Hyper-parameter optimization of deep learning architectures using artificial bee colony (ABC) algorithm for high performance real-time automatic colorectal cancer (CRC) polyp detection

Colorectal cancer (CRC) is one of the most common and malignant types of cancer worldwide. Colonoscopy, considered the gold standard for CRC screening, allows immediate removal of polyps, which are precursors to CRC. Many computer-aided diagnosis systems (CADs) have been proposed for automatic polyp...

Full description

Saved in:
Bibliographic Details
Published inApplied intelligence (Dordrecht, Netherlands) Vol. 53; no. 12; pp. 15603 - 15620
Main Authors Karaman, Ahmet, Karaboga, Dervis, Pacal, Ishak, Akay, Bahriye, Basturk, Alper, Nalbantoglu, Ufuk, Coskun, Seymanur, Sahin, Omur
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0924-669X
1573-7497
DOI10.1007/s10489-022-04299-1

Cover

Abstract Colorectal cancer (CRC) is one of the most common and malignant types of cancer worldwide. Colonoscopy, considered the gold standard for CRC screening, allows immediate removal of polyps, which are precursors to CRC. Many computer-aided diagnosis systems (CADs) have been proposed for automatic polyp detection. Most of these systems are based on traditional machine learning algorithms and their generalization ability, sensitivity and specificity are limited. On the other hand, with the widespread use of deep learning algorithms in medical image analysis and the successful results in the analysis of colonoscopy images, especially in the early and accurate detection of polyps, these problems are eliminated in recent years. In short, deep learning algorithms and applications have gained a critical role in CAD systems for real-time autonomous polyp detection. Here, we make significant improvements to object detection algorithms to improve the performance of CAD-based real-time polyp detection systems. We integrate the artificial bee colony algorithm (ABC) into the YOLO algorithm to optimize the hyper-parameters of YOLO-based algorithms. The proposed method can be easily integrated into all YOLO algorithms such as YOLOv3, YOLOv4, Scaled-YOLOv4, YOLOv5, YOLOR and YOLOv7. The proposed method improves the performance of the Scaled-YOLOv4 algorithm with an average of more than 3% increase in mAP and a more than 2% improvement in F1 value. In addition, the most comprehensive study is conducted by evaluating the performance of all existing models in the Scaled-YOLOv4 algorithm (YOLOv4s, YOLOv4m, YOLOV4-CSP, YOLOv4-P5, YOLOV4-P6 and YOLOv4-P7) on the novel SUN and PICCOLO polyp datasets. The proposed method is the first study for the optimization of YOLO-based algorithms in the literature and makes a significant contribution to the detection accuracy.
AbstractList Colorectal cancer (CRC) is one of the most common and malignant types of cancer worldwide. Colonoscopy, considered the gold standard for CRC screening, allows immediate removal of polyps, which are precursors to CRC. Many computer-aided diagnosis systems (CADs) have been proposed for automatic polyp detection. Most of these systems are based on traditional machine learning algorithms and their generalization ability, sensitivity and specificity are limited. On the other hand, with the widespread use of deep learning algorithms in medical image analysis and the successful results in the analysis of colonoscopy images, especially in the early and accurate detection of polyps, these problems are eliminated in recent years. In short, deep learning algorithms and applications have gained a critical role in CAD systems for real-time autonomous polyp detection. Here, we make significant improvements to object detection algorithms to improve the performance of CAD-based real-time polyp detection systems. We integrate the artificial bee colony algorithm (ABC) into the YOLO algorithm to optimize the hyper-parameters of YOLO-based algorithms. The proposed method can be easily integrated into all YOLO algorithms such as YOLOv3, YOLOv4, Scaled-YOLOv4, YOLOv5, YOLOR and YOLOv7. The proposed method improves the performance of the Scaled-YOLOv4 algorithm with an average of more than 3% increase in mAP and a more than 2% improvement in F1 value. In addition, the most comprehensive study is conducted by evaluating the performance of all existing models in the Scaled-YOLOv4 algorithm (YOLOv4s, YOLOv4m, YOLOV4-CSP, YOLOv4-P5, YOLOV4-P6 and YOLOv4-P7) on the novel SUN and PICCOLO polyp datasets. The proposed method is the first study for the optimization of YOLO-based algorithms in the literature and makes a significant contribution to the detection accuracy.
Author Pacal, Ishak
Sahin, Omur
Karaman, Ahmet
Coskun, Seymanur
Karaboga, Dervis
Nalbantoglu, Ufuk
Akay, Bahriye
Basturk, Alper
Author_xml – sequence: 1
  givenname: Ahmet
  surname: Karaman
  fullname: Karaman, Ahmet
  organization: Department of Gastroenterology, Acıbadem Hospital
– sequence: 2
  givenname: Dervis
  surname: Karaboga
  fullname: Karaboga, Dervis
  organization: Department of Computer Engineering, Engineering Faculty, Erciyes University, Artificial Intelligence and Big Data Application and Research Center, Erciyes University
– sequence: 3
  givenname: Ishak
  orcidid: 0000-0001-6670-2169
  surname: Pacal
  fullname: Pacal, Ishak
  email: Ishakpacal@gmail.com
  organization: Artificial Intelligence and Big Data Application and Research Center, Erciyes University, Department of Computer Engineering, Engineering Faculty, Igdir University
– sequence: 4
  givenname: Bahriye
  surname: Akay
  fullname: Akay, Bahriye
  organization: Department of Computer Engineering, Engineering Faculty, Erciyes University, Artificial Intelligence and Big Data Application and Research Center, Erciyes University
– sequence: 5
  givenname: Alper
  surname: Basturk
  fullname: Basturk, Alper
  organization: Department of Computer Engineering, Engineering Faculty, Erciyes University, Artificial Intelligence and Big Data Application and Research Center, Erciyes University
– sequence: 6
  givenname: Ufuk
  surname: Nalbantoglu
  fullname: Nalbantoglu, Ufuk
  organization: Department of Computer Engineering, Engineering Faculty, Erciyes University, Artificial Intelligence and Big Data Application and Research Center, Erciyes University
– sequence: 7
  givenname: Seymanur
  surname: Coskun
  fullname: Coskun, Seymanur
  organization: Department of Gastroenterology, Acıbadem Hospital
– sequence: 8
  givenname: Omur
  surname: Sahin
  fullname: Sahin, Omur
  organization: Department of Computer Engineering, Engineering Faculty, Erciyes University, Artificial Intelligence and Big Data Application and Research Center, Erciyes University
BookMark eNp9kc2KFDEUhYOMYM_oC7gKuBkX0fxVVWo5NqMzMCCIgruQSifdGaqS8ia16HkyH890lyC4mNUN4ZzzXe65RBcxRYfQW0Y_MEq7j5lRqXpCOSdU8r4n7AXasKYTpJN9d4E2tOeStG3_8xW6zPmRUioEZRv0--44OyCzATO54gCnuYQpPJkSUsTJ451zMx6dgRjiHhuwh1CcLQu4jJe8_pXggw1mxINz2KYxxSO-vvm0fY_NuE8QymHCPgE-hP0BV1x9TyZah8GZkVSew2YpaapQe_ZDJdQ4exIBvt5-q1FzGo9zXedEr7u9Ri-9GbN783deoR-fb79v78jD1y_325sHYgXrC5Gt6FrfGd54qYZ2YDvlPff9rh9UIwxrROu96lizo2qgzHDZDVIqL-t16hTiCr1bc2dIvxaXi35MC8SK1FxxxmSNOanUqrKQcgbntQ3lfMMCJoyaUX3qSa896dqTPvekWbXy_6wzhMnA8XmTWE25iuPewb-tnnH9ARnPqqM
CitedBy_id crossref_primary_10_1016_j_dwt_2024_100543
crossref_primary_10_1007_s13042_024_02110_w
crossref_primary_10_1007_s41939_025_00834_y
crossref_primary_10_3389_fonc_2024_1422942
crossref_primary_10_62347_BZIZ6358
crossref_primary_10_1007_s11548_023_02857_7
crossref_primary_10_1049_cth2_12770
crossref_primary_10_21597_jist_1265769
crossref_primary_10_3390_math13071021
crossref_primary_10_1109_ACCESS_2024_3473296
crossref_primary_10_1007_s10278_023_00797_x
crossref_primary_10_1016_j_bspc_2024_107326
crossref_primary_10_1038_s41598_024_83466_5
crossref_primary_10_21597_jist_1243233
crossref_primary_10_1038_s41598_024_71302_9
crossref_primary_10_3390_buildings13041070
crossref_primary_10_1038_s41598_024_56264_2
crossref_primary_10_21597_jist_1225156
crossref_primary_10_21597_jist_1223457
crossref_primary_10_21597_jist_1501787
crossref_primary_10_3390_diagnostics14050474
crossref_primary_10_1007_s10489_024_05614_8
crossref_primary_10_1007_s11760_023_02835_1
crossref_primary_10_1109_JBHI_2023_3334240
crossref_primary_10_1007_s10278_024_01086_x
crossref_primary_10_1007_s11600_024_01362_y
crossref_primary_10_1038_s41598_024_53955_8
crossref_primary_10_1007_s00521_024_10910_y
crossref_primary_10_1038_s41598_024_62773_x
crossref_primary_10_1002_jemt_24692
crossref_primary_10_1038_s41598_025_85156_2
crossref_primary_10_1061_JCCEE5_CPENG_5905
crossref_primary_10_3389_fncom_2024_1356447
crossref_primary_10_1007_s10586_024_04532_1
crossref_primary_10_1007_s10489_024_05900_5
crossref_primary_10_46387_bjesr_1273729
crossref_primary_10_3390_technologies13020054
crossref_primary_10_1007_s00521_023_08757_w
crossref_primary_10_1109_ACCESS_2024_3505619
crossref_primary_10_4015_S1016237224500315
crossref_primary_10_1038_s41598_023_49057_6
crossref_primary_10_1007_s11036_024_02313_z
crossref_primary_10_3390_sym15091679
crossref_primary_10_1109_ACCESS_2024_3433483
crossref_primary_10_1007_s11042_024_18584_3
crossref_primary_10_1007_s00432_024_05968_z
Cites_doi 10.1016/j.patcog.2018.05.026
10.1109/TPAMI.2016.2577031
10.1109/CVPR.2017.195
10.48550/arxiv.2011.08036
10.1016/J.CMPB.2021.106114
10.1109/ICCV.2019.00667
10.5281/ZENODO.6222936
10.1007/S00521-022-07211-7/FIGURES/4
10.1007/s00521-021-06496-4
10.1007/s10462-012-9328-0
10.1007/s10462-020-09825-6
10.1053/j.gastro.2017.04.006
10.1056/NEJMoa1309086
10.1007/s11042-020-10139-6
10.1007/s10489-022-03689-9
10.3322/caac.21660
10.48550/arxiv.1804.02767
10.1007/s10462-021-09992-0
10.1007/s12652-021-03631-w
10.3390/diagnostics12040898
10.1109/JSEN.2022.3170034
10.3390/diagnostics11101878
10.1007/978-3-319-10602-1_48
10.3390/diagnostics12082030
10.17341/gazimmfd.453677
10.1007/978-3-540-72950-1_77
10.1007/s13042-018-0811-z
10.1016/j.neucom.2015.09.116
10.1007/s11517-021-02398-8
10.3390/diagnostics11122264
10.1038/s41598-021-83788-8
10.1109/CVPR42600.2020.01079
10.1109/CVPR.2016.90
10.1016/J.COMPBIOMED.2021.104519
10.3390/diagnostics11081485
10.1016/j.bspc.2020.102231
10.1007/978-3-319-46448-0_2
10.1016/J.COMPBIOMED.2020.104003
10.1007/S42835-022-01191-3
10.1007/s00521-019-04427-y
10.1109/CVPRW50498.2020.00203
10.1016/j.compbiomed.2021.105031
10.48550/arxiv.2004.10934
10.1016/J.BSPC.2021.103168
10.1007/s00138-021-01184-8
10.3390/cancers13092074
10.1016/j.neucom.2017.05.061
10.5114/pg.2018.81072
10.3390/app112210982
10.1007/978-3-030-58080-3_308-1
10.1109/ICCV.2015.169
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-022-04299-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection (LUT)
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (ProQuest)
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 15620
ExternalDocumentID 10_1007_s10489_022_04299_1
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-46376f7a25f48b6b1d8ff2f9d9b853a1536ff8715d08b01a247b448f430144833
IEDL.DBID U2A
ISSN 0924-669X
IngestDate Fri Jul 25 12:21:47 EDT 2025
Wed Oct 01 04:09:59 EDT 2025
Thu Apr 24 23:08:17 EDT 2025
Fri Feb 21 02:43:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Deep learning
Hyper-parameter optimization
Artificial bee colony
Real-time polyp detection
YOLOv4
Colorectal cancer
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-46376f7a25f48b6b1d8ff2f9d9b853a1536ff8715d08b01a247b448f430144833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6670-2169
PQID 2821148533
PQPubID 326365
PageCount 18
ParticipantIDs proquest_journals_2821148533
crossref_citationtrail_10_1007_s10489_022_04299_1
crossref_primary_10_1007_s10489_022_04299_1
springer_journals_10_1007_s10489_022_04299_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230600
2023-06-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 6
  year: 2023
  text: 20230600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References OzcanTBasturkATransfer learning-based convolutional neural networks with heuristic optimization for hand gesture recognitionNeural Comput Appl2019318955897010.1007/s00521-019-04427-y
ErkanUToktasAUstunDHyperparameter optimization of deep CNN classifier for plant species identification using artificial bee colony algorithmJ Ambient Intell Human Comput20221310.1007/s12652-021-03631-w
Guo Y, Liu Y, Oerlemans A et al (2016) Deep learning for visual understanding: a review. Neurocomputing 187:27–48. https://doi.org/10.1016/j.neucom.2015.09.116
Lin TY, Maire M, Belongie S et al (2014) Microsoft COCO: common objects in context. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 8693 LNCS, pp 740–755. https://doi.org/10.1007/978-3-319-10602-1_48
Jocher G, Chaurasia A, Stoken A et al (2022) ultralytics/yolov5: v6.1 - TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference. https://doi.org/10.5281/ZENODO.6222936
Corley DA, Jensen CD, Marks AR et al (2014) Adenoma detection rate and risk of colorectal cancer and death A BS TR AC T. N Engl J Med 14:1298–1306. https://doi.org/10.1056/NEJMoa1309086
OzkokFOCelikMA hybrid CNN-LSTM model for high resolution melting curve classificationBiomed Signal Process Control20227110316810.1016/J.BSPC.2021.103168
AlexeyAB/darknet : YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet). https://github.com/AlexeyAB/darknet. Accessed 2 Apr 2021
AliMAliRMulti-input dual-stream capsule network for improved lung and colon cancer classificationDiagnostics20211111810.3390/diagnostics11081485
Lee J-N, · J-WC, Cho H-C (2022) Improvement of colon polyp detection performance by modifying the multi-scale network structure and data augmentation. J Electr Eng Technol 2022:1–9. https://doi.org/10.1007/S42835-022-01191-3
KilicarslanSCelikMSahinafakHybrid models based on genetic algorithm and deep learning algorithms for nutritional Anemia disease classificationBiomed Signal Process Control2021631746809410.1016/j.bspc.2020.102231
Karaboga D, Basturk B (2007) Artificial Bee Colony (ABC) optimization algorithm for solving constrained optimization problems, pp 789–798
KatochSChauhanSSKumarVA review on genetic algorithm: past, present, and futureMultimed Tools Appl2021808091812610.1007/s11042-020-10139-6
Wan J, Chen B, Yu Y (2021) Polyp detection from colorectum images by using attentive YOLOv5. Diagnostics 11:2264. https://doi.org/10.3390/diagnostics11122264
Bochkovskiy A, Wang C-Y, Liao H-YM (2020) YOLOv4: optimal speed and accuracy of object detection. https://doi.org/10.48550/arxiv.2004.10934
BanharnsakunATowards improving the convolutional neural networks for deep learning using the distributed artificial bee colony methodInt J Mach Learn Cybern2019101301131110.1007/s13042-018-0811-z
Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660
BoraKBhuyanMKKasugaiKComputational learning of features for automated colonic polyp classificationSci Rep20211111610.1038/s41598-021-83788-8
Wang C-Y, Yeh I-H, Liao H-YM (2021) You only learn one representation: unified network for multiple tasks, pp 1–11
KhanASohailAZahooraUA survey of the recent architectures of deep convolutional neural networksArtif Intell Rev2020535455551610.1007/s10462-020-09825-6
Wang CY, Bochkovskiy A, Liao HYM (2020) Scaled-YOLOv4: scaling cross stage partial network. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp 13024–13033. https://doi.org/10.48550/arxiv.2011.08036
KiliçarslanSCelikMKAF + RSigELU: a nonlinear and kernel-based activation function for deep neural networksNeural Comput Appl202234139091392310.1007/S00521-022-07211-7/FIGURES/4
WongKinYiu/ScaledYOLOv4 at yolov4-large. https://github.com/WongKinYiu/ScaledYOLOv4/tree/yolov4-large. Accessed 2 Apr 2021
Chollet F (2017) Xception: deep learning with depthwise separable convolutions. Proc – 30th IEEE Conf Comput Vis Pattern Recognition, CVPR 2017,  pp 1800–1807. https://doi.org/10.1109/CVPR.2017.195
Liu W, Anguelov D, Erhan D et al (2016) SSD: single shot multibox detector. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). 9905 LNCS, pp 21–37. https://doi.org/10.1007/978-3-319-46448-0_2
Tan M, Pang R, Le QV (2020) EfficientDet: scalable and efficient object detection. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit, pp 10778–10787. https://doi.org/10.1109/CVPR42600.2020.01079
IşıkGArtunerHTurkish dialect recognition in terms of prosodic by long short-term memory neural networksJ Fac Eng Archit Gazi Univ20203521322410.17341/gazimmfd.453677
Redmon J, Farhadi A (2018) YOLOv3: an incremental improvement. https://doi.org/10.48550/arxiv.1804.02767
ZhangRZhengYPoonCCYPolyp detection during colonoscopy using a regression-based convolutional neural network with a trackerPattern Recognit20188320921910.1016/j.patcog.2018.05.026
Hoang MC, Nguyen KT, Kim J et al (2021) Automated bowel polyp detection based on actively controlled capsule endoscopy: feasibility studycs 11:1878. https://doi.org/10.3390/diagnostics11101878
Pacal I, Karaboga D (2021) A robust real-time deep learning based automatic polyp detection system. Comput Biol Med 134. https://doi.org/10.1016/J.COMPBIOMED.2021.104519
PacalIKaramanAKarabogaDAn efficient real-time colonic polyp detection with YOLO algorithms trained by using negative samples and large datasetsComput Biol Med202214110503110.1016/j.compbiomed.2021.105031
TamangLDKimBWDeep learning approaches to colorectal cancer diagnosis: a reviewAppl Sci2021111098210.3390/app112210982
Reboiro-Jato A, Glez-Peña M, Lee K-S et al (2022) Citation: Nogueira-Rodríguez performance of convolutional neural networks for polyp localization on public colonoscopy image datasets. https://doi.org/10.3390/diagnostics12040898
Pacal I, Karaboga D, Basturk A et al (2020) A comprehensive review of deep learning in colon cancer. Comput Biol Med 126. https://doi.org/10.1016/J.COMPBIOMED.2020.104003
Girshick R, Proc (2015) IEEE Int Conf Comput Vis 2015 Inter, pp 1440–1448. https://doi.org/10.1109/ICCV.2015.169
LiewWSTangTBLinCHLuCKAutomatic colonic polyp detection using integration of modified deep residual convolutional neural network and ensemble learning approachesComput Methods Programs Biomed202120610611410.1016/J.CMPB.2021.106114
AkayBKarabogaDAkayRA comprehensive survey on optimizing deep learning models by metaheuristicsArtif Intell Rev20225582989410.1007/s10462-021-09992-0
Souaidi M, El Ansari M (2022) Multi-scale hybrid network for polyp detection in wireless capsule endoscopy and colonoscopy images. Diagnostics (Basel) 12(8):2030. https://doi.org/10.3390/diagnostics12082030
DurakSBayramBBakırmanTDeep neural network approaches for detecting gastric polyps in endoscopic imagesMed Biol Eng Comput2021591563157410.1007/s11517-021-02398-8
Wang CY, Mark Liao HY, Wu YH et al (2020) CSPNet: a new backbone that can enhance learning capability of CNN. IEEE Comput Soc Conf Comput Vis Pattern Recognit Work 2020-June, pp 1571–1580. https://doi.org/10.1109/CVPRW50498.2020.00203
YounasFUsmanMYanWQA deep ensemble learning method for colorectal polyp classification with optimized network parametersApp Intell202210.1007/s10489-022-03689-9
Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2014) A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif Intell Rev 42:21–57. https://doi.org/10.1007/s10462-012-9328-0
Rawla P, Sunkara T, Barsouk A (2019) Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Prz Gastroenterol 14:89–103. https://doi.org/10.5114/pg.2018.81072
TheodosiAOuzounisSKostopoulosSDesign of a hybrid deep learning system for discriminating between low- and high-grade colorectal cancer lesions, using microscopy images of IHC stained for AIB1 expression biopsy materialMach Vis Appl20213211710.1007/s00138-021-01184-8
Sánchez-Peralta LF, Pagador JB, Sánchez-Margallo FM (2021) Artificial intelligence for colorectal polyps in colonoscopy. Artif Intell Med:1–15. https://doi.org/10.1007/978-3-030-58080-3_308-1
BademHBasturkACaliskanAYukselMEA new efficient training strategy for deep neural networks by hybridization of artificial bee colony and limited–memory BFGS optimization algorithmsNeurocomputing201726650652610.1016/j.neucom.2017.05.061
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 2016-Decem, pp 770–778. https://doi.org/10.1109/CVPR.2016.90
Qian Z, Jing W, Lv Y, Zhang W (2022) Automatic polyp detection by combining conditional generative adversarial network and modified you-only-look-once. IEEE Sens J 22. https://doi.org/10.1109/JSEN.2022.3170034
SchieleSArndtTTMartinBDeep learning prediction of metastasis in locally advanced colon cancer using binary histologic tumor imagesCancers (Basel)202113207410.3390/cancers13092074
Kaminski MF, Wieszczy P, Rupinski M et al (2017) Increased rate of adenoma detection associates with reduced risk of colorectal cancer and death. Gastroenterology 153:98–105. https://doi.org/10.1053/j.gastro.2017.04.006
Duan K, Bai S, Xie L et al (2019) CenterNet: keypoint triplets for object detection. Proc IEEE Int Conf Comput Vis 2019-October, pp 6568–6577. https://doi.org/10.1109/ICCV.2019.00667
Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39:1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031
Nogueira-Rodríguez A, Domínguez-Carbajales R, Campos-Tato F et al (2021) Real-time polyp detection model using convolutional neural networks. Neural Comput Appl 4. https://doi.org/10.1007/s00521-021-06496-4
4299_CR50
4299_CR10
4299_CR54
4299_CR53
4299_CR52
4299_CR51
R Zhang (4299_CR18) 2018; 83
H Badem (4299_CR44) 2017; 266
S Kilicarslan (4299_CR17) 2021; 63
4299_CR16
G Işık (4299_CR6) 2020; 35
4299_CR19
S Kiliçarslan (4299_CR8) 2022; 34
S Katoch (4299_CR45) 2021; 80
S Schiele (4299_CR13) 2021; 13
M Ali (4299_CR14) 2021; 11
4299_CR21
I Pacal (4299_CR30) 2022; 141
4299_CR20
B Akay (4299_CR38) 2022; 55
4299_CR25
A Banharnsakun (4299_CR41) 2019; 10
4299_CR22
4299_CR29
WS Liew (4299_CR23) 2021; 206
4299_CR28
4299_CR27
4299_CR26
LD Tamang (4299_CR15) 2021; 11
4299_CR1
4299_CR2
4299_CR3
4299_CR4
4299_CR31
4299_CR7
4299_CR36
4299_CR35
4299_CR34
4299_CR33
A Theodosi (4299_CR12) 2021; 32
4299_CR39
4299_CR37
F Younas (4299_CR24) 2022
U Erkan (4299_CR40) 2022; 1
4299_CR43
4299_CR47
T Ozcan (4299_CR42) 2019; 31
4299_CR46
4299_CR49
4299_CR48
FO Ozkok (4299_CR9) 2022; 71
K Bora (4299_CR11) 2021; 11
A Khan (4299_CR5) 2020; 53
S Durak (4299_CR32) 2021; 59
References_xml – reference: Nogueira-Rodríguez A, Domínguez-Carbajales R, Campos-Tato F et al (2021) Real-time polyp detection model using convolutional neural networks. Neural Comput Appl 4. https://doi.org/10.1007/s00521-021-06496-4
– reference: OzkokFOCelikMA hybrid CNN-LSTM model for high resolution melting curve classificationBiomed Signal Process Control20227110316810.1016/J.BSPC.2021.103168
– reference: BademHBasturkACaliskanAYukselMEA new efficient training strategy for deep neural networks by hybridization of artificial bee colony and limited–memory BFGS optimization algorithmsNeurocomputing201726650652610.1016/j.neucom.2017.05.061
– reference: KiliçarslanSCelikMKAF + RSigELU: a nonlinear and kernel-based activation function for deep neural networksNeural Comput Appl202234139091392310.1007/S00521-022-07211-7/FIGURES/4
– reference: Karaboga D, Basturk B (2007) Artificial Bee Colony (ABC) optimization algorithm for solving constrained optimization problems, pp 789–798
– reference: BoraKBhuyanMKKasugaiKComputational learning of features for automated colonic polyp classificationSci Rep20211111610.1038/s41598-021-83788-8
– reference: Lee J-N, · J-WC, Cho H-C (2022) Improvement of colon polyp detection performance by modifying the multi-scale network structure and data augmentation. J Electr Eng Technol 2022:1–9. https://doi.org/10.1007/S42835-022-01191-3
– reference: WongKinYiu/ScaledYOLOv4 at yolov4-large. https://github.com/WongKinYiu/ScaledYOLOv4/tree/yolov4-large. Accessed 2 Apr 2021
– reference: KhanASohailAZahooraUA survey of the recent architectures of deep convolutional neural networksArtif Intell Rev2020535455551610.1007/s10462-020-09825-6
– reference: IşıkGArtunerHTurkish dialect recognition in terms of prosodic by long short-term memory neural networksJ Fac Eng Archit Gazi Univ20203521322410.17341/gazimmfd.453677
– reference: Girshick R, Proc (2015) IEEE Int Conf Comput Vis 2015 Inter, pp 1440–1448. https://doi.org/10.1109/ICCV.2015.169
– reference: AliMAliRMulti-input dual-stream capsule network for improved lung and colon cancer classificationDiagnostics20211111810.3390/diagnostics11081485
– reference: Redmon J, Farhadi A (2018) YOLOv3: an incremental improvement. https://doi.org/10.48550/arxiv.1804.02767
– reference: Wang CY, Mark Liao HY, Wu YH et al (2020) CSPNet: a new backbone that can enhance learning capability of CNN. IEEE Comput Soc Conf Comput Vis Pattern Recognit Work 2020-June, pp 1571–1580. https://doi.org/10.1109/CVPRW50498.2020.00203
– reference: Duan K, Bai S, Xie L et al (2019) CenterNet: keypoint triplets for object detection. Proc IEEE Int Conf Comput Vis 2019-October, pp 6568–6577. https://doi.org/10.1109/ICCV.2019.00667
– reference: OzcanTBasturkATransfer learning-based convolutional neural networks with heuristic optimization for hand gesture recognitionNeural Comput Appl2019318955897010.1007/s00521-019-04427-y
– reference: ZhangRZhengYPoonCCYPolyp detection during colonoscopy using a regression-based convolutional neural network with a trackerPattern Recognit20188320921910.1016/j.patcog.2018.05.026
– reference: KilicarslanSCelikMSahinafakHybrid models based on genetic algorithm and deep learning algorithms for nutritional Anemia disease classificationBiomed Signal Process Control2021631746809410.1016/j.bspc.2020.102231
– reference: LiewWSTangTBLinCHLuCKAutomatic colonic polyp detection using integration of modified deep residual convolutional neural network and ensemble learning approachesComput Methods Programs Biomed202120610611410.1016/J.CMPB.2021.106114
– reference: Kaminski MF, Wieszczy P, Rupinski M et al (2017) Increased rate of adenoma detection associates with reduced risk of colorectal cancer and death. Gastroenterology 153:98–105. https://doi.org/10.1053/j.gastro.2017.04.006
– reference: Wang CY, Bochkovskiy A, Liao HYM (2020) Scaled-YOLOv4: scaling cross stage partial network. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp 13024–13033. https://doi.org/10.48550/arxiv.2011.08036
– reference: Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2014) A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif Intell Rev 42:21–57. https://doi.org/10.1007/s10462-012-9328-0
– reference: Jocher G, Chaurasia A, Stoken A et al (2022) ultralytics/yolov5: v6.1 - TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference. https://doi.org/10.5281/ZENODO.6222936
– reference: BanharnsakunATowards improving the convolutional neural networks for deep learning using the distributed artificial bee colony methodInt J Mach Learn Cybern2019101301131110.1007/s13042-018-0811-z
– reference: Souaidi M, El Ansari M (2022) Multi-scale hybrid network for polyp detection in wireless capsule endoscopy and colonoscopy images. Diagnostics (Basel) 12(8):2030. https://doi.org/10.3390/diagnostics12082030
– reference: AkayBKarabogaDAkayRA comprehensive survey on optimizing deep learning models by metaheuristicsArtif Intell Rev20225582989410.1007/s10462-021-09992-0
– reference: Reboiro-Jato A, Glez-Peña M, Lee K-S et al (2022) Citation: Nogueira-Rodríguez performance of convolutional neural networks for polyp localization on public colonoscopy image datasets. https://doi.org/10.3390/diagnostics12040898 
– reference: ErkanUToktasAUstunDHyperparameter optimization of deep CNN classifier for plant species identification using artificial bee colony algorithmJ Ambient Intell Human Comput20221310.1007/s12652-021-03631-w
– reference: Wan J, Chen B, Yu Y (2021) Polyp detection from colorectum images by using attentive YOLOv5. Diagnostics 11:2264. https://doi.org/10.3390/diagnostics11122264
– reference: TheodosiAOuzounisSKostopoulosSDesign of a hybrid deep learning system for discriminating between low- and high-grade colorectal cancer lesions, using microscopy images of IHC stained for AIB1 expression biopsy materialMach Vis Appl20213211710.1007/s00138-021-01184-8
– reference: Chollet F (2017) Xception: deep learning with depthwise separable convolutions. Proc – 30th IEEE Conf Comput Vis Pattern Recognition, CVPR 2017,  pp 1800–1807. https://doi.org/10.1109/CVPR.2017.195
– reference: Lin TY, Maire M, Belongie S et al (2014) Microsoft COCO: common objects in context. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 8693 LNCS, pp 740–755. https://doi.org/10.1007/978-3-319-10602-1_48
– reference: Wang C-Y, Yeh I-H, Liao H-YM (2021) You only learn one representation: unified network for multiple tasks, pp 1–11
– reference: Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660
– reference: DurakSBayramBBakırmanTDeep neural network approaches for detecting gastric polyps in endoscopic imagesMed Biol Eng Comput2021591563157410.1007/s11517-021-02398-8
– reference: TamangLDKimBWDeep learning approaches to colorectal cancer diagnosis: a reviewAppl Sci2021111098210.3390/app112210982
– reference: PacalIKaramanAKarabogaDAn efficient real-time colonic polyp detection with YOLO algorithms trained by using negative samples and large datasetsComput Biol Med202214110503110.1016/j.compbiomed.2021.105031
– reference: Pacal I, Karaboga D (2021) A robust real-time deep learning based automatic polyp detection system. Comput Biol Med 134. https://doi.org/10.1016/J.COMPBIOMED.2021.104519
– reference: YounasFUsmanMYanWQA deep ensemble learning method for colorectal polyp classification with optimized network parametersApp Intell202210.1007/s10489-022-03689-9
– reference: Rawla P, Sunkara T, Barsouk A (2019) Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Prz Gastroenterol 14:89–103. https://doi.org/10.5114/pg.2018.81072
– reference: Pacal I, Karaboga D, Basturk A et al (2020) A comprehensive review of deep learning in colon cancer. Comput Biol Med 126. https://doi.org/10.1016/J.COMPBIOMED.2020.104003
– reference: Bochkovskiy A, Wang C-Y, Liao H-YM (2020) YOLOv4: optimal speed and accuracy of object detection. https://doi.org/10.48550/arxiv.2004.10934
– reference: Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39:1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031
– reference: AlexeyAB/darknet : YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet). https://github.com/AlexeyAB/darknet. Accessed 2 Apr 2021
– reference: Tan M, Pang R, Le QV (2020) EfficientDet: scalable and efficient object detection. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit, pp 10778–10787. https://doi.org/10.1109/CVPR42600.2020.01079
– reference: Guo Y, Liu Y, Oerlemans A et al (2016) Deep learning for visual understanding: a review. Neurocomputing 187:27–48. https://doi.org/10.1016/j.neucom.2015.09.116
– reference: Liu W, Anguelov D, Erhan D et al (2016) SSD: single shot multibox detector. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). 9905 LNCS, pp 21–37. https://doi.org/10.1007/978-3-319-46448-0_2
– reference: He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 2016-Decem, pp 770–778. https://doi.org/10.1109/CVPR.2016.90
– reference: Qian Z, Jing W, Lv Y, Zhang W (2022) Automatic polyp detection by combining conditional generative adversarial network and modified you-only-look-once. IEEE Sens J 22. https://doi.org/10.1109/JSEN.2022.3170034
– reference: Corley DA, Jensen CD, Marks AR et al (2014) Adenoma detection rate and risk of colorectal cancer and death A BS TR AC T. N Engl J Med 14:1298–1306. https://doi.org/10.1056/NEJMoa1309086
– reference: Hoang MC, Nguyen KT, Kim J et al (2021) Automated bowel polyp detection based on actively controlled capsule endoscopy: feasibility studycs 11:1878. https://doi.org/10.3390/diagnostics11101878
– reference: KatochSChauhanSSKumarVA review on genetic algorithm: past, present, and futureMultimed Tools Appl2021808091812610.1007/s11042-020-10139-6
– reference: SchieleSArndtTTMartinBDeep learning prediction of metastasis in locally advanced colon cancer using binary histologic tumor imagesCancers (Basel)202113207410.3390/cancers13092074
– reference: Sánchez-Peralta LF, Pagador JB, Sánchez-Margallo FM (2021) Artificial intelligence for colorectal polyps in colonoscopy. Artif Intell Med:1–15. https://doi.org/10.1007/978-3-030-58080-3_308-1
– volume: 83
  start-page: 209
  year: 2018
  ident: 4299_CR18
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2018.05.026
– ident: 4299_CR36
  doi: 10.1109/TPAMI.2016.2577031
– ident: 4299_CR43
  doi: 10.1109/CVPR.2017.195
– ident: 4299_CR47
  doi: 10.48550/arxiv.2011.08036
– volume: 206
  start-page: 106114
  year: 2021
  ident: 4299_CR23
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/J.CMPB.2021.106114
– ident: 4299_CR22
  doi: 10.1109/ICCV.2019.00667
– ident: 4299_CR46
  doi: 10.5281/ZENODO.6222936
– volume: 34
  start-page: 13909
  year: 2022
  ident: 4299_CR8
  publication-title: Neural Comput Appl
  doi: 10.1007/S00521-022-07211-7/FIGURES/4
– ident: 4299_CR26
  doi: 10.1007/s00521-021-06496-4
– ident: 4299_CR50
  doi: 10.1007/s10462-012-9328-0
– volume: 53
  start-page: 5455
  year: 2020
  ident: 4299_CR5
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-020-09825-6
– ident: 4299_CR4
  doi: 10.1053/j.gastro.2017.04.006
– ident: 4299_CR3
  doi: 10.1056/NEJMoa1309086
– volume: 80
  start-page: 8091
  year: 2021
  ident: 4299_CR45
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-10139-6
– year: 2022
  ident: 4299_CR24
  publication-title: App Intell
  doi: 10.1007/s10489-022-03689-9
– ident: 4299_CR1
  doi: 10.3322/caac.21660
– ident: 4299_CR52
– ident: 4299_CR35
  doi: 10.48550/arxiv.1804.02767
– volume: 55
  start-page: 829
  year: 2022
  ident: 4299_CR38
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-021-09992-0
– volume: 1
  start-page: 3
  year: 2022
  ident: 4299_CR40
  publication-title: J Ambient Intell Human Comput
  doi: 10.1007/s12652-021-03631-w
– ident: 4299_CR54
  doi: 10.3390/diagnostics12040898
– ident: 4299_CR37
  doi: 10.1109/JSEN.2022.3170034
– ident: 4299_CR27
  doi: 10.3390/diagnostics11101878
– ident: 4299_CR51
  doi: 10.1007/978-3-319-10602-1_48
– ident: 4299_CR31
  doi: 10.3390/diagnostics12082030
– volume: 35
  start-page: 213
  year: 2020
  ident: 4299_CR6
  publication-title: J Fac Eng Archit Gazi Univ
  doi: 10.17341/gazimmfd.453677
– ident: 4299_CR39
  doi: 10.1007/978-3-540-72950-1_77
– volume: 10
  start-page: 1301
  year: 2019
  ident: 4299_CR41
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-018-0811-z
– ident: 4299_CR7
  doi: 10.1016/j.neucom.2015.09.116
– volume: 59
  start-page: 1563
  year: 2021
  ident: 4299_CR32
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-021-02398-8
– ident: 4299_CR28
  doi: 10.3390/diagnostics11122264
– volume: 11
  start-page: 1
  year: 2021
  ident: 4299_CR11
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-83788-8
– ident: 4299_CR34
  doi: 10.1109/CVPR42600.2020.01079
– ident: 4299_CR49
  doi: 10.1109/CVPR.2016.90
– ident: 4299_CR29
  doi: 10.1016/J.COMPBIOMED.2021.104519
– volume: 11
  start-page: 1
  year: 2021
  ident: 4299_CR14
  publication-title: Diagnostics
  doi: 10.3390/diagnostics11081485
– volume: 63
  start-page: 1746
  year: 2021
  ident: 4299_CR17
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2020.102231
– ident: 4299_CR21
  doi: 10.1007/978-3-319-46448-0_2
– ident: 4299_CR10
  doi: 10.1016/J.COMPBIOMED.2020.104003
– ident: 4299_CR25
  doi: 10.1007/S42835-022-01191-3
– volume: 31
  start-page: 8955
  year: 2019
  ident: 4299_CR42
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04427-y
– ident: 4299_CR48
  doi: 10.1109/CVPRW50498.2020.00203
– volume: 141
  start-page: 105031
  year: 2022
  ident: 4299_CR30
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.105031
– ident: 4299_CR33
  doi: 10.48550/arxiv.2004.10934
– volume: 71
  start-page: 103168
  year: 2022
  ident: 4299_CR9
  publication-title: Biomed Signal Process Control
  doi: 10.1016/J.BSPC.2021.103168
– volume: 32
  start-page: 1
  year: 2021
  ident: 4299_CR12
  publication-title: Mach Vis Appl
  doi: 10.1007/s00138-021-01184-8
– volume: 13
  start-page: 2074
  year: 2021
  ident: 4299_CR13
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers13092074
– volume: 266
  start-page: 506
  year: 2017
  ident: 4299_CR44
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.061
– ident: 4299_CR2
  doi: 10.5114/pg.2018.81072
– volume: 11
  start-page: 10982
  year: 2021
  ident: 4299_CR15
  publication-title: Appl Sci
  doi: 10.3390/app112210982
– ident: 4299_CR19
– ident: 4299_CR53
– ident: 4299_CR16
  doi: 10.1007/978-3-030-58080-3_308-1
– ident: 4299_CR20
  doi: 10.1109/ICCV.2015.169
SSID ssj0003301
Score 2.5573483
Snippet Colorectal cancer (CRC) is one of the most common and malignant types of cancer worldwide. Colonoscopy, considered the gold standard for CRC screening, allows...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15603
SubjectTerms Algorithms
Artificial Intelligence
Cancer
Colonoscopy
Colorectal cancer
Computer Science
Deep learning
Image analysis
Machine learning
Machines
Manufacturing
Mechanical Engineering
Medical imaging
Object recognition
Optimization
Parameters
Performance enhancement
Performance evaluation
Polyps
Processes
Real time
Search algorithms
Swarm intelligence
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB2V7YUL34ilBc2BQxFYJBtvNjkg1K5arZBYoYpKe4vsZFwOu0nYpof-s_48ZrxOA0j0FiWOFWXs5xl75j2Ad1FOLqE8V4ZI-90qZW2qVcZXSZ5VqTNS4PxtmS4u9NfVdLUHy74WRtIqe0z0QF01peyRf-LQQFx39k6-tL-UqEbJ6WovoWGCtEL12VOMPYD9iTBjjWD_5HT5_fwOmzl69xp6HHWoNM1XoYwmFNNpSR_i4MyDtIr_XqoG__OfI1O_Ep09gUfBhcTjnc2fwh7Vz-BxL8-AYbY-h9sFx5hbJeTeG0l6wYbhYRPqLrFxWBG1GGQjLvHPI4UrlHx4uedTiXiMoiVCYbiub_Do-GT-Hs36kv9P93OD7Pei0B5jO1QhIDujayXK9Wiuu8YTw_r3BWG5u1IabfFofs5dtc36puXP6XxeWP0CLs5Of8wXKgg1qJJncKd0yjDlZmYydTqzqY2rzLmJy6vcssEMg2rqHEdm0yrKbBSbiZ5ZDgud9vFcliQvYVQ3Nb0CdERJVE5dMtOkI1daXlkrYh-CyGibuTHEvU2KMrCYi5jGuhj4l8WOBdux8HYs4jF8uHun3XF43Nv6sDd1EebzVTGMvjF87M0_PP5_b6_v7-0AHop-_S737BBG3faa3rCX09m3Yej-BpC9-1k
  priority: 102
  providerName: ProQuest
Title Hyper-parameter optimization of deep learning architectures using artificial bee colony (ABC) algorithm for high performance real-time automatic colorectal cancer (CRC) polyp detection
URI https://link.springer.com/article/10.1007/s10489-022-04299-1
https://www.proquest.com/docview/2821148533
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 20241028
  omitProxy: true
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9tAEF21cOmlQD_UFIjm0AMVXcmJ1459TKKEqBURQkRKT5bXnoVKiW0l5sA_4-cxs1kTqKBST7bs3ZGl2Z2Z5515I8Q3L0bjYxzLFFHZv1VS61DJiO78OMpDk3KB8_k0nMzUz3kwd0Vh6ybbvTmStJb6SbGb4vQeAk_WiErCPLsB03nRKp51-4_2lxC67ZNHyEKGYTx3pTIvy3jujrYx5l_HotbbjPfFexcmQn-j1wPxBosPYq9pwQBuR34U9xPCkSvJBN5LTmyBkkzA0tVWQmkgR6zAtYa4hqfHBmvgnHd-ZtOFaB2CRgRmsS7u4KQ_GH6HdHFdrv7UN0ug2BaY2hiqbaUBUMC5kNydHtLburTkr3Y-W1ESl_GgFZwML0lUVS7uKvqc2uZ-FZ_EbDy6Gk6ka8YgM9qltVQhmSLTS7uBUZEOdSePjOmaOI81efyUDGdoDKGvIPci7XXSruppgn5GWcwW-f5nsVOUBX4RYBB9LwuM31OoPJNp8p45UpyAmCodmZboNDpJMsdUzg0zFsmWY5n1mJAeE6vHpNMSp49zqg1Pxz9HHzWqTtyeXScEPhkcUvzbEj8a9W9fvy7t6_8NPxTvuGf9Jt_sSOzUq1s8psim1m3xNhqftcVufzwYTPl69vvXiK6D0fTism2X-QPz_fdj
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V7QEuUF4iUGAOIBXBCj82jn2oUBtapbSNUNVKuRmvPdseEtskrqr8M078NmY26xqQ6K03K7bXkb7dme_bnYcQb70ETYhJIjNEZXerpNaRkjFdhUlcRCbjBOeTcTQ6V18n_cma-NXmwnBYZWsTraEuqpz3yD-RNGDqTuzkc_1DctcoPl1tW2hkrrVCsWNLjLnEjiNcXpOEW-wcfiG83wXBwf7ZcCRdlwGZ0_RrpIpojZlBFvSNinWk_SI2JjBJkWj6WkYWITKGZEW_8GLt-VmgBpo0jVFWjMS8IUouYEOFKiHxt7G3P_52euMLwtA2YPZI5cgoSiYubccl7ykOVyIxaJ2C9P92jR3f_eeI1nq-g03xwFFW2F3NsUdiDcvH4mHbDgKcdXgifo5I084lFxOfcZANVGSOZi7PEyoDBWINrk3FBfx5hLEAjr_n32zoEq0J0IjAFbXLJWzv7g3fQza9IDyayxkQzwYuswx1l_UARH6nkr6HkF01lS1Ea99ni07D5fzQHLaHpzRUXU2XNf2dxsahlU_F-Z1A9kysl1WJzwUYxNDL-yYcKFSeyTV58gKJsyBmSsemJ_wWkzR3VdO5ecc07eo9M44p4ZhaHFO_Jz7cvFOvaobc-vRWC3Xq7Mci7WZ7T3xs4e9u_3-0F7eP9kbcG52dHKfHh-Ojl-J-QIxtFfe2Jdab-RW-IobV6NduGoP4ftcr5zdnjTZo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRaq48CqIQIE5gNQKVvVj49iHCpW0IX1QIUSl3IzXni2HxDaJK5R_VvHrmNmsa0Cit94se3dteV7f7M5DiNdegibEJJEZorK7VVLrSMmYrsIkLiKTcYLzp7NofK6OJ_3JmvjV5sJwWGWrE62iLqqc98h3yTVg6E7oZNe4sIjPB6P39Q_JHaT4pLVtp7FikRNc_iT3bbF3dEC0fhMEo8Ovw7F0HQZkTqzXSBWRfJlBFvSNinWk_SI2JjBJkWh6U0baIDKGXIp-4cXa87NADTT5M0ZZRyTmzVBS_3cGXMWds9RHH6-tQBja1sse-TcyipKJS9hxaXuKA5XIDbTmQPp_G8UO6f5zOGtt3uiBuOfAKuyvuOuhWMPykbjfNoIApxc2xdWYvNm55DLiMw6vgYoU0cxleEJloECswTWouIA_Dy8WwJH3fM8GLZE0gEYErqVdLmF7_8NwB7LpBf395vsMCGEDF1iGust3AIK9U0nvQ8gum8qWoLXzWZfTcjkPmsP28AstVVfTZU2f09gItPKxOL8Vgj0R62VV4lMBBjH08r4JBwqVZ3JNNrxAQiuImdKx6Qm_pUmau3rp3LZjmnaVnpmOKdExtXRM_Z54ez2nXlULuXH0Vkvq1GmORdrxeU-8a8nfPf7_as9uXu2V2CB5SU-Pzk6ei7sBQbVVwNuWWG_ml_iCoFWjX1oeBvHttoXmN-BfNAI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyper-parameter+optimization+of+deep+learning+architectures+using+artificial+bee+colony+%28ABC%29+algorithm+for+high+performance+real-time+automatic+colorectal+cancer+%28CRC%29+polyp+detection&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Karaman%2C+Ahmet&rft.au=Karaboga%2C+Dervis&rft.au=Pacal%2C+Ishak&rft.au=Akay%2C+Bahriye&rft.date=2023-06-01&rft.pub=Springer+US&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=53&rft.issue=12&rft.spage=15603&rft.epage=15620&rft_id=info:doi/10.1007%2Fs10489-022-04299-1&rft.externalDocID=10_1007_s10489_022_04299_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon