4-large. Accessed 2 Apr 2021 – reference: KhanASohailAZahooraUA survey of the recent architectures of deep convolutional neural networksArtif Intell Rev2020535455551610.1007/s10462-020-09825-6 – reference: IşıkGArtunerHTurkish dialect recognition in terms of prosodic by long short-term memory neural networksJ Fac Eng Archit Gazi Univ20203521322410.17341/gazimmfd.453677 – reference: Girshick R, Proc (2015) IEEE Int Conf Comput Vis 2015 Inter, pp 1440–1448. https://doi.org/10.1109/ICCV.2015.169 – reference: AliMAliRMulti-input dual-stream capsule network for improved lung and colon cancer classificationDiagnostics20211111810.3390/diagnostics11081485 – reference: Redmon J, Farhadi A (2018) YOLOv3: an incremental improvement. https://doi.org/10.48550/arxiv.1804.02767 – reference: Wang CY, Mark Liao HY, Wu YH et al (2020) CSPNet: a new backbone that can enhance learning capability of CNN. IEEE Comput Soc Conf Comput Vis Pattern Recognit Work 2020-June, pp 1571–1580. https://doi.org/10.1109/CVPRW50498.2020.00203 – reference: Duan K, Bai S, Xie L et al (2019) CenterNet: keypoint triplets for object detection. Proc IEEE Int Conf Comput Vis 2019-October, pp 6568–6577. https://doi.org/10.1109/ICCV.2019.00667 – reference: OzcanTBasturkATransfer learning-based convolutional neural networks with heuristic optimization for hand gesture recognitionNeural Comput Appl2019318955897010.1007/s00521-019-04427-y – reference: ZhangRZhengYPoonCCYPolyp detection during colonoscopy using a regression-based convolutional neural network with a trackerPattern Recognit20188320921910.1016/j.patcog.2018.05.026 – reference: KilicarslanSCelikMSahinafakHybrid models based on genetic algorithm and deep learning algorithms for nutritional Anemia disease classificationBiomed Signal Process Control2021631746809410.1016/j.bspc.2020.102231 – reference: LiewWSTangTBLinCHLuCKAutomatic colonic polyp detection using integration of modified deep residual convolutional neural network and ensemble learning approachesComput Methods Programs Biomed202120610611410.1016/J.CMPB.2021.106114 – reference: Kaminski MF, Wieszczy P, Rupinski M et al (2017) Increased rate of adenoma detection associates with reduced risk of colorectal cancer and death. Gastroenterology 153:98–105. https://doi.org/10.1053/j.gastro.2017.04.006 – reference: Wang CY, Bochkovskiy A, Liao HYM (2020) Scaled-YOLOv4: scaling cross stage partial network. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp 13024–13033. https://doi.org/10.48550/arxiv.2011.08036 – reference: Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2014) A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif Intell Rev 42:21–57. https://doi.org/10.1007/s10462-012-9328-0 – reference: Jocher G, Chaurasia A, Stoken A et al (2022) ultralytics/yolov5: v6.1 - TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference. https://doi.org/10.5281/ZENODO.6222936 – reference: BanharnsakunATowards improving the convolutional neural networks for deep learning using the distributed artificial bee colony methodInt J Mach Learn Cybern2019101301131110.1007/s13042-018-0811-z – reference: Souaidi M, El Ansari M (2022) Multi-scale hybrid network for polyp detection in wireless capsule endoscopy and colonoscopy images. Diagnostics (Basel) 12(8):2030. https://doi.org/10.3390/diagnostics12082030 – reference: AkayBKarabogaDAkayRA comprehensive survey on optimizing deep learning models by metaheuristicsArtif Intell Rev20225582989410.1007/s10462-021-09992-0 – reference: Reboiro-Jato A, Glez-Peña M, Lee K-S et al (2022) Citation: Nogueira-Rodríguez performance of convolutional neural networks for polyp localization on public colonoscopy image datasets. https://doi.org/10.3390/diagnostics12040898 – reference: ErkanUToktasAUstunDHyperparameter optimization of deep CNN classifier for plant species identification using artificial bee colony algorithmJ Ambient Intell Human Comput20221310.1007/s12652-021-03631-w – reference: Wan J, Chen B, Yu Y (2021) Polyp detection from colorectum images by using attentive YOLOv5. Diagnostics 11:2264. https://doi.org/10.3390/diagnostics11122264 – reference: TheodosiAOuzounisSKostopoulosSDesign of a hybrid deep learning system for discriminating between low- and high-grade colorectal cancer lesions, using microscopy images of IHC stained for AIB1 expression biopsy materialMach Vis Appl20213211710.1007/s00138-021-01184-8 – reference: Chollet F (2017) Xception: deep learning with depthwise separable convolutions. Proc – 30th IEEE Conf Comput Vis Pattern Recognition, CVPR 2017, pp 1800–1807. https://doi.org/10.1109/CVPR.2017.195 – reference: Lin TY, Maire M, Belongie S et al (2014) Microsoft COCO: common objects in context. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 8693 LNCS, pp 740–755. https://doi.org/10.1007/978-3-319-10602-1_48 – reference: Wang C-Y, Yeh I-H, Liao H-YM (2021) You only learn one representation: unified network for multiple tasks, pp 1–11 – reference: Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660 – reference: DurakSBayramBBakırmanTDeep neural network approaches for detecting gastric polyps in endoscopic imagesMed Biol Eng Comput2021591563157410.1007/s11517-021-02398-8 – reference: TamangLDKimBWDeep learning approaches to colorectal cancer diagnosis: a reviewAppl Sci2021111098210.3390/app112210982 – reference: PacalIKaramanAKarabogaDAn efficient real-time colonic polyp detection with YOLO algorithms trained by using negative samples and large datasetsComput Biol Med202214110503110.1016/j.compbiomed.2021.105031 – reference: Pacal I, Karaboga D (2021) A robust real-time deep learning based automatic polyp detection system. Comput Biol Med 134. https://doi.org/10.1016/J.COMPBIOMED.2021.104519 – reference: YounasFUsmanMYanWQA deep ensemble learning method for colorectal polyp classification with optimized network parametersApp Intell202210.1007/s10489-022-03689-9 – reference: Rawla P, Sunkara T, Barsouk A (2019) Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Prz Gastroenterol 14:89–103. https://doi.org/10.5114/pg.2018.81072 – reference: Pacal I, Karaboga D, Basturk A et al (2020) A comprehensive review of deep learning in colon cancer. Comput Biol Med 126. https://doi.org/10.1016/J.COMPBIOMED.2020.104003 – reference: Bochkovskiy A, Wang C-Y, Liao H-YM (2020) YOLOv4: optimal speed and accuracy of object detection. https://doi.org/10.48550/arxiv.2004.10934 – reference: Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39:1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031 – reference: AlexeyAB/darknet : YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet). https://github.com/AlexeyAB/darknet. Accessed 2 Apr 2021 – reference: Tan M, Pang R, Le QV (2020) EfficientDet: scalable and efficient object detection. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit, pp 10778–10787. https://doi.org/10.1109/CVPR42600.2020.01079 – reference: Guo Y, Liu Y, Oerlemans A et al (2016) Deep learning for visual understanding: a review. Neurocomputing 187:27–48. https://doi.org/10.1016/j.neucom.2015.09.116 – reference: Liu W, Anguelov D, Erhan D et al (2016) SSD: single shot multibox detector. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). 9905 LNCS, pp 21–37. https://doi.org/10.1007/978-3-319-46448-0_2 – reference: He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 2016-Decem, pp 770–778. https://doi.org/10.1109/CVPR.2016.90 – reference: Qian Z, Jing W, Lv Y, Zhang W (2022) Automatic polyp detection by combining conditional generative adversarial network and modified you-only-look-once. IEEE Sens J 22. https://doi.org/10.1109/JSEN.2022.3170034 – reference: Corley DA, Jensen CD, Marks AR et al (2014) Adenoma detection rate and risk of colorectal cancer and death A BS TR AC T. N Engl J Med 14:1298–1306. https://doi.org/10.1056/NEJMoa1309086 – reference: Hoang MC, Nguyen KT, Kim J et al (2021) Automated bowel polyp detection based on actively controlled capsule endoscopy: feasibility studycs 11:1878. https://doi.org/10.3390/diagnostics11101878 – reference: KatochSChauhanSSKumarVA review on genetic algorithm: past, present, and futureMultimed Tools Appl2021808091812610.1007/s11042-020-10139-6 – reference: SchieleSArndtTTMartinBDeep learning prediction of metastasis in locally advanced colon cancer using binary histologic tumor imagesCancers (Basel)202113207410.3390/cancers13092074 – reference: Sánchez-Peralta LF, Pagador JB, Sánchez-Margallo FM (2021) Artificial intelligence for colorectal polyps in colonoscopy. Artif Intell Med:1–15. https://doi.org/10.1007/978-3-030-58080-3_308-1 – volume: 83 start-page: 209 year: 2018 ident: 4299_CR18 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2018.05.026 – ident: 4299_CR36 doi: 10.1109/TPAMI.2016.2577031 – ident: 4299_CR43 doi: 10.1109/CVPR.2017.195 – ident: 4299_CR47 doi: 10.48550/arxiv.2011.08036 – volume: 206 start-page: 106114 year: 2021 ident: 4299_CR23 publication-title: Comput Methods Programs Biomed doi: 10.1016/J.CMPB.2021.106114 – ident: 4299_CR22 doi: 10.1109/ICCV.2019.00667 – ident: 4299_CR46 doi: 10.5281/ZENODO.6222936 – volume: 34 start-page: 13909 year: 2022 ident: 4299_CR8 publication-title: Neural Comput Appl doi: 10.1007/S00521-022-07211-7/FIGURES/4 – ident: 4299_CR26 doi: 10.1007/s00521-021-06496-4 – ident: 4299_CR50 doi: 10.1007/s10462-012-9328-0 – volume: 53 start-page: 5455 year: 2020 ident: 4299_CR5 publication-title: Artif Intell Rev doi: 10.1007/s10462-020-09825-6 – ident: 4299_CR4 doi: 10.1053/j.gastro.2017.04.006 – ident: 4299_CR3 doi: 10.1056/NEJMoa1309086 – volume: 80 start-page: 8091 year: 2021 ident: 4299_CR45 publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-10139-6 – year: 2022 ident: 4299_CR24 publication-title: App Intell doi: 10.1007/s10489-022-03689-9 – ident: 4299_CR1 doi: 10.3322/caac.21660 – ident: 4299_CR52 – ident: 4299_CR35 doi: 10.48550/arxiv.1804.02767 – volume: 55 start-page: 829 year: 2022 ident: 4299_CR38 publication-title: Artif Intell Rev doi: 10.1007/s10462-021-09992-0 – volume: 1 start-page: 3 year: 2022 ident: 4299_CR40 publication-title: J Ambient Intell Human Comput doi: 10.1007/s12652-021-03631-w – ident: 4299_CR54 doi: 10.3390/diagnostics12040898 – ident: 4299_CR37 doi: 10.1109/JSEN.2022.3170034 – ident: 4299_CR27 doi: 10.3390/diagnostics11101878 – ident: 4299_CR51 doi: 10.1007/978-3-319-10602-1_48 – ident: 4299_CR31 doi: 10.3390/diagnostics12082030 – volume: 35 start-page: 213 year: 2020 ident: 4299_CR6 publication-title: J Fac Eng Archit Gazi Univ doi: 10.17341/gazimmfd.453677 – ident: 4299_CR39 doi: 10.1007/978-3-540-72950-1_77 – volume: 10 start-page: 1301 year: 2019 ident: 4299_CR41 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-018-0811-z – ident: 4299_CR7 doi: 10.1016/j.neucom.2015.09.116 – volume: 59 start-page: 1563 year: 2021 ident: 4299_CR32 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-021-02398-8 – ident: 4299_CR28 doi: 10.3390/diagnostics11122264 – volume: 11 start-page: 1 year: 2021 ident: 4299_CR11 publication-title: Sci Rep doi: 10.1038/s41598-021-83788-8 – ident: 4299_CR34 doi: 10.1109/CVPR42600.2020.01079 – ident: 4299_CR49 doi: 10.1109/CVPR.2016.90 – ident: 4299_CR29 doi: 10.1016/J.COMPBIOMED.2021.104519 – volume: 11 start-page: 1 year: 2021 ident: 4299_CR14 publication-title: Diagnostics doi: 10.3390/diagnostics11081485 – volume: 63 start-page: 1746 year: 2021 ident: 4299_CR17 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2020.102231 – ident: 4299_CR21 doi: 10.1007/978-3-319-46448-0_2 – ident: 4299_CR10 doi: 10.1016/J.COMPBIOMED.2020.104003 – ident: 4299_CR25 doi: 10.1007/S42835-022-01191-3 – volume: 31 start-page: 8955 year: 2019 ident: 4299_CR42 publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04427-y – ident: 4299_CR48 doi: 10.1109/CVPRW50498.2020.00203 – volume: 141 start-page: 105031 year: 2022 ident: 4299_CR30 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.105031 – ident: 4299_CR33 doi: 10.48550/arxiv.2004.10934 – volume: 71 start-page: 103168 year: 2022 ident: 4299_CR9 publication-title: Biomed Signal Process Control doi: 10.1016/J.BSPC.2021.103168 – volume: 32 start-page: 1 year: 2021 ident: 4299_CR12 publication-title: Mach Vis Appl doi: 10.1007/s00138-021-01184-8 – volume: 13 start-page: 2074 year: 2021 ident: 4299_CR13 publication-title: Cancers (Basel) doi: 10.3390/cancers13092074 – volume: 266 start-page: 506 year: 2017 ident: 4299_CR44 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.05.061 – ident: 4299_CR2 doi: 10.5114/pg.2018.81072 – volume: 11 start-page: 10982 year: 2021 ident: 4299_CR15 publication-title: Appl Sci doi: 10.3390/app112210982 – ident: 4299_CR19 – ident: 4299_CR53 – ident: 4299_CR16 doi: 10.1007/978-3-030-58080-3_308-1 – ident: 4299_CR20 doi: 10.1109/ICCV.2015.169 |
| SSID | ssj0003301 |
| Score | 2.5573483 |
| Snippet | Colorectal cancer (CRC) is one of the most common and malignant types of cancer worldwide. Colonoscopy, considered the gold standard for CRC screening, allows... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 15603 |
| SubjectTerms | Algorithms Artificial Intelligence Cancer Colonoscopy Colorectal cancer Computer Science Deep learning Image analysis Machine learning Machines Manufacturing Mechanical Engineering Medical imaging Object recognition Optimization Parameters Performance enhancement Performance evaluation Polyps Processes Real time Search algorithms Swarm intelligence |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB2V7YUL34ilBc2BQxFYJBtvNjkg1K5arZBYoYpKe4vsZFwOu0nYpof-s_48ZrxOA0j0FiWOFWXs5xl75j2Ad1FOLqE8V4ZI-90qZW2qVcZXSZ5VqTNS4PxtmS4u9NfVdLUHy74WRtIqe0z0QF01peyRf-LQQFx39k6-tL-UqEbJ6WovoWGCtEL12VOMPYD9iTBjjWD_5HT5_fwOmzl69xp6HHWoNM1XoYwmFNNpSR_i4MyDtIr_XqoG__OfI1O_Ep09gUfBhcTjnc2fwh7Vz-BxL8-AYbY-h9sFx5hbJeTeG0l6wYbhYRPqLrFxWBG1GGQjLvHPI4UrlHx4uedTiXiMoiVCYbiub_Do-GT-Hs36kv9P93OD7Pei0B5jO1QhIDujayXK9Wiuu8YTw_r3BWG5u1IabfFofs5dtc36puXP6XxeWP0CLs5Of8wXKgg1qJJncKd0yjDlZmYydTqzqY2rzLmJy6vcssEMg2rqHEdm0yrKbBSbiZ5ZDgud9vFcliQvYVQ3Nb0CdERJVE5dMtOkI1daXlkrYh-CyGibuTHEvU2KMrCYi5jGuhj4l8WOBdux8HYs4jF8uHun3XF43Nv6sDd1EebzVTGMvjF87M0_PP5_b6_v7-0AHop-_S737BBG3faa3rCX09m3Yej-BpC9-1k priority: 102 providerName: ProQuest |
| Title | Hyper-parameter optimization of deep learning architectures using artificial bee colony (ABC) algorithm for high performance real-time automatic colorectal cancer (CRC) polyp detection |
| URI | https://link.springer.com/article/10.1007/s10489-022-04299-1 https://www.proquest.com/docview/2821148533 |
| Volume | 53 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7497 dateEnd: 20241028 omitProxy: true ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9tAEF21cOmlQD_UFIjm0AMVXcmJ1459TKKEqBURQkRKT5bXnoVKiW0l5sA_4-cxs1kTqKBST7bs3ZGl2Z2Z5515I8Q3L0bjYxzLFFHZv1VS61DJiO78OMpDk3KB8_k0nMzUz3kwd0Vh6ybbvTmStJb6SbGb4vQeAk_WiErCPLsB03nRKp51-4_2lxC67ZNHyEKGYTx3pTIvy3jujrYx5l_HotbbjPfFexcmQn-j1wPxBosPYq9pwQBuR34U9xPCkSvJBN5LTmyBkkzA0tVWQmkgR6zAtYa4hqfHBmvgnHd-ZtOFaB2CRgRmsS7u4KQ_GH6HdHFdrv7UN0ug2BaY2hiqbaUBUMC5kNydHtLburTkr3Y-W1ESl_GgFZwML0lUVS7uKvqc2uZ-FZ_EbDy6Gk6ka8YgM9qltVQhmSLTS7uBUZEOdSePjOmaOI81efyUDGdoDKGvIPci7XXSruppgn5GWcwW-f5nsVOUBX4RYBB9LwuM31OoPJNp8p45UpyAmCodmZboNDpJMsdUzg0zFsmWY5n1mJAeE6vHpNMSp49zqg1Pxz9HHzWqTtyeXScEPhkcUvzbEj8a9W9fvy7t6_8NPxTvuGf9Jt_sSOzUq1s8psim1m3xNhqftcVufzwYTPl69vvXiK6D0fTism2X-QPz_fdj |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V7QEuUF4iUGAOIBXBCj82jn2oUBtapbSNUNVKuRmvPdseEtskrqr8M078NmY26xqQ6K03K7bXkb7dme_bnYcQb70ETYhJIjNEZXerpNaRkjFdhUlcRCbjBOeTcTQ6V18n_cma-NXmwnBYZWsTraEuqpz3yD-RNGDqTuzkc_1DctcoPl1tW2hkrrVCsWNLjLnEjiNcXpOEW-wcfiG83wXBwf7ZcCRdlwGZ0_RrpIpojZlBFvSNinWk_SI2JjBJkWj6WkYWITKGZEW_8GLt-VmgBpo0jVFWjMS8IUouYEOFKiHxt7G3P_52euMLwtA2YPZI5cgoSiYubccl7ykOVyIxaJ2C9P92jR3f_eeI1nq-g03xwFFW2F3NsUdiDcvH4mHbDgKcdXgifo5I084lFxOfcZANVGSOZi7PEyoDBWINrk3FBfx5hLEAjr_n32zoEq0J0IjAFbXLJWzv7g3fQza9IDyayxkQzwYuswx1l_UARH6nkr6HkF01lS1Ea99ni07D5fzQHLaHpzRUXU2XNf2dxsahlU_F-Z1A9kysl1WJzwUYxNDL-yYcKFSeyTV58gKJsyBmSsemJ_wWkzR3VdO5ecc07eo9M44p4ZhaHFO_Jz7cvFOvaobc-vRWC3Xq7Mci7WZ7T3xs4e9u_3-0F7eP9kbcG52dHKfHh-Ojl-J-QIxtFfe2Jdab-RW-IobV6NduGoP4ftcr5zdnjTZo |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRaq48CqIQIE5gNQKVvVj49iHCpW0IX1QIUSl3IzXni2HxDaJK5R_VvHrmNmsa0Cit94se3dteV7f7M5DiNdegibEJJEZorK7VVLrSMmYrsIkLiKTcYLzp7NofK6OJ_3JmvjV5sJwWGWrE62iLqqc98h3yTVg6E7oZNe4sIjPB6P39Q_JHaT4pLVtp7FikRNc_iT3bbF3dEC0fhMEo8Ovw7F0HQZkTqzXSBWRfJlBFvSNinWk_SI2JjBJkWh6U0baIDKGXIp-4cXa87NADTT5M0ZZRyTmzVBS_3cGXMWds9RHH6-tQBja1sse-TcyipKJS9hxaXuKA5XIDbTmQPp_G8UO6f5zOGtt3uiBuOfAKuyvuOuhWMPykbjfNoIApxc2xdWYvNm55DLiMw6vgYoU0cxleEJloECswTWouIA_Dy8WwJH3fM8GLZE0gEYErqVdLmF7_8NwB7LpBf395vsMCGEDF1iGust3AIK9U0nvQ8gum8qWoLXzWZfTcjkPmsP28AstVVfTZU2f09gItPKxOL8Vgj0R62VV4lMBBjH08r4JBwqVZ3JNNrxAQiuImdKx6Qm_pUmau3rp3LZjmnaVnpmOKdExtXRM_Z54ez2nXlULuXH0Vkvq1GmORdrxeU-8a8nfPf7_as9uXu2V2CB5SU-Pzk6ei7sBQbVVwNuWWG_ml_iCoFWjX1oeBvHttoXmN-BfNAI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyper-parameter+optimization+of+deep+learning+architectures+using+artificial+bee+colony+%28ABC%29+algorithm+for+high+performance+real-time+automatic+colorectal+cancer+%28CRC%29+polyp+detection&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Karaman%2C+Ahmet&rft.au=Karaboga%2C+Dervis&rft.au=Pacal%2C+Ishak&rft.au=Akay%2C+Bahriye&rft.date=2023-06-01&rft.pub=Springer+US&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=53&rft.issue=12&rft.spage=15603&rft.epage=15620&rft_id=info:doi/10.1007%2Fs10489-022-04299-1&rft.externalDocID=10_1007_s10489_022_04299_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |