Radial basis function neural network-based algorithm unfolding for energy-aware resource allocation in wireless networks
Significant advances in high-bandwidth applications and rising power consumption have highlighted the need for energy-efficient design solutions in backbone optical networks. Task allocation is an important application scenario for sensor networks in which a central entity allocates resources to a c...
        Saved in:
      
    
          | Published in | Wireless networks Vol. 30; no. 8; pp. 7041 - 7058 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.11.2024
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1022-0038 1572-8196  | 
| DOI | 10.1007/s11276-023-03540-0 | 
Cover
| Abstract | Significant advances in high-bandwidth applications and rising power consumption have highlighted the need for energy-efficient design solutions in backbone optical networks. Task allocation is an important application scenario for sensor networks in which a central entity allocates resources to a collection of geographically scattered sensor nodes to achieve an overall goal. Effective resource allocation is essential for optimizing wireless networks' performance and energy efficacy. We provide a novel technique for energy-aware resource allocation in wireless networks that integrates the radial basis function neural network (RBFNN) algorithm with the deep unfolding of the successive concave approximation (DUSCA). The RBFNN is approximated as a function to understand the relationship between resource allocation decisions and network performance measures. Using its capacity to characterize complex nonlinear mappings, the RBFNN offers a flexible framework for depicting the intricate interdependence in wireless network settings. The DUSCA framework is learned using progressive training and stochastic gradient descent. The unsupervised loss is precisely designed to illustrate the objective's monotonic property under maximum power limitations. Extensive numerical findings show that it may be applied to a wide range of network topologies with different sizes, densities, and channel dispersion. In addition, we present the DUSC method, which is frequently employed in resource allocation to tackle non-convex optimization problems. By expressing the SCA's repetitive phases as a deep neural network and optimizing resource allocation concurrently, we can improve the convergence and quality of its solutions. Our proposed RBFNN–DUSCA architecture, which combines RBFNN with the profound unfolding of the SCA algorithm, provides a viable method for addressing resource allocation challenges in wireless networks, paving the way for more energy-efficient and high-performance wireless communication systems. | 
    
|---|---|
| AbstractList | Significant advances in high-bandwidth applications and rising power consumption have highlighted the need for energy-efficient design solutions in backbone optical networks. Task allocation is an important application scenario for sensor networks in which a central entity allocates resources to a collection of geographically scattered sensor nodes to achieve an overall goal. Effective resource allocation is essential for optimizing wireless networks' performance and energy efficacy. We provide a novel technique for energy-aware resource allocation in wireless networks that integrates the radial basis function neural network (RBFNN) algorithm with the deep unfolding of the successive concave approximation (DUSCA). The RBFNN is approximated as a function to understand the relationship between resource allocation decisions and network performance measures. Using its capacity to characterize complex nonlinear mappings, the RBFNN offers a flexible framework for depicting the intricate interdependence in wireless network settings. The DUSCA framework is learned using progressive training and stochastic gradient descent. The unsupervised loss is precisely designed to illustrate the objective's monotonic property under maximum power limitations. Extensive numerical findings show that it may be applied to a wide range of network topologies with different sizes, densities, and channel dispersion. In addition, we present the DUSC method, which is frequently employed in resource allocation to tackle non-convex optimization problems. By expressing the SCA's repetitive phases as a deep neural network and optimizing resource allocation concurrently, we can improve the convergence and quality of its solutions. Our proposed RBFNN–DUSCA architecture, which combines RBFNN with the profound unfolding of the SCA algorithm, provides a viable method for addressing resource allocation challenges in wireless networks, paving the way for more energy-efficient and high-performance wireless communication systems. | 
    
| Author | Galety, Mohammad Gouse Fernandes, J. Bennilo Prasanna, B. T. Shelke, Nilesh Ashok, M. Ramya, D.  | 
    
| Author_xml | – sequence: 1 givenname: B. T. surname: Prasanna fullname: Prasanna, B. T. email: prasannabt@jssstuniv.in, prasanna_bt@outlook.com organization: Department of CSE, JSS Science and Technology University – sequence: 2 givenname: D. surname: Ramya fullname: Ramya, D. organization: Department of EEE, Sathyabama Institute of Science and Technology – sequence: 3 givenname: Nilesh surname: Shelke fullname: Shelke, Nilesh organization: Symbiosis Institute of Technology, Symbiosis International (Deemed University) – sequence: 4 givenname: J. Bennilo surname: Fernandes fullname: Fernandes, J. Bennilo organization: Department of ECE, Kalasalingam Academy of Research and Education – sequence: 5 givenname: Mohammad Gouse surname: Galety fullname: Galety, Mohammad Gouse organization: Department of Computer Science, Samarkand International University of Technology – sequence: 6 givenname: M. surname: Ashok fullname: Ashok, M. organization: Department of Computer Science & Engineering, Rajalakshmi Institute of Technology  | 
    
| BookMark | eNp9UE1LAzEQDVLBtvoHPAU8RyfJdj-OUvwCQRA9L9l0sqZuk5rsUvvvja0ieOglk5l5783jTcjIeYeEnHO45ADFVeRcFDkDIRnIWQYMjsiYzwrBSl7lo_QHIRiALE_IJMYlAJSyqsbk81ktrOpoo6KN1AxO99Y76nAIaeqw3_jwztIWF1R1rQ-2f1vRwRnfLaxrqfGBosPQbpnaqIA0YPRD0JjQnddqp2Yd3diAHcb4KxlPybFRXcSznzolr7c3L_N79vh09zC_fmRa8qpnWaa5ngltoFBVwWe6xIxnTa6bwhQFL0vUWqROSgRhGqVzaIRRCy4rzQU3ckou9rrr4D8GjH29TP5cOllLLkqQlQCZUOUepYOPMaCpte135vugbFdzqL9zrvc51ynnepdzeqdE_KOug12psD1MkntSTGDXYvhzdYD1Bc8nlRQ | 
    
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3540716 | 
    
| Cites_doi | 10.1109/ICSESS49938.2020.9237684 10.1016/j.comnet.2019.106956 10.3390/s19030691 10.1109/TSP.2020.3000328 10.1109/TCOMM.2020.2993085 10.1007/s11277-018-6107-5 10.1007/s11276-023-03324-6 10.1109/TWC.2022.3204486 10.1109/LWC.2019.2908912 10.1109/CNSM.2015.7367387 10.1016/j.phycom.2021.101540 10.1007/s11276-022-03225-0 10.1109/LWC.2019.2949277 10.1109/TSP.2017.2684748 10.3390/s18093091 10.1109/TCOMM.2019.2900634 10.3390/en12224300 10.1109/COMST.2021.3059896 10.1109/TCOMM.2019.2924010 10.1109/ACCESS.2020.2980191 10.1109/TSP.2020.2988255 10.1080/17517575.2023.2188123 10.1109/JSEN.2022.3153314 10.3934/math.2023419  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1007/s11276-023-03540-0 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Technology Research Database | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1572-8196 | 
    
| EndPage | 7058 | 
    
| ExternalDocumentID | 10_1007_s11276_023_03540_0 | 
    
| GroupedDBID | -59 -5G -BR -EM -ET -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 85S 88I 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 8US 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAHTB AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABGDV ABHFT ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPEJ ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACM ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADL ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWIH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HGAVV HMJXF HQYDN HRMNR HVGLF HZ~ I-F I07 I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW KZ1 LAK LLZTM M0C M2P M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCO SCV SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A U5U UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W7O WK8 YIN YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZY4 _50 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AETEA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7SP 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c319t-44c1c52cf07a9715c8e414b6cb7f77188ecc26cb33e02fbac60b2fad139c121f3 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1022-0038 | 
    
| IngestDate | Sat Aug 16 21:10:52 EDT 2025 Thu Apr 24 23:04:56 EDT 2025 Wed Oct 01 03:48:30 EDT 2025 Fri Feb 21 02:40:41 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 8 | 
    
| Keywords | Deep learning Radial basis function neural network (RBFNN) Deep unfolding of the successive concave approximation (DUSCA) Wireless networks Energy-aware resource allocation  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c319t-44c1c52cf07a9715c8e414b6cb7f77188ecc26cb33e02fbac60b2fad139c121f3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 3128039203 | 
    
| PQPubID | 26318 | 
    
| PageCount | 18 | 
    
| ParticipantIDs | proquest_journals_3128039203 crossref_citationtrail_10_1007_s11276_023_03540_0 crossref_primary_10_1007_s11276_023_03540_0 springer_journals_10_1007_s11276_023_03540_0  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20241100 2024-11-00 20241101  | 
    
| PublicationDateYYYYMMDD | 2024-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2024 text: 20241100  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationSubtitle | The Journal of Mobile Communication, Computation and Information | 
    
| PublicationTitle | Wireless networks | 
    
| PublicationTitleAbbrev | Wireless Netw | 
    
| PublicationYear | 2024 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | Fontes, R.R., Afzal, S., Brito, S.H., Santos, M.A., Rothenberg, C.E. (2015). Mininet-WiFi: Emulating Software-Defined Wireless Networks. In Proceedings of the 2015 11th International Conference on Network and Service Management (CNSM), Barcelona, Spain, 9–13 November 2015; pp. 384–389 Prakash, M., Arunodaya, R. M., Ezhumalai, P. (2023). A fuzzy logic and DEEC protocol-based clustering routing method for wireless sensor networks. AIMS Mathematics, 2023, 8(4), 8310–8331. https://doi.org/10.3934/math.2023419 SuBQinZNiQEnergy efficient uplink transmissions in LoRa networksIEEE Transactions on Communications20206884960497210.1109/TCOMM.2020.2993085 JamshidiMZangenehEEsnaashariMA novel model of Sybil attack in cluster-based wireless sensor networks and propose a distributed algorithm to defend itWireless Personal Communications2019105114517310.1007/s11277-018-6107-5 Jin, J., & Wang, A. (2020). Multiple-objective power control algorithm based on successive interference cancellation algorithm. In Proceedings of IEEE International Conference on Software Engineerinfg Service Sci.ence, Oct. 2020, pp. 278–283. AbedSAl-ShayejiMEbrahimFA secure and energy efficient platform for the integration of wireless sensor networks and mobile cloud computing‘Computer Networks201916510.1016/j.comnet.2019.106956 LiBVermaGSegarraSGraph-based algorithm unfolding for energy-aware power allocation in wireless networksIEEE Transactions on Wireless Communications20232221359137310.1109/TWC.2022.3204486 LeeHJangHSJungBCImproving energy efficiency fairness of wireless networks: A deep learning approachEnergies20191222430010.3390/en12224300 ZapponeARenzoMDDebbahMWireless networks design in the era of deep learning: Model-based, AI-based, or both?IEEE Transactions on Communications201967107331737610.1109/TCOMM.2019.2924010 FangFDingZLiangWZhangHOptimal energy efficient power allocation with user fairness for uplink MC-NOMA systemsIEEE Wireless Communications Letters2019841133113610.1109/LWC.2019.2908912 RaoPVVAnandMDanielJAMillimeter assisted wave technologies in 6G assisted wireless communication systems: A new paradigm for 6G collaborative learningWireless Networks202310.1007/s11276-023-03324-6 EfremCNPanagopoulosADDynamic energy-efficient power allocation in multibeam satellite systemsIEEE Wireless Communications Letters20209222823110.1109/LWC.2019.2949277 Mai, T. C., Ngo, H. Q., & Tran, L.-N. (2022). Energy-efficient power allocation in cell-free massive MIMO with zero-forcing: First order methods. Physics Communications, 51, Art. no. 101540. MatthiesenBZapponeABesserK-LJorswieckEADebbahMA globally optimal energy-efficient power control framework and its efficient implementation in wireless interference networksIEEE Transactions on Signal Processing20206838873902412812010.1109/TSP.2020.3000328 GuptaSMobility aware load balancing using Kho-Kho optimization algorithm for hybrid Li-Fi and Wi-Fi networkWireless Networks202310.1007/s11276-022-03225-0 LongKLiWJiangMLuJNon-cooperative game-based power allocation for energy-efficient NOMA heterogeneous networkIEEE Access20208495964960910.1109/ACCESS.2020.2980191 YangYPesaventoMA unified successive pseudoconvex approximation frameworkIEEE Transactions on Signal Processing2017651333133328366657110.1109/TSP.2017.2684748 Xu, Y., Gui, G., Gacanin, H., & Adachi, F. (2021). A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges. IEEE Communications Surveys & Tutorials, 23(2), 668–695. RajRDixitAAn energy-efficient power allocation scheme for NOMA-based IoT sensor networks in 6GIEEE Sensors Journal20222277371738410.1109/JSEN.2022.3153314 Al-ObiedollahHMCumananKThiyagalingamJBurrAGDingZDobreOAEnergy efficient beamforming design for MISO non-orthogonal multiple access systemsIEEE Transactions on Communications20196764117413110.1109/TCOMM.2019.2900634 ArroyoPHerreroJLSuarezJILozanoJWireless sensor network combined with cloud computing for air quality monitoringSensors201919311710.3390/s19030691 EisenMRibeiroAOptimal wireless resource allocation with random edge graph neural networksIEEE Transactions on Signal Processing20206829772991411473710.1109/TSP.2020.2988255 MardaniAMauryaSArulkumarNEagle strategy arithmetic optimisation algorithm with optimal deep convolutional forest based FinTech application for hyper-automationEnterprise Information Systems202310.1080/17517575.2023.2188123 NingYWangJHanHTanXLiuTAn optimal radial basis function neural network enhanced adaptive robust Kalman filter for GNSS/INS integrated systems in complex urban areasSensors2018189309110.3390/s18093091 BurhanuddinMAMohammedAAJIsmailRHameedMEKareemANBasironHA review on security challenges and features in wireless sensor networks: IoT perspectiveJournal of Telecommunication, Electronic and Computer Engineering2018101–71721 A Zappone (3540_CR18) 2019; 67 B Li (3540_CR11) 2023; 22 M Jamshidi (3540_CR15) 2019; 105 A Mardani (3540_CR19) 2023 Y Ning (3540_CR23) 2018; 18 3540_CR3 M Eisen (3540_CR12) 2020; 68 3540_CR1 S Gupta (3540_CR21) 2023 3540_CR5 CN Efrem (3540_CR10) 2020; 9 Y Yang (3540_CR22) 2017; 65 B Matthiesen (3540_CR6) 2020; 68 B Su (3540_CR9) 2020; 68 S Abed (3540_CR17) 2019; 165 K Long (3540_CR7) 2020; 8 R Raj (3540_CR2) 2022; 22 F Fang (3540_CR4) 2019; 8 3540_CR20 MA Burhanuddin (3540_CR14) 2018; 10 3540_CR24 PVV Rao (3540_CR25) 2023 H Lee (3540_CR13) 2019; 12 HM Al-Obiedollah (3540_CR8) 2019; 67 P Arroyo (3540_CR16) 2019; 19  | 
    
| References_xml | – reference: GuptaSMobility aware load balancing using Kho-Kho optimization algorithm for hybrid Li-Fi and Wi-Fi networkWireless Networks202310.1007/s11276-022-03225-0 – reference: Al-ObiedollahHMCumananKThiyagalingamJBurrAGDingZDobreOAEnergy efficient beamforming design for MISO non-orthogonal multiple access systemsIEEE Transactions on Communications20196764117413110.1109/TCOMM.2019.2900634 – reference: FangFDingZLiangWZhangHOptimal energy efficient power allocation with user fairness for uplink MC-NOMA systemsIEEE Wireless Communications Letters2019841133113610.1109/LWC.2019.2908912 – reference: YangYPesaventoMA unified successive pseudoconvex approximation frameworkIEEE Transactions on Signal Processing2017651333133328366657110.1109/TSP.2017.2684748 – reference: NingYWangJHanHTanXLiuTAn optimal radial basis function neural network enhanced adaptive robust Kalman filter for GNSS/INS integrated systems in complex urban areasSensors2018189309110.3390/s18093091 – reference: RajRDixitAAn energy-efficient power allocation scheme for NOMA-based IoT sensor networks in 6GIEEE Sensors Journal20222277371738410.1109/JSEN.2022.3153314 – reference: Xu, Y., Gui, G., Gacanin, H., & Adachi, F. (2021). A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges. IEEE Communications Surveys & Tutorials, 23(2), 668–695. – reference: RaoPVVAnandMDanielJAMillimeter assisted wave technologies in 6G assisted wireless communication systems: A new paradigm for 6G collaborative learningWireless Networks202310.1007/s11276-023-03324-6 – reference: Mai, T. C., Ngo, H. Q., & Tran, L.-N. (2022). Energy-efficient power allocation in cell-free massive MIMO with zero-forcing: First order methods. Physics Communications, 51, Art. no. 101540. – reference: MatthiesenBZapponeABesserK-LJorswieckEADebbahMA globally optimal energy-efficient power control framework and its efficient implementation in wireless interference networksIEEE Transactions on Signal Processing20206838873902412812010.1109/TSP.2020.3000328 – reference: Prakash, M., Arunodaya, R. M., Ezhumalai, P. (2023). A fuzzy logic and DEEC protocol-based clustering routing method for wireless sensor networks. AIMS Mathematics, 2023, 8(4), 8310–8331. https://doi.org/10.3934/math.2023419 – reference: BurhanuddinMAMohammedAAJIsmailRHameedMEKareemANBasironHA review on security challenges and features in wireless sensor networks: IoT perspectiveJournal of Telecommunication, Electronic and Computer Engineering2018101–71721 – reference: EisenMRibeiroAOptimal wireless resource allocation with random edge graph neural networksIEEE Transactions on Signal Processing20206829772991411473710.1109/TSP.2020.2988255 – reference: EfremCNPanagopoulosADDynamic energy-efficient power allocation in multibeam satellite systemsIEEE Wireless Communications Letters20209222823110.1109/LWC.2019.2949277 – reference: AbedSAl-ShayejiMEbrahimFA secure and energy efficient platform for the integration of wireless sensor networks and mobile cloud computing‘Computer Networks201916510.1016/j.comnet.2019.106956 – reference: Jin, J., & Wang, A. (2020). Multiple-objective power control algorithm based on successive interference cancellation algorithm. In Proceedings of IEEE International Conference on Software Engineerinfg Service Sci.ence, Oct. 2020, pp. 278–283. – reference: SuBQinZNiQEnergy efficient uplink transmissions in LoRa networksIEEE Transactions on Communications20206884960497210.1109/TCOMM.2020.2993085 – reference: LiBVermaGSegarraSGraph-based algorithm unfolding for energy-aware power allocation in wireless networksIEEE Transactions on Wireless Communications20232221359137310.1109/TWC.2022.3204486 – reference: LeeHJangHSJungBCImproving energy efficiency fairness of wireless networks: A deep learning approachEnergies20191222430010.3390/en12224300 – reference: ArroyoPHerreroJLSuarezJILozanoJWireless sensor network combined with cloud computing for air quality monitoringSensors201919311710.3390/s19030691 – reference: ZapponeARenzoMDDebbahMWireless networks design in the era of deep learning: Model-based, AI-based, or both?IEEE Transactions on Communications201967107331737610.1109/TCOMM.2019.2924010 – reference: JamshidiMZangenehEEsnaashariMA novel model of Sybil attack in cluster-based wireless sensor networks and propose a distributed algorithm to defend itWireless Personal Communications2019105114517310.1007/s11277-018-6107-5 – reference: Fontes, R.R., Afzal, S., Brito, S.H., Santos, M.A., Rothenberg, C.E. (2015). Mininet-WiFi: Emulating Software-Defined Wireless Networks. In Proceedings of the 2015 11th International Conference on Network and Service Management (CNSM), Barcelona, Spain, 9–13 November 2015; pp. 384–389 – reference: LongKLiWJiangMLuJNon-cooperative game-based power allocation for energy-efficient NOMA heterogeneous networkIEEE Access20208495964960910.1109/ACCESS.2020.2980191 – reference: MardaniAMauryaSArulkumarNEagle strategy arithmetic optimisation algorithm with optimal deep convolutional forest based FinTech application for hyper-automationEnterprise Information Systems202310.1080/17517575.2023.2188123 – ident: 3540_CR3 doi: 10.1109/ICSESS49938.2020.9237684 – volume: 165 year: 2019 ident: 3540_CR17 publication-title: Computer Networks doi: 10.1016/j.comnet.2019.106956 – volume: 19 start-page: 1 issue: 3 year: 2019 ident: 3540_CR16 publication-title: Sensors doi: 10.3390/s19030691 – volume: 68 start-page: 3887 year: 2020 ident: 3540_CR6 publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2020.3000328 – volume: 68 start-page: 4960 issue: 8 year: 2020 ident: 3540_CR9 publication-title: IEEE Transactions on Communications doi: 10.1109/TCOMM.2020.2993085 – volume: 105 start-page: 145 issue: 1 year: 2019 ident: 3540_CR15 publication-title: Wireless Personal Communications doi: 10.1007/s11277-018-6107-5 – volume: 10 start-page: 17 issue: 1–7 year: 2018 ident: 3540_CR14 publication-title: Journal of Telecommunication, Electronic and Computer Engineering – year: 2023 ident: 3540_CR25 publication-title: Wireless Networks doi: 10.1007/s11276-023-03324-6 – volume: 22 start-page: 1359 issue: 2 year: 2023 ident: 3540_CR11 publication-title: IEEE Transactions on Wireless Communications doi: 10.1109/TWC.2022.3204486 – volume: 8 start-page: 1133 issue: 4 year: 2019 ident: 3540_CR4 publication-title: IEEE Wireless Communications Letters doi: 10.1109/LWC.2019.2908912 – ident: 3540_CR24 doi: 10.1109/CNSM.2015.7367387 – ident: 3540_CR5 doi: 10.1016/j.phycom.2021.101540 – year: 2023 ident: 3540_CR21 publication-title: Wireless Networks doi: 10.1007/s11276-022-03225-0 – volume: 9 start-page: 228 issue: 2 year: 2020 ident: 3540_CR10 publication-title: IEEE Wireless Communications Letters doi: 10.1109/LWC.2019.2949277 – volume: 65 start-page: 3313 issue: 13 year: 2017 ident: 3540_CR22 publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2017.2684748 – volume: 18 start-page: 3091 issue: 9 year: 2018 ident: 3540_CR23 publication-title: Sensors doi: 10.3390/s18093091 – volume: 67 start-page: 4117 issue: 6 year: 2019 ident: 3540_CR8 publication-title: IEEE Transactions on Communications doi: 10.1109/TCOMM.2019.2900634 – volume: 12 start-page: 4300 issue: 22 year: 2019 ident: 3540_CR13 publication-title: Energies doi: 10.3390/en12224300 – ident: 3540_CR1 doi: 10.1109/COMST.2021.3059896 – volume: 67 start-page: 7331 issue: 10 year: 2019 ident: 3540_CR18 publication-title: IEEE Transactions on Communications doi: 10.1109/TCOMM.2019.2924010 – volume: 8 start-page: 49596 year: 2020 ident: 3540_CR7 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2980191 – volume: 68 start-page: 2977 year: 2020 ident: 3540_CR12 publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2020.2988255 – year: 2023 ident: 3540_CR19 publication-title: Enterprise Information Systems doi: 10.1080/17517575.2023.2188123 – volume: 22 start-page: 7371 issue: 7 year: 2022 ident: 3540_CR2 publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2022.3153314 – ident: 3540_CR20 doi: 10.3934/math.2023419  | 
    
| SSID | ssj0008399 | 
    
| Score | 2.4446802 | 
    
| Snippet | Significant advances in high-bandwidth applications and rising power consumption have highlighted the need for energy-efficient design solutions in backbone... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 7041 | 
    
| SubjectTerms | Algorithms Approximation Artificial neural networks Communications Engineering Computer Communication Networks Convexity Design optimization Effectiveness Electrical Engineering Energy management Engineering IT in Business Maximum power Network topologies Networks Neural networks Radial basis function Resource allocation Wireless communication systems Wireless networks  | 
    
| Title | Radial basis function neural network-based algorithm unfolding for energy-aware resource allocation in wireless networks | 
    
| URI | https://link.springer.com/article/10.1007/s11276-023-03540-0 https://www.proquest.com/docview/3128039203  | 
    
| Volume | 30 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1572-8196 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0008399 issn: 1022-0038 databaseCode: ADMLS dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1572-8196 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008399 issn: 1022-0038 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1572-8196 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0008399 issn: 1022-0038 databaseCode: 8FG dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1572-8196 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008399 issn: 1022-0038 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1572-8196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008399 issn: 1022-0038 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgvcABsYpCqXzgBpZix9mOFeoiEBwQlcopSrxApZCiJBV8PuMsDSBA4pjE8cFjz3v2eN4gdG5CmcIXkmjAPsKlK0gglUukB97QjZikZemE2zt3OuPXc2deJ4XlzW33JiRZeuo22Y0yz1yYtYllDisIbNS7jpHzglk8Y8O1_wXID8oYJ2yzTOCrTpX5uY-vcNRyzG9h0RJtxrtop6aJeFjZdQ9tqHQfbX8SDzxA7_dGViDBgEOLHBt8MmOMjUAlvE2r693EoJTEUfK0zBbF8wtewYQq400Y2CpWZeYfid6iTOGsPsnHJhZfneThRYqNmHEC_rDpMj9Es_Ho4WpK6joKRMACKwjnggqHCW15UeBRR_iKUx67Iva0B9jkgxkZPNm2spiOI-FaMdORBHIoKKPaPkKddJmqY4RZHCtLcldGgeYB1UB6YVEHwgWWpYGL9BBthjMUtci4qXWRhK08sjFBCCYISxOEVg9drP95rSQ2_mzdb6wU1sstD21qimwFzLJ76LKxXPv5995O_tf8FG0xIDVVLmIfdYpspc6AlBTxAG3648kAdYeTx5vRoJyRHx3c26I | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELUQDMCA-BSFAh7YwFLsuEkzVoiqQNsBtVK3KPEHVAopSlLBz-fsJA0gQGJM4njw2feefb53CF2aUKboCkk0YB_h0hMkkMoj0gdv6EVMUls6YTT2BlN-P-vMqqSwvL7tXockradukt0o882FWZc45rCCwEZ9wwhYGcX8Keut_C9AfmBjnLDNMoGvKlXm5z6-wlHDMb-FRS3a9HfRTkUTca-06x5aU-k-2v4kHniA3h-NrECCAYfmOTb4ZMYYG4FKeJuW17uJQSmJo-Rpkc2L5xe8hAll400Y2CpWNvOPRG9RpnBWneRjE4svT_LwPMVGzDgBf1h3mR-iaf92cjMgVR0FImCBFYRzQUWHCe34UeDTjugqTnnsidjXPmBTF8zI4Ml1lcN0HAnPiZmOJJBDQRnV7hFaTxepOkaYxbFyJPdkFGgeUA2kFxZ1IDxgWRq4SAvRejhDUYmMm1oXSdjIIxsThGCC0JogdFroavXPaymx8Wfrdm2lsFpueehSU2QrYI7bQte15ZrPv_d28r_mF2hzMBkNw-Hd-OEUbTEgOGVeYhutF9lSnQFBKeJzOx8_AIGz3BQ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA4yQfRBvOJ0ah5807A2zdL1cahj3oaIg72VNhcd1G50HfrzPUnbbYoKPrZN85CT5PuSc853EDozrkzRFpJowD7CJBckkIoT6cNuyCMqXVs64aHPewN2O2wNl7L4bbR75ZIschqMSlOaNydSNxeJby71TfCsRxxzcUHg0L7KjFACzOgB7cz3YoD_wPo74chlnGBl2szPfXyFpgXf_OYitcjT3UKbJWXEncLG22hFpTtoY0lIcBd9PBmJgQQDJo2m2GCVGW9sxCrhbVqEehODWBJHycs4G-Wvb3gGk8v6njAwV6xsFiCJ3qNM4ay81cfGL1_c6uFRio2wcQJ7Y9XldA8NutfPlz1S1lQgAhZbThgTrmhRoR0_Cny3JdqKuSzmIva1DzjVBpNSePI85VAdR4I7MdWRBKIoYHy1t49q6ThVBwjTOFaOZFxGgWaBq4EAwwIPBAfGpYGX1JFbDWcoSsFxU_ciCRdSycYEIZggtCYInTo6n_8zKeQ2_mzdqKwUlktvGnquKbgVUMero4vKcovPv_d2-L_mp2jt8aob3t_0747QOgWuU6QoNlAtz2bqGLhKHp_Y6fgJRWzgUA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radial+basis+function+neural+network-based+algorithm+unfolding+for+energy-aware+resource+allocation+in+wireless+networks&rft.jtitle=Wireless+networks&rft.au=Prasanna%2C+B.+T.&rft.au=Ramya%2C+D.&rft.au=Shelke%2C+Nilesh&rft.au=Fernandes%2C+J.+Bennilo&rft.date=2024-11-01&rft.issn=1022-0038&rft.eissn=1572-8196&rft.volume=30&rft.issue=8&rft.spage=7041&rft.epage=7058&rft_id=info:doi/10.1007%2Fs11276-023-03540-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11276_023_03540_0 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-0038&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-0038&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-0038&client=summon |