Auto ROI & mask R-CNN model for QR code beautification (ARM-QR)

The development of the Internet has enabled the QR code to become the most frequently applied two-dimensional barcode in daily life and in commercial advertisements, and its application continues to be more diversified to include warehouse management, electronic tickets, mobile payments, etc. The st...

Full description

Saved in:
Bibliographic Details
Published inMultimedia systems Vol. 29; no. 3; pp. 1245 - 1276
Main Authors Tsai, Min-Jen, Wu, Hung-Yu, Lin, Di-Ting
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0942-4962
1432-1882
DOI10.1007/s00530-022-01046-x

Cover

Abstract The development of the Internet has enabled the QR code to become the most frequently applied two-dimensional barcode in daily life and in commercial advertisements, and its application continues to be more diversified to include warehouse management, electronic tickets, mobile payments, etc. The standard QR code consists of black and white modules, which display a monotonous visual effect. Since graph patterns are much easier to understand than text characters, showing the subject by patterns inside the QR code is the easiest way to understand implicit content. This research involves the development of a methodology called ARM-QR, in which the QR code is integrated with full-color images, and deep learning technology is used to beautify it. First, the region of interest (ROI) of the color image is automatically identified using Mask R-CNN. The QR code’s visual beautification is further adjusted by the content of the object. Discrete wavelet transform and contrast sensitivity functions are also used to strengthen the visual perception of the QR code and reduce the impact of a low print resolution on the graphic legibility. The ARM-QR code’s visual quality is intensively verified by visual quality indices, which include the Peak Signal-to-Noise Ratio (PSNR), Mean-Square Error (MSE), Structural Similarity Index Metric (SSIM), and Gradient Magnitude Similarity Deviation (GMSD) based on evaluating the experimental data. The results of the experiment confirm that the visual beautification of the QR code generated in this research is of higher quality than that in other QR code beautification studies.
AbstractList The development of the Internet has enabled the QR code to become the most frequently applied two-dimensional barcode in daily life and in commercial advertisements, and its application continues to be more diversified to include warehouse management, electronic tickets, mobile payments, etc. The standard QR code consists of black and white modules, which display a monotonous visual effect. Since graph patterns are much easier to understand than text characters, showing the subject by patterns inside the QR code is the easiest way to understand implicit content.This research involves the development of a methodology called ARM-QR, in which the QR code is integrated with full-color images, and deep learning technology is used to beautify it. First, the region of interest (ROI) of the color image is automatically identified using Mask R-CNN. The QR code’s visual beautification is further adjusted by the content of the object. Discrete wavelet transform and contrast sensitivity functions are also used to strengthen the visual perception of the QR code and reduce the impact of a low print resolution on the graphic legibility. The ARM-QR code’s visual quality is intensively verified by visual quality indices, which include the Peak Signal-to-Noise Ratio (PSNR), Mean-Square Error (MSE), Structural Similarity Index Metric (SSIM), and Gradient Magnitude Similarity Deviation (GMSD) based on evaluating the experimental data. The results of the experiment confirm that the visual beautification of the QR code generated in this research is of higher quality than that in other QR code beautification studies.
The development of the Internet has enabled the QR code to become the most frequently applied two-dimensional barcode in daily life and in commercial advertisements, and its application continues to be more diversified to include warehouse management, electronic tickets, mobile payments, etc. The standard QR code consists of black and white modules, which display a monotonous visual effect. Since graph patterns are much easier to understand than text characters, showing the subject by patterns inside the QR code is the easiest way to understand implicit content. This research involves the development of a methodology called ARM-QR, in which the QR code is integrated with full-color images, and deep learning technology is used to beautify it. First, the region of interest (ROI) of the color image is automatically identified using Mask R-CNN. The QR code’s visual beautification is further adjusted by the content of the object. Discrete wavelet transform and contrast sensitivity functions are also used to strengthen the visual perception of the QR code and reduce the impact of a low print resolution on the graphic legibility. The ARM-QR code’s visual quality is intensively verified by visual quality indices, which include the Peak Signal-to-Noise Ratio (PSNR), Mean-Square Error (MSE), Structural Similarity Index Metric (SSIM), and Gradient Magnitude Similarity Deviation (GMSD) based on evaluating the experimental data. The results of the experiment confirm that the visual beautification of the QR code generated in this research is of higher quality than that in other QR code beautification studies.
Author Lin, Di-Ting
Tsai, Min-Jen
Wu, Hung-Yu
Author_xml – sequence: 1
  givenname: Min-Jen
  surname: Tsai
  fullname: Tsai, Min-Jen
  email: mjtsai@cc.nctu.edu.tw
  organization: Institute of Information Management, National Yang Ming Chiao Tung University
– sequence: 2
  givenname: Hung-Yu
  surname: Wu
  fullname: Wu, Hung-Yu
  organization: Institute of Information Management, National Yang Ming Chiao Tung University
– sequence: 3
  givenname: Di-Ting
  surname: Lin
  fullname: Lin, Di-Ting
  organization: Institute of Information Management, National Yang Ming Chiao Tung University
BookMark eNp9kE1LAzEURYNUsK3-AVcBQXQRffmYTrKSUvwo1JYOug5pmpGp7UxNZqD-e9OOILjoKrxwz3uX00OdsiodQpcU7ihAeh8AEg4EGCNAQQzI7gR1qeCMUClZB3VBCUaEGrAz1AthBUDTAYcuehg2dYWz2Rhf440Jnzgjo-kUb6qlW-O88nieYRsHvHCmqYu8sKYuqhLfDLNXMs9uz9FpbtbBXfy-ffT-9Pg2eiGT2fN4NJwQy6mqiaA2ASuNVM7RnAFT-ZIuuLJCiVyk3LqEJftGMbEQzKbxiyUyNU5QoxLK--iq3bv11VfjQq1XVePLeFIzyaIDydkgpmSbsr4Kwbtc26I-FK69Kdaagt7r0q0uHXXpgy69iyj7h259sTH--zjEWyjEcPnh_F-rI9QPmRp64g
CitedBy_id crossref_primary_10_1109_JIOT_2024_3385542
crossref_primary_10_3390_a16030160
crossref_primary_10_31921_doxacom_n39a2189
Cites_doi 10.1109/MMUL.2006.23
10.1016/j.jvcir.2009.03.011
10.1109/TIP.2014.2321501
10.1109/TIT.1974.1055250
10.1109/TIP.2011.2109730
10.1007/s11042-019-7308-y
10.1145/2508363.2508408
10.1109/DSPWS.2002.1231082
10.1109/ICCV.2017.322
10.3390/sym10110543
10.1109/TIP.2013.2293423
10.1145/1618452.1618508
10.1109/CVPR.2016.91
10.1109/CVPR.2017.106
10.1145/3355056.3364574
10.1016/j.patrec.2008.04.005
10.1109/TMM.2015.2437711
10.1117/12.2280282
10.1111/cgf.12221
10.1109/83605413
10.1109/TIP.2003.819861
10.1117/12.2502054
10.1109/CVPR42600.2020.00860
10.1016/j.dsp.2022.103887
10.1109/CEC.2008.4630929
10.1007/s00371-015-1107-x
10.1109/TMM.2019.2891420
10.1007/978-3-030-01234-2_49
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00530-022-01046-x
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-1882
EndPage 1276
ExternalDocumentID 10_1007_s00530_022_01046_x
GroupedDBID --Z
-4Z
-59
-5G
-BR
-EM
-ET
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
85S
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YIN
YLTOR
Z45
Z7R
Z7X
Z83
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AETEA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c319t-41c50c8a89ee1f2029fd1b39c494f473ce5257630a89b42c773c2587ae41a9513
IEDL.DBID AGYKE
ISSN 0942-4962
IngestDate Thu Sep 25 00:56:01 EDT 2025
Wed Oct 01 03:10:35 EDT 2025
Thu Apr 24 22:48:45 EDT 2025
Fri Feb 21 02:43:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Deep learning
PSNR
SSIM
GMSD
QR code
ROI
MSE
Mask R-CNN
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-41c50c8a89ee1f2029fd1b39c494f473ce5257630a89b42c773c2587ae41a9513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2821008326
PQPubID 2043725
PageCount 32
ParticipantIDs proquest_journals_2821008326
crossref_citationtrail_10_1007_s00530_022_01046_x
crossref_primary_10_1007_s00530_022_01046_x
springer_journals_10_1007_s00530_022_01046_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Multimedia systems
PublicationTitleAbbrev Multimedia Systems
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References BrostowGJFauqueurJCipollaRSemantic object classes in video: a high-definition ground truth databasePattern Recogn. Lett.2009302889710.1016/j.patrec.2008.04.005
LinYSLuoSJChenBYArtistic QR code embellishmentComputer. Graph. Forum201332713714610.1111/cgf.12221
Kyprianidis J.E., and Döllner, J. “Image abstraction by structure adaptive filtering,” in Proc. EG UKTheory and Practice of Computer Graphics, pp 51–58, 2008.
Chu, H.K., Chang, C.S., Lee, R.R. et al., “Halftone QR codes,” in Proc. ACM Trans Graph (TOG) 32(6): no. 217. ACM SIGGRAPH ASIA 2013, https://doi.org/10.1145/2508363.2508408
QiaoSFangXShengBStructure-aware QR code abstractionVis Comp201510.1007/s00371-015-1107-x
USC SIPI–The USC-SIPI image database [Online]. Available: http://sipi.usc.edu/services/database/Database.html (accessed 3 Jan, 2021)
GarateguyGJArceGRLauDLQR images: optimized image embedding in QR codesIEEE Transact. Image Process2014322646510.1109/TIP.2014.23215011374.94117
LevickyDForisPHuman Visual System Models in Digital Image WatermarkingRadioengineering20041343843
Chen, L.C., Zhu, Y., Papandreou, G. et al., “Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation,” in Conf. Computer Vision – ECCV 2018, pp. 833–851.
LiLWangBLuJZhangSA new aesthetic QR code algorithm based on salient region detection and SPBVMJ. Int Technol2019203935946
He, K., Gkioxari, G., Dollár, P., et al. “Mask R-CNN,” in Conf. IEEE International Conference on Computer Vision (ICCV), pp. 2961–2969, Mar 2017. Available: https://doi.org/10.1109/ICCV.2017.322
WatsonABYangGYSolomonJAVisibility of wavelet quantization noiseIEEE Trans Image Proc.199710.1109/83605413
MannosJSakrisonDThe effects of a visual fidelity criterion on the encoding of imagesIEEE Trans Inf Theorem197410.1109/TIT.1974.10552500295.94044
Shelhamer, E., Long, J. and Darrell, T. “Fully Convolutional Networks for Semantic Segmentation,” in Conf. IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440, June 2015.
Visualead Company, “Visual QR code” [Online]. Available online: http://www.visualead.com/ (accessed on 16 November 2022).
LinSSHuMCLeeCHEfficient QR code beautification with high quality visual contentIEEE Transact Multimed201510.1109/TMM.2015.2437711
TsaiMJHsiehCYThe visual color QR code algorithm (DWT-QR) based on wavelet transform and human vision systemMultimed Tools App201910.1007/s11042-019-7308-y
XuMSuHLiYStylized aesthetic QR codeIEEE Trans. Multimed.20182181960197010.1109/TMM.2019.2891420
XueWZhangLMouXGradient magnitude similarity deviation: a highly efficient perceptual image quality indexIEEE Trans. Image Process.2014232684695315953210.1109/TIP.2013.22934231374.94418
LiLLiYWangB“A new aesthetic QR code algorithm based on salient region detection and SPBVM”, in Conf2017Springer, ChamSecurity with Intelligent Computing and Big-data Services2032
Chen, H., Sun, K., Tian, Z., Shen, C. et al., “BlendMask: Top-down meets bottom-up for instance segmentation,” in Conf. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 8573–8581, Jan 2020.
Lin, L., Zou, X., He, L. et al. “Aesthetic QR code generation with background contrast enhancement and user interaction,” in Conf. Third International Workshop on Pattern Recognition, July 2018. Available: https://doi.org/10.1117/12.2502054
ViolaPJonesMJ“Rapid object detection using a boosted cascade of simple features”, in ConfIEEE Comp Soc Conf Comp Vis Patt Recogn20011511518
Ono, S., Morinaga, K., Nakayama, S.: Two-dimensional barcode decoration based on real-coded genetic algorithm. In: Proceedings of IEEE CEC, Hong-Kong, China, pp. 1068–1073 (2008)
Russ Cox's method, (2012, April 12) QArt Codes [Online]. Available: https://research.swtch.com/qart
HuangBBTangSXA contrast-sensitive visible watermarking scheme”IEEE Multimed200610.1109/MMUL.2006.23
RedmonJDivvalaSGirshickR“You only look once: unified, real-time object detection”, in ConfIEEE Conf Comp Vis Patt Recogn.201510.1109/CVPR.2016.91
WangZBovikACSheikhHRImage quality assessment: from error visibility to structural similarityIEEE Trans Image Proc.200410.1109/TIP.2003.819861
Lin, T.Y., Dollár, P., Girshick, R., et al. “Feature Pyramid Networks for Object Detection,” in Conf. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2117–2125, Dec 2016. Available: https://doi.org/10.1109/CVPR.2017.106
Lin, L., Wu, S., Liu, S., et al., “Interactive QR code beautification with full background image embedding,” in Proc. SPIE 10443, Second International Workshop on Pattern Recognition, 1044317, June 2017. Available: https://doi.org/10.1117/12.2280282
Lin, S.S., Chang, Y.F., Le, T.N.H. et al. Generation of Photorealistic QR codes,” in Conf. SIGGRAPH Asia 2019 Posters, Nov 2019.
ZhangLZhangLMouXFSIM: a feature similarity index for image quality assessmentIEEE Trans Image Proc.200110.1109/TIP.2011.21097301373.62333
Beegan, A.P., Iyer, L.R., Bell, A.E., et al. “Design and Evaluation of Perceptual Masks for Wavelet Image Compression,” in Proc. 10th IEEE Digital Signal Processing Workshop, IEEE CS Press, pp. 88–93, Oct 2002. Available: https://doi.org/10.1109/DSPWS.2002.1231082
Chang, J., Alain B., and Ostromoukhov, V. “Structure-aware error diffusion,” in Proc. ACM Trans Graph (TOG) 28(5): no. 162:1–162:8, Dec 2009.
RathiJGrewalSKAesthetic QR: approaches for beautified, fast decoding, and secured QR codes”IJ Inform. Eng. Elect. Bus.202231018
Falcon, A. (2017) 40 Gorgeous QR code Artworks That Rock [Online]. Available: http://www.hongkiat.com/blog/qr-code-artworks/ (accessed on 16 November 2022)
TsaiMJPengSLQR code beautification by instance segmentation (IS-QR)Dig Signal Process202310.1016/j.dsp.2022.103887
TsaiMJA visible watermarking algorithm based on the content and contrast aware (COCOA) techniqueJ. Visual Commun. Image Represent.200910.1016/j.jvcir.2009.03.011
LuJChengWZhangSQA novel aesthetic QR code algorithm based on hybrid basis vector matricesSymmetry201810.3390/sym10110543
W Xue (1046_CR38) 2014; 23
1046_CR28
J Redmon (1046_CR26) 2015
1046_CR27
YS Lin (1046_CR19) 2013; 32
MJ Tsai (1046_CR31) 2023
J Mannos (1046_CR22) 1974
MJ Tsai (1046_CR29) 2009
GJ Brostow (1046_CR2) 2009; 30
L Li (1046_CR13) 2017
1046_CR23
M Xu (1046_CR37) 2018; 21
D Levicky (1046_CR12) 2004; 13
Z Wang (1046_CR35) 2004
AB Watson (1046_CR36) 1997
1046_CR1
1046_CR18
1046_CR4
1046_CR3
BB Huang (1046_CR10) 2006
1046_CR15
J Lu (1046_CR21) 2018
1046_CR17
L Zhang (1046_CR39) 2001
1046_CR16
1046_CR9
S Qiao (1046_CR24) 2015
1046_CR6
1046_CR5
GJ Garateguy (1046_CR8) 2014
L Li (1046_CR14) 2019; 20
J Rathi (1046_CR25) 2022; 3
1046_CR7
MJ Tsai (1046_CR30) 2019
1046_CR11
1046_CR32
1046_CR34
SS Lin (1046_CR20) 2015
P Viola (1046_CR33) 2001; 1
References_xml – reference: Chen, L.C., Zhu, Y., Papandreou, G. et al., “Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation,” in Conf. Computer Vision – ECCV 2018, pp. 833–851.
– reference: QiaoSFangXShengBStructure-aware QR code abstractionVis Comp201510.1007/s00371-015-1107-x
– reference: LevickyDForisPHuman Visual System Models in Digital Image WatermarkingRadioengineering20041343843
– reference: LiLWangBLuJZhangSA new aesthetic QR code algorithm based on salient region detection and SPBVMJ. Int Technol2019203935946
– reference: XuMSuHLiYStylized aesthetic QR codeIEEE Trans. Multimed.20182181960197010.1109/TMM.2019.2891420
– reference: Chang, J., Alain B., and Ostromoukhov, V. “Structure-aware error diffusion,” in Proc. ACM Trans Graph (TOG) 28(5): no. 162:1–162:8, Dec 2009.
– reference: Chu, H.K., Chang, C.S., Lee, R.R. et al., “Halftone QR codes,” in Proc. ACM Trans Graph (TOG) 32(6): no. 217. ACM SIGGRAPH ASIA 2013, https://doi.org/10.1145/2508363.2508408
– reference: XueWZhangLMouXGradient magnitude similarity deviation: a highly efficient perceptual image quality indexIEEE Trans. Image Process.2014232684695315953210.1109/TIP.2013.22934231374.94418
– reference: TsaiMJPengSLQR code beautification by instance segmentation (IS-QR)Dig Signal Process202310.1016/j.dsp.2022.103887
– reference: ZhangLZhangLMouXFSIM: a feature similarity index for image quality assessmentIEEE Trans Image Proc.200110.1109/TIP.2011.21097301373.62333
– reference: Falcon, A. (2017) 40 Gorgeous QR code Artworks That Rock [Online]. Available: http://www.hongkiat.com/blog/qr-code-artworks/ (accessed on 16 November 2022)
– reference: TsaiMJA visible watermarking algorithm based on the content and contrast aware (COCOA) techniqueJ. Visual Commun. Image Represent.200910.1016/j.jvcir.2009.03.011
– reference: Visualead Company, “Visual QR code” [Online]. Available online: http://www.visualead.com/ (accessed on 16 November 2022).
– reference: LinYSLuoSJChenBYArtistic QR code embellishmentComputer. Graph. Forum201332713714610.1111/cgf.12221
– reference: LuJChengWZhangSQA novel aesthetic QR code algorithm based on hybrid basis vector matricesSymmetry201810.3390/sym10110543
– reference: GarateguyGJArceGRLauDLQR images: optimized image embedding in QR codesIEEE Transact. Image Process2014322646510.1109/TIP.2014.23215011374.94117
– reference: Kyprianidis J.E., and Döllner, J. “Image abstraction by structure adaptive filtering,” in Proc. EG UKTheory and Practice of Computer Graphics, pp 51–58, 2008.
– reference: Russ Cox's method, (2012, April 12) QArt Codes [Online]. Available: https://research.swtch.com/qart
– reference: LinSSHuMCLeeCHEfficient QR code beautification with high quality visual contentIEEE Transact Multimed201510.1109/TMM.2015.2437711
– reference: He, K., Gkioxari, G., Dollár, P., et al. “Mask R-CNN,” in Conf. IEEE International Conference on Computer Vision (ICCV), pp. 2961–2969, Mar 2017. Available: https://doi.org/10.1109/ICCV.2017.322
– reference: WangZBovikACSheikhHRImage quality assessment: from error visibility to structural similarityIEEE Trans Image Proc.200410.1109/TIP.2003.819861
– reference: LiLLiYWangB“A new aesthetic QR code algorithm based on salient region detection and SPBVM”, in Conf2017Springer, ChamSecurity with Intelligent Computing and Big-data Services2032
– reference: ViolaPJonesMJ“Rapid object detection using a boosted cascade of simple features”, in ConfIEEE Comp Soc Conf Comp Vis Patt Recogn20011511518
– reference: Lin, L., Zou, X., He, L. et al. “Aesthetic QR code generation with background contrast enhancement and user interaction,” in Conf. Third International Workshop on Pattern Recognition, July 2018. Available: https://doi.org/10.1117/12.2502054
– reference: TsaiMJHsiehCYThe visual color QR code algorithm (DWT-QR) based on wavelet transform and human vision systemMultimed Tools App201910.1007/s11042-019-7308-y
– reference: Chen, H., Sun, K., Tian, Z., Shen, C. et al., “BlendMask: Top-down meets bottom-up for instance segmentation,” in Conf. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 8573–8581, Jan 2020.
– reference: RedmonJDivvalaSGirshickR“You only look once: unified, real-time object detection”, in ConfIEEE Conf Comp Vis Patt Recogn.201510.1109/CVPR.2016.91
– reference: Lin, L., Wu, S., Liu, S., et al., “Interactive QR code beautification with full background image embedding,” in Proc. SPIE 10443, Second International Workshop on Pattern Recognition, 1044317, June 2017. Available: https://doi.org/10.1117/12.2280282
– reference: USC SIPI–The USC-SIPI image database [Online]. Available: http://sipi.usc.edu/services/database/Database.html (accessed 3 Jan, 2021)
– reference: Lin, S.S., Chang, Y.F., Le, T.N.H. et al. Generation of Photorealistic QR codes,” in Conf. SIGGRAPH Asia 2019 Posters, Nov 2019.
– reference: WatsonABYangGYSolomonJAVisibility of wavelet quantization noiseIEEE Trans Image Proc.199710.1109/83605413
– reference: Shelhamer, E., Long, J. and Darrell, T. “Fully Convolutional Networks for Semantic Segmentation,” in Conf. IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440, June 2015.
– reference: BrostowGJFauqueurJCipollaRSemantic object classes in video: a high-definition ground truth databasePattern Recogn. Lett.2009302889710.1016/j.patrec.2008.04.005
– reference: HuangBBTangSXA contrast-sensitive visible watermarking scheme”IEEE Multimed200610.1109/MMUL.2006.23
– reference: MannosJSakrisonDThe effects of a visual fidelity criterion on the encoding of imagesIEEE Trans Inf Theorem197410.1109/TIT.1974.10552500295.94044
– reference: RathiJGrewalSKAesthetic QR: approaches for beautified, fast decoding, and secured QR codes”IJ Inform. Eng. Elect. Bus.202231018
– reference: Lin, T.Y., Dollár, P., Girshick, R., et al. “Feature Pyramid Networks for Object Detection,” in Conf. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2117–2125, Dec 2016. Available: https://doi.org/10.1109/CVPR.2017.106
– reference: Ono, S., Morinaga, K., Nakayama, S.: Two-dimensional barcode decoration based on real-coded genetic algorithm. In: Proceedings of IEEE CEC, Hong-Kong, China, pp. 1068–1073 (2008)
– reference: Beegan, A.P., Iyer, L.R., Bell, A.E., et al. “Design and Evaluation of Perceptual Masks for Wavelet Image Compression,” in Proc. 10th IEEE Digital Signal Processing Workshop, IEEE CS Press, pp. 88–93, Oct 2002. Available: https://doi.org/10.1109/DSPWS.2002.1231082
– year: 2006
  ident: 1046_CR10
  publication-title: IEEE Multimed
  doi: 10.1109/MMUL.2006.23
– year: 2009
  ident: 1046_CR29
  publication-title: J. Visual Commun. Image Represent.
  doi: 10.1016/j.jvcir.2009.03.011
– volume: 20
  start-page: 935
  issue: 3
  year: 2019
  ident: 1046_CR14
  publication-title: J. Int Technol
– year: 2014
  ident: 1046_CR8
  publication-title: IEEE Transact. Image Process
  doi: 10.1109/TIP.2014.2321501
– year: 1974
  ident: 1046_CR22
  publication-title: IEEE Trans Inf Theorem
  doi: 10.1109/TIT.1974.1055250
– year: 2001
  ident: 1046_CR39
  publication-title: IEEE Trans Image Proc.
  doi: 10.1109/TIP.2011.2109730
– year: 2019
  ident: 1046_CR30
  publication-title: Multimed Tools App
  doi: 10.1007/s11042-019-7308-y
– ident: 1046_CR6
  doi: 10.1145/2508363.2508408
– volume: 1
  start-page: 511
  year: 2001
  ident: 1046_CR33
  publication-title: IEEE Comp Soc Conf Comp Vis Patt Recogn
– ident: 1046_CR1
  doi: 10.1109/DSPWS.2002.1231082
– ident: 1046_CR9
  doi: 10.1109/ICCV.2017.322
– ident: 1046_CR28
– year: 2018
  ident: 1046_CR21
  publication-title: Symmetry
  doi: 10.3390/sym10110543
– volume: 23
  start-page: 684
  issue: 2
  year: 2014
  ident: 1046_CR38
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2293423
– volume: 3
  start-page: 10
  year: 2022
  ident: 1046_CR25
  publication-title: IJ Inform. Eng. Elect. Bus.
– ident: 1046_CR3
  doi: 10.1145/1618452.1618508
– ident: 1046_CR34
– ident: 1046_CR11
– year: 2015
  ident: 1046_CR26
  publication-title: IEEE Conf Comp Vis Patt Recogn.
  doi: 10.1109/CVPR.2016.91
– start-page: 20
  volume-title: “A new aesthetic QR code algorithm based on salient region detection and SPBVM”, in Conf
  year: 2017
  ident: 1046_CR13
– ident: 1046_CR16
  doi: 10.1109/CVPR.2017.106
– ident: 1046_CR15
  doi: 10.1145/3355056.3364574
– volume: 30
  start-page: 88
  issue: 2
  year: 2009
  ident: 1046_CR2
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2008.04.005
– ident: 1046_CR32
– year: 2015
  ident: 1046_CR20
  publication-title: IEEE Transact Multimed
  doi: 10.1109/TMM.2015.2437711
– ident: 1046_CR18
  doi: 10.1117/12.2280282
– volume: 32
  start-page: 137
  issue: 7
  year: 2013
  ident: 1046_CR19
  publication-title: Computer. Graph. Forum
  doi: 10.1111/cgf.12221
– year: 1997
  ident: 1046_CR36
  publication-title: IEEE Trans Image Proc.
  doi: 10.1109/83605413
– volume: 13
  start-page: 38
  issue: 4
  year: 2004
  ident: 1046_CR12
  publication-title: Radioengineering
– year: 2004
  ident: 1046_CR35
  publication-title: IEEE Trans Image Proc.
  doi: 10.1109/TIP.2003.819861
– ident: 1046_CR17
  doi: 10.1117/12.2502054
– ident: 1046_CR27
– ident: 1046_CR4
  doi: 10.1109/CVPR42600.2020.00860
– year: 2023
  ident: 1046_CR31
  publication-title: Dig Signal Process
  doi: 10.1016/j.dsp.2022.103887
– ident: 1046_CR23
  doi: 10.1109/CEC.2008.4630929
– ident: 1046_CR7
– year: 2015
  ident: 1046_CR24
  publication-title: Vis Comp
  doi: 10.1007/s00371-015-1107-x
– volume: 21
  start-page: 1960
  issue: 8
  year: 2018
  ident: 1046_CR37
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2019.2891420
– ident: 1046_CR5
  doi: 10.1007/978-3-030-01234-2_49
SSID ssj0017630
Score 2.3645434
Snippet The development of the Internet has enabled the QR code to become the most frequently applied two-dimensional barcode in daily life and in commercial...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1245
SubjectTerms Color imagery
Computer Communication Networks
Computer Graphics
Computer Science
Cryptology
Data Storage Representation
Discrete Wavelet Transform
Legibility
Mobile commerce
Multimedia Information Systems
Operating Systems
Regular Paper
Signal to noise ratio
Similarity
Visual effects
Visual perception
Visual signals
Warehousing management
Wavelet transforms
Title Auto ROI & mask R-CNN model for QR code beautification (ARM-QR)
URI https://link.springer.com/article/10.1007/s00530-022-01046-x
https://www.proquest.com/docview/2821008326
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1432-1882
  dateEnd: 20241003
  omitProxy: false
  ssIdentifier: ssj0017630
  issn: 0942-4962
  databaseCode: ADMLS
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-1882
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017630
  issn: 0942-4962
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-1882
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017630
  issn: 0942-4962
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-1882
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017630
  issn: 0942-4962
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oXLyIz4gi2YMxGl1Ct9vXyTQI4gMMVRI8Nd1le0HBSEmMv97Z0mI0asJt02437Tw63-zOA-DIMNEoSHRyXNuIKbckjqRO44qHpuCIb5mnk5M7Xbvd5zcDa5AlhU3zaPf8SDL9Uy-S3bS81KmOPtc-hE0RORYt7aAUoOhfPd02F6cHqDPp3orHGeWezbJkmd9X-W6QvlDmj4PR1N60StDP33QeZjKqzRJRkx8_ijgu-ykbsJ4BUOLPJWYTVtR4C0p5cweS6fo2XPizZEKC-2tyTF6i6YgEtNHtkrRzDkGkS3oB0fnwRKholgYcpTwmJ37Qob3gdAf6reZjo02zbgtUohomlBvSqks3cj2ljJjVmRcPDWF6kns85o4plS6cipTFGYIz6eAlZrlOpLgRIU4zd6EwnozVHhApEMWYrsNs0-ZRLFw-ZI4SOIwjQzmyDEZO8lBmpch1R4zncFFEOaVQiBQKUwqF72U4WzzzOi_E8e_sSs7JMFPKaYjepS5lhIC1DOc5Y75u_73a_nLTD2BNN6WfB5RVoJC8zdQhQpdEVFFSLzt3D9VMYquw2mf-J3Ef4OI
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT8IwFD4x8KAv4jWiqH0wRqMltCu7PBlCRJCLYZEEn5a1dC8oGBmJ8dd7OjaMRE18a7azZjuX9WvPDeCMWbgoKNzkuDaLqKgqHCmTxhWNLCkQ33LPJCd3e3ZzIO6H1WGaFDbLot0zl2Typ14muxl9qVATfW72EDZF5JgXzHVFDvK1u6f27dJ7gDaTnK14glPh2TxNlvl5lu8L0hfKXHGMJutNowCD7E0XYSbj8jyWZfWxUsTxv5-yBZspACW1hcZsw5qe7EAha-5AUlvfhZvaPJ4S_6FFzslLOBsTn9Z7PZJ0ziGIdEnfJyYfnkgdzpOAo0TG5KLmd2nfv9yDQeP2sd6kabcFqtAMYyqYqlaUG7qe1iziFe5FIyYtTwlPRMKxlDaFU5GzSCEFVw5e4lXXCbVgIeI0ax9yk-lEHwBRElGM5TrctmwRRtIVI-5oicMoZNpRRWAZywOVliI3HTGeg2UR5YRDAXIoSDgUvBfhavnM66IQx5_UpUySQWqUswB3l6aUEQLWIlxngvm6_ftsh_8jP4X15mO3E3RavfYRbJgG9YvgshLk4re5PkYYE8uTVGs_AdYJ4VY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA8yQXzxW5xOzYOIomFrmn49SZmOTd10xcHeSpsmL2o3XAf--V7Sj6mo4Ftor3m4y3G_a-53h9CJYUJQ4JDkuLYhCbM4rLiiccnEjBngW-opcnJ_YHdH7HZsjT-x-HW1e3klmXMaVJemNGtOE9msiG_q7LSIqkRX-YRNAEUuM4jVKv0aUb-6RwDv0X9ZPEYJ82xa0GZ-3uNraFrgzW9XpDrydDbQWgEZsZ_beBMtiXQLrZfjGHDhndvoyp9nExw89PApfo1mzzgg7cEA61k3GLApHgZYMdhxLKK5LhHSVsFnftAnw-B8B406N0_tLinmIxAOjpMRZnCrxd3I9YQwJG1RTyZGbHqceUwyx-RCtToFDYBEzCh34BG1XCcSzIgAWZm7qJZOUrGHMI8Bd5iuQ23TZpGMXZZQR8SwlJEhHF5HRqmakBfNw9UMi5ewanus1RmCOkOtzvC9ji6qb6Z564w_pRulxsPCjWYh5IOq-RBAzDq6LK2weP37bvv_Ez9GK4_XnfC-N7g7QKtqonxeDdZAtextLg4Bd2TxkT5aH3FoyGs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Auto+ROI+%26+mask+R-CNN+model+for+QR+code+beautification+%28ARM-QR%29&rft.jtitle=Multimedia+systems&rft.au=Tsai%2C+Min-Jen&rft.au=Wu%2C+Hung-Yu&rft.au=Lin%2C+Di-Ting&rft.date=2023-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0942-4962&rft.eissn=1432-1882&rft.volume=29&rft.issue=3&rft.spage=1245&rft.epage=1276&rft_id=info:doi/10.1007%2Fs00530-022-01046-x&rft.externalDocID=10_1007_s00530_022_01046_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0942-4962&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0942-4962&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0942-4962&client=summon