Radial basis function neural network-based algorithm unfolding for energy-aware resource allocation in wireless networks

Significant advances in high-bandwidth applications and rising power consumption have highlighted the need for energy-efficient design solutions in backbone optical networks. Task allocation is an important application scenario for sensor networks in which a central entity allocates resources to a c...

Full description

Saved in:
Bibliographic Details
Published inWireless networks Vol. 30; no. 8; pp. 7041 - 7058
Main Authors Prasanna, B. T., Ramya, D., Shelke, Nilesh, Fernandes, J. Bennilo, Galety, Mohammad Gouse, Ashok, M.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.11.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1022-0038
1572-8196
DOI10.1007/s11276-023-03540-0

Cover

Abstract Significant advances in high-bandwidth applications and rising power consumption have highlighted the need for energy-efficient design solutions in backbone optical networks. Task allocation is an important application scenario for sensor networks in which a central entity allocates resources to a collection of geographically scattered sensor nodes to achieve an overall goal. Effective resource allocation is essential for optimizing wireless networks' performance and energy efficacy. We provide a novel technique for energy-aware resource allocation in wireless networks that integrates the radial basis function neural network (RBFNN) algorithm with the deep unfolding of the successive concave approximation (DUSCA). The RBFNN is approximated as a function to understand the relationship between resource allocation decisions and network performance measures. Using its capacity to characterize complex nonlinear mappings, the RBFNN offers a flexible framework for depicting the intricate interdependence in wireless network settings. The DUSCA framework is learned using progressive training and stochastic gradient descent. The unsupervised loss is precisely designed to illustrate the objective's monotonic property under maximum power limitations. Extensive numerical findings show that it may be applied to a wide range of network topologies with different sizes, densities, and channel dispersion. In addition, we present the DUSC method, which is frequently employed in resource allocation to tackle non-convex optimization problems. By expressing the SCA's repetitive phases as a deep neural network and optimizing resource allocation concurrently, we can improve the convergence and quality of its solutions. Our proposed RBFNN–DUSCA architecture, which combines RBFNN with the profound unfolding of the SCA algorithm, provides a viable method for addressing resource allocation challenges in wireless networks, paving the way for more energy-efficient and high-performance wireless communication systems.
AbstractList Significant advances in high-bandwidth applications and rising power consumption have highlighted the need for energy-efficient design solutions in backbone optical networks. Task allocation is an important application scenario for sensor networks in which a central entity allocates resources to a collection of geographically scattered sensor nodes to achieve an overall goal. Effective resource allocation is essential for optimizing wireless networks' performance and energy efficacy. We provide a novel technique for energy-aware resource allocation in wireless networks that integrates the radial basis function neural network (RBFNN) algorithm with the deep unfolding of the successive concave approximation (DUSCA). The RBFNN is approximated as a function to understand the relationship between resource allocation decisions and network performance measures. Using its capacity to characterize complex nonlinear mappings, the RBFNN offers a flexible framework for depicting the intricate interdependence in wireless network settings. The DUSCA framework is learned using progressive training and stochastic gradient descent. The unsupervised loss is precisely designed to illustrate the objective's monotonic property under maximum power limitations. Extensive numerical findings show that it may be applied to a wide range of network topologies with different sizes, densities, and channel dispersion. In addition, we present the DUSC method, which is frequently employed in resource allocation to tackle non-convex optimization problems. By expressing the SCA's repetitive phases as a deep neural network and optimizing resource allocation concurrently, we can improve the convergence and quality of its solutions. Our proposed RBFNN–DUSCA architecture, which combines RBFNN with the profound unfolding of the SCA algorithm, provides a viable method for addressing resource allocation challenges in wireless networks, paving the way for more energy-efficient and high-performance wireless communication systems.
Author Galety, Mohammad Gouse
Fernandes, J. Bennilo
Prasanna, B. T.
Shelke, Nilesh
Ashok, M.
Ramya, D.
Author_xml – sequence: 1
  givenname: B. T.
  surname: Prasanna
  fullname: Prasanna, B. T.
  email: prasannabt@jssstuniv.in, prasanna_bt@outlook.com
  organization: Department of CSE, JSS Science and Technology University
– sequence: 2
  givenname: D.
  surname: Ramya
  fullname: Ramya, D.
  organization: Department of EEE, Sathyabama Institute of Science and Technology
– sequence: 3
  givenname: Nilesh
  surname: Shelke
  fullname: Shelke, Nilesh
  organization: Symbiosis Institute of Technology, Symbiosis International (Deemed University)
– sequence: 4
  givenname: J. Bennilo
  surname: Fernandes
  fullname: Fernandes, J. Bennilo
  organization: Department of ECE, Kalasalingam Academy of Research and Education
– sequence: 5
  givenname: Mohammad Gouse
  surname: Galety
  fullname: Galety, Mohammad Gouse
  organization: Department of Computer Science, Samarkand International University of Technology
– sequence: 6
  givenname: M.
  surname: Ashok
  fullname: Ashok, M.
  organization: Department of Computer Science & Engineering, Rajalakshmi Institute of Technology
BookMark eNp9UE1LAzEQDVLBtvoHPAU8RyfJdj-OUvwCQRA9L9l0sqZuk5rsUvvvja0ieOglk5l5783jTcjIeYeEnHO45ADFVeRcFDkDIRnIWQYMjsiYzwrBSl7lo_QHIRiALE_IJMYlAJSyqsbk81ktrOpoo6KN1AxO99Y76nAIaeqw3_jwztIWF1R1rQ-2f1vRwRnfLaxrqfGBosPQbpnaqIA0YPRD0JjQnddqp2Yd3diAHcb4KxlPybFRXcSznzolr7c3L_N79vh09zC_fmRa8qpnWaa5ngltoFBVwWe6xIxnTa6bwhQFL0vUWqROSgRhGqVzaIRRCy4rzQU3ckou9rrr4D8GjH29TP5cOllLLkqQlQCZUOUepYOPMaCpte135vugbFdzqL9zrvc51ynnepdzeqdE_KOug12psD1MkntSTGDXYvhzdYD1Bc8nlRQ
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3540716
Cites_doi 10.1109/ICSESS49938.2020.9237684
10.1016/j.comnet.2019.106956
10.3390/s19030691
10.1109/TSP.2020.3000328
10.1109/TCOMM.2020.2993085
10.1007/s11277-018-6107-5
10.1007/s11276-023-03324-6
10.1109/TWC.2022.3204486
10.1109/LWC.2019.2908912
10.1109/CNSM.2015.7367387
10.1016/j.phycom.2021.101540
10.1007/s11276-022-03225-0
10.1109/LWC.2019.2949277
10.1109/TSP.2017.2684748
10.3390/s18093091
10.1109/TCOMM.2019.2900634
10.3390/en12224300
10.1109/COMST.2021.3059896
10.1109/TCOMM.2019.2924010
10.1109/ACCESS.2020.2980191
10.1109/TSP.2020.2988255
10.1080/17517575.2023.2188123
10.1109/JSEN.2022.3153314
10.3934/math.2023419
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s11276-023-03540-0
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1572-8196
EndPage 7058
ExternalDocumentID 10_1007_s11276_023_03540_0
GroupedDBID -59
-5G
-BR
-EM
-ET
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
85S
88I
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
8US
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAHTB
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABGDV
ABHFT
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPEJ
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACM
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADL
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWIH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HGAVV
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I07
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
KZ1
LAK
LLZTM
M0C
M2P
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SCV
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U5U
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W7O
WK8
YIN
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZY4
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AETEA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c319t-44c1c52cf07a9715c8e414b6cb7f77188ecc26cb33e02fbac60b2fad139c121f3
IEDL.DBID U2A
ISSN 1022-0038
IngestDate Sat Aug 16 21:10:52 EDT 2025
Thu Apr 24 23:04:56 EDT 2025
Wed Oct 01 03:48:30 EDT 2025
Fri Feb 21 02:40:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Deep learning
Radial basis function neural network (RBFNN)
Deep unfolding of the successive concave approximation (DUSCA)
Wireless networks
Energy-aware resource allocation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-44c1c52cf07a9715c8e414b6cb7f77188ecc26cb33e02fbac60b2fad139c121f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3128039203
PQPubID 26318
PageCount 18
ParticipantIDs proquest_journals_3128039203
crossref_citationtrail_10_1007_s11276_023_03540_0
crossref_primary_10_1007_s11276_023_03540_0
springer_journals_10_1007_s11276_023_03540_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241100
2024-11-00
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 20241100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle The Journal of Mobile Communication, Computation and Information
PublicationTitle Wireless networks
PublicationTitleAbbrev Wireless Netw
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Fontes, R.R., Afzal, S., Brito, S.H., Santos, M.A., Rothenberg, C.E. (2015). Mininet-WiFi: Emulating Software-Defined Wireless Networks. In Proceedings of the 2015 11th International Conference on Network and Service Management (CNSM), Barcelona, Spain, 9–13 November 2015; pp. 384–389
Prakash, M., Arunodaya, R. M., Ezhumalai, P. (2023). A fuzzy logic and DEEC protocol-based clustering routing method for wireless sensor networks. AIMS Mathematics, 2023, 8(4), 8310–8331. https://doi.org/10.3934/math.2023419
SuBQinZNiQEnergy efficient uplink transmissions in LoRa networksIEEE Transactions on Communications20206884960497210.1109/TCOMM.2020.2993085
JamshidiMZangenehEEsnaashariMA novel model of Sybil attack in cluster-based wireless sensor networks and propose a distributed algorithm to defend itWireless Personal Communications2019105114517310.1007/s11277-018-6107-5
Jin, J., & Wang, A. (2020). Multiple-objective power control algorithm based on successive interference cancellation algorithm. In Proceedings of IEEE International Conference on Software Engineerinfg Service Sci.ence, Oct. 2020, pp. 278–283.
AbedSAl-ShayejiMEbrahimFA secure and energy efficient platform for the integration of wireless sensor networks and mobile cloud computing‘Computer Networks201916510.1016/j.comnet.2019.106956
LiBVermaGSegarraSGraph-based algorithm unfolding for energy-aware power allocation in wireless networksIEEE Transactions on Wireless Communications20232221359137310.1109/TWC.2022.3204486
LeeHJangHSJungBCImproving energy efficiency fairness of wireless networks: A deep learning approachEnergies20191222430010.3390/en12224300
ZapponeARenzoMDDebbahMWireless networks design in the era of deep learning: Model-based, AI-based, or both?IEEE Transactions on Communications201967107331737610.1109/TCOMM.2019.2924010
FangFDingZLiangWZhangHOptimal energy efficient power allocation with user fairness for uplink MC-NOMA systemsIEEE Wireless Communications Letters2019841133113610.1109/LWC.2019.2908912
RaoPVVAnandMDanielJAMillimeter assisted wave technologies in 6G assisted wireless communication systems: A new paradigm for 6G collaborative learningWireless Networks202310.1007/s11276-023-03324-6
EfremCNPanagopoulosADDynamic energy-efficient power allocation in multibeam satellite systemsIEEE Wireless Communications Letters20209222823110.1109/LWC.2019.2949277
Mai, T. C., Ngo, H. Q., & Tran, L.-N. (2022). Energy-efficient power allocation in cell-free massive MIMO with zero-forcing: First order methods. Physics Communications, 51, Art. no. 101540.
MatthiesenBZapponeABesserK-LJorswieckEADebbahMA globally optimal energy-efficient power control framework and its efficient implementation in wireless interference networksIEEE Transactions on Signal Processing20206838873902412812010.1109/TSP.2020.3000328
GuptaSMobility aware load balancing using Kho-Kho optimization algorithm for hybrid Li-Fi and Wi-Fi networkWireless Networks202310.1007/s11276-022-03225-0
LongKLiWJiangMLuJNon-cooperative game-based power allocation for energy-efficient NOMA heterogeneous networkIEEE Access20208495964960910.1109/ACCESS.2020.2980191
YangYPesaventoMA unified successive pseudoconvex approximation frameworkIEEE Transactions on Signal Processing2017651333133328366657110.1109/TSP.2017.2684748
Xu, Y., Gui, G., Gacanin, H., & Adachi, F. (2021). A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges. IEEE Communications Surveys & Tutorials, 23(2), 668–695.
RajRDixitAAn energy-efficient power allocation scheme for NOMA-based IoT sensor networks in 6GIEEE Sensors Journal20222277371738410.1109/JSEN.2022.3153314
Al-ObiedollahHMCumananKThiyagalingamJBurrAGDingZDobreOAEnergy efficient beamforming design for MISO non-orthogonal multiple access systemsIEEE Transactions on Communications20196764117413110.1109/TCOMM.2019.2900634
ArroyoPHerreroJLSuarezJILozanoJWireless sensor network combined with cloud computing for air quality monitoringSensors201919311710.3390/s19030691
EisenMRibeiroAOptimal wireless resource allocation with random edge graph neural networksIEEE Transactions on Signal Processing20206829772991411473710.1109/TSP.2020.2988255
MardaniAMauryaSArulkumarNEagle strategy arithmetic optimisation algorithm with optimal deep convolutional forest based FinTech application for hyper-automationEnterprise Information Systems202310.1080/17517575.2023.2188123
NingYWangJHanHTanXLiuTAn optimal radial basis function neural network enhanced adaptive robust Kalman filter for GNSS/INS integrated systems in complex urban areasSensors2018189309110.3390/s18093091
BurhanuddinMAMohammedAAJIsmailRHameedMEKareemANBasironHA review on security challenges and features in wireless sensor networks: IoT perspectiveJournal of Telecommunication, Electronic and Computer Engineering2018101–71721
A Zappone (3540_CR18) 2019; 67
B Li (3540_CR11) 2023; 22
M Jamshidi (3540_CR15) 2019; 105
A Mardani (3540_CR19) 2023
Y Ning (3540_CR23) 2018; 18
3540_CR3
M Eisen (3540_CR12) 2020; 68
3540_CR1
S Gupta (3540_CR21) 2023
3540_CR5
CN Efrem (3540_CR10) 2020; 9
Y Yang (3540_CR22) 2017; 65
B Matthiesen (3540_CR6) 2020; 68
B Su (3540_CR9) 2020; 68
S Abed (3540_CR17) 2019; 165
K Long (3540_CR7) 2020; 8
R Raj (3540_CR2) 2022; 22
F Fang (3540_CR4) 2019; 8
3540_CR20
MA Burhanuddin (3540_CR14) 2018; 10
3540_CR24
PVV Rao (3540_CR25) 2023
H Lee (3540_CR13) 2019; 12
HM Al-Obiedollah (3540_CR8) 2019; 67
P Arroyo (3540_CR16) 2019; 19
References_xml – reference: GuptaSMobility aware load balancing using Kho-Kho optimization algorithm for hybrid Li-Fi and Wi-Fi networkWireless Networks202310.1007/s11276-022-03225-0
– reference: Al-ObiedollahHMCumananKThiyagalingamJBurrAGDingZDobreOAEnergy efficient beamforming design for MISO non-orthogonal multiple access systemsIEEE Transactions on Communications20196764117413110.1109/TCOMM.2019.2900634
– reference: FangFDingZLiangWZhangHOptimal energy efficient power allocation with user fairness for uplink MC-NOMA systemsIEEE Wireless Communications Letters2019841133113610.1109/LWC.2019.2908912
– reference: YangYPesaventoMA unified successive pseudoconvex approximation frameworkIEEE Transactions on Signal Processing2017651333133328366657110.1109/TSP.2017.2684748
– reference: NingYWangJHanHTanXLiuTAn optimal radial basis function neural network enhanced adaptive robust Kalman filter for GNSS/INS integrated systems in complex urban areasSensors2018189309110.3390/s18093091
– reference: RajRDixitAAn energy-efficient power allocation scheme for NOMA-based IoT sensor networks in 6GIEEE Sensors Journal20222277371738410.1109/JSEN.2022.3153314
– reference: Xu, Y., Gui, G., Gacanin, H., & Adachi, F. (2021). A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges. IEEE Communications Surveys & Tutorials, 23(2), 668–695.
– reference: RaoPVVAnandMDanielJAMillimeter assisted wave technologies in 6G assisted wireless communication systems: A new paradigm for 6G collaborative learningWireless Networks202310.1007/s11276-023-03324-6
– reference: Mai, T. C., Ngo, H. Q., & Tran, L.-N. (2022). Energy-efficient power allocation in cell-free massive MIMO with zero-forcing: First order methods. Physics Communications, 51, Art. no. 101540.
– reference: MatthiesenBZapponeABesserK-LJorswieckEADebbahMA globally optimal energy-efficient power control framework and its efficient implementation in wireless interference networksIEEE Transactions on Signal Processing20206838873902412812010.1109/TSP.2020.3000328
– reference: Prakash, M., Arunodaya, R. M., Ezhumalai, P. (2023). A fuzzy logic and DEEC protocol-based clustering routing method for wireless sensor networks. AIMS Mathematics, 2023, 8(4), 8310–8331. https://doi.org/10.3934/math.2023419
– reference: BurhanuddinMAMohammedAAJIsmailRHameedMEKareemANBasironHA review on security challenges and features in wireless sensor networks: IoT perspectiveJournal of Telecommunication, Electronic and Computer Engineering2018101–71721
– reference: EisenMRibeiroAOptimal wireless resource allocation with random edge graph neural networksIEEE Transactions on Signal Processing20206829772991411473710.1109/TSP.2020.2988255
– reference: EfremCNPanagopoulosADDynamic energy-efficient power allocation in multibeam satellite systemsIEEE Wireless Communications Letters20209222823110.1109/LWC.2019.2949277
– reference: AbedSAl-ShayejiMEbrahimFA secure and energy efficient platform for the integration of wireless sensor networks and mobile cloud computing‘Computer Networks201916510.1016/j.comnet.2019.106956
– reference: Jin, J., & Wang, A. (2020). Multiple-objective power control algorithm based on successive interference cancellation algorithm. In Proceedings of IEEE International Conference on Software Engineerinfg Service Sci.ence, Oct. 2020, pp. 278–283.
– reference: SuBQinZNiQEnergy efficient uplink transmissions in LoRa networksIEEE Transactions on Communications20206884960497210.1109/TCOMM.2020.2993085
– reference: LiBVermaGSegarraSGraph-based algorithm unfolding for energy-aware power allocation in wireless networksIEEE Transactions on Wireless Communications20232221359137310.1109/TWC.2022.3204486
– reference: LeeHJangHSJungBCImproving energy efficiency fairness of wireless networks: A deep learning approachEnergies20191222430010.3390/en12224300
– reference: ArroyoPHerreroJLSuarezJILozanoJWireless sensor network combined with cloud computing for air quality monitoringSensors201919311710.3390/s19030691
– reference: ZapponeARenzoMDDebbahMWireless networks design in the era of deep learning: Model-based, AI-based, or both?IEEE Transactions on Communications201967107331737610.1109/TCOMM.2019.2924010
– reference: JamshidiMZangenehEEsnaashariMA novel model of Sybil attack in cluster-based wireless sensor networks and propose a distributed algorithm to defend itWireless Personal Communications2019105114517310.1007/s11277-018-6107-5
– reference: Fontes, R.R., Afzal, S., Brito, S.H., Santos, M.A., Rothenberg, C.E. (2015). Mininet-WiFi: Emulating Software-Defined Wireless Networks. In Proceedings of the 2015 11th International Conference on Network and Service Management (CNSM), Barcelona, Spain, 9–13 November 2015; pp. 384–389
– reference: LongKLiWJiangMLuJNon-cooperative game-based power allocation for energy-efficient NOMA heterogeneous networkIEEE Access20208495964960910.1109/ACCESS.2020.2980191
– reference: MardaniAMauryaSArulkumarNEagle strategy arithmetic optimisation algorithm with optimal deep convolutional forest based FinTech application for hyper-automationEnterprise Information Systems202310.1080/17517575.2023.2188123
– ident: 3540_CR3
  doi: 10.1109/ICSESS49938.2020.9237684
– volume: 165
  year: 2019
  ident: 3540_CR17
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2019.106956
– volume: 19
  start-page: 1
  issue: 3
  year: 2019
  ident: 3540_CR16
  publication-title: Sensors
  doi: 10.3390/s19030691
– volume: 68
  start-page: 3887
  year: 2020
  ident: 3540_CR6
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2020.3000328
– volume: 68
  start-page: 4960
  issue: 8
  year: 2020
  ident: 3540_CR9
  publication-title: IEEE Transactions on Communications
  doi: 10.1109/TCOMM.2020.2993085
– volume: 105
  start-page: 145
  issue: 1
  year: 2019
  ident: 3540_CR15
  publication-title: Wireless Personal Communications
  doi: 10.1007/s11277-018-6107-5
– volume: 10
  start-page: 17
  issue: 1–7
  year: 2018
  ident: 3540_CR14
  publication-title: Journal of Telecommunication, Electronic and Computer Engineering
– year: 2023
  ident: 3540_CR25
  publication-title: Wireless Networks
  doi: 10.1007/s11276-023-03324-6
– volume: 22
  start-page: 1359
  issue: 2
  year: 2023
  ident: 3540_CR11
  publication-title: IEEE Transactions on Wireless Communications
  doi: 10.1109/TWC.2022.3204486
– volume: 8
  start-page: 1133
  issue: 4
  year: 2019
  ident: 3540_CR4
  publication-title: IEEE Wireless Communications Letters
  doi: 10.1109/LWC.2019.2908912
– ident: 3540_CR24
  doi: 10.1109/CNSM.2015.7367387
– ident: 3540_CR5
  doi: 10.1016/j.phycom.2021.101540
– year: 2023
  ident: 3540_CR21
  publication-title: Wireless Networks
  doi: 10.1007/s11276-022-03225-0
– volume: 9
  start-page: 228
  issue: 2
  year: 2020
  ident: 3540_CR10
  publication-title: IEEE Wireless Communications Letters
  doi: 10.1109/LWC.2019.2949277
– volume: 65
  start-page: 3313
  issue: 13
  year: 2017
  ident: 3540_CR22
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2017.2684748
– volume: 18
  start-page: 3091
  issue: 9
  year: 2018
  ident: 3540_CR23
  publication-title: Sensors
  doi: 10.3390/s18093091
– volume: 67
  start-page: 4117
  issue: 6
  year: 2019
  ident: 3540_CR8
  publication-title: IEEE Transactions on Communications
  doi: 10.1109/TCOMM.2019.2900634
– volume: 12
  start-page: 4300
  issue: 22
  year: 2019
  ident: 3540_CR13
  publication-title: Energies
  doi: 10.3390/en12224300
– ident: 3540_CR1
  doi: 10.1109/COMST.2021.3059896
– volume: 67
  start-page: 7331
  issue: 10
  year: 2019
  ident: 3540_CR18
  publication-title: IEEE Transactions on Communications
  doi: 10.1109/TCOMM.2019.2924010
– volume: 8
  start-page: 49596
  year: 2020
  ident: 3540_CR7
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2980191
– volume: 68
  start-page: 2977
  year: 2020
  ident: 3540_CR12
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2020.2988255
– year: 2023
  ident: 3540_CR19
  publication-title: Enterprise Information Systems
  doi: 10.1080/17517575.2023.2188123
– volume: 22
  start-page: 7371
  issue: 7
  year: 2022
  ident: 3540_CR2
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2022.3153314
– ident: 3540_CR20
  doi: 10.3934/math.2023419
SSID ssj0008399
Score 2.4446802
Snippet Significant advances in high-bandwidth applications and rising power consumption have highlighted the need for energy-efficient design solutions in backbone...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7041
SubjectTerms Algorithms
Approximation
Artificial neural networks
Communications Engineering
Computer Communication Networks
Convexity
Design optimization
Effectiveness
Electrical Engineering
Energy management
Engineering
IT in Business
Maximum power
Network topologies
Networks
Neural networks
Radial basis function
Resource allocation
Wireless communication systems
Wireless networks
Title Radial basis function neural network-based algorithm unfolding for energy-aware resource allocation in wireless networks
URI https://link.springer.com/article/10.1007/s11276-023-03540-0
https://www.proquest.com/docview/3128039203
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1572-8196
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0008399
  issn: 1022-0038
  databaseCode: ADMLS
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1572-8196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008399
  issn: 1022-0038
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1572-8196
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0008399
  issn: 1022-0038
  databaseCode: 8FG
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1572-8196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008399
  issn: 1022-0038
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1572-8196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008399
  issn: 1022-0038
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgvcABsYpCqXzgBpZix9mOFeoiEBwQlcopSrxApZCiJBV8PuMsDSBA4pjE8cFjz3v2eN4gdG5CmcIXkmjAPsKlK0gglUukB97QjZikZemE2zt3OuPXc2deJ4XlzW33JiRZeuo22Y0yz1yYtYllDisIbNS7jpHzglk8Y8O1_wXID8oYJ2yzTOCrTpX5uY-vcNRyzG9h0RJtxrtop6aJeFjZdQ9tqHQfbX8SDzxA7_dGViDBgEOLHBt8MmOMjUAlvE2r693EoJTEUfK0zBbF8wtewYQq400Y2CpWZeYfid6iTOGsPsnHJhZfneThRYqNmHEC_rDpMj9Es_Ho4WpK6joKRMACKwjnggqHCW15UeBRR_iKUx67Iva0B9jkgxkZPNm2spiOI-FaMdORBHIoKKPaPkKddJmqY4RZHCtLcldGgeYB1UB6YVEHwgWWpYGL9BBthjMUtci4qXWRhK08sjFBCCYISxOEVg9drP95rSQ2_mzdb6wU1sstD21qimwFzLJ76LKxXPv5995O_tf8FG0xIDVVLmIfdYpspc6AlBTxAG3648kAdYeTx5vRoJyRHx3c26I
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELUQDMCA-BSFAh7YwFLsuEkzVoiqQNsBtVK3KPEHVAopSlLBz-fsJA0gQGJM4njw2feefb53CF2aUKboCkk0YB_h0hMkkMoj0gdv6EVMUls6YTT2BlN-P-vMqqSwvL7tXockradukt0o882FWZc45rCCwEZ9wwhYGcX8Keut_C9AfmBjnLDNMoGvKlXm5z6-wlHDMb-FRS3a9HfRTkUTca-06x5aU-k-2v4kHniA3h-NrECCAYfmOTb4ZMYYG4FKeJuW17uJQSmJo-Rpkc2L5xe8hAll400Y2CpWNvOPRG9RpnBWneRjE4svT_LwPMVGzDgBf1h3mR-iaf92cjMgVR0FImCBFYRzQUWHCe34UeDTjugqTnnsidjXPmBTF8zI4Ml1lcN0HAnPiZmOJJBDQRnV7hFaTxepOkaYxbFyJPdkFGgeUA2kFxZ1IDxgWRq4SAvRejhDUYmMm1oXSdjIIxsThGCC0JogdFroavXPaymx8Wfrdm2lsFpueehSU2QrYI7bQte15ZrPv_d28r_mF2hzMBkNw-Hd-OEUbTEgOGVeYhutF9lSnQFBKeJzOx8_AIGz3BQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA4yQfRBvOJ0ah5807A2zdL1cahj3oaIg72VNhcd1G50HfrzPUnbbYoKPrZN85CT5PuSc853EDozrkzRFpJowD7CJBckkIoT6cNuyCMqXVs64aHPewN2O2wNl7L4bbR75ZIschqMSlOaNydSNxeJby71TfCsRxxzcUHg0L7KjFACzOgB7cz3YoD_wPo74chlnGBl2szPfXyFpgXf_OYitcjT3UKbJWXEncLG22hFpTtoY0lIcBd9PBmJgQQDJo2m2GCVGW9sxCrhbVqEehODWBJHycs4G-Wvb3gGk8v6njAwV6xsFiCJ3qNM4ay81cfGL1_c6uFRio2wcQJ7Y9XldA8NutfPlz1S1lQgAhZbThgTrmhRoR0_Cny3JdqKuSzmIva1DzjVBpNSePI85VAdR4I7MdWRBKIoYHy1t49q6ThVBwjTOFaOZFxGgWaBq4EAwwIPBAfGpYGX1JFbDWcoSsFxU_ciCRdSycYEIZggtCYInTo6n_8zKeQ2_mzdqKwUlktvGnquKbgVUMero4vKcovPv_d2-L_mp2jt8aob3t_0747QOgWuU6QoNlAtz2bqGLhKHp_Y6fgJRWzgUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radial+basis+function+neural+network-based+algorithm+unfolding+for+energy-aware+resource+allocation+in+wireless+networks&rft.jtitle=Wireless+networks&rft.au=Prasanna%2C+B.+T.&rft.au=Ramya%2C+D.&rft.au=Shelke%2C+Nilesh&rft.au=Fernandes%2C+J.+Bennilo&rft.date=2024-11-01&rft.issn=1022-0038&rft.eissn=1572-8196&rft.volume=30&rft.issue=8&rft.spage=7041&rft.epage=7058&rft_id=info:doi/10.1007%2Fs11276-023-03540-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11276_023_03540_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-0038&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-0038&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-0038&client=summon