Fuzzy-based bee algorithm for machine learning and pattern recognition of computational data of nanofluid heat transfer
The CFD approach could waste a lot of time, effort, and cost for three-dimensional turbulent flow modeling. In the CFD method, any changes in the grid numbers in a specific region, the whole domain must be meshed and simulated again. More computational expenses are imposed when the mesh density must...
Saved in:
| Published in | Neural computing & applications Vol. 35; no. 27; pp. 20087 - 20101 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.09.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0941-0643 1433-3058 |
| DOI | 10.1007/s00521-023-08851-z |
Cover
| Abstract | The CFD approach could waste a lot of time, effort, and cost for three-dimensional turbulent flow modeling. In the CFD method, any changes in the grid numbers in a specific region, the whole domain must be meshed and simulated again. More computational expenses are imposed when the mesh density must be increased. This study, for the first time, is aimed to develop a supplementary method using the artificial intelligence algorithm to reduce the post-processing calculations of the CFD approach. Eddy viscosity of alumina–water nanofluid turbulent flow inside a straight pipe is considered for prediction. The finite volume technique is used for solving the governing equations (i.e., mass, momentum, and energy) and the
k–ɛ
turbulence model of the CFD approach. Algorithms for artificial intelligence have shown promise for data learning and data patterning. In this study, the FVM solutions are learned by the artificial intelligence of the bee algorithm-based fuzzy inference system (BAFIS). The finite volume technique in the CFD modeling is integrated with the BAFIS to predict eddy viscosity in the nanofluid turbulent flow. Besides, the BAFIS performance and application are examined for meshing in the post-processing step of the CFD. In this way, the BAFIS learned the CFD-driven data for the existing nodes. Then the CFD data pattern is captured by the BAFIS. Finally, this CFD pattern is extended to more nodes. For achieving the intelligence, different input numbers (2 and 3), cluster numbers (5, 10, 15, and 20), as the fuzzy C-means clustering parameter, and neighborhood damping radius rates (0.85, 0.90, 0.95, and 0.99), as bee algorithm parameter, are investigated. The intelligence of the BAFIS was achieved for 3 inputs, the cluster number of 20, and the neighborhood damping radius rate of 0.99. The predictions of the eddy viscosity of BAFIS were the same as those of CFD. The BAFIS shows the ability for the accurate prediction of the eddy viscosity (regression number of 0.98). Comparing the time consumption of the methods, for the same number of nodes (i.e., 4,473) and the same computer specifications, the prediction time of the CFD (110 min) was around half of the learning time of BAFIS (52 min). It should be noted that after the data learning, the target variable, eddy viscosity in this study, could be predicted for any number of nodes (i.e., 774,771 nodes) within a negligible time (22 s). So, no significant time was consumed by BAFIS for the mesh increment. The BAFIS results covered the CFD results for additional nodes in the new dense mesh. |
|---|---|
| AbstractList | The CFD approach could waste a lot of time, effort, and cost for three-dimensional turbulent flow modeling. In the CFD method, any changes in the grid numbers in a specific region, the whole domain must be meshed and simulated again. More computational expenses are imposed when the mesh density must be increased. This study, for the first time, is aimed to develop a supplementary method using the artificial intelligence algorithm to reduce the post-processing calculations of the CFD approach. Eddy viscosity of alumina–water nanofluid turbulent flow inside a straight pipe is considered for prediction. The finite volume technique is used for solving the governing equations (i.e., mass, momentum, and energy) and the k–ɛ turbulence model of the CFD approach. Algorithms for artificial intelligence have shown promise for data learning and data patterning. In this study, the FVM solutions are learned by the artificial intelligence of the bee algorithm-based fuzzy inference system (BAFIS). The finite volume technique in the CFD modeling is integrated with the BAFIS to predict eddy viscosity in the nanofluid turbulent flow. Besides, the BAFIS performance and application are examined for meshing in the post-processing step of the CFD. In this way, the BAFIS learned the CFD-driven data for the existing nodes. Then the CFD data pattern is captured by the BAFIS. Finally, this CFD pattern is extended to more nodes. For achieving the intelligence, different input numbers (2 and 3), cluster numbers (5, 10, 15, and 20), as the fuzzy C-means clustering parameter, and neighborhood damping radius rates (0.85, 0.90, 0.95, and 0.99), as bee algorithm parameter, are investigated. The intelligence of the BAFIS was achieved for 3 inputs, the cluster number of 20, and the neighborhood damping radius rate of 0.99. The predictions of the eddy viscosity of BAFIS were the same as those of CFD. The BAFIS shows the ability for the accurate prediction of the eddy viscosity (regression number of 0.98). Comparing the time consumption of the methods, for the same number of nodes (i.e., 4,473) and the same computer specifications, the prediction time of the CFD (110 min) was around half of the learning time of BAFIS (52 min). It should be noted that after the data learning, the target variable, eddy viscosity in this study, could be predicted for any number of nodes (i.e., 774,771 nodes) within a negligible time (22 s). So, no significant time was consumed by BAFIS for the mesh increment. The BAFIS results covered the CFD results for additional nodes in the new dense mesh. The CFD approach could waste a lot of time, effort, and cost for three-dimensional turbulent flow modeling. In the CFD method, any changes in the grid numbers in a specific region, the whole domain must be meshed and simulated again. More computational expenses are imposed when the mesh density must be increased. This study, for the first time, is aimed to develop a supplementary method using the artificial intelligence algorithm to reduce the post-processing calculations of the CFD approach. Eddy viscosity of alumina–water nanofluid turbulent flow inside a straight pipe is considered for prediction. The finite volume technique is used for solving the governing equations (i.e., mass, momentum, and energy) and the k–ɛ turbulence model of the CFD approach. Algorithms for artificial intelligence have shown promise for data learning and data patterning. In this study, the FVM solutions are learned by the artificial intelligence of the bee algorithm-based fuzzy inference system (BAFIS). The finite volume technique in the CFD modeling is integrated with the BAFIS to predict eddy viscosity in the nanofluid turbulent flow. Besides, the BAFIS performance and application are examined for meshing in the post-processing step of the CFD. In this way, the BAFIS learned the CFD-driven data for the existing nodes. Then the CFD data pattern is captured by the BAFIS. Finally, this CFD pattern is extended to more nodes. For achieving the intelligence, different input numbers (2 and 3), cluster numbers (5, 10, 15, and 20), as the fuzzy C-means clustering parameter, and neighborhood damping radius rates (0.85, 0.90, 0.95, and 0.99), as bee algorithm parameter, are investigated. The intelligence of the BAFIS was achieved for 3 inputs, the cluster number of 20, and the neighborhood damping radius rate of 0.99. The predictions of the eddy viscosity of BAFIS were the same as those of CFD. The BAFIS shows the ability for the accurate prediction of the eddy viscosity (regression number of 0.98). Comparing the time consumption of the methods, for the same number of nodes (i.e., 4,473) and the same computer specifications, the prediction time of the CFD (110 min) was around half of the learning time of BAFIS (52 min). It should be noted that after the data learning, the target variable, eddy viscosity in this study, could be predicted for any number of nodes (i.e., 774,771 nodes) within a negligible time (22 s). So, no significant time was consumed by BAFIS for the mesh increment. The BAFIS results covered the CFD results for additional nodes in the new dense mesh. |
| Author | Liu, Yakun Babanezhad, Meisam Behroyan, Iman Azma, Aliasghar |
| Author_xml | – sequence: 1 givenname: Aliasghar surname: Azma fullname: Azma, Aliasghar organization: Faculty of Infrastructure Engineering, School of Hydraulic Engineering, Dalian University of Technology – sequence: 2 givenname: Iman surname: Behroyan fullname: Behroyan, Iman organization: Faculty of Mechanical and Energy Engineering, Shahid Beheshti University – sequence: 3 givenname: Meisam orcidid: 0000-0003-4303-7412 surname: Babanezhad fullname: Babanezhad, Meisam email: meisambabanezhad@duytan.edu.vn organization: Institute of Research and Development, Duy Tan University, Faculty of Electrical–Electronic Engineering, Duy Tan University, Department of Artificial Intelligence, Shunderman Industrial Strategy Co – sequence: 4 givenname: Yakun surname: Liu fullname: Liu, Yakun organization: Faculty of Infrastructure Engineering, School of Hydraulic Engineering, Dalian University of Technology |
| BookMark | eNp9kE1LAzEQhoMoWD_-gKeA59V8bLbpUcQvELzoOUyySRvZJjXJIvbXm7qC4KGnYWbeZ3jnPUGHIQaL0AUlV5SQ-XUmRDDaEMYbIqWgzfYAzWjLecOJkIdoRhZtXXctP0YnOb8TQtpOihn6vB-3269GQ7Y91tZiGJYx-bJaYxcTXoNZ-WDxYCEFH5YYQo83UIpNASdr4jL44mPA0WET15uxwK6FAfdQYDcNEKIbRt_jlYWCS4KQnU1n6MjBkO35bz1Fb_d3r7ePzfPLw9PtzXNjOF2UhjtmJOO6c3NJpdSLlsjWdsIxCtRpzUzPoVuwTgjO-5ZwqTWvQsH0vO9Ny0_R5XR3k-LHaHNR73FM1WBWTAopKkFZVclJZVLMOVmnjJ8-qX79oChRu5jVFLOqMaufmNW2ouwfukl-DelrP8QnKFdxWNr052oP9Q3d55Qe |
| CitedBy_id | crossref_primary_10_1016_j_heliyon_2024_e40783 crossref_primary_10_1021_acsomega_3c06432 crossref_primary_10_3390_en17236027 crossref_primary_10_1007_s00521_024_10743_9 |
| Cites_doi | 10.1016/j.icheatmasstransfer.2020.104897 10.1007/s10973-017-6696-3 10.1016/j.physe.2018.02.018 10.1016/j.ijheatmasstransfer.2017.05.095 10.1038/s41598-019-56847-4 10.1021/acsomega.0c04497 10.1016/j.applthermaleng.2021.117655 10.1016/j.powtec.2018.09.076 10.1038/s41598-020-79139-8 10.1007/s40815-019-00741-8 10.1016/j.icheatmasstransfer.2007.03.004 10.1016/j.physa.2019.03.118 10.1016/j.powtec.2019.07.086 10.1080/10407782.2013.826109 10.3390/pharmaceutics9020014 10.1007/s00521-019-04677-w 10.1016/j.applthermaleng.2018.01.062 10.1007/s10973-018-7707-8 10.1016/j.icheatmasstransfer.2015.11.001 10.1007/978-3-662-52919-5 10.1016/j.icheatmasstransfer.2015.07.014 10.1016/j.ijheatmasstransfer.2019.118806 10.1016/j.physe.2016.07.017 10.1021/acsomega.0c02784 10.1007/s10973-020-09458-5 10.1115/1.1532008 10.1080/10407782.2015.1081019 10.1186/1556-276X-9-15 10.1002/cjce.23378 10.1038/s41598-020-74858-4 10.1016/j.spmi.2003.09.012 10.1016/j.physa.2019.03.119 10.1016/j.energy.2013.05.050 10.1080/10407782.2014.955345 10.1016/j.ijthermalsci.2010.03.008 10.1109/TSMC.1985.6313399 10.1016/j.icheatmasstransfer.2014.04.014 10.1016/j.molstruc.2019.07.080 10.1016/j.icheatmasstransfer.2020.104645 10.1063/1.2093936 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s00521-023-08851-z |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest One Academic Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 20101 |
| ExternalDocumentID | 10_1007_s00521_023_08851_z |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO DWQXO PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-3f2c823b6f78188b94084e65f21a1fbb2cd3a69265533d4038bb318852b7ddc43 |
| IEDL.DBID | U2A |
| ISSN | 0941-0643 |
| IngestDate | Sat Jul 26 02:15:35 EDT 2025 Thu Apr 24 22:59:37 EDT 2025 Wed Oct 01 03:43:39 EDT 2025 Fri Feb 21 02:43:14 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 27 |
| Keywords | CFD BAFIS Meshing Artificial intelligence Eddy viscosity |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-3f2c823b6f78188b94084e65f21a1fbb2cd3a69265533d4038bb318852b7ddc43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4303-7412 |
| PQID | 2858503812 |
| PQPubID | 2043988 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2858503812 crossref_citationtrail_10_1007_s00521_023_08851_z crossref_primary_10_1007_s00521_023_08851_z springer_journals_10_1007_s00521_023_08851_z |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20230900 2023-09-00 20230901 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 9 year: 2023 text: 20230900 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2023 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Selimefendigil, Öztop (CR34) 2015; 67 Ajeel (CR37) 2019; 145 Babanezhad (CR19) 2020; 10 Ganesan (CR12) 2016; 69 Chon (CR40) 2005; 87 Maiga (CR41) 2004; 35 Babanezhad (CR28) 2021; 11 Goodarzi (CR6) 2019; 136 Azizifar, Ameriand, Behroyan (CR13) 2020; 118 Akhgar (CR24) 2019; 355 Babanezhad (CR26) 2020; 5 Martinez, Bartholomew (CR46) 2017; 9 Gürdal (CR38) 2022; 200 CR35 Samadifar, Toghraie (CR16) 2018; 133 Cao (CR21) 2020; 32 Bianco, Mancaand, Nardini (CR39) 2011; 50 Babanezhad (CR20) 2019; 97 Takagi, Sugeno (CR45) 1985; 1 Babanezhad (CR30) 2021; 11 Karimipour (CR36) 2012; 6 Toghraie (CR17) 2016; 84 Babanezhad (CR18) 2020; 5 Babanezhad (CR47) 2020; 10 Babanezhad (CR29) 2021; 11 Xuan, Li (CR43) 2003; 125 Aghahadi, Niknejadiand, Toghraie (CR3) 2019; 1197 Mehrali (CR1) 2014; 9 Zadeh, Toghraie (CR4) 2018; 131 Behroyan (CR11) 2016; 70 Ruhani, Barnoonand, Toghraie (CR8) 2019; 525 Varol (CR32) 2007; 34 Ruhani (CR9) 2019; 525 He (CR25) 2020; 116 Saeedi, Akbariand, Toghraie (CR7) 2018; 99 Babanezhad (CR27) 2021; 11 Moraveji, Toghraie (CR15) 2017; 113 Selimefendigil, Öztop (CR33) 2014; 65 CR44 Alawi (CR14) 2014; 56 CR42 Babanezhad (CR48) 2020; 10 Rostami (CR23) 2021; 143 Mehrali (CR2) 2013; 58 Khodadadi, Toghraieand, Karimipour (CR5) 2019; 342 Babanezhad (CR31) 2021; 11 Behroyan (CR10) 2015; 67 Tian (CR22) 2020; 22 D Toghraie (8851_CR17) 2016; 84 CH Chon (8851_CR40) 2005; 87 S Azizifar (8851_CR13) 2020; 118 W He (8851_CR25) 2020; 116 S Rostami (8851_CR23) 2021; 143 M Babanezhad (8851_CR48) 2020; 10 M Babanezhad (8851_CR29) 2021; 11 8851_CR35 M Babanezhad (8851_CR31) 2021; 11 AD Zadeh (8851_CR4) 2018; 131 Y Cao (8851_CR21) 2020; 32 H Khodadadi (8851_CR5) 2019; 342 P Ganesan (8851_CR12) 2016; 69 M Goodarzi (8851_CR6) 2019; 136 M Babanezhad (8851_CR27) 2021; 11 M Samadifar (8851_CR16) 2018; 133 E Tian (8851_CR22) 2020; 22 A Akhgar (8851_CR24) 2019; 355 T Takagi (8851_CR45) 1985; 1 M Mehrali (8851_CR2) 2013; 58 SEB Maiga (8851_CR41) 2004; 35 Y Xuan (8851_CR43) 2003; 125 M Babanezhad (8851_CR20) 2019; 97 A Moraveji (8851_CR15) 2017; 113 M Babanezhad (8851_CR28) 2021; 11 M Babanezhad (8851_CR30) 2021; 11 M Gürdal (8851_CR38) 2022; 200 Y Varol (8851_CR32) 2007; 34 V Bianco (8851_CR39) 2011; 50 B Ruhani (8851_CR9) 2019; 525 M Babanezhad (8851_CR19) 2020; 10 I Behroyan (8851_CR10) 2015; 67 MH Aghahadi (8851_CR3) 2019; 1197 M Babanezhad (8851_CR18) 2020; 5 A Karimipour (8851_CR36) 2012; 6 8851_CR42 MN Martinez (8851_CR46) 2017; 9 8851_CR44 M Babanezhad (8851_CR47) 2020; 10 M Babanezhad (8851_CR26) 2020; 5 B Ruhani (8851_CR8) 2019; 525 F Selimefendigil (8851_CR33) 2014; 65 RK Ajeel (8851_CR37) 2019; 145 OA Alawi (8851_CR14) 2014; 56 M Mehrali (8851_CR1) 2014; 9 I Behroyan (8851_CR11) 2016; 70 F Selimefendigil (8851_CR34) 2015; 67 AH Saeedi (8851_CR7) 2018; 99 |
| References_xml | – volume: 56 start-page: 50 year: 2014 end-page: 62 ident: CR14 article-title: Fluid flow and heat transfer characteristics of nanofluids in heat pipes: a review publication-title: Int Commun Heat Mass Transf – volume: 22 start-page: 477 issue: 2 year: 2020 end-page: 490 ident: CR22 article-title: Simulation of a bubble-column reactor by three-dimensional CFD: multidimension- and function-adaptive network-based fuzzy inference system publication-title: Int J Fuzzy Syst – volume: 133 start-page: 671 year: 2018 end-page: 681 ident: CR16 article-title: Numerical simulation of heat transfer enhancement in a plate-fin heat exchanger using a new type of vortex generators publication-title: Appl Therm Eng – volume: 355 start-page: 602 year: 2019 end-page: 610 ident: CR24 article-title: Developing dissimilar artificial neural networks (ANNs) to prediction the thermal conductivity of MWCNT-TiO /Water-ethylene glycol hybrid nanofluid publication-title: Powder Technol – volume: 58 start-page: 628 year: 2013 end-page: 634 ident: CR2 article-title: Preparation and properties of highly conductive palmitic acid/graphene oxide composites as thermal energy storage materials publication-title: Energy – volume: 10 start-page: 1 issue: 1 year: 2020 end-page: 12 ident: CR47 article-title: Prediction of turbulence eddy dissipation of water flow in a heated metal foam tube publication-title: Sci Rep – volume: 84 start-page: 454 year: 2016 end-page: 465 ident: CR17 article-title: Numerical thermal analysis of water's boiling heat transfer based on a turbulent jet impingement on heated surface publication-title: Phys E – volume: 131 start-page: 1449 issue: 2 year: 2018 end-page: 1461 ident: CR4 article-title: Experimental investigation for developing a new model for the dynamic viscosity of silver/ethylene glycol nanofluid at different temperatures and solid volume fractions publication-title: J Therm Anal Calorim – volume: 136 start-page: 513 issue: 2 year: 2019 end-page: 525 ident: CR6 article-title: Experimental evaluation of dynamic viscosity of ZnO–MWCNTs/engine oil hybrid nanolubricant based on changes in temperature and concentration publication-title: J Therm Anal Calorim – volume: 70 start-page: 27 year: 2016 end-page: 37 ident: CR11 article-title: A comprehensive comparison of various CFD models for convective heat transfer of Al O nanofluid inside a heated tube publication-title: Int Commun Heat Mass Transf – volume: 116 start-page: 104645 year: 2020 ident: CR25 article-title: Using of artificial neural networks (ANNs) to predict the thermal conductivity of zinc oxide–silver (50%–50%)/water hybrid Newtonian nanofluid publication-title: Int Commun Heat Mass Transf – ident: CR35 – volume: 143 start-page: 1097 issue: 2 year: 2021 end-page: 1105 ident: CR23 article-title: Measurement of the thermal conductivity of MWCNT-CuO/water hybrid nanofluid using artificial neural networks (ANNs) publication-title: J Therm Anal Calorim – volume: 67 start-page: 1136 issue: 10 year: 2015 end-page: 1161 ident: CR34 article-title: Numerical study and pod-based prediction of natural convection in a ferrofluids–filled triangular cavity with generalized neural networks publication-title: Numer Heat Transf, Part A: Appl – volume: 87 start-page: 153107 issue: 15 year: 2005 ident: CR40 article-title: Empirical correlation finding the role of temperature and particle size for nanofluid (Al O ) thermal conductivity enhancement publication-title: Appl Phys Lett – volume: 1197 start-page: 497 year: 2019 end-page: 507 ident: CR3 article-title: An experimental study on the rheological behavior of hybrid Tungsten oxide (WO3)-MWCNTs/engine oil Newtonian nanofluids publication-title: J Mol Struct – volume: 11 start-page: 1 issue: 1 year: 2021 end-page: 14 ident: CR31 article-title: Prediction of gas velocity in two-phase flow using developed fuzzy logic system with differential evolution algorithm publication-title: Sci Rep – volume: 145 start-page: 118806 year: 2019 ident: CR37 article-title: Turbulent convective heat transfer of silica oxide nanofluid through corrugated channels: an experimental and numerical study publication-title: Int J Heat Mass Transf – volume: 1 start-page: 116 year: 1985 end-page: 132 ident: CR45 article-title: Fuzzy identification of systems and its applications to modeling and control publication-title: IEEE Trans Syst Man Cybern – volume: 11 start-page: 1 issue: 1 year: 2021 end-page: 18 ident: CR27 article-title: Performance and application analysis of ANFIS artificial intelligence for pressure prediction of nanofluid convective flow in a heated pipe publication-title: Sci Rep – volume: 200 start-page: 117655 year: 2022 ident: CR38 article-title: Numerical investigation on turbulent flow and heat transfer characteristics of ferro-nanofluid flowing in dimpled tube under magnetic field effect publication-title: Appl Therm Eng – volume: 9 start-page: 15 issue: 1 year: 2014 ident: CR1 article-title: Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets publication-title: Nanoscale Res Lett – volume: 99 start-page: 285 year: 2018 end-page: 293 ident: CR7 article-title: An experimental study on rheological behavior of a nanofluid containing oxide nanoparticle and proposing a new correlation publication-title: Phys E – volume: 118 start-page: 104897 year: 2020 ident: CR13 article-title: Subcooled flow boiling of water in a metal-foam tube: an experimental study publication-title: Int Commun Heat Mass Transf – ident: CR42 – volume: 97 start-page: 1676 issue: S1 year: 2019 end-page: 1684 ident: CR20 article-title: Liquid-phase chemical reactors: Development of 3D hybrid model based on CFD-adaptive network-based fuzzy inference system publication-title: Can J Chem Eng – volume: 32 start-page: 13313 issue: 17 year: 2020 end-page: 13321 ident: CR21 article-title: Prediction of fluid pattern in a shear flow on intelligent neural nodes using ANFIS and LBM publication-title: Neural Comput Appl – volume: 11 start-page: 1 issue: 1 year: 2021 end-page: 14 ident: CR28 article-title: Investigation on performance of particle swarm optimization (PSO) algorithm based fuzzy inference system (PSOFIS) in a combination of CFD modeling for prediction of fluid flow publication-title: Sci Rep – volume: 10 start-page: 17793 issue: 1 year: 2020 ident: CR19 article-title: Functional input and membership characteristics in the accuracy of machine learning approach for estimation of multiphase flow publication-title: Sci Rep – volume: 525 start-page: 616 year: 2019 end-page: 627 ident: CR8 article-title: Statistical investigation for developing a new model for rheological behavior of Silica–ethylene glycol/Water hybrid Newtonian nanofluid using experimental data publication-title: Phys A – volume: 342 start-page: 166 year: 2019 end-page: 180 ident: CR5 article-title: Effects of nanoparticles to present a statistical model for the viscosity of MgO-Water nanofluid publication-title: Powder Technol – ident: CR44 – volume: 67 start-page: 163 year: 2015 end-page: 172 ident: CR10 article-title: Turbulent forced convection of Cu–water nanofluid: CFD model comparison publication-title: Int Commun Heat Mass Transf – volume: 525 start-page: 741 year: 2019 end-page: 751 ident: CR9 article-title: Statistical investigation for developing a new model for rheological behavior of ZnO–Ag (50%–50%)/Water hybrid Newtonian nanofluid using experimental data publication-title: Phys A – volume: 34 start-page: 887 issue: 7 year: 2007 end-page: 896 ident: CR32 article-title: Prediction of flow fields and temperature distributions due to natural convection in a triangular enclosure using adaptive-network-based fuzzy inference system (ANFIS) and artificial neural network (ANN) publication-title: Int Commun Heat Mass Transf – volume: 10 start-page: 1 issue: 1 year: 2020 end-page: 15 ident: CR48 article-title: Functional input and membership characteristics in the accuracy of machine learning approach for estimation of multiphase flow publication-title: Sci Rep – volume: 125 start-page: 151 issue: 1 year: 2003 end-page: 155 ident: CR43 article-title: Investigation on convective heat transfer and flow features of nanofluids publication-title: J Heat transf – volume: 65 start-page: 165 issue: 2 year: 2014 end-page: 185 ident: CR33 article-title: Estimation of the mixed convection heat transfer of a rotating cylinder in a vented cavity subjected to nanofluid by using generalized neural networks publication-title: Numer Heat Transf, Part A: Appl – volume: 69 start-page: 401 issue: 4 year: 2016 end-page: 420 ident: CR12 article-title: Turbulent forced convection of Cu–water nanofluid in a heated tube: improvement of the two-phase model publication-title: Numer Heat Transf Part A: Appl – volume: 113 start-page: 432 year: 2017 end-page: 443 ident: CR15 article-title: Computational fluid dynamics simulation of heat transfer and fluid flow characteristics in a vortex tube by considering the various parameters publication-title: Int J Heat Mass Transf – volume: 11 start-page: 1 issue: 1 year: 2021 end-page: 11 ident: CR29 article-title: Velocity prediction of nanofluid in a heated porous pipe: DEFIS learning of CFD results publication-title: Sci Rep – volume: 5 start-page: 20558 issue: 32 year: 2020 end-page: 20566 ident: CR18 article-title: Developing intelligent algorithm as a machine learning overview over the big data generated by euler-euler method to simulate bubble column reactor hydrodynamics publication-title: ACS Omega – volume: 11 start-page: 1 issue: 1 year: 2021 end-page: 12 ident: CR30 article-title: Thermal prediction of turbulent forced convection of nanofluid using computational fluid dynamics coupled genetic algorithm with fuzzy interface system publication-title: Sci Rep – volume: 6 start-page: 86 year: 2012 end-page: 91 ident: CR36 article-title: Simulation of fluid flow and heat transfer in the inclined enclosure publication-title: Int J Mech Aerosp Eng – volume: 50 start-page: 341 issue: 3 year: 2011 end-page: 349 ident: CR39 article-title: Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube publication-title: Int J Therm Sci – volume: 9 start-page: 14 issue: 2 year: 2017 ident: CR46 article-title: What does it “mean”? A review of interpreting and calculating different types of means and standard deviations publication-title: Pharmaceutics – volume: 35 start-page: 543 issue: 3–6 year: 2004 end-page: 557 ident: CR41 article-title: Heat transfer behaviours of nanofluids in a uniformly heated tube publication-title: Superlattices Microstruct – volume: 5 start-page: 30826 issue: 48 year: 2020 end-page: 30835 ident: CR26 article-title: Computational modeling of transport in porous media using an adaptive network-based fuzzy inference system publication-title: ACS Omega – volume: 118 start-page: 104897 year: 2020 ident: 8851_CR13 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2020.104897 – volume: 131 start-page: 1449 issue: 2 year: 2018 ident: 8851_CR4 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-017-6696-3 – volume: 99 start-page: 285 year: 2018 ident: 8851_CR7 publication-title: Phys E doi: 10.1016/j.physe.2018.02.018 – volume: 113 start-page: 432 year: 2017 ident: 8851_CR15 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.05.095 – volume: 6 start-page: 86 year: 2012 ident: 8851_CR36 publication-title: Int J Mech Aerosp Eng – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 8851_CR48 publication-title: Sci Rep doi: 10.1038/s41598-019-56847-4 – volume: 5 start-page: 30826 issue: 48 year: 2020 ident: 8851_CR26 publication-title: ACS Omega doi: 10.1021/acsomega.0c04497 – volume: 200 start-page: 117655 year: 2022 ident: 8851_CR38 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2021.117655 – volume: 342 start-page: 166 year: 2019 ident: 8851_CR5 publication-title: Powder Technol doi: 10.1016/j.powtec.2018.09.076 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 8851_CR29 publication-title: Sci Rep doi: 10.1038/s41598-020-79139-8 – volume: 22 start-page: 477 issue: 2 year: 2020 ident: 8851_CR22 publication-title: Int J Fuzzy Syst doi: 10.1007/s40815-019-00741-8 – volume: 34 start-page: 887 issue: 7 year: 2007 ident: 8851_CR32 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2007.03.004 – volume: 525 start-page: 741 year: 2019 ident: 8851_CR9 publication-title: Phys A doi: 10.1016/j.physa.2019.03.118 – volume: 355 start-page: 602 year: 2019 ident: 8851_CR24 publication-title: Powder Technol doi: 10.1016/j.powtec.2019.07.086 – volume: 65 start-page: 165 issue: 2 year: 2014 ident: 8851_CR33 publication-title: Numer Heat Transf, Part A: Appl doi: 10.1080/10407782.2013.826109 – volume: 9 start-page: 14 issue: 2 year: 2017 ident: 8851_CR46 publication-title: Pharmaceutics doi: 10.3390/pharmaceutics9020014 – volume: 32 start-page: 13313 issue: 17 year: 2020 ident: 8851_CR21 publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04677-w – volume: 133 start-page: 671 year: 2018 ident: 8851_CR16 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2018.01.062 – volume: 136 start-page: 513 issue: 2 year: 2019 ident: 8851_CR6 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-018-7707-8 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 8851_CR28 publication-title: Sci Rep doi: 10.1038/s41598-020-79139-8 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 8851_CR31 publication-title: Sci Rep doi: 10.1038/s41598-020-79139-8 – volume: 70 start-page: 27 year: 2016 ident: 8851_CR11 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2015.11.001 – ident: 8851_CR35 doi: 10.1007/978-3-662-52919-5 – volume: 67 start-page: 163 year: 2015 ident: 8851_CR10 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2015.07.014 – volume: 145 start-page: 118806 year: 2019 ident: 8851_CR37 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2019.118806 – volume: 84 start-page: 454 year: 2016 ident: 8851_CR17 publication-title: Phys E doi: 10.1016/j.physe.2016.07.017 – volume: 5 start-page: 20558 issue: 32 year: 2020 ident: 8851_CR18 publication-title: ACS Omega doi: 10.1021/acsomega.0c02784 – volume: 143 start-page: 1097 issue: 2 year: 2021 ident: 8851_CR23 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-020-09458-5 – volume: 125 start-page: 151 issue: 1 year: 2003 ident: 8851_CR43 publication-title: J Heat transf doi: 10.1115/1.1532008 – volume: 69 start-page: 401 issue: 4 year: 2016 ident: 8851_CR12 publication-title: Numer Heat Transf Part A: Appl doi: 10.1080/10407782.2015.1081019 – volume: 9 start-page: 15 issue: 1 year: 2014 ident: 8851_CR1 publication-title: Nanoscale Res Lett doi: 10.1186/1556-276X-9-15 – volume: 97 start-page: 1676 issue: S1 year: 2019 ident: 8851_CR20 publication-title: Can J Chem Eng doi: 10.1002/cjce.23378 – ident: 8851_CR44 – volume: 10 start-page: 17793 issue: 1 year: 2020 ident: 8851_CR19 publication-title: Sci Rep doi: 10.1038/s41598-020-74858-4 – ident: 8851_CR42 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 8851_CR27 publication-title: Sci Rep doi: 10.1038/s41598-020-79139-8 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 8851_CR30 publication-title: Sci Rep doi: 10.1038/s41598-020-79139-8 – volume: 35 start-page: 543 issue: 3–6 year: 2004 ident: 8851_CR41 publication-title: Superlattices Microstruct doi: 10.1016/j.spmi.2003.09.012 – volume: 525 start-page: 616 year: 2019 ident: 8851_CR8 publication-title: Phys A doi: 10.1016/j.physa.2019.03.119 – volume: 58 start-page: 628 year: 2013 ident: 8851_CR2 publication-title: Energy doi: 10.1016/j.energy.2013.05.050 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 8851_CR47 publication-title: Sci Rep doi: 10.1038/s41598-019-56847-4 – volume: 67 start-page: 1136 issue: 10 year: 2015 ident: 8851_CR34 publication-title: Numer Heat Transf, Part A: Appl doi: 10.1080/10407782.2014.955345 – volume: 50 start-page: 341 issue: 3 year: 2011 ident: 8851_CR39 publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2010.03.008 – volume: 1 start-page: 116 year: 1985 ident: 8851_CR45 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMC.1985.6313399 – volume: 56 start-page: 50 year: 2014 ident: 8851_CR14 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2014.04.014 – volume: 1197 start-page: 497 year: 2019 ident: 8851_CR3 publication-title: J Mol Struct doi: 10.1016/j.molstruc.2019.07.080 – volume: 116 start-page: 104645 year: 2020 ident: 8851_CR25 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2020.104645 – volume: 87 start-page: 153107 issue: 15 year: 2005 ident: 8851_CR40 publication-title: Appl Phys Lett doi: 10.1063/1.2093936 |
| SSID | ssj0004685 |
| Score | 2.3580432 |
| Snippet | The CFD approach could waste a lot of time, effort, and cost for three-dimensional turbulent flow modeling. In the CFD method, any changes in the grid numbers... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 20087 |
| SubjectTerms | Algorithms Artificial Intelligence Clustering Computational Biology/Bioinformatics Computational fluid dynamics Computational Science and Engineering Computer Science Damping Data Mining and Knowledge Discovery Eddy viscosity Finite element method Flow control Image Processing and Computer Vision Machine learning Modelling Nanofluids Nodes Original Article Parameters Pattern recognition Patterning Probability and Statistics in Computer Science Three dimensional flow Three dimensional models Turbulence models Turbulent flow Viscosity Vortices |
| SummonAdditionalLinks | – databaseName: ProQuest One Academic dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS9xAFD7o-tIXb23pemMefLNDN5NMkn0Q0eIigouUCr6FudrCmqyaRdxf7znjZLct1NdJZiA59zmXD-DQS6cNRhZcyyEGKMgxvLS64G4gndKJQSNE_c5X4_ziJru8lbcrMO56YaisstOJQVHbxtAd-TdBCSxKa4mT6QMn1CjKrnYQGipCK9jjMGJsFdYETcbqwdrZ-fj6xx-dkgGkE2MaqvfJ0thGE5rp6IYUV0XKUfJkwud_m6ql__lPyjRYotEmrEcXkp2-0XwLVly9DRsdPAOL0voRnkez-fyFk52yTDvH1OQOv6j9dc_QU2X3oYzSsYgbccdUbdk0jNus2aKuqKlZ45kJh8d7Q0ZVpbRaq7rxk9lvy0ijszb4wO7xE9yMzn9-v-ARZ4EbFMCWp16YUqQ69wWa71IPs0GZuVx6kajEay2MTVU-FLlE39BmSAStURWUUujCWpOln6FXN7X7AixXGJ5ISXt0NlQO3xmkohAeI3BR-LQPSfdLKxOHkBMWxqRajE8OZKiQDFUgQzXvw9Fiz_RtBMe7b-91lKqiOD5VS-bpw9eOesvH_z9t5_3TduGDCAxDNWd70GsfZ24fnZRWH0TOewXBrOO2 priority: 102 providerName: ProQuest |
| Title | Fuzzy-based bee algorithm for machine learning and pattern recognition of computational data of nanofluid heat transfer |
| URI | https://link.springer.com/article/10.1007/s00521-023-08851-z https://www.proquest.com/docview/2858503812 |
| Volume | 35 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3058 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3058 dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ADMLS dateStart: 19930301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3058 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3058 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: 8FG dateStart: 20180401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90vvjitzidIw--aWBNmrZ7nLIpiiLiYD6Vpk1U2FpxG2L_ei9Zuqmo4FOhveShd5e7X-4L4EgLJVNEFlSKNgIUlBgaZTKkqiVUIr0UjZCpd76-CS76_uVADFxR2LjKdq9Ckvaknhe7mRtMhL6MU9QM4dFyGVaEaeeFUtxnnU_VkHYQJ-IWk9Pjc1cq8_MeX83Rwsf8Fha11qa3AWvOTSSdGV83YUnlW7BejWAgTiO34a03Lct3amxRRqRSJBk-Foj3n0YEvVEysqmSirjZEI8kyTPyYltq5mSeO1TkpNAktZu7u0FiMkfN2zzJCz2cPmfEnNpkYv1c9boD_V73_uyCulkKNEUlm1CuWRoxLgMdoomOZNtvRb4KhGZe4mkpWZrxJGizQKD_l_ktHkmJ6h4JJsMsS32-C7W8yNUekCBBCCKEWSP9dqKQpsVZyDSibBZqXgev-qVx6hqNm3kXw3jeItmyIUY2xJYNcVmH4_mal1mbjT-pGxWnYqdy45iZCKeJe7I6nFTcW3z-fbf9_5EfwCqzAmTyzBpQm7xO1SE6JhPZhOWod96Elc75w1UXn6fdm9u7ppXODwOf3q4 |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9gAX3ohAAR_gBBZZP_ZxqBCPRiltI4RaqbfFz4KU7oZ2o6r5cfw2xq43ASR669Vrj1aesWfG8_gAXnrptEHPgmpZoYOCEkNLqwvqhtIpnRlUQqHeeX-Sjw_F5yN5tAa_-lqYkFbZ34nxoratCW_kb1kIYIWwFns3-0kDalSIrvYQGipBK9it2GIsFXbsuotzdOHOtnY-Ib9fMTbaPvg4pgllgBoUv45yz0zJuM59gcqr1JUYlsLl0rNMZV5rZixXecVyiZaRFfgLWuNBKCXThbVGcKR7AzYEFxU6fxsftidfvv5RmRlBQdGHCvlFgqeynVi8F15kcZRxiiddZnTxt2pc2bv_hGij5hvdhdvJZCXvL2XsHqy55j7c6eEgSLodHsD5aL5YXNCgFy3RzhE1PcYd7L6fELSMyUlM23Qk4VQcE9VYMovtPRuyzGNqG9J6YiLx9E5JQhZrGG1U0_rp_IclQYOQLtrc7vQhHF7Ljj-C9aZt3GMguUJ3SMqwRotKOZwz5KxgHj1-Vng-gKzf0tqkpucBe2NaL9s1RzbUyIY6sqFeDOD1cs3ssuXHlbM3e07V6fif1SthHcCbnnurz_-n9uRqai_g5vhgf6_e25nsPoVbLApPyHfbhPXudO6eoYHU6edJCgl8u27B_w1YUh9p |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSIgLb8RgQA7cIGJNmj6OE1CNpzgwabeqaRJAGukEnRD79ThZuwECJK6t40Nt1_7iF0KHmiuRA7IggscAUEBjSCRFSFSbq0x4OTgh2-98cxt0e_5ln_c_dfG7avc6JTnpabBTmkx5MpT6ZNr4Zm8zAQZTRsBKuEfG82jBt4MSQKN7tPOpM9It5QQMY-t7fFa1zfzM46trmsWb31KkzvMkq2i5ChlxZyLjNTSnzDpaqdcx4Mo6N9BbMhqP34n1SxILpXA2eCgA-z8-Y4hM8bMrm1S42hPxgDMj8dCN1zR4WkdUGFxonDvm1T0htlWk9qnJTKEHoyeJ7R8cly7mVS-bqJec3592SbVXgeRgcCVhmuYRZSLQIbjrSMR-O_JVwDX1Mk8LQXPJsiCmAYdYUPptFgkBph9xKkIpc59toYYpjNpGOMgAjnBuzwg_zhTQtBkNqQbETUPNmsirP2maV0PH7e6LQTodl-zEkIIYUieGdNxER9Mzw8nIjT-pW7Wk0sr8XlNqs502B0qb6LiW3uz179x2_kd-gBbvzpL0-uL2ahctUadLtvyshRrly0jtQbxSin2nkh9M2uHC |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy-based+bee+algorithm+for+machine+learning+and+pattern+recognition+of+computational+data+of+nanofluid+heat+transfer&rft.jtitle=Neural+computing+%26+applications&rft.au=Azma%2C+Aliasghar&rft.au=Behroyan%2C+Iman&rft.au=Babanezhad%2C+Meisam&rft.au=Liu%2C+Yakun&rft.date=2023-09-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=35&rft.issue=27&rft.spage=20087&rft.epage=20101&rft_id=info:doi/10.1007%2Fs00521-023-08851-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_023_08851_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |