Sailfish optimizer with Levy flight, chaotic and opposition-based multi-level thresholding for medical image segmentation
Image segmentation is a procedure of dividing the digital image into multiple set of pixels. The intention of the segmentation is to “transform the representation of medical images into a meaningful subject”. Multi-level thresholding is an application of efficacious segmentation method. Several segm...
Saved in:
Published in | Soft computing (Berlin, Germany) Vol. 27; no. 17; pp. 12457 - 12482 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1432-7643 1433-7479 |
DOI | 10.1007/s00500-023-07891-w |
Cover
Abstract | Image segmentation is a procedure of dividing the digital image into multiple set of pixels. The intention of the segmentation is to “transform the representation of medical images into a meaningful subject”. Multi-level thresholding is an application of efficacious segmentation method. Several segmentation techniques were used previously to segment the affected portion from the medical images, but those techniques do not provide sufficient results. Therefore, in this paper, sailfish optimizer with Levy flight, chaotic and opposition-based multi-level thresholding is proposed for accurate medical image segmentation. Here, abdomen images, lung image and brain image are segmented using the optimal multi-level threshold with Otsu's strategy and Kapur's entropy strategy. To get the optimal segmentation results, the weight parameters of the Otsu's strategy and Kapur's entropy is optimized with the help of Levy flight sail fish optimizer (LFSFO)–chaotic sail fish optimizer (CSFO)–opposite sail fish optimizer (OSFO) for the segmentation of medical image. Finally, the performance of the proposed MLT-LFSFO-CSO-OSFO-MIS method attains lower mean square error and higher accuracy than three existing methods. |
---|---|
AbstractList | Image segmentation is a procedure of dividing the digital image into multiple set of pixels. The intention of the segmentation is to “transform the representation of medical images into a meaningful subject”. Multi-level thresholding is an application of efficacious segmentation method. Several segmentation techniques were used previously to segment the affected portion from the medical images, but those techniques do not provide sufficient results. Therefore, in this paper, sailfish optimizer with Levy flight, chaotic and opposition-based multi-level thresholding is proposed for accurate medical image segmentation. Here, abdomen images, lung image and brain image are segmented using the optimal multi-level threshold with Otsu's strategy and Kapur's entropy strategy. To get the optimal segmentation results, the weight parameters of the Otsu's strategy and Kapur's entropy is optimized with the help of Levy flight sail fish optimizer (LFSFO)–chaotic sail fish optimizer (CSFO)–opposite sail fish optimizer (OSFO) for the segmentation of medical image. Finally, the performance of the proposed MLT-LFSFO-CSO-OSFO-MIS method attains lower mean square error and higher accuracy than three existing methods. |
Author | Aruna Devi, B. Rajesh, P. Shajin, Francis H. Sreekanth, G. R. Prakash, N. B. |
Author_xml | – sequence: 1 givenname: Francis H. orcidid: 0000-0002-0127-739X surname: Shajin fullname: Shajin, Francis H. email: shajin.mt@gmail.com organization: Department of Electronics and Communication Engineering, Anna University – sequence: 2 givenname: B. surname: Aruna Devi fullname: Aruna Devi, B. organization: Department of Electronics and Communication Engineering, Dr. NGP Institute of Technology – sequence: 3 givenname: N. B. surname: Prakash fullname: Prakash, N. B. organization: Department of Electrical and Electronics Engineering, National Engineering College – sequence: 4 givenname: G. R. surname: Sreekanth fullname: Sreekanth, G. R. organization: Department of Computer Science and Engineering, Kongu Engineering College – sequence: 5 givenname: P. surname: Rajesh fullname: Rajesh, P. organization: Department of Electrical and Electronics Engineering, Anna University |
BookMark | eNp9kEtr3DAURkVJoUnaP9CVoNuquXp4ZC9L6AsGumi7FrJ0bSvY1lTSZJj8-ipxodBFVrqg79zHuSIXa1yRkLccPnAAfZMBGgAGQjLQbcfZ6QW55EpKppXuLp5qwfROyVfkKuc7AMF1Iy_J-YcN8xDyROOhhCU8YKKnUCa6x_szHeYwTuU9dZONJThqV19zh5hDCXFlvc3o6XKcS2Az3uNMy5QwT3H2YR3pEBNd0AdnZxoWOyLNOC64FvtIvyYvBztnfPP3vSa_Pn_6efuV7b9_-Xb7cc-c5F1hCrSSykMPPQrb6Q45tG6nGoXKOtGh9AOg6Ouv18K3atDNYKWwjeeNd728Ju-2vocUfx8xF3MXj2mtI43oeAu7hneipsSWcinmnHAwh1R3TmfDwTwqNptiUxWbJ8XmVKH2P8iF7biSqtbnUbmhuc5ZR0z_tnqG-gNgYZYm |
CitedBy_id | crossref_primary_10_1007_s00500_023_09165_x crossref_primary_10_3390_agronomy14081808 crossref_primary_10_1002_spe_3293 crossref_primary_10_1142_S021821302450009X crossref_primary_10_1007_s00202_023_01998_x crossref_primary_10_1007_s11227_024_06592_x crossref_primary_10_1002_dac_5664 crossref_primary_10_1007_s11760_023_02851_1 crossref_primary_10_1007_s00521_024_10667_4 crossref_primary_10_32604_cmes_2024_054334 crossref_primary_10_1007_s11276_023_03554_8 crossref_primary_10_1002_acs_3739 crossref_primary_10_1002_oca_3066 crossref_primary_10_3390_diagnostics13193131 crossref_primary_10_46632_jemm_9_3_5 crossref_primary_10_1002_jemt_24451 crossref_primary_10_1007_s11517_024_03106_y crossref_primary_10_1007_s12083_023_01533_6 crossref_primary_10_32604_cmc_2024_050863 crossref_primary_10_1007_s40031_024_01081_4 crossref_primary_10_46632_jame_2_3_4 crossref_primary_10_1016_j_displa_2024_102648 crossref_primary_10_1038_s41598_024_81075_w crossref_primary_10_1002_jemt_24709 crossref_primary_10_1142_S0218126624500956 crossref_primary_10_1177_09287329241302736 |
Cites_doi | 10.1016/j.eswa.2020.114418 10.1007/s11042-022-12344-x 10.1007/s00500-021-06159-5 10.1007/s00500-020-05349-x 10.1016/j.measurement.2011.09.005 10.1016/j.asoc.2018.05.038 10.1016/j.eswa.2019.07.037 10.1162/106365601750190370 10.1007/978-3-030-40977-7_18 10.1016/j.ijleo.2015.07.182 10.1007/s11548-016-1501-5 10.1007/s12652-020-02470-5 10.1007/s11831-021-09562-1 10.1007/s10334-017-0664-6 10.1016/j.epsr.2021.107049 10.1016/j.neucom.2019.01.110 10.1007/s12667-021-00452-w 10.1016/j.neucom.2020.05.075 10.1109/TIP.2016.2624198 10.1007/s00521-021-05771-8 10.1016/j.jclepro.2021.128318 10.1142/S0218126622500931 10.1016/j.measurement.2018.08.007 10.1016/j.measurement.2013.09.031 10.1016/j.media.2017.05.001 10.3390/math8091415 10.1016/j.phycom.2021.101536 10.1109/TMI.2017.2720261 10.1007/s10278-018-0052-4 10.1049/iet-cvi.2009.0141 10.1016/j.neucom.2019.02.054 10.1016/j.jvcir.2018.04.007 10.1109/TMI.2018.2806309 10.1016/j.cmpb.2020.105395 10.1007/s10955-009-9713-5 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s00500-023-07891-w |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1433-7479 |
EndPage | 12482 |
ExternalDocumentID | 10_1007_s00500_023_07891_w |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c319t-407434d0b0be2a979e108c6454e4ac29e3df0e2bbe2d72d84f75fa32a5d15dcb3 |
IEDL.DBID | AGYKE |
ISSN | 1432-7643 |
IngestDate | Sat Aug 23 12:28:39 EDT 2025 Fri Jul 04 01:04:18 EDT 2025 Thu Apr 24 23:01:35 EDT 2025 Fri Feb 21 02:42:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | Sailfish optimizer Multi-level thresholding LFSFO Otsu strategy Kapur's entropy strategy Magnetic resonance image (MRI) CSO and OSFO |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-407434d0b0be2a979e108c6454e4ac29e3df0e2bbe2d72d84f75fa32a5d15dcb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0127-739X |
PQID | 2918065192 |
PQPubID | 2043697 |
PageCount | 26 |
ParticipantIDs | proquest_journals_2918065192 crossref_primary_10_1007_s00500_023_07891_w crossref_citationtrail_10_1007_s00500_023_07891_w springer_journals_10_1007_s00500_023_07891_w |
PublicationCentury | 2000 |
PublicationDate | 20230900 2023-09-00 20230901 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 9 year: 2023 text: 20230900 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | A Fusion of Foundations, Methodologies and Applications |
PublicationTitle | Soft computing (Berlin, Germany) |
PublicationTitleAbbrev | Soft Comput |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Tarkhaneh, Shen (CR34) 2019; 138 Li, Lei, Alavi, Wang (CR21) 2020; 8 Srikanth, Bikshalu (CR33) 2022; 81 Rajesh, Shajin (CR28) 2021; 194 Bieth, Peter, Nekolla, Eiber, Langs, Schwaiger, Menze (CR5) 2017; 36 Zhang, Ding, Sun (CR37) 2020; 410 CR36 Liu, Guo, Yang, Ma, Zhang, Li, Sun, Jin, Li, Yang, Fu (CR24) 2018; 31 Feng, Deb, Wang, Alavi (CR9) 2021; 168 Geetha, Nanda, Yadav (CR10) 2022; 51 Hamidzadeh (CR14) 2021; 25 Manikandan, Ramar, WilljuiceIruthayarajan, Srinivasagan (CR25) 2014; 47 SathyaPD (CR30) 2011; 44 Shajin, Rajesh, Thilaha (CR32) 2020; 1 Ghosh, Mali, Das (CR11) 2020; 54 Shajin, Rajesh (CR31) 2022; 31 Lee, Yao (CR19) 2001; 9 Li, Shen, Tseng, Luo (CR22) 2021; 316 Lenin Fred, Kumar, Padmanaban, Gulyas, Ajay Kumar (CR20) 2020 Pattrapisetwong, Chiracharit (CR27) 2011; 5 Al-Temeemy, Spencer (CR1) 2015; 126 Avalos, Ayala, Wario, Pérez-Cisneros (CR2) 2021; 33 Kotte, Pullakura, Injeti (CR17) 2018; 130 Balakrishnan (CR3) 2022; 50 Narmatha, Eljack, Tuka, Manimurugan, Mustafa (CR26) 2020 Rajesh, Shajin, Kommula (CR29) 2021; 13 Zhang, Wu, Coleman, Kerr (CR38) 2020; 192 Larsson, Zhang, Kahl (CR18) 2018; 70 Dou, Yu, Chen, Jin, Yang, Qin, Heng (CR7) 2017; 41 Baldeon-Calisto, Lai-Yuen (CR4) 2020; 392 Farag, Lu, Roth, Liu, Turkbey, Summers (CR8) 2017; 26 Wang, Li, Wang, Li (CR35) 2019; 341 Gibson, Giganti, Hu, Bonmati, Bandula, Gurusamy, Davidson, Pereira, Clarkson, Barratt (CR12) 2018; 37 Karthikeyan, Valliammai (CR16) 2020; 8 Bilal, Öztürk (CR6) 2021; 25 Li, Wang, Gandomi (CR23) 2021; 28 Gloger, Bülow, Tönnies, Völzke (CR13) 2017; 31 Hu, Wu, Peng, Bao, Chen, Kong (CR15) 2016; 12 A Farag (7891_CR8) 2017; 26 P Geetha (7891_CR10) 2022; 51 P Pattrapisetwong (7891_CR27) 2011; 5 O Tarkhaneh (7891_CR34) 2019; 138 C Lee (7891_CR19) 2001; 9 FH Shajin (7891_CR31) 2022; 31 J Li (7891_CR21) 2020; 8 P Rajesh (7891_CR29) 2021; 13 P Rajesh (7891_CR28) 2021; 194 O Avalos (7891_CR2) 2021; 33 M Baldeon-Calisto (7891_CR4) 2020; 392 C Narmatha (7891_CR26) 2020 Y Feng (7891_CR9) 2021; 168 W Wang (7891_CR35) 2019; 341 A Al-Temeemy (7891_CR1) 2015; 126 Z Zhang (7891_CR37) 2020; 410 O Gloger (7891_CR13) 2017; 31 M Larsson (7891_CR18) 2018; 70 K Balakrishnan (7891_CR3) 2022; 50 P Ghosh (7891_CR11) 2020; 54 E Gibson (7891_CR12) 2018; 37 M Bieth (7891_CR5) 2017; 36 J Hamidzadeh (7891_CR14) 2021; 25 Z Zhang (7891_CR38) 2020; 192 R Srikanth (7891_CR33) 2022; 81 W Li (7891_CR23) 2021; 28 7891_CR36 H Bilal (7891_CR6) 2021; 25 P Hu (7891_CR15) 2016; 12 X Liu (7891_CR24) 2018; 31 S Kotte (7891_CR17) 2018; 130 LL Li (7891_CR22) 2021; 316 Q Dou (7891_CR7) 2017; 41 FH Shajin (7891_CR32) 2020; 1 KR SathyaPD (7891_CR30) 2011; 44 A Karthikeyan (7891_CR16) 2020; 8 A Lenin Fred (7891_CR20) 2020 S Manikandan (7891_CR25) 2014; 47 |
References_xml | – volume: 168 start-page: 114418 year: 2021 ident: CR9 article-title: Monarch butterfly optimization: a comprehensive review publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.114418 – volume: 81 start-page: 20963 year: 2022 end-page: 20992 ident: CR33 article-title: Chaotic multi verse improved Harris hawks optimization (CMV-IHHO) facilitated multiple level set model with an ideal energy active contour for an effective medical image segmentation publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-12344-x – volume: 25 start-page: 14333 issue: 22 year: 2021 end-page: 14355 ident: CR6 article-title: Rubber bushing optimization by using a novel chaotic krill herd optimization algorithm publication-title: Soft Comput doi: 10.1007/s00500-021-06159-5 – volume: 25 start-page: 2911 issue: 4 year: 2021 end-page: 2933 ident: CR14 article-title: Feature selection by using chaotic cuckoo optimization algorithm with levy flight, opposition-based learning and disruption operator publication-title: Soft Comput doi: 10.1007/s00500-020-05349-x – volume: 44 start-page: 1828 year: 2011 end-page: 1848 ident: CR30 article-title: Amended bacterial foraging algorithm for multilevel thresholding of magnetic resonance brain images publication-title: Measurement doi: 10.1016/j.measurement.2011.09.005 – volume: 70 start-page: 465 year: 2018 end-page: 471 ident: CR18 article-title: Robust abdominal organ segmentation using regional convolutional neural networks publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.05.038 – volume: 138 start-page: 112820 year: 2019 ident: CR34 article-title: An adaptive differential evolution algorithm to optimal multi-level thresholding for MRI brain image segmentation publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.07.037 – volume: 9 start-page: 127 year: 2001 end-page: 146 ident: CR19 article-title: Theoretical analysis of mutation-adaptive evolutionary algorithms publication-title: Evol Comput doi: 10.1162/106365601750190370 – start-page: 413 year: 2020 end-page: 439 ident: CR20 article-title: Fuzzy-crow search optimization for medical image segmentation publication-title: Applications of hybrid metaheuristic algorithms for image processing doi: 10.1007/978-3-030-40977-7_18 – volume: 126 start-page: 3894 year: 2015 end-page: 3900 ident: CR1 article-title: Chromatic methodology for laser detection and ranging (LADAR) image description publication-title: Optik doi: 10.1016/j.ijleo.2015.07.182 – volume: 12 start-page: 399 year: 2016 end-page: 411 ident: CR15 article-title: Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-016-1501-5 – year: 2020 ident: CR26 article-title: A hybrid fuzzy brain-storm optimization algorithm for the classification of brain tumor MRI images publication-title: J Amb Intell Human Comput doi: 10.1007/s12652-020-02470-5 – volume: 28 start-page: 3781 issue: 5 year: 2021 end-page: 3799 ident: CR23 article-title: A survey of learning-based intelligent optimization algorithms publication-title: Archiv Comput Methods Eng doi: 10.1007/s11831-021-09562-1 – volume: 31 start-page: 383 year: 2017 end-page: 397 ident: CR13 article-title: Automatic gallbladder segmentation using combined 2D and 3D shape features to perform volumetric analysis in native and secretin-enhanced MRCP sequences publication-title: Magn Reson Mater Phys, Biol Med doi: 10.1007/s10334-017-0664-6 – volume: 8 start-page: 2641 year: 2020 end-page: 2643 ident: CR16 article-title: Brain tumor segmentation using multi level thresholding using fuzzy entropy publication-title: Int J Recent Technol Eng – volume: 194 start-page: 107049 year: 2021 ident: CR28 article-title: Optimal allocation of EV charging spots and capacitors in distribution network improving voltage and power loss by Quantum-Behaved and Gaussian Mutational Dragonfly Algorithm (QGDA) publication-title: Electric Power Syst Res doi: 10.1016/j.epsr.2021.107049 – volume: 392 start-page: 325 year: 2020 end-page: 340 ident: CR4 article-title: AdaResU-Net: multiobjective adaptive convolutional neural network for medical image segmentation publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.110 – volume: 13 start-page: 939 issue: 4 year: 2021 end-page: 958 ident: CR29 article-title: An efficient integration and control approach to increase the conversion efficiency of high-current low-voltage DC/DC converter publication-title: Energy Syst doi: 10.1007/s12667-021-00452-w – volume: 410 start-page: 185 year: 2020 end-page: 201 ident: CR37 article-title: A support vector regression model hybridized with chaotic krill herd algorithm and empirical mode decomposition for regression task publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.05.075 – volume: 26 start-page: 386 year: 2017 end-page: 399 ident: CR8 article-title: A bottom-up approach for pancreas segmentation using cascaded superpixels and (deep) image patch labeling publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2016.2624198 – volume: 33 start-page: 10057 issue: 16 year: 2021 end-page: 10091 ident: CR2 article-title: An accurate cluster chaotic optimization approach for digital medical image segmentation publication-title: Neural Comput Appl doi: 10.1007/s00521-021-05771-8 – volume: 316 start-page: 128318 year: 2021 ident: CR22 article-title: Power system hybrid dynamic economic emission dispatch with wind energy based on improved sailfish algorithm publication-title: J Clean Prod doi: 10.1016/j.jclepro.2021.128318 – volume: 31 start-page: 2250093 issue: 05 year: 2022 ident: CR31 article-title: FPGA realization of a reversible data hiding scheme for 5G MIMO-OFDM system by chaotic key generation-based Paillier cryptography along with LDPC and its side channel estimation using machine learning technique publication-title: J Circuits Syst Comput doi: 10.1142/S0218126622500931 – volume: 130 start-page: 340 year: 2018 end-page: 361 ident: CR17 article-title: Optimal multilevel thresholding selection for brain MRI image segmentation based on adaptive wind driven optimization publication-title: Measurement doi: 10.1016/j.measurement.2018.08.007 – volume: 47 start-page: 558 year: 2014 end-page: 568 ident: CR25 article-title: Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm publication-title: Measurement doi: 10.1016/j.measurement.2013.09.031 – volume: 41 start-page: 40 year: 2017 end-page: 54 ident: CR7 article-title: 3D deeply supervised network for automated segmentation of volumetric medical images publication-title: Med Image Anal doi: 10.1016/j.media.2017.05.001 – volume: 8 start-page: 1415 issue: 9 year: 2020 ident: CR21 article-title: Elephant herding optimization: variants, hybrids, and applications publication-title: Mathematics doi: 10.3390/math8091415 – volume: 51 start-page: 101536 year: 2022 ident: CR10 article-title: A parallel chaotic sailfish optimization algorithm for estimation of DOA in wireless sensor array publication-title: Phys Commun doi: 10.1016/j.phycom.2021.101536 – volume: 36 start-page: 2276 year: 2017 end-page: 2286 ident: CR5 article-title: Segmentation of skeleton and organs in whole-body CT images via iterative trilateration publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2017.2720261 – volume: 31 start-page: 748 year: 2018 end-page: 760 ident: CR24 article-title: Automatic organ segmentation for CT scans based on super-pixel and convolutional neural networks publication-title: J Digit Imag doi: 10.1007/s10278-018-0052-4 – volume: 5 start-page: 185 year: 2011 ident: CR27 article-title: Lung segmentation in chest radiographs by fusing shape information in iterative thresholding publication-title: IET Comput Vis doi: 10.1049/iet-cvi.2009.0141 – volume: 341 start-page: 41 year: 2019 end-page: 59 ident: CR35 article-title: Opposition-based multi-objective whale optimization algorithm with global grid ranking publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.02.054 – volume: 54 start-page: 63 year: 2020 end-page: 79 ident: CR11 article-title: Chaotic firefly algorithm-based fuzzy C-means algorithm for segmentation of brain tissues in magnetic resonance images publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2018.04.007 – ident: CR36 – volume: 37 start-page: 1822 issue: 8 year: 2018 end-page: 34 ident: CR12 article-title: Automatic multi-organ segmentation on abdominal CT with dense v-networks publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2018.2806309 – volume: 192 start-page: 105395 year: 2020 ident: CR38 article-title: DENSE-INception U-net for medical image segmentation publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2020.105395 – volume: 50 start-page: 68 issue: 2 year: 2022 end-page: 73 ident: CR3 article-title: Detecting autism spectrum disorder with sailfish optimisation publication-title: Indian J Radio Space Phys (IJRSP) – volume: 1 start-page: 7 issue: 1 year: 2020 ident: CR32 article-title: Bald eagle search optimization algorithm for cluster head selection with prolong lifetime in wireless sensor network publication-title: J Soft Comput Eng Appl – volume: 316 start-page: 128318 year: 2021 ident: 7891_CR22 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2021.128318 – volume: 194 start-page: 107049 year: 2021 ident: 7891_CR28 publication-title: Electric Power Syst Res doi: 10.1016/j.epsr.2021.107049 – volume: 8 start-page: 2641 year: 2020 ident: 7891_CR16 publication-title: Int J Recent Technol Eng – volume: 25 start-page: 14333 issue: 22 year: 2021 ident: 7891_CR6 publication-title: Soft Comput doi: 10.1007/s00500-021-06159-5 – volume: 41 start-page: 40 year: 2017 ident: 7891_CR7 publication-title: Med Image Anal doi: 10.1016/j.media.2017.05.001 – volume: 5 start-page: 185 year: 2011 ident: 7891_CR27 publication-title: IET Comput Vis doi: 10.1049/iet-cvi.2009.0141 – volume: 410 start-page: 185 year: 2020 ident: 7891_CR37 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.05.075 – volume: 392 start-page: 325 year: 2020 ident: 7891_CR4 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.110 – volume: 126 start-page: 3894 year: 2015 ident: 7891_CR1 publication-title: Optik doi: 10.1016/j.ijleo.2015.07.182 – volume: 81 start-page: 20963 year: 2022 ident: 7891_CR33 publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-12344-x – volume: 1 start-page: 7 issue: 1 year: 2020 ident: 7891_CR32 publication-title: J Soft Comput Eng Appl – volume: 31 start-page: 383 year: 2017 ident: 7891_CR13 publication-title: Magn Reson Mater Phys, Biol Med doi: 10.1007/s10334-017-0664-6 – volume: 50 start-page: 68 issue: 2 year: 2022 ident: 7891_CR3 publication-title: Indian J Radio Space Phys (IJRSP) – year: 2020 ident: 7891_CR26 publication-title: J Amb Intell Human Comput doi: 10.1007/s12652-020-02470-5 – volume: 31 start-page: 2250093 issue: 05 year: 2022 ident: 7891_CR31 publication-title: J Circuits Syst Comput doi: 10.1142/S0218126622500931 – volume: 51 start-page: 101536 year: 2022 ident: 7891_CR10 publication-title: Phys Commun doi: 10.1016/j.phycom.2021.101536 – volume: 31 start-page: 748 year: 2018 ident: 7891_CR24 publication-title: J Digit Imag doi: 10.1007/s10278-018-0052-4 – volume: 192 start-page: 105395 year: 2020 ident: 7891_CR38 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2020.105395 – volume: 26 start-page: 386 year: 2017 ident: 7891_CR8 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2016.2624198 – volume: 8 start-page: 1415 issue: 9 year: 2020 ident: 7891_CR21 publication-title: Mathematics doi: 10.3390/math8091415 – volume: 168 start-page: 114418 year: 2021 ident: 7891_CR9 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.114418 – volume: 138 start-page: 112820 year: 2019 ident: 7891_CR34 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.07.037 – volume: 54 start-page: 63 year: 2020 ident: 7891_CR11 publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2018.04.007 – volume: 37 start-page: 1822 issue: 8 year: 2018 ident: 7891_CR12 publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2018.2806309 – volume: 47 start-page: 558 year: 2014 ident: 7891_CR25 publication-title: Measurement doi: 10.1016/j.measurement.2013.09.031 – volume: 36 start-page: 2276 year: 2017 ident: 7891_CR5 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2017.2720261 – volume: 130 start-page: 340 year: 2018 ident: 7891_CR17 publication-title: Measurement doi: 10.1016/j.measurement.2018.08.007 – volume: 33 start-page: 10057 issue: 16 year: 2021 ident: 7891_CR2 publication-title: Neural Comput Appl doi: 10.1007/s00521-021-05771-8 – volume: 44 start-page: 1828 year: 2011 ident: 7891_CR30 publication-title: Measurement doi: 10.1016/j.measurement.2011.09.005 – volume: 341 start-page: 41 year: 2019 ident: 7891_CR35 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.02.054 – volume: 9 start-page: 127 year: 2001 ident: 7891_CR19 publication-title: Evol Comput doi: 10.1162/106365601750190370 – start-page: 413 volume-title: Applications of hybrid metaheuristic algorithms for image processing year: 2020 ident: 7891_CR20 doi: 10.1007/978-3-030-40977-7_18 – volume: 13 start-page: 939 issue: 4 year: 2021 ident: 7891_CR29 publication-title: Energy Syst doi: 10.1007/s12667-021-00452-w – volume: 28 start-page: 3781 issue: 5 year: 2021 ident: 7891_CR23 publication-title: Archiv Comput Methods Eng doi: 10.1007/s11831-021-09562-1 – volume: 25 start-page: 2911 issue: 4 year: 2021 ident: 7891_CR14 publication-title: Soft Comput doi: 10.1007/s00500-020-05349-x – volume: 12 start-page: 399 year: 2016 ident: 7891_CR15 publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-016-1501-5 – ident: 7891_CR36 doi: 10.1007/s10955-009-9713-5 – volume: 70 start-page: 465 year: 2018 ident: 7891_CR18 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.05.038 |
SSID | ssj0021753 |
Score | 2.5107722 |
Snippet | Image segmentation is a procedure of dividing the digital image into multiple set of pixels. The intention of the segmentation is to “transform the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12457 |
SubjectTerms | Abdomen Accuracy Application of Soft Computing Artificial Intelligence Brain cancer Cerebrospinal fluid Computational Intelligence Control Datasets Digital imaging Engineering Entropy Fish Genetic algorithms Image segmentation Magnetic resonance imaging Mathematical Logic and Foundations Mechatronics Medical imaging Methods Neural networks Neuroimaging Optimization Registration Robotics Three dimensional imaging |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEG4UL158G1E0PXiTxt3SfZ2MMSIx0YuScNv0KZvAgi6G6K93WroQTeTcbg8705lvOo8PocvAcJYarohQghPLckQ4NRGJeSbjgFNmXFXl03Pc67PHQTTwD26VL6usbaIz1Goi7Rv5Nc1CmwMEQHIzfSeWNcpmVz2FxibaCsHTWD1Puw_LgMtPoQRIACgSXK9vmnGtc3bwSUDAYxE7cD0k89-OaYU2_yRInd_p7qEdDxjx7ULC-2hDlwdotyZjwP5uHqKvF16MTFEN8QSswLj4hkX7yIotKzE2IxuEt7Ec8gkchHmpYF9dsUWsL1PYFReSkS0jwjOQceVTUxiALR4vMjq4GIMFwpV-G_uupfII9bv3r3c94nkViIQLN4OQEWADU4EIhKY8SzIdBqm0o70045JmuqNMoKmAVZVQlTKTRIZ3KI9UGCkpOseoUU5KfYIwMxDhSMZjnnAWGyUESzqSCsBNTEdZ2ERh_VNz6YeOW-6LUb4cl-wEkYMgcieIfN5EV8tvpouRG2t3t2pZ5f76VflKWZqoXctvtfz_aafrTztD29SpjK0xa6HG7ONTnwMomYkLp3k_trLgDA priority: 102 providerName: ProQuest |
Title | Sailfish optimizer with Levy flight, chaotic and opposition-based multi-level thresholding for medical image segmentation |
URI | https://link.springer.com/article/10.1007/s00500-023-07891-w https://www.proquest.com/docview/2918065192 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4VuMABWgpqKI32wA0W2Zv165hUCYiqEaKNBCdrnyRq4iBshMqv76yzDg8VJE4-7Hhlr2d3vvHMfANwEFjBUys0lVoK6rocUcFsRGORqTgQjNs6q_LnMD4d8bPL6NIXhZVNtnsTkqxP6mWxm6MqCSjaGOoo0kN6vwJrUZhmqNdr3ZOrH_2lo-XZJxEKIHpEk-uLZf4_y3OD9IgyXwRGa3sz2IJR86SLNJM_x3eVPFYPL0gc3_sqH2HTA1DSXWjMJ_hgim3Yapo7EL_Xt2HjCVPhZ_j7S0ymdlKOyRzPmNnkAUXdL1zieh4TO3Uu_hFRYzHHaYkoNMo1-WDUWUpN6tRFOnVJSqRCDSp94IsgbCazRbyITGZ4vpHSXM98TVSxA6NB__f3U-q7NlCF27lChxRBCdeBDKRhIksyEwapcsRhhgvFMtPRNjBM4qhOmE65TSIrOkxEOoy0kp1dWC3mhfkChFv0nxQXsUgEj62WkicdxSSiMm6iLGxB2Hy6XHlKc9dZY5ovyZjrlc5xpfN6pfP7Fhwu77lZEHq8Kb3faETuN3eZsyx04WjExi04aj7w4_Drs-29T_wrrLNaR1xG2z6sVrd35htCoEq2YSUdnLRR7we93rDt9R-vvf7w_AJHR6z7DxDfBDA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9gAXSnmI0EL3ACe6wt6s7fiAEIKmKX1caKXezD5ppMQpOFXU_ih-IzObdaJWam8973oPO9_OfON5AbxPvJI9ryzXVitOU464Ej7juSpNnighfciqPDrOB6fyx1l2tgL_2loYSqtsdWJQ1HZi6B_5J1GmFANEQvLl4g-nqVEUXW1HaMxhceCuZuiyNZ_3v6N8PwjR3z35NuBxqgA3CLcpOkxoNKVNdKKdUGVRujTpGWps5aQyonRd6xMnNK7aQtie9EXmVVeozKaZNbqL5z6CNYm-Hb2iXn9v4eDFrpdIQZC1oqmPRTqhVI8arSQcLSSnBu8pn900hEt2eysgG-xc_xk8jQSVfZ0jagNWXP0c1tvhDyzqghdw9VMNR37YnLMJap3x8BoX6acuoynIzI_I6d9h5lxN8CCmaov72gwxTrbTspDMyEeUtsSmiKkmhsIYEmk2nkeQ2HCMGo817vc4VknVL-H0QW78FazWk9q9BiY9elRGqlwVSubeai2LrhEaeZp0WZl2IG0vtTKxyTnN2hhVi_bMQRAVCqIKgqhmHfi4-OZi3uLj3t1brayq-NybagnODuy08lsu333am_tP24bHg5Ojw-pw__hgE56IAB_Kb9uC1enfS_cWCdFUvwsoZPDroWH_H3U4Hcs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RRaraQ3m0qEuB-tBbMSReJ9kcUcvyalGlFomeovELVuxmERuEyq_vOHGWh0qlqmdPrMQee77JzHwD8CFyKPsODVdGIfddjjgKl_AUc51GKKSrsyq_Hqf7J_LwNDm9V8VfZ7u3IcmmpsGzNJXV9qVx27PCN09bEnGyN9zTpcf85hnMy4h0rwPzO3s_j3ZnTldgoiRYQEiSzG8onPnzLA-N0x3ifBQkrW3PYAGwfesm5eRi67pSW_r2EaHj_3zWIrwKwJTtNJq0BHO2XIaFtukDC3fAMry8x2D4Gn59x-HIDafnbEJ3z3h4S6L-1y7zvZCZG3nXf5Ppc5zQtAxLQ3Jtnhj3FtSwOqWRj3zyEqtIs6YhIMYITrNxE0diwzHde2xqz8ahVqp8AyeD3R-f9nno5sA1HfOKHFUCK9JEKlJWYJ7lNo762hOKWYla5LZnXGSFolGTCdOXLksc9gQmJk6MVr0V6JST0r4FJh35VVpiihnK1BmlZNbTQhFakzbJ4y7E7TYWOlCd-44bo2JG0lyvdEErXdQrXdx04ePsmcuG6OOv0mutdhTh0E8Lkcc-TE2YuQub7WbfDT892-q_ib-H598-D4ovB8dH7-CFqNXFJ72tQae6urbrhJIqtREOwm9jIwsN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sailfish+optimizer+with+Levy+flight%2C+chaotic+and+opposition-based+multi-level+thresholding+for+medical+image+segmentation&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Shajin%2C+Francis+H.&rft.au=Aruna+Devi%2C+B.&rft.au=Prakash%2C+N.+B.&rft.au=Sreekanth%2C+G.+R.&rft.date=2023-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=27&rft.issue=17&rft.spage=12457&rft.epage=12482&rft_id=info:doi/10.1007%2Fs00500-023-07891-w&rft.externalDocID=10_1007_s00500_023_07891_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |