Fuzzy-based bee algorithm for machine learning and pattern recognition of computational data of nanofluid heat transfer

The CFD approach could waste a lot of time, effort, and cost for three-dimensional turbulent flow modeling. In the CFD method, any changes in the grid numbers in a specific region, the whole domain must be meshed and simulated again. More computational expenses are imposed when the mesh density must...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 35; no. 27; pp. 20087 - 20101
Main Authors Azma, Aliasghar, Behroyan, Iman, Babanezhad, Meisam, Liu, Yakun
Format Journal Article
LanguageEnglish
Published London Springer London 01.09.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-023-08851-z

Cover

Abstract The CFD approach could waste a lot of time, effort, and cost for three-dimensional turbulent flow modeling. In the CFD method, any changes in the grid numbers in a specific region, the whole domain must be meshed and simulated again. More computational expenses are imposed when the mesh density must be increased. This study, for the first time, is aimed to develop a supplementary method using the artificial intelligence algorithm to reduce the post-processing calculations of the CFD approach. Eddy viscosity of alumina–water nanofluid turbulent flow inside a straight pipe is considered for prediction. The finite volume technique is used for solving the governing equations (i.e., mass, momentum, and energy) and the k–ɛ turbulence model of the CFD approach. Algorithms for artificial intelligence have shown promise for data learning and data patterning. In this study, the FVM solutions are learned by the artificial intelligence of the bee algorithm-based fuzzy inference system (BAFIS). The finite volume technique in the CFD modeling is integrated with the BAFIS to predict eddy viscosity in the nanofluid turbulent flow. Besides, the BAFIS performance and application are examined for meshing in the post-processing step of the CFD. In this way, the BAFIS learned the CFD-driven data for the existing nodes. Then the CFD data pattern is captured by the BAFIS. Finally, this CFD pattern is extended to more nodes. For achieving the intelligence, different input numbers (2 and 3), cluster numbers (5, 10, 15, and 20), as the fuzzy C-means clustering parameter, and neighborhood damping radius rates (0.85, 0.90, 0.95, and 0.99), as bee algorithm parameter, are investigated. The intelligence of the BAFIS was achieved for 3 inputs, the cluster number of 20, and the neighborhood damping radius rate of 0.99. The predictions of the eddy viscosity of BAFIS were the same as those of CFD. The BAFIS shows the ability for the accurate prediction of the eddy viscosity (regression number of 0.98). Comparing the time consumption of the methods, for the same number of nodes (i.e., 4,473) and the same computer specifications, the prediction time of the CFD (110 min) was around half of the learning time of BAFIS (52 min). It should be noted that after the data learning, the target variable, eddy viscosity in this study, could be predicted for any number of nodes (i.e., 774,771 nodes) within a negligible time (22 s). So, no significant time was consumed by BAFIS for the mesh increment. The BAFIS results covered the CFD results for additional nodes in the new dense mesh.
AbstractList The CFD approach could waste a lot of time, effort, and cost for three-dimensional turbulent flow modeling. In the CFD method, any changes in the grid numbers in a specific region, the whole domain must be meshed and simulated again. More computational expenses are imposed when the mesh density must be increased. This study, for the first time, is aimed to develop a supplementary method using the artificial intelligence algorithm to reduce the post-processing calculations of the CFD approach. Eddy viscosity of alumina–water nanofluid turbulent flow inside a straight pipe is considered for prediction. The finite volume technique is used for solving the governing equations (i.e., mass, momentum, and energy) and the k–ɛ turbulence model of the CFD approach. Algorithms for artificial intelligence have shown promise for data learning and data patterning. In this study, the FVM solutions are learned by the artificial intelligence of the bee algorithm-based fuzzy inference system (BAFIS). The finite volume technique in the CFD modeling is integrated with the BAFIS to predict eddy viscosity in the nanofluid turbulent flow. Besides, the BAFIS performance and application are examined for meshing in the post-processing step of the CFD. In this way, the BAFIS learned the CFD-driven data for the existing nodes. Then the CFD data pattern is captured by the BAFIS. Finally, this CFD pattern is extended to more nodes. For achieving the intelligence, different input numbers (2 and 3), cluster numbers (5, 10, 15, and 20), as the fuzzy C-means clustering parameter, and neighborhood damping radius rates (0.85, 0.90, 0.95, and 0.99), as bee algorithm parameter, are investigated. The intelligence of the BAFIS was achieved for 3 inputs, the cluster number of 20, and the neighborhood damping radius rate of 0.99. The predictions of the eddy viscosity of BAFIS were the same as those of CFD. The BAFIS shows the ability for the accurate prediction of the eddy viscosity (regression number of 0.98). Comparing the time consumption of the methods, for the same number of nodes (i.e., 4,473) and the same computer specifications, the prediction time of the CFD (110 min) was around half of the learning time of BAFIS (52 min). It should be noted that after the data learning, the target variable, eddy viscosity in this study, could be predicted for any number of nodes (i.e., 774,771 nodes) within a negligible time (22 s). So, no significant time was consumed by BAFIS for the mesh increment. The BAFIS results covered the CFD results for additional nodes in the new dense mesh.
The CFD approach could waste a lot of time, effort, and cost for three-dimensional turbulent flow modeling. In the CFD method, any changes in the grid numbers in a specific region, the whole domain must be meshed and simulated again. More computational expenses are imposed when the mesh density must be increased. This study, for the first time, is aimed to develop a supplementary method using the artificial intelligence algorithm to reduce the post-processing calculations of the CFD approach. Eddy viscosity of alumina–water nanofluid turbulent flow inside a straight pipe is considered for prediction. The finite volume technique is used for solving the governing equations (i.e., mass, momentum, and energy) and the k–ɛ turbulence model of the CFD approach. Algorithms for artificial intelligence have shown promise for data learning and data patterning. In this study, the FVM solutions are learned by the artificial intelligence of the bee algorithm-based fuzzy inference system (BAFIS). The finite volume technique in the CFD modeling is integrated with the BAFIS to predict eddy viscosity in the nanofluid turbulent flow. Besides, the BAFIS performance and application are examined for meshing in the post-processing step of the CFD. In this way, the BAFIS learned the CFD-driven data for the existing nodes. Then the CFD data pattern is captured by the BAFIS. Finally, this CFD pattern is extended to more nodes. For achieving the intelligence, different input numbers (2 and 3), cluster numbers (5, 10, 15, and 20), as the fuzzy C-means clustering parameter, and neighborhood damping radius rates (0.85, 0.90, 0.95, and 0.99), as bee algorithm parameter, are investigated. The intelligence of the BAFIS was achieved for 3 inputs, the cluster number of 20, and the neighborhood damping radius rate of 0.99. The predictions of the eddy viscosity of BAFIS were the same as those of CFD. The BAFIS shows the ability for the accurate prediction of the eddy viscosity (regression number of 0.98). Comparing the time consumption of the methods, for the same number of nodes (i.e., 4,473) and the same computer specifications, the prediction time of the CFD (110 min) was around half of the learning time of BAFIS (52 min). It should be noted that after the data learning, the target variable, eddy viscosity in this study, could be predicted for any number of nodes (i.e., 774,771 nodes) within a negligible time (22 s). So, no significant time was consumed by BAFIS for the mesh increment. The BAFIS results covered the CFD results for additional nodes in the new dense mesh.
Author Liu, Yakun
Babanezhad, Meisam
Behroyan, Iman
Azma, Aliasghar
Author_xml – sequence: 1
  givenname: Aliasghar
  surname: Azma
  fullname: Azma, Aliasghar
  organization: Faculty of Infrastructure Engineering, School of Hydraulic Engineering, Dalian University of Technology
– sequence: 2
  givenname: Iman
  surname: Behroyan
  fullname: Behroyan, Iman
  organization: Faculty of Mechanical and Energy Engineering, Shahid Beheshti University
– sequence: 3
  givenname: Meisam
  orcidid: 0000-0003-4303-7412
  surname: Babanezhad
  fullname: Babanezhad, Meisam
  email: meisambabanezhad@duytan.edu.vn
  organization: Institute of Research and Development, Duy Tan University, Faculty of Electrical–Electronic Engineering, Duy Tan University, Department of Artificial Intelligence, Shunderman Industrial Strategy Co
– sequence: 4
  givenname: Yakun
  surname: Liu
  fullname: Liu, Yakun
  organization: Faculty of Infrastructure Engineering, School of Hydraulic Engineering, Dalian University of Technology
BookMark eNp9kE1LAzEQhoMoWD_-gKeA59V8bLbpUcQvELzoOUyySRvZJjXJIvbXm7qC4KGnYWbeZ3jnPUGHIQaL0AUlV5SQ-XUmRDDaEMYbIqWgzfYAzWjLecOJkIdoRhZtXXctP0YnOb8TQtpOihn6vB-3269GQ7Y91tZiGJYx-bJaYxcTXoNZ-WDxYCEFH5YYQo83UIpNASdr4jL44mPA0WET15uxwK6FAfdQYDcNEKIbRt_jlYWCS4KQnU1n6MjBkO35bz1Fb_d3r7ePzfPLw9PtzXNjOF2UhjtmJOO6c3NJpdSLlsjWdsIxCtRpzUzPoVuwTgjO-5ZwqTWvQsH0vO9Ny0_R5XR3k-LHaHNR73FM1WBWTAopKkFZVclJZVLMOVmnjJ8-qX79oChRu5jVFLOqMaufmNW2ouwfukl-DelrP8QnKFdxWNr052oP9Q3d55Qe
CitedBy_id crossref_primary_10_1016_j_heliyon_2024_e40783
crossref_primary_10_1021_acsomega_3c06432
crossref_primary_10_3390_en17236027
crossref_primary_10_1007_s00521_024_10743_9
Cites_doi 10.1016/j.icheatmasstransfer.2020.104897
10.1007/s10973-017-6696-3
10.1016/j.physe.2018.02.018
10.1016/j.ijheatmasstransfer.2017.05.095
10.1038/s41598-019-56847-4
10.1021/acsomega.0c04497
10.1016/j.applthermaleng.2021.117655
10.1016/j.powtec.2018.09.076
10.1038/s41598-020-79139-8
10.1007/s40815-019-00741-8
10.1016/j.icheatmasstransfer.2007.03.004
10.1016/j.physa.2019.03.118
10.1016/j.powtec.2019.07.086
10.1080/10407782.2013.826109
10.3390/pharmaceutics9020014
10.1007/s00521-019-04677-w
10.1016/j.applthermaleng.2018.01.062
10.1007/s10973-018-7707-8
10.1016/j.icheatmasstransfer.2015.11.001
10.1007/978-3-662-52919-5
10.1016/j.icheatmasstransfer.2015.07.014
10.1016/j.ijheatmasstransfer.2019.118806
10.1016/j.physe.2016.07.017
10.1021/acsomega.0c02784
10.1007/s10973-020-09458-5
10.1115/1.1532008
10.1080/10407782.2015.1081019
10.1186/1556-276X-9-15
10.1002/cjce.23378
10.1038/s41598-020-74858-4
10.1016/j.spmi.2003.09.012
10.1016/j.physa.2019.03.119
10.1016/j.energy.2013.05.050
10.1080/10407782.2014.955345
10.1016/j.ijthermalsci.2010.03.008
10.1109/TSMC.1985.6313399
10.1016/j.icheatmasstransfer.2014.04.014
10.1016/j.molstruc.2019.07.080
10.1016/j.icheatmasstransfer.2020.104645
10.1063/1.2093936
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00521-023-08851-z
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest One Academic
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 20101
ExternalDocumentID 10_1007_s00521_023_08851_z
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-3f2c823b6f78188b94084e65f21a1fbb2cd3a69265533d4038bb318852b7ddc43
IEDL.DBID U2A
ISSN 0941-0643
IngestDate Sat Jul 26 02:15:35 EDT 2025
Thu Apr 24 22:59:37 EDT 2025
Wed Oct 01 03:43:39 EDT 2025
Fri Feb 21 02:43:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 27
Keywords CFD
BAFIS
Meshing
Artificial intelligence
Eddy viscosity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-3f2c823b6f78188b94084e65f21a1fbb2cd3a69265533d4038bb318852b7ddc43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4303-7412
PQID 2858503812
PQPubID 2043988
PageCount 15
ParticipantIDs proquest_journals_2858503812
crossref_citationtrail_10_1007_s00521_023_08851_z
crossref_primary_10_1007_s00521_023_08851_z
springer_journals_10_1007_s00521_023_08851_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230900
2023-09-00
20230901
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 9
  year: 2023
  text: 20230900
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Selimefendigil, Öztop (CR34) 2015; 67
Ajeel (CR37) 2019; 145
Babanezhad (CR19) 2020; 10
Ganesan (CR12) 2016; 69
Chon (CR40) 2005; 87
Maiga (CR41) 2004; 35
Babanezhad (CR28) 2021; 11
Goodarzi (CR6) 2019; 136
Azizifar, Ameriand, Behroyan (CR13) 2020; 118
Akhgar (CR24) 2019; 355
Babanezhad (CR26) 2020; 5
Martinez, Bartholomew (CR46) 2017; 9
Gürdal (CR38) 2022; 200
CR35
Samadifar, Toghraie (CR16) 2018; 133
Cao (CR21) 2020; 32
Bianco, Mancaand, Nardini (CR39) 2011; 50
Babanezhad (CR20) 2019; 97
Takagi, Sugeno (CR45) 1985; 1
Babanezhad (CR30) 2021; 11
Karimipour (CR36) 2012; 6
Toghraie (CR17) 2016; 84
Babanezhad (CR18) 2020; 5
Babanezhad (CR47) 2020; 10
Babanezhad (CR29) 2021; 11
Xuan, Li (CR43) 2003; 125
Aghahadi, Niknejadiand, Toghraie (CR3) 2019; 1197
Mehrali (CR1) 2014; 9
Zadeh, Toghraie (CR4) 2018; 131
Behroyan (CR11) 2016; 70
Ruhani, Barnoonand, Toghraie (CR8) 2019; 525
Varol (CR32) 2007; 34
Ruhani (CR9) 2019; 525
He (CR25) 2020; 116
Saeedi, Akbariand, Toghraie (CR7) 2018; 99
Babanezhad (CR27) 2021; 11
Moraveji, Toghraie (CR15) 2017; 113
Selimefendigil, Öztop (CR33) 2014; 65
CR44
Alawi (CR14) 2014; 56
CR42
Babanezhad (CR48) 2020; 10
Rostami (CR23) 2021; 143
Mehrali (CR2) 2013; 58
Khodadadi, Toghraieand, Karimipour (CR5) 2019; 342
Babanezhad (CR31) 2021; 11
Behroyan (CR10) 2015; 67
Tian (CR22) 2020; 22
D Toghraie (8851_CR17) 2016; 84
CH Chon (8851_CR40) 2005; 87
S Azizifar (8851_CR13) 2020; 118
W He (8851_CR25) 2020; 116
S Rostami (8851_CR23) 2021; 143
M Babanezhad (8851_CR48) 2020; 10
M Babanezhad (8851_CR29) 2021; 11
8851_CR35
M Babanezhad (8851_CR31) 2021; 11
AD Zadeh (8851_CR4) 2018; 131
Y Cao (8851_CR21) 2020; 32
H Khodadadi (8851_CR5) 2019; 342
P Ganesan (8851_CR12) 2016; 69
M Goodarzi (8851_CR6) 2019; 136
M Babanezhad (8851_CR27) 2021; 11
M Samadifar (8851_CR16) 2018; 133
E Tian (8851_CR22) 2020; 22
A Akhgar (8851_CR24) 2019; 355
T Takagi (8851_CR45) 1985; 1
M Mehrali (8851_CR2) 2013; 58
SEB Maiga (8851_CR41) 2004; 35
Y Xuan (8851_CR43) 2003; 125
M Babanezhad (8851_CR20) 2019; 97
A Moraveji (8851_CR15) 2017; 113
M Babanezhad (8851_CR28) 2021; 11
M Babanezhad (8851_CR30) 2021; 11
M Gürdal (8851_CR38) 2022; 200
Y Varol (8851_CR32) 2007; 34
V Bianco (8851_CR39) 2011; 50
B Ruhani (8851_CR9) 2019; 525
M Babanezhad (8851_CR19) 2020; 10
I Behroyan (8851_CR10) 2015; 67
MH Aghahadi (8851_CR3) 2019; 1197
M Babanezhad (8851_CR18) 2020; 5
A Karimipour (8851_CR36) 2012; 6
8851_CR42
MN Martinez (8851_CR46) 2017; 9
8851_CR44
M Babanezhad (8851_CR47) 2020; 10
M Babanezhad (8851_CR26) 2020; 5
B Ruhani (8851_CR8) 2019; 525
F Selimefendigil (8851_CR33) 2014; 65
RK Ajeel (8851_CR37) 2019; 145
OA Alawi (8851_CR14) 2014; 56
M Mehrali (8851_CR1) 2014; 9
I Behroyan (8851_CR11) 2016; 70
F Selimefendigil (8851_CR34) 2015; 67
AH Saeedi (8851_CR7) 2018; 99
References_xml – volume: 56
  start-page: 50
  year: 2014
  end-page: 62
  ident: CR14
  article-title: Fluid flow and heat transfer characteristics of nanofluids in heat pipes: a review
  publication-title: Int Commun Heat Mass Transf
– volume: 22
  start-page: 477
  issue: 2
  year: 2020
  end-page: 490
  ident: CR22
  article-title: Simulation of a bubble-column reactor by three-dimensional CFD: multidimension- and function-adaptive network-based fuzzy inference system
  publication-title: Int J Fuzzy Syst
– volume: 133
  start-page: 671
  year: 2018
  end-page: 681
  ident: CR16
  article-title: Numerical simulation of heat transfer enhancement in a plate-fin heat exchanger using a new type of vortex generators
  publication-title: Appl Therm Eng
– volume: 355
  start-page: 602
  year: 2019
  end-page: 610
  ident: CR24
  article-title: Developing dissimilar artificial neural networks (ANNs) to prediction the thermal conductivity of MWCNT-TiO /Water-ethylene glycol hybrid nanofluid
  publication-title: Powder Technol
– volume: 58
  start-page: 628
  year: 2013
  end-page: 634
  ident: CR2
  article-title: Preparation and properties of highly conductive palmitic acid/graphene oxide composites as thermal energy storage materials
  publication-title: Energy
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  end-page: 12
  ident: CR47
  article-title: Prediction of turbulence eddy dissipation of water flow in a heated metal foam tube
  publication-title: Sci Rep
– volume: 84
  start-page: 454
  year: 2016
  end-page: 465
  ident: CR17
  article-title: Numerical thermal analysis of water's boiling heat transfer based on a turbulent jet impingement on heated surface
  publication-title: Phys E
– volume: 131
  start-page: 1449
  issue: 2
  year: 2018
  end-page: 1461
  ident: CR4
  article-title: Experimental investigation for developing a new model for the dynamic viscosity of silver/ethylene glycol nanofluid at different temperatures and solid volume fractions
  publication-title: J Therm Anal Calorim
– volume: 136
  start-page: 513
  issue: 2
  year: 2019
  end-page: 525
  ident: CR6
  article-title: Experimental evaluation of dynamic viscosity of ZnO–MWCNTs/engine oil hybrid nanolubricant based on changes in temperature and concentration
  publication-title: J Therm Anal Calorim
– volume: 70
  start-page: 27
  year: 2016
  end-page: 37
  ident: CR11
  article-title: A comprehensive comparison of various CFD models for convective heat transfer of Al O nanofluid inside a heated tube
  publication-title: Int Commun Heat Mass Transf
– volume: 116
  start-page: 104645
  year: 2020
  ident: CR25
  article-title: Using of artificial neural networks (ANNs) to predict the thermal conductivity of zinc oxide–silver (50%–50%)/water hybrid Newtonian nanofluid
  publication-title: Int Commun Heat Mass Transf
– ident: CR35
– volume: 143
  start-page: 1097
  issue: 2
  year: 2021
  end-page: 1105
  ident: CR23
  article-title: Measurement of the thermal conductivity of MWCNT-CuO/water hybrid nanofluid using artificial neural networks (ANNs)
  publication-title: J Therm Anal Calorim
– volume: 67
  start-page: 1136
  issue: 10
  year: 2015
  end-page: 1161
  ident: CR34
  article-title: Numerical study and pod-based prediction of natural convection in a ferrofluids–filled triangular cavity with generalized neural networks
  publication-title: Numer Heat Transf, Part A: Appl
– volume: 87
  start-page: 153107
  issue: 15
  year: 2005
  ident: CR40
  article-title: Empirical correlation finding the role of temperature and particle size for nanofluid (Al O ) thermal conductivity enhancement
  publication-title: Appl Phys Lett
– volume: 1197
  start-page: 497
  year: 2019
  end-page: 507
  ident: CR3
  article-title: An experimental study on the rheological behavior of hybrid Tungsten oxide (WO3)-MWCNTs/engine oil Newtonian nanofluids
  publication-title: J Mol Struct
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  end-page: 14
  ident: CR31
  article-title: Prediction of gas velocity in two-phase flow using developed fuzzy logic system with differential evolution algorithm
  publication-title: Sci Rep
– volume: 145
  start-page: 118806
  year: 2019
  ident: CR37
  article-title: Turbulent convective heat transfer of silica oxide nanofluid through corrugated channels: an experimental and numerical study
  publication-title: Int J Heat Mass Transf
– volume: 1
  start-page: 116
  year: 1985
  end-page: 132
  ident: CR45
  article-title: Fuzzy identification of systems and its applications to modeling and control
  publication-title: IEEE Trans Syst Man Cybern
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  end-page: 18
  ident: CR27
  article-title: Performance and application analysis of ANFIS artificial intelligence for pressure prediction of nanofluid convective flow in a heated pipe
  publication-title: Sci Rep
– volume: 200
  start-page: 117655
  year: 2022
  ident: CR38
  article-title: Numerical investigation on turbulent flow and heat transfer characteristics of ferro-nanofluid flowing in dimpled tube under magnetic field effect
  publication-title: Appl Therm Eng
– volume: 9
  start-page: 15
  issue: 1
  year: 2014
  ident: CR1
  article-title: Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets
  publication-title: Nanoscale Res Lett
– volume: 99
  start-page: 285
  year: 2018
  end-page: 293
  ident: CR7
  article-title: An experimental study on rheological behavior of a nanofluid containing oxide nanoparticle and proposing a new correlation
  publication-title: Phys E
– volume: 118
  start-page: 104897
  year: 2020
  ident: CR13
  article-title: Subcooled flow boiling of water in a metal-foam tube: an experimental study
  publication-title: Int Commun Heat Mass Transf
– ident: CR42
– volume: 97
  start-page: 1676
  issue: S1
  year: 2019
  end-page: 1684
  ident: CR20
  article-title: Liquid-phase chemical reactors: Development of 3D hybrid model based on CFD-adaptive network-based fuzzy inference system
  publication-title: Can J Chem Eng
– volume: 32
  start-page: 13313
  issue: 17
  year: 2020
  end-page: 13321
  ident: CR21
  article-title: Prediction of fluid pattern in a shear flow on intelligent neural nodes using ANFIS and LBM
  publication-title: Neural Comput Appl
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  end-page: 14
  ident: CR28
  article-title: Investigation on performance of particle swarm optimization (PSO) algorithm based fuzzy inference system (PSOFIS) in a combination of CFD modeling for prediction of fluid flow
  publication-title: Sci Rep
– volume: 10
  start-page: 17793
  issue: 1
  year: 2020
  ident: CR19
  article-title: Functional input and membership characteristics in the accuracy of machine learning approach for estimation of multiphase flow
  publication-title: Sci Rep
– volume: 525
  start-page: 616
  year: 2019
  end-page: 627
  ident: CR8
  article-title: Statistical investigation for developing a new model for rheological behavior of Silica–ethylene glycol/Water hybrid Newtonian nanofluid using experimental data
  publication-title: Phys A
– volume: 342
  start-page: 166
  year: 2019
  end-page: 180
  ident: CR5
  article-title: Effects of nanoparticles to present a statistical model for the viscosity of MgO-Water nanofluid
  publication-title: Powder Technol
– ident: CR44
– volume: 67
  start-page: 163
  year: 2015
  end-page: 172
  ident: CR10
  article-title: Turbulent forced convection of Cu–water nanofluid: CFD model comparison
  publication-title: Int Commun Heat Mass Transf
– volume: 525
  start-page: 741
  year: 2019
  end-page: 751
  ident: CR9
  article-title: Statistical investigation for developing a new model for rheological behavior of ZnO–Ag (50%–50%)/Water hybrid Newtonian nanofluid using experimental data
  publication-title: Phys A
– volume: 34
  start-page: 887
  issue: 7
  year: 2007
  end-page: 896
  ident: CR32
  article-title: Prediction of flow fields and temperature distributions due to natural convection in a triangular enclosure using adaptive-network-based fuzzy inference system (ANFIS) and artificial neural network (ANN)
  publication-title: Int Commun Heat Mass Transf
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  end-page: 15
  ident: CR48
  article-title: Functional input and membership characteristics in the accuracy of machine learning approach for estimation of multiphase flow
  publication-title: Sci Rep
– volume: 125
  start-page: 151
  issue: 1
  year: 2003
  end-page: 155
  ident: CR43
  article-title: Investigation on convective heat transfer and flow features of nanofluids
  publication-title: J Heat transf
– volume: 65
  start-page: 165
  issue: 2
  year: 2014
  end-page: 185
  ident: CR33
  article-title: Estimation of the mixed convection heat transfer of a rotating cylinder in a vented cavity subjected to nanofluid by using generalized neural networks
  publication-title: Numer Heat Transf, Part A: Appl
– volume: 69
  start-page: 401
  issue: 4
  year: 2016
  end-page: 420
  ident: CR12
  article-title: Turbulent forced convection of Cu–water nanofluid in a heated tube: improvement of the two-phase model
  publication-title: Numer Heat Transf Part A: Appl
– volume: 113
  start-page: 432
  year: 2017
  end-page: 443
  ident: CR15
  article-title: Computational fluid dynamics simulation of heat transfer and fluid flow characteristics in a vortex tube by considering the various parameters
  publication-title: Int J Heat Mass Transf
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  end-page: 11
  ident: CR29
  article-title: Velocity prediction of nanofluid in a heated porous pipe: DEFIS learning of CFD results
  publication-title: Sci Rep
– volume: 5
  start-page: 20558
  issue: 32
  year: 2020
  end-page: 20566
  ident: CR18
  article-title: Developing intelligent algorithm as a machine learning overview over the big data generated by euler-euler method to simulate bubble column reactor hydrodynamics
  publication-title: ACS Omega
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  end-page: 12
  ident: CR30
  article-title: Thermal prediction of turbulent forced convection of nanofluid using computational fluid dynamics coupled genetic algorithm with fuzzy interface system
  publication-title: Sci Rep
– volume: 6
  start-page: 86
  year: 2012
  end-page: 91
  ident: CR36
  article-title: Simulation of fluid flow and heat transfer in the inclined enclosure
  publication-title: Int J Mech Aerosp Eng
– volume: 50
  start-page: 341
  issue: 3
  year: 2011
  end-page: 349
  ident: CR39
  article-title: Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube
  publication-title: Int J Therm Sci
– volume: 9
  start-page: 14
  issue: 2
  year: 2017
  ident: CR46
  article-title: What does it “mean”? A review of interpreting and calculating different types of means and standard deviations
  publication-title: Pharmaceutics
– volume: 35
  start-page: 543
  issue: 3–6
  year: 2004
  end-page: 557
  ident: CR41
  article-title: Heat transfer behaviours of nanofluids in a uniformly heated tube
  publication-title: Superlattices Microstruct
– volume: 5
  start-page: 30826
  issue: 48
  year: 2020
  end-page: 30835
  ident: CR26
  article-title: Computational modeling of transport in porous media using an adaptive network-based fuzzy inference system
  publication-title: ACS Omega
– volume: 118
  start-page: 104897
  year: 2020
  ident: 8851_CR13
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2020.104897
– volume: 131
  start-page: 1449
  issue: 2
  year: 2018
  ident: 8851_CR4
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-017-6696-3
– volume: 99
  start-page: 285
  year: 2018
  ident: 8851_CR7
  publication-title: Phys E
  doi: 10.1016/j.physe.2018.02.018
– volume: 113
  start-page: 432
  year: 2017
  ident: 8851_CR15
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.05.095
– volume: 6
  start-page: 86
  year: 2012
  ident: 8851_CR36
  publication-title: Int J Mech Aerosp Eng
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 8851_CR48
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-56847-4
– volume: 5
  start-page: 30826
  issue: 48
  year: 2020
  ident: 8851_CR26
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c04497
– volume: 200
  start-page: 117655
  year: 2022
  ident: 8851_CR38
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2021.117655
– volume: 342
  start-page: 166
  year: 2019
  ident: 8851_CR5
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2018.09.076
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 8851_CR29
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-79139-8
– volume: 22
  start-page: 477
  issue: 2
  year: 2020
  ident: 8851_CR22
  publication-title: Int J Fuzzy Syst
  doi: 10.1007/s40815-019-00741-8
– volume: 34
  start-page: 887
  issue: 7
  year: 2007
  ident: 8851_CR32
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2007.03.004
– volume: 525
  start-page: 741
  year: 2019
  ident: 8851_CR9
  publication-title: Phys A
  doi: 10.1016/j.physa.2019.03.118
– volume: 355
  start-page: 602
  year: 2019
  ident: 8851_CR24
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2019.07.086
– volume: 65
  start-page: 165
  issue: 2
  year: 2014
  ident: 8851_CR33
  publication-title: Numer Heat Transf, Part A: Appl
  doi: 10.1080/10407782.2013.826109
– volume: 9
  start-page: 14
  issue: 2
  year: 2017
  ident: 8851_CR46
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics9020014
– volume: 32
  start-page: 13313
  issue: 17
  year: 2020
  ident: 8851_CR21
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04677-w
– volume: 133
  start-page: 671
  year: 2018
  ident: 8851_CR16
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2018.01.062
– volume: 136
  start-page: 513
  issue: 2
  year: 2019
  ident: 8851_CR6
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-018-7707-8
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 8851_CR28
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-79139-8
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 8851_CR31
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-79139-8
– volume: 70
  start-page: 27
  year: 2016
  ident: 8851_CR11
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2015.11.001
– ident: 8851_CR35
  doi: 10.1007/978-3-662-52919-5
– volume: 67
  start-page: 163
  year: 2015
  ident: 8851_CR10
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2015.07.014
– volume: 145
  start-page: 118806
  year: 2019
  ident: 8851_CR37
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2019.118806
– volume: 84
  start-page: 454
  year: 2016
  ident: 8851_CR17
  publication-title: Phys E
  doi: 10.1016/j.physe.2016.07.017
– volume: 5
  start-page: 20558
  issue: 32
  year: 2020
  ident: 8851_CR18
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c02784
– volume: 143
  start-page: 1097
  issue: 2
  year: 2021
  ident: 8851_CR23
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-020-09458-5
– volume: 125
  start-page: 151
  issue: 1
  year: 2003
  ident: 8851_CR43
  publication-title: J Heat transf
  doi: 10.1115/1.1532008
– volume: 69
  start-page: 401
  issue: 4
  year: 2016
  ident: 8851_CR12
  publication-title: Numer Heat Transf Part A: Appl
  doi: 10.1080/10407782.2015.1081019
– volume: 9
  start-page: 15
  issue: 1
  year: 2014
  ident: 8851_CR1
  publication-title: Nanoscale Res Lett
  doi: 10.1186/1556-276X-9-15
– volume: 97
  start-page: 1676
  issue: S1
  year: 2019
  ident: 8851_CR20
  publication-title: Can J Chem Eng
  doi: 10.1002/cjce.23378
– ident: 8851_CR44
– volume: 10
  start-page: 17793
  issue: 1
  year: 2020
  ident: 8851_CR19
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-74858-4
– ident: 8851_CR42
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 8851_CR27
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-79139-8
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 8851_CR30
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-79139-8
– volume: 35
  start-page: 543
  issue: 3–6
  year: 2004
  ident: 8851_CR41
  publication-title: Superlattices Microstruct
  doi: 10.1016/j.spmi.2003.09.012
– volume: 525
  start-page: 616
  year: 2019
  ident: 8851_CR8
  publication-title: Phys A
  doi: 10.1016/j.physa.2019.03.119
– volume: 58
  start-page: 628
  year: 2013
  ident: 8851_CR2
  publication-title: Energy
  doi: 10.1016/j.energy.2013.05.050
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 8851_CR47
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-56847-4
– volume: 67
  start-page: 1136
  issue: 10
  year: 2015
  ident: 8851_CR34
  publication-title: Numer Heat Transf, Part A: Appl
  doi: 10.1080/10407782.2014.955345
– volume: 50
  start-page: 341
  issue: 3
  year: 2011
  ident: 8851_CR39
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2010.03.008
– volume: 1
  start-page: 116
  year: 1985
  ident: 8851_CR45
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1985.6313399
– volume: 56
  start-page: 50
  year: 2014
  ident: 8851_CR14
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2014.04.014
– volume: 1197
  start-page: 497
  year: 2019
  ident: 8851_CR3
  publication-title: J Mol Struct
  doi: 10.1016/j.molstruc.2019.07.080
– volume: 116
  start-page: 104645
  year: 2020
  ident: 8851_CR25
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2020.104645
– volume: 87
  start-page: 153107
  issue: 15
  year: 2005
  ident: 8851_CR40
  publication-title: Appl Phys Lett
  doi: 10.1063/1.2093936
SSID ssj0004685
Score 2.3580432
Snippet The CFD approach could waste a lot of time, effort, and cost for three-dimensional turbulent flow modeling. In the CFD method, any changes in the grid numbers...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 20087
SubjectTerms Algorithms
Artificial Intelligence
Clustering
Computational Biology/Bioinformatics
Computational fluid dynamics
Computational Science and Engineering
Computer Science
Damping
Data Mining and Knowledge Discovery
Eddy viscosity
Finite element method
Flow control
Image Processing and Computer Vision
Machine learning
Modelling
Nanofluids
Nodes
Original Article
Parameters
Pattern recognition
Patterning
Probability and Statistics in Computer Science
Three dimensional flow
Three dimensional models
Turbulence models
Turbulent flow
Viscosity
Vortices
SummonAdditionalLinks – databaseName: ProQuest One Academic
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS9xAFD7o-tIXb23pemMefLNDN5NMkn0Q0eIigouUCr6FudrCmqyaRdxf7znjZLct1NdJZiA59zmXD-DQS6cNRhZcyyEGKMgxvLS64G4gndKJQSNE_c5X4_ziJru8lbcrMO56YaisstOJQVHbxtAd-TdBCSxKa4mT6QMn1CjKrnYQGipCK9jjMGJsFdYETcbqwdrZ-fj6xx-dkgGkE2MaqvfJ0thGE5rp6IYUV0XKUfJkwud_m6ql__lPyjRYotEmrEcXkp2-0XwLVly9DRsdPAOL0voRnkez-fyFk52yTDvH1OQOv6j9dc_QU2X3oYzSsYgbccdUbdk0jNus2aKuqKlZ45kJh8d7Q0ZVpbRaq7rxk9lvy0ijszb4wO7xE9yMzn9-v-ARZ4EbFMCWp16YUqQ69wWa71IPs0GZuVx6kajEay2MTVU-FLlE39BmSAStURWUUujCWpOln6FXN7X7AixXGJ5ISXt0NlQO3xmkohAeI3BR-LQPSfdLKxOHkBMWxqRajE8OZKiQDFUgQzXvw9Fiz_RtBMe7b-91lKqiOD5VS-bpw9eOesvH_z9t5_3TduGDCAxDNWd70GsfZ24fnZRWH0TOewXBrOO2
  priority: 102
  providerName: ProQuest
Title Fuzzy-based bee algorithm for machine learning and pattern recognition of computational data of nanofluid heat transfer
URI https://link.springer.com/article/10.1007/s00521-023-08851-z
https://www.proquest.com/docview/2858503812
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3058
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ADMLS
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3058
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: 8FG
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90vvjitzidIw--aWBNmrZ7nLIpiiLiYD6Vpk1U2FpxG2L_ei9Zuqmo4FOhveShd5e7X-4L4EgLJVNEFlSKNgIUlBgaZTKkqiVUIr0UjZCpd76-CS76_uVADFxR2LjKdq9Ckvaknhe7mRtMhL6MU9QM4dFyGVaEaeeFUtxnnU_VkHYQJ-IWk9Pjc1cq8_MeX83Rwsf8Fha11qa3AWvOTSSdGV83YUnlW7BejWAgTiO34a03Lct3amxRRqRSJBk-Foj3n0YEvVEysqmSirjZEI8kyTPyYltq5mSeO1TkpNAktZu7u0FiMkfN2zzJCz2cPmfEnNpkYv1c9boD_V73_uyCulkKNEUlm1CuWRoxLgMdoomOZNtvRb4KhGZe4mkpWZrxJGizQKD_l_ktHkmJ6h4JJsMsS32-C7W8yNUekCBBCCKEWSP9dqKQpsVZyDSibBZqXgev-qVx6hqNm3kXw3jeItmyIUY2xJYNcVmH4_mal1mbjT-pGxWnYqdy45iZCKeJe7I6nFTcW3z-fbf9_5EfwCqzAmTyzBpQm7xO1SE6JhPZhOWod96Elc75w1UXn6fdm9u7ppXODwOf3q4
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9gAX3ohAAR_gBBZZP_ZxqBCPRiltI4RaqbfFz4KU7oZ2o6r5cfw2xq43ASR669Vrj1aesWfG8_gAXnrptEHPgmpZoYOCEkNLqwvqhtIpnRlUQqHeeX-Sjw_F5yN5tAa_-lqYkFbZ34nxoratCW_kb1kIYIWwFns3-0kDalSIrvYQGipBK9it2GIsFXbsuotzdOHOtnY-Ib9fMTbaPvg4pgllgBoUv45yz0zJuM59gcqr1JUYlsLl0rNMZV5rZixXecVyiZaRFfgLWuNBKCXThbVGcKR7AzYEFxU6fxsftidfvv5RmRlBQdGHCvlFgqeynVi8F15kcZRxiiddZnTxt2pc2bv_hGij5hvdhdvJZCXvL2XsHqy55j7c6eEgSLodHsD5aL5YXNCgFy3RzhE1PcYd7L6fELSMyUlM23Qk4VQcE9VYMovtPRuyzGNqG9J6YiLx9E5JQhZrGG1U0_rp_IclQYOQLtrc7vQhHF7Ljj-C9aZt3GMguUJ3SMqwRotKOZwz5KxgHj1-Vng-gKzf0tqkpucBe2NaL9s1RzbUyIY6sqFeDOD1cs3ssuXHlbM3e07V6fif1SthHcCbnnurz_-n9uRqai_g5vhgf6_e25nsPoVbLApPyHfbhPXudO6eoYHU6edJCgl8u27B_w1YUh9p
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSIgLb8RgQA7cIGJNmj6OE1CNpzgwabeqaRJAGukEnRD79ThZuwECJK6t40Nt1_7iF0KHmiuRA7IggscAUEBjSCRFSFSbq0x4OTgh2-98cxt0e_5ln_c_dfG7avc6JTnpabBTmkx5MpT6ZNr4Zm8zAQZTRsBKuEfG82jBt4MSQKN7tPOpM9It5QQMY-t7fFa1zfzM46trmsWb31KkzvMkq2i5ChlxZyLjNTSnzDpaqdcx4Mo6N9BbMhqP34n1SxILpXA2eCgA-z8-Y4hM8bMrm1S42hPxgDMj8dCN1zR4WkdUGFxonDvm1T0htlWk9qnJTKEHoyeJ7R8cly7mVS-bqJec3592SbVXgeRgcCVhmuYRZSLQIbjrSMR-O_JVwDX1Mk8LQXPJsiCmAYdYUPptFgkBph9xKkIpc59toYYpjNpGOMgAjnBuzwg_zhTQtBkNqQbETUPNmsirP2maV0PH7e6LQTodl-zEkIIYUieGdNxER9Mzw8nIjT-pW7Wk0sr8XlNqs502B0qb6LiW3uz179x2_kd-gBbvzpL0-uL2ahctUadLtvyshRrly0jtQbxSin2nkh9M2uHC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy-based+bee+algorithm+for+machine+learning+and+pattern+recognition+of+computational+data+of+nanofluid+heat+transfer&rft.jtitle=Neural+computing+%26+applications&rft.au=Azma%2C+Aliasghar&rft.au=Behroyan%2C+Iman&rft.au=Babanezhad%2C+Meisam&rft.au=Liu%2C+Yakun&rft.date=2023-09-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=35&rft.issue=27&rft.spage=20087&rft.epage=20101&rft_id=info:doi/10.1007%2Fs00521-023-08851-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_023_08851_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon