Auto ROI & mask R-CNN model for QR code beautification (ARM-QR)
The development of the Internet has enabled the QR code to become the most frequently applied two-dimensional barcode in daily life and in commercial advertisements, and its application continues to be more diversified to include warehouse management, electronic tickets, mobile payments, etc. The st...
Saved in:
Published in | Multimedia systems Vol. 29; no. 3; pp. 1245 - 1276 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0942-4962 1432-1882 |
DOI | 10.1007/s00530-022-01046-x |
Cover
Abstract | The development of the Internet has enabled the QR code to become the most frequently applied two-dimensional barcode in daily life and in commercial advertisements, and its application continues to be more diversified to include warehouse management, electronic tickets, mobile payments, etc. The standard QR code consists of black and white modules, which display a monotonous visual effect. Since graph patterns are much easier to understand than text characters, showing the subject by patterns inside the QR code is the easiest way to understand implicit content.
This research involves the development of a methodology called ARM-QR, in which the QR code is integrated with full-color images, and deep learning technology is used to beautify it. First, the region of interest (ROI) of the color image is automatically identified using Mask R-CNN. The QR code’s visual beautification is further adjusted by the content of the object. Discrete wavelet transform and contrast sensitivity functions are also used to strengthen the visual perception of the QR code and reduce the impact of a low print resolution on the graphic legibility. The ARM-QR code’s visual quality is intensively verified by visual quality indices, which include the Peak Signal-to-Noise Ratio (PSNR), Mean-Square Error (MSE), Structural Similarity Index Metric (SSIM), and Gradient Magnitude Similarity Deviation (GMSD) based on evaluating the experimental data. The results of the experiment confirm that the visual beautification of the QR code generated in this research is of higher quality than that in other QR code beautification studies. |
---|---|
AbstractList | The development of the Internet has enabled the QR code to become the most frequently applied two-dimensional barcode in daily life and in commercial advertisements, and its application continues to be more diversified to include warehouse management, electronic tickets, mobile payments, etc. The standard QR code consists of black and white modules, which display a monotonous visual effect. Since graph patterns are much easier to understand than text characters, showing the subject by patterns inside the QR code is the easiest way to understand implicit content.This research involves the development of a methodology called ARM-QR, in which the QR code is integrated with full-color images, and deep learning technology is used to beautify it. First, the region of interest (ROI) of the color image is automatically identified using Mask R-CNN. The QR code’s visual beautification is further adjusted by the content of the object. Discrete wavelet transform and contrast sensitivity functions are also used to strengthen the visual perception of the QR code and reduce the impact of a low print resolution on the graphic legibility. The ARM-QR code’s visual quality is intensively verified by visual quality indices, which include the Peak Signal-to-Noise Ratio (PSNR), Mean-Square Error (MSE), Structural Similarity Index Metric (SSIM), and Gradient Magnitude Similarity Deviation (GMSD) based on evaluating the experimental data. The results of the experiment confirm that the visual beautification of the QR code generated in this research is of higher quality than that in other QR code beautification studies. The development of the Internet has enabled the QR code to become the most frequently applied two-dimensional barcode in daily life and in commercial advertisements, and its application continues to be more diversified to include warehouse management, electronic tickets, mobile payments, etc. The standard QR code consists of black and white modules, which display a monotonous visual effect. Since graph patterns are much easier to understand than text characters, showing the subject by patterns inside the QR code is the easiest way to understand implicit content. This research involves the development of a methodology called ARM-QR, in which the QR code is integrated with full-color images, and deep learning technology is used to beautify it. First, the region of interest (ROI) of the color image is automatically identified using Mask R-CNN. The QR code’s visual beautification is further adjusted by the content of the object. Discrete wavelet transform and contrast sensitivity functions are also used to strengthen the visual perception of the QR code and reduce the impact of a low print resolution on the graphic legibility. The ARM-QR code’s visual quality is intensively verified by visual quality indices, which include the Peak Signal-to-Noise Ratio (PSNR), Mean-Square Error (MSE), Structural Similarity Index Metric (SSIM), and Gradient Magnitude Similarity Deviation (GMSD) based on evaluating the experimental data. The results of the experiment confirm that the visual beautification of the QR code generated in this research is of higher quality than that in other QR code beautification studies. |
Author | Lin, Di-Ting Tsai, Min-Jen Wu, Hung-Yu |
Author_xml | – sequence: 1 givenname: Min-Jen surname: Tsai fullname: Tsai, Min-Jen email: mjtsai@cc.nctu.edu.tw organization: Institute of Information Management, National Yang Ming Chiao Tung University – sequence: 2 givenname: Hung-Yu surname: Wu fullname: Wu, Hung-Yu organization: Institute of Information Management, National Yang Ming Chiao Tung University – sequence: 3 givenname: Di-Ting surname: Lin fullname: Lin, Di-Ting organization: Institute of Information Management, National Yang Ming Chiao Tung University |
BookMark | eNp9kE1LAzEURYNUsK3-AVcBQXQRffmYTrKSUvwo1JYOug5pmpGp7UxNZqD-e9OOILjoKrxwz3uX00OdsiodQpcU7ihAeh8AEg4EGCNAQQzI7gR1qeCMUClZB3VBCUaEGrAz1AthBUDTAYcuehg2dYWz2Rhf440Jnzgjo-kUb6qlW-O88nieYRsHvHCmqYu8sKYuqhLfDLNXMs9uz9FpbtbBXfy-ffT-9Pg2eiGT2fN4NJwQy6mqiaA2ASuNVM7RnAFT-ZIuuLJCiVyk3LqEJftGMbEQzKbxiyUyNU5QoxLK--iq3bv11VfjQq1XVePLeFIzyaIDydkgpmSbsr4Kwbtc26I-FK69Kdaagt7r0q0uHXXpgy69iyj7h259sTH--zjEWyjEcPnh_F-rI9QPmRp64g |
CitedBy_id | crossref_primary_10_1109_JIOT_2024_3385542 crossref_primary_10_3390_a16030160 crossref_primary_10_31921_doxacom_n39a2189 |
Cites_doi | 10.1109/MMUL.2006.23 10.1016/j.jvcir.2009.03.011 10.1109/TIP.2014.2321501 10.1109/TIT.1974.1055250 10.1109/TIP.2011.2109730 10.1007/s11042-019-7308-y 10.1145/2508363.2508408 10.1109/DSPWS.2002.1231082 10.1109/ICCV.2017.322 10.3390/sym10110543 10.1109/TIP.2013.2293423 10.1145/1618452.1618508 10.1109/CVPR.2016.91 10.1109/CVPR.2017.106 10.1145/3355056.3364574 10.1016/j.patrec.2008.04.005 10.1109/TMM.2015.2437711 10.1117/12.2280282 10.1111/cgf.12221 10.1109/83605413 10.1109/TIP.2003.819861 10.1117/12.2502054 10.1109/CVPR42600.2020.00860 10.1016/j.dsp.2022.103887 10.1109/CEC.2008.4630929 10.1007/s00371-015-1107-x 10.1109/TMM.2019.2891420 10.1007/978-3-030-01234-2_49 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1007/s00530-022-01046-x |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1432-1882 |
EndPage | 1276 |
ExternalDocumentID | 10_1007_s00530_022_01046_x |
GroupedDBID | --Z -4Z -59 -5G -BR -EM -ET -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 85S 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YIN YLTOR Z45 Z7R Z7X Z83 Z88 Z8M Z8R Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AETEA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 |
ID | FETCH-LOGICAL-c319t-41c50c8a89ee1f2029fd1b39c494f473ce5257630a89b42c773c2587ae41a9513 |
IEDL.DBID | AGYKE |
ISSN | 0942-4962 |
IngestDate | Thu Sep 25 00:56:01 EDT 2025 Wed Oct 01 03:10:35 EDT 2025 Thu Apr 24 22:48:45 EDT 2025 Fri Feb 21 02:43:22 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Deep learning PSNR SSIM GMSD QR code ROI MSE Mask R-CNN |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-41c50c8a89ee1f2029fd1b39c494f473ce5257630a89b42c773c2587ae41a9513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2821008326 |
PQPubID | 2043725 |
PageCount | 32 |
ParticipantIDs | proquest_journals_2821008326 crossref_citationtrail_10_1007_s00530_022_01046_x crossref_primary_10_1007_s00530_022_01046_x springer_journals_10_1007_s00530_022_01046_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Multimedia systems |
PublicationTitleAbbrev | Multimedia Systems |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | BrostowGJFauqueurJCipollaRSemantic object classes in video: a high-definition ground truth databasePattern Recogn. Lett.2009302889710.1016/j.patrec.2008.04.005 LinYSLuoSJChenBYArtistic QR code embellishmentComputer. Graph. Forum201332713714610.1111/cgf.12221 Kyprianidis J.E., and Döllner, J. “Image abstraction by structure adaptive filtering,” in Proc. EG UKTheory and Practice of Computer Graphics, pp 51–58, 2008. Chu, H.K., Chang, C.S., Lee, R.R. et al., “Halftone QR codes,” in Proc. ACM Trans Graph (TOG) 32(6): no. 217. ACM SIGGRAPH ASIA 2013, https://doi.org/10.1145/2508363.2508408 QiaoSFangXShengBStructure-aware QR code abstractionVis Comp201510.1007/s00371-015-1107-x USC SIPI–The USC-SIPI image database [Online]. Available: http://sipi.usc.edu/services/database/Database.html (accessed 3 Jan, 2021) GarateguyGJArceGRLauDLQR images: optimized image embedding in QR codesIEEE Transact. Image Process2014322646510.1109/TIP.2014.23215011374.94117 LevickyDForisPHuman Visual System Models in Digital Image WatermarkingRadioengineering20041343843 Chen, L.C., Zhu, Y., Papandreou, G. et al., “Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation,” in Conf. Computer Vision – ECCV 2018, pp. 833–851. LiLWangBLuJZhangSA new aesthetic QR code algorithm based on salient region detection and SPBVMJ. Int Technol2019203935946 He, K., Gkioxari, G., Dollár, P., et al. “Mask R-CNN,” in Conf. IEEE International Conference on Computer Vision (ICCV), pp. 2961–2969, Mar 2017. Available: https://doi.org/10.1109/ICCV.2017.322 WatsonABYangGYSolomonJAVisibility of wavelet quantization noiseIEEE Trans Image Proc.199710.1109/83605413 MannosJSakrisonDThe effects of a visual fidelity criterion on the encoding of imagesIEEE Trans Inf Theorem197410.1109/TIT.1974.10552500295.94044 Shelhamer, E., Long, J. and Darrell, T. “Fully Convolutional Networks for Semantic Segmentation,” in Conf. IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440, June 2015. Visualead Company, “Visual QR code” [Online]. Available online: http://www.visualead.com/ (accessed on 16 November 2022). LinSSHuMCLeeCHEfficient QR code beautification with high quality visual contentIEEE Transact Multimed201510.1109/TMM.2015.2437711 TsaiMJHsiehCYThe visual color QR code algorithm (DWT-QR) based on wavelet transform and human vision systemMultimed Tools App201910.1007/s11042-019-7308-y XuMSuHLiYStylized aesthetic QR codeIEEE Trans. Multimed.20182181960197010.1109/TMM.2019.2891420 XueWZhangLMouXGradient magnitude similarity deviation: a highly efficient perceptual image quality indexIEEE Trans. Image Process.2014232684695315953210.1109/TIP.2013.22934231374.94418 LiLLiYWangB“A new aesthetic QR code algorithm based on salient region detection and SPBVM”, in Conf2017Springer, ChamSecurity with Intelligent Computing and Big-data Services2032 Chen, H., Sun, K., Tian, Z., Shen, C. et al., “BlendMask: Top-down meets bottom-up for instance segmentation,” in Conf. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 8573–8581, Jan 2020. Lin, L., Zou, X., He, L. et al. “Aesthetic QR code generation with background contrast enhancement and user interaction,” in Conf. Third International Workshop on Pattern Recognition, July 2018. Available: https://doi.org/10.1117/12.2502054 ViolaPJonesMJ“Rapid object detection using a boosted cascade of simple features”, in ConfIEEE Comp Soc Conf Comp Vis Patt Recogn20011511518 Ono, S., Morinaga, K., Nakayama, S.: Two-dimensional barcode decoration based on real-coded genetic algorithm. In: Proceedings of IEEE CEC, Hong-Kong, China, pp. 1068–1073 (2008) Russ Cox's method, (2012, April 12) QArt Codes [Online]. Available: https://research.swtch.com/qart HuangBBTangSXA contrast-sensitive visible watermarking scheme”IEEE Multimed200610.1109/MMUL.2006.23 RedmonJDivvalaSGirshickR“You only look once: unified, real-time object detection”, in ConfIEEE Conf Comp Vis Patt Recogn.201510.1109/CVPR.2016.91 WangZBovikACSheikhHRImage quality assessment: from error visibility to structural similarityIEEE Trans Image Proc.200410.1109/TIP.2003.819861 Lin, T.Y., Dollár, P., Girshick, R., et al. “Feature Pyramid Networks for Object Detection,” in Conf. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2117–2125, Dec 2016. Available: https://doi.org/10.1109/CVPR.2017.106 Lin, L., Wu, S., Liu, S., et al., “Interactive QR code beautification with full background image embedding,” in Proc. SPIE 10443, Second International Workshop on Pattern Recognition, 1044317, June 2017. Available: https://doi.org/10.1117/12.2280282 Lin, S.S., Chang, Y.F., Le, T.N.H. et al. Generation of Photorealistic QR codes,” in Conf. SIGGRAPH Asia 2019 Posters, Nov 2019. ZhangLZhangLMouXFSIM: a feature similarity index for image quality assessmentIEEE Trans Image Proc.200110.1109/TIP.2011.21097301373.62333 Beegan, A.P., Iyer, L.R., Bell, A.E., et al. “Design and Evaluation of Perceptual Masks for Wavelet Image Compression,” in Proc. 10th IEEE Digital Signal Processing Workshop, IEEE CS Press, pp. 88–93, Oct 2002. Available: https://doi.org/10.1109/DSPWS.2002.1231082 Chang, J., Alain B., and Ostromoukhov, V. “Structure-aware error diffusion,” in Proc. ACM Trans Graph (TOG) 28(5): no. 162:1–162:8, Dec 2009. RathiJGrewalSKAesthetic QR: approaches for beautified, fast decoding, and secured QR codes”IJ Inform. Eng. Elect. Bus.202231018 Falcon, A. (2017) 40 Gorgeous QR code Artworks That Rock [Online]. Available: http://www.hongkiat.com/blog/qr-code-artworks/ (accessed on 16 November 2022) TsaiMJPengSLQR code beautification by instance segmentation (IS-QR)Dig Signal Process202310.1016/j.dsp.2022.103887 TsaiMJA visible watermarking algorithm based on the content and contrast aware (COCOA) techniqueJ. Visual Commun. Image Represent.200910.1016/j.jvcir.2009.03.011 LuJChengWZhangSQA novel aesthetic QR code algorithm based on hybrid basis vector matricesSymmetry201810.3390/sym10110543 W Xue (1046_CR38) 2014; 23 1046_CR28 J Redmon (1046_CR26) 2015 1046_CR27 YS Lin (1046_CR19) 2013; 32 MJ Tsai (1046_CR31) 2023 J Mannos (1046_CR22) 1974 MJ Tsai (1046_CR29) 2009 GJ Brostow (1046_CR2) 2009; 30 L Li (1046_CR13) 2017 1046_CR23 M Xu (1046_CR37) 2018; 21 D Levicky (1046_CR12) 2004; 13 Z Wang (1046_CR35) 2004 AB Watson (1046_CR36) 1997 1046_CR1 1046_CR18 1046_CR4 1046_CR3 BB Huang (1046_CR10) 2006 1046_CR15 J Lu (1046_CR21) 2018 1046_CR17 L Zhang (1046_CR39) 2001 1046_CR16 1046_CR9 S Qiao (1046_CR24) 2015 1046_CR6 1046_CR5 GJ Garateguy (1046_CR8) 2014 L Li (1046_CR14) 2019; 20 J Rathi (1046_CR25) 2022; 3 1046_CR7 MJ Tsai (1046_CR30) 2019 1046_CR11 1046_CR32 1046_CR34 SS Lin (1046_CR20) 2015 P Viola (1046_CR33) 2001; 1 |
References_xml | – reference: Chen, L.C., Zhu, Y., Papandreou, G. et al., “Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation,” in Conf. Computer Vision – ECCV 2018, pp. 833–851. – reference: QiaoSFangXShengBStructure-aware QR code abstractionVis Comp201510.1007/s00371-015-1107-x – reference: LevickyDForisPHuman Visual System Models in Digital Image WatermarkingRadioengineering20041343843 – reference: LiLWangBLuJZhangSA new aesthetic QR code algorithm based on salient region detection and SPBVMJ. Int Technol2019203935946 – reference: XuMSuHLiYStylized aesthetic QR codeIEEE Trans. Multimed.20182181960197010.1109/TMM.2019.2891420 – reference: Chang, J., Alain B., and Ostromoukhov, V. “Structure-aware error diffusion,” in Proc. ACM Trans Graph (TOG) 28(5): no. 162:1–162:8, Dec 2009. – reference: Chu, H.K., Chang, C.S., Lee, R.R. et al., “Halftone QR codes,” in Proc. ACM Trans Graph (TOG) 32(6): no. 217. ACM SIGGRAPH ASIA 2013, https://doi.org/10.1145/2508363.2508408 – reference: XueWZhangLMouXGradient magnitude similarity deviation: a highly efficient perceptual image quality indexIEEE Trans. Image Process.2014232684695315953210.1109/TIP.2013.22934231374.94418 – reference: TsaiMJPengSLQR code beautification by instance segmentation (IS-QR)Dig Signal Process202310.1016/j.dsp.2022.103887 – reference: ZhangLZhangLMouXFSIM: a feature similarity index for image quality assessmentIEEE Trans Image Proc.200110.1109/TIP.2011.21097301373.62333 – reference: Falcon, A. (2017) 40 Gorgeous QR code Artworks That Rock [Online]. Available: http://www.hongkiat.com/blog/qr-code-artworks/ (accessed on 16 November 2022) – reference: TsaiMJA visible watermarking algorithm based on the content and contrast aware (COCOA) techniqueJ. Visual Commun. Image Represent.200910.1016/j.jvcir.2009.03.011 – reference: Visualead Company, “Visual QR code” [Online]. Available online: http://www.visualead.com/ (accessed on 16 November 2022). – reference: LinYSLuoSJChenBYArtistic QR code embellishmentComputer. Graph. Forum201332713714610.1111/cgf.12221 – reference: LuJChengWZhangSQA novel aesthetic QR code algorithm based on hybrid basis vector matricesSymmetry201810.3390/sym10110543 – reference: GarateguyGJArceGRLauDLQR images: optimized image embedding in QR codesIEEE Transact. Image Process2014322646510.1109/TIP.2014.23215011374.94117 – reference: Kyprianidis J.E., and Döllner, J. “Image abstraction by structure adaptive filtering,” in Proc. EG UKTheory and Practice of Computer Graphics, pp 51–58, 2008. – reference: Russ Cox's method, (2012, April 12) QArt Codes [Online]. Available: https://research.swtch.com/qart – reference: LinSSHuMCLeeCHEfficient QR code beautification with high quality visual contentIEEE Transact Multimed201510.1109/TMM.2015.2437711 – reference: He, K., Gkioxari, G., Dollár, P., et al. “Mask R-CNN,” in Conf. IEEE International Conference on Computer Vision (ICCV), pp. 2961–2969, Mar 2017. Available: https://doi.org/10.1109/ICCV.2017.322 – reference: WangZBovikACSheikhHRImage quality assessment: from error visibility to structural similarityIEEE Trans Image Proc.200410.1109/TIP.2003.819861 – reference: LiLLiYWangB“A new aesthetic QR code algorithm based on salient region detection and SPBVM”, in Conf2017Springer, ChamSecurity with Intelligent Computing and Big-data Services2032 – reference: ViolaPJonesMJ“Rapid object detection using a boosted cascade of simple features”, in ConfIEEE Comp Soc Conf Comp Vis Patt Recogn20011511518 – reference: Lin, L., Zou, X., He, L. et al. “Aesthetic QR code generation with background contrast enhancement and user interaction,” in Conf. Third International Workshop on Pattern Recognition, July 2018. Available: https://doi.org/10.1117/12.2502054 – reference: TsaiMJHsiehCYThe visual color QR code algorithm (DWT-QR) based on wavelet transform and human vision systemMultimed Tools App201910.1007/s11042-019-7308-y – reference: Chen, H., Sun, K., Tian, Z., Shen, C. et al., “BlendMask: Top-down meets bottom-up for instance segmentation,” in Conf. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 8573–8581, Jan 2020. – reference: RedmonJDivvalaSGirshickR“You only look once: unified, real-time object detection”, in ConfIEEE Conf Comp Vis Patt Recogn.201510.1109/CVPR.2016.91 – reference: Lin, L., Wu, S., Liu, S., et al., “Interactive QR code beautification with full background image embedding,” in Proc. SPIE 10443, Second International Workshop on Pattern Recognition, 1044317, June 2017. Available: https://doi.org/10.1117/12.2280282 – reference: USC SIPI–The USC-SIPI image database [Online]. Available: http://sipi.usc.edu/services/database/Database.html (accessed 3 Jan, 2021) – reference: Lin, S.S., Chang, Y.F., Le, T.N.H. et al. Generation of Photorealistic QR codes,” in Conf. SIGGRAPH Asia 2019 Posters, Nov 2019. – reference: WatsonABYangGYSolomonJAVisibility of wavelet quantization noiseIEEE Trans Image Proc.199710.1109/83605413 – reference: Shelhamer, E., Long, J. and Darrell, T. “Fully Convolutional Networks for Semantic Segmentation,” in Conf. IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440, June 2015. – reference: BrostowGJFauqueurJCipollaRSemantic object classes in video: a high-definition ground truth databasePattern Recogn. Lett.2009302889710.1016/j.patrec.2008.04.005 – reference: HuangBBTangSXA contrast-sensitive visible watermarking scheme”IEEE Multimed200610.1109/MMUL.2006.23 – reference: MannosJSakrisonDThe effects of a visual fidelity criterion on the encoding of imagesIEEE Trans Inf Theorem197410.1109/TIT.1974.10552500295.94044 – reference: RathiJGrewalSKAesthetic QR: approaches for beautified, fast decoding, and secured QR codes”IJ Inform. Eng. Elect. Bus.202231018 – reference: Lin, T.Y., Dollár, P., Girshick, R., et al. “Feature Pyramid Networks for Object Detection,” in Conf. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2117–2125, Dec 2016. Available: https://doi.org/10.1109/CVPR.2017.106 – reference: Ono, S., Morinaga, K., Nakayama, S.: Two-dimensional barcode decoration based on real-coded genetic algorithm. In: Proceedings of IEEE CEC, Hong-Kong, China, pp. 1068–1073 (2008) – reference: Beegan, A.P., Iyer, L.R., Bell, A.E., et al. “Design and Evaluation of Perceptual Masks for Wavelet Image Compression,” in Proc. 10th IEEE Digital Signal Processing Workshop, IEEE CS Press, pp. 88–93, Oct 2002. Available: https://doi.org/10.1109/DSPWS.2002.1231082 – year: 2006 ident: 1046_CR10 publication-title: IEEE Multimed doi: 10.1109/MMUL.2006.23 – year: 2009 ident: 1046_CR29 publication-title: J. Visual Commun. Image Represent. doi: 10.1016/j.jvcir.2009.03.011 – volume: 20 start-page: 935 issue: 3 year: 2019 ident: 1046_CR14 publication-title: J. Int Technol – year: 2014 ident: 1046_CR8 publication-title: IEEE Transact. Image Process doi: 10.1109/TIP.2014.2321501 – year: 1974 ident: 1046_CR22 publication-title: IEEE Trans Inf Theorem doi: 10.1109/TIT.1974.1055250 – year: 2001 ident: 1046_CR39 publication-title: IEEE Trans Image Proc. doi: 10.1109/TIP.2011.2109730 – year: 2019 ident: 1046_CR30 publication-title: Multimed Tools App doi: 10.1007/s11042-019-7308-y – ident: 1046_CR6 doi: 10.1145/2508363.2508408 – volume: 1 start-page: 511 year: 2001 ident: 1046_CR33 publication-title: IEEE Comp Soc Conf Comp Vis Patt Recogn – ident: 1046_CR1 doi: 10.1109/DSPWS.2002.1231082 – ident: 1046_CR9 doi: 10.1109/ICCV.2017.322 – ident: 1046_CR28 – year: 2018 ident: 1046_CR21 publication-title: Symmetry doi: 10.3390/sym10110543 – volume: 23 start-page: 684 issue: 2 year: 2014 ident: 1046_CR38 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2013.2293423 – volume: 3 start-page: 10 year: 2022 ident: 1046_CR25 publication-title: IJ Inform. Eng. Elect. Bus. – ident: 1046_CR3 doi: 10.1145/1618452.1618508 – ident: 1046_CR34 – ident: 1046_CR11 – year: 2015 ident: 1046_CR26 publication-title: IEEE Conf Comp Vis Patt Recogn. doi: 10.1109/CVPR.2016.91 – start-page: 20 volume-title: “A new aesthetic QR code algorithm based on salient region detection and SPBVM”, in Conf year: 2017 ident: 1046_CR13 – ident: 1046_CR16 doi: 10.1109/CVPR.2017.106 – ident: 1046_CR15 doi: 10.1145/3355056.3364574 – volume: 30 start-page: 88 issue: 2 year: 2009 ident: 1046_CR2 publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2008.04.005 – ident: 1046_CR32 – year: 2015 ident: 1046_CR20 publication-title: IEEE Transact Multimed doi: 10.1109/TMM.2015.2437711 – ident: 1046_CR18 doi: 10.1117/12.2280282 – volume: 32 start-page: 137 issue: 7 year: 2013 ident: 1046_CR19 publication-title: Computer. Graph. Forum doi: 10.1111/cgf.12221 – year: 1997 ident: 1046_CR36 publication-title: IEEE Trans Image Proc. doi: 10.1109/83605413 – volume: 13 start-page: 38 issue: 4 year: 2004 ident: 1046_CR12 publication-title: Radioengineering – year: 2004 ident: 1046_CR35 publication-title: IEEE Trans Image Proc. doi: 10.1109/TIP.2003.819861 – ident: 1046_CR17 doi: 10.1117/12.2502054 – ident: 1046_CR27 – ident: 1046_CR4 doi: 10.1109/CVPR42600.2020.00860 – year: 2023 ident: 1046_CR31 publication-title: Dig Signal Process doi: 10.1016/j.dsp.2022.103887 – ident: 1046_CR23 doi: 10.1109/CEC.2008.4630929 – ident: 1046_CR7 – year: 2015 ident: 1046_CR24 publication-title: Vis Comp doi: 10.1007/s00371-015-1107-x – volume: 21 start-page: 1960 issue: 8 year: 2018 ident: 1046_CR37 publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2019.2891420 – ident: 1046_CR5 doi: 10.1007/978-3-030-01234-2_49 |
SSID | ssj0017630 |
Score | 2.3645434 |
Snippet | The development of the Internet has enabled the QR code to become the most frequently applied two-dimensional barcode in daily life and in commercial... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1245 |
SubjectTerms | Color imagery Computer Communication Networks Computer Graphics Computer Science Cryptology Data Storage Representation Discrete Wavelet Transform Legibility Mobile commerce Multimedia Information Systems Operating Systems Regular Paper Signal to noise ratio Similarity Visual effects Visual perception Visual signals Warehousing management Wavelet transforms |
Title | Auto ROI & mask R-CNN model for QR code beautification (ARM-QR) |
URI | https://link.springer.com/article/10.1007/s00530-022-01046-x https://www.proquest.com/docview/2821008326 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1432-1882 dateEnd: 20241003 omitProxy: false ssIdentifier: ssj0017630 issn: 0942-4962 databaseCode: ADMLS dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-1882 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017630 issn: 0942-4962 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-1882 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017630 issn: 0942-4962 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-1882 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017630 issn: 0942-4962 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oXLyIz4gi2YMxGl1Ct9vXyTQI4gMMVRI8Nd1le0HBSEmMv97Z0mI0asJt02437Tw63-zOA-DIMNEoSHRyXNuIKbckjqRO44qHpuCIb5mnk5M7Xbvd5zcDa5AlhU3zaPf8SDL9Uy-S3bS81KmOPtc-hE0RORYt7aAUoOhfPd02F6cHqDPp3orHGeWezbJkmd9X-W6QvlDmj4PR1N60StDP33QeZjKqzRJRkx8_ijgu-ykbsJ4BUOLPJWYTVtR4C0p5cweS6fo2XPizZEKC-2tyTF6i6YgEtNHtkrRzDkGkS3oB0fnwRKholgYcpTwmJ37Qob3gdAf6reZjo02zbgtUohomlBvSqks3cj2ljJjVmRcPDWF6kns85o4plS6cipTFGYIz6eAlZrlOpLgRIU4zd6EwnozVHhApEMWYrsNs0-ZRLFw-ZI4SOIwjQzmyDEZO8lBmpch1R4zncFFEOaVQiBQKUwqF72U4WzzzOi_E8e_sSs7JMFPKaYjepS5lhIC1DOc5Y75u_73a_nLTD2BNN6WfB5RVoJC8zdQhQpdEVFFSLzt3D9VMYquw2mf-J3Ef4OI |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT8IwFD4x8KAv4jWiqH0wRqMltCu7PBlCRJCLYZEEn5a1dC8oGBmJ8dd7OjaMRE18a7azZjuX9WvPDeCMWbgoKNzkuDaLqKgqHCmTxhWNLCkQ33LPJCd3e3ZzIO6H1WGaFDbLot0zl2Typ14muxl9qVATfW72EDZF5JgXzHVFDvK1u6f27dJ7gDaTnK14glPh2TxNlvl5lu8L0hfKXHGMJutNowCD7E0XYSbj8jyWZfWxUsTxv5-yBZspACW1hcZsw5qe7EAha-5AUlvfhZvaPJ4S_6FFzslLOBsTn9Z7PZJ0ziGIdEnfJyYfnkgdzpOAo0TG5KLmd2nfv9yDQeP2sd6kabcFqtAMYyqYqlaUG7qe1iziFe5FIyYtTwlPRMKxlDaFU5GzSCEFVw5e4lXXCbVgIeI0ax9yk-lEHwBRElGM5TrctmwRRtIVI-5oicMoZNpRRWAZywOVliI3HTGeg2UR5YRDAXIoSDgUvBfhavnM66IQx5_UpUySQWqUswB3l6aUEQLWIlxngvm6_ftsh_8jP4X15mO3E3RavfYRbJgG9YvgshLk4re5PkYYE8uTVGs_AdYJ4VY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA8yQXzxW5xOzYOIomFrmn49SZmOTd10xcHeSpsmL2o3XAf--V7Sj6mo4Ftor3m4y3G_a-53h9CJYUJQ4JDkuLYhCbM4rLiiccnEjBngW-opcnJ_YHdH7HZsjT-x-HW1e3klmXMaVJemNGtOE9msiG_q7LSIqkRX-YRNAEUuM4jVKv0aUb-6RwDv0X9ZPEYJ82xa0GZ-3uNraFrgzW9XpDrydDbQWgEZsZ_beBMtiXQLrZfjGHDhndvoyp9nExw89PApfo1mzzgg7cEA61k3GLApHgZYMdhxLKK5LhHSVsFnftAnw-B8B406N0_tLinmIxAOjpMRZnCrxd3I9YQwJG1RTyZGbHqceUwyx-RCtToFDYBEzCh34BG1XCcSzIgAWZm7qJZOUrGHMI8Bd5iuQ23TZpGMXZZQR8SwlJEhHF5HRqmakBfNw9UMi5ewanus1RmCOkOtzvC9ji6qb6Z564w_pRulxsPCjWYh5IOq-RBAzDq6LK2weP37bvv_Ez9GK4_XnfC-N7g7QKtqonxeDdZAtextLg4Bd2TxkT5aH3FoyGs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Auto+ROI+%26+mask+R-CNN+model+for+QR+code+beautification+%28ARM-QR%29&rft.jtitle=Multimedia+systems&rft.au=Tsai%2C+Min-Jen&rft.au=Wu%2C+Hung-Yu&rft.au=Lin%2C+Di-Ting&rft.date=2023-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0942-4962&rft.eissn=1432-1882&rft.volume=29&rft.issue=3&rft.spage=1245&rft.epage=1276&rft_id=info:doi/10.1007%2Fs00530-022-01046-x&rft.externalDocID=10_1007_s00530_022_01046_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0942-4962&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0942-4962&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0942-4962&client=summon |