Exploring the dynamical bifurcation and stability analysis of Nipah virus; novel perspectives utilizing fractional calculus
A zoonotic virus called the Nipah virus (NV) can create deadly illness epidemics in humans. The animal host repository for NV is the fruit bat, sometimes referred to as the flying fox. It has been documented to infect pigs, which are regarded as intermediary carriers. Scientists’ interest in infecti...
Saved in:
| Published in | Modeling earth systems and environment Vol. 10; no. 4; pp. 5427 - 5448 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
01.08.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2363-6203 2363-6211 |
| DOI | 10.1007/s40808-024-02071-7 |
Cover
| Abstract | A zoonotic virus called the Nipah virus (NV) can create deadly illness epidemics in humans. The animal host repository for NV is the fruit bat, sometimes referred to as the flying fox. It has been documented to infect pigs, which are regarded as intermediary carriers. Scientists’ interest in infectious disease modeling has surged because non-integer-order derivatives work so well. In this work, we present a model of NV infection propagation that accounts for both the disappearance of antibodies in rehabilitated people and all human-to-host animal propagation. Taking into consideration the fractal-fractional operator in the generalized Mittag–Leffler kernel sense, we contemplated the numerical solutions for the proposed model via the Lagrange interpolation polynomial technique. Several qualitative aspects of the NV model, such as positive bounded solution, disease-free equilibrium, and the basic reproduction number (
R
0
), are presented with a graphic illustration to demonstrate the effectiveness of the system parameters. To establish efficient time-dependent oversight, sensitive evaluation of the framework’s components is also carried out. Besides that, the local and global stability at the disease-free equilibrium point is provided in detail. Meanwhile, a fractional bifurcation framework is developed according to the sensitivity indices, and numerical simulations are used to identify the most efficient prevention approach. The mathematical mechanism of the NV model is characterized by the Atangana-Baleanu fractal-fractional differential operators, which are newly described as fractal-fractional differential operators. Three approaches were taken to examine the numerical behavior of the NV: (i) varying both the fractal dimension (
η
) and the fractional order (
ω
); (ii) varying
ω
while maintaining
η
constant; and (iii) varying
η
while maintaining
α
constant. We analyzed simulation findings and visualizations of the above system using Python for numerical modeling, determining that the newly created Atangana-Baleanu fractal-fractional differential operators yield superior outcomes in comparison to the classical framework. |
|---|---|
| AbstractList | A zoonotic virus called the Nipah virus (NV) can create deadly illness epidemics in humans. The animal host repository for NV is the fruit bat, sometimes referred to as the flying fox. It has been documented to infect pigs, which are regarded as intermediary carriers. Scientists’ interest in infectious disease modeling has surged because non-integer-order derivatives work so well. In this work, we present a model of NV infection propagation that accounts for both the disappearance of antibodies in rehabilitated people and all human-to-host animal propagation. Taking into consideration the fractal-fractional operator in the generalized Mittag–Leffler kernel sense, we contemplated the numerical solutions for the proposed model via the Lagrange interpolation polynomial technique. Several qualitative aspects of the NV model, such as positive bounded solution, disease-free equilibrium, and the basic reproduction number (
R
0
), are presented with a graphic illustration to demonstrate the effectiveness of the system parameters. To establish efficient time-dependent oversight, sensitive evaluation of the framework’s components is also carried out. Besides that, the local and global stability at the disease-free equilibrium point is provided in detail. Meanwhile, a fractional bifurcation framework is developed according to the sensitivity indices, and numerical simulations are used to identify the most efficient prevention approach. The mathematical mechanism of the NV model is characterized by the Atangana-Baleanu fractal-fractional differential operators, which are newly described as fractal-fractional differential operators. Three approaches were taken to examine the numerical behavior of the NV: (i) varying both the fractal dimension (
η
) and the fractional order (
ω
); (ii) varying
ω
while maintaining
η
constant; and (iii) varying
η
while maintaining
α
constant. We analyzed simulation findings and visualizations of the above system using Python for numerical modeling, determining that the newly created Atangana-Baleanu fractal-fractional differential operators yield superior outcomes in comparison to the classical framework. A zoonotic virus called the Nipah virus (NV) can create deadly illness epidemics in humans. The animal host repository for NV is the fruit bat, sometimes referred to as the flying fox. It has been documented to infect pigs, which are regarded as intermediary carriers. Scientists’ interest in infectious disease modeling has surged because non-integer-order derivatives work so well. In this work, we present a model of NV infection propagation that accounts for both the disappearance of antibodies in rehabilitated people and all human-to-host animal propagation. Taking into consideration the fractal-fractional operator in the generalized Mittag–Leffler kernel sense, we contemplated the numerical solutions for the proposed model via the Lagrange interpolation polynomial technique. Several qualitative aspects of the NV model, such as positive bounded solution, disease-free equilibrium, and the basic reproduction number (R0), are presented with a graphic illustration to demonstrate the effectiveness of the system parameters. To establish efficient time-dependent oversight, sensitive evaluation of the framework’s components is also carried out. Besides that, the local and global stability at the disease-free equilibrium point is provided in detail. Meanwhile, a fractional bifurcation framework is developed according to the sensitivity indices, and numerical simulations are used to identify the most efficient prevention approach. The mathematical mechanism of the NV model is characterized by the Atangana-Baleanu fractal-fractional differential operators, which are newly described as fractal-fractional differential operators. Three approaches were taken to examine the numerical behavior of the NV: (i) varying both the fractal dimension (η) and the fractional order (ω); (ii) varying ω while maintaining η constant; and (iii) varying η while maintaining α constant. We analyzed simulation findings and visualizations of the above system using Python for numerical modeling, determining that the newly created Atangana-Baleanu fractal-fractional differential operators yield superior outcomes in comparison to the classical framework. |
| Author | Rashid, Saima Shah, Muzamil Abbas Ramzan, Sehrish Elagan, Sayed K. |
| Author_xml | – sequence: 1 givenname: Sehrish surname: Ramzan fullname: Ramzan, Sehrish organization: Department of Mathematics, Government College University Faisalabad – sequence: 2 givenname: Saima surname: Rashid fullname: Rashid, Saima email: saimarashid@gcuf.edu.pk organization: Department of Mathematics, Government College University Faisalabad, Department of Computer Science and Mathematics, Lebanese American University – sequence: 3 givenname: Muzamil Abbas surname: Shah fullname: Shah, Muzamil Abbas organization: Department of Business, Richmond American University London – sequence: 4 givenname: Sayed K. surname: Elagan fullname: Elagan, Sayed K. organization: Department of Mathematics and Statistics, College of Science, Taif University |
| BookMark | eNp9kE1LAzEQhoNUsNb-AU8Bz6v52CZdPEmpH1D0oueQTSc2Zbu7Jtli9c-bbUXBg4cwCTPPy-Q5RYO6qQGhc0ouKSHyKuRkSqYZYXk6RNJMHqEh44JnglE6-LkTfoLGIawJIVQwIYpiiD7n723VeFe_4rgCvNzVeuOMrnDpbOeNjq6psa6XOERdusrFXXrpahdcwI3Fj67VK7x1vgvXuG62UOEWfGjBRLeFgLuYmI8-3Xpt-rAUneJNV3XhDB1bXQUYf9cRermdP8_us8XT3cPsZpEZTouY8WUxkRQ0AIEJ54JpweyU2RKMtJoCCDmRhSxTPweqWV7YJIGWwnKdU1nyEbo45La-eesgRLVuOp82CYqTgk1I7yJNTQ9TxjcheLDKuLj_f_TaVYoS1dtWB9sq2VZ720omlP1BW-822u_-h_gBCm2vH_zvVv9QX0k2lvs |
| CitedBy_id | crossref_primary_10_1038_s41598_025_93820_w crossref_primary_10_1016_j_chaos_2025_116055 crossref_primary_10_1007_s40808_025_02335_w crossref_primary_10_1016_j_aej_2024_10_125 |
| Cites_doi | 10.1016/j.chaos.2022.112990 10.1016/j.cam.2022.114654 10.1002/num.22707 10.1016/j.aej.2024.05.055 10.4103/jfmpc.jfmpc_137_18 10.1142/S1793524520500710 10.1016/S0140-6736(99)04379-2 10.1016/j.jare.2019.01.007 10.1016/S0140-6736(99)04299-3 10.1007/s40314-024-02728-0 10.1155/2020/6050834 10.1002/mma.8010 10.1016/j.matcom.2023.01.006 10.1016/S0025-5564(02)00108-6 10.1016/j.rinp.2023.106629 10.11648/j.acm.20150405.15 10.1080/01652176.2019.1580827 10.1007/s40435-022-01089-y 10.1016/j.csite.2023.103065 10.1016/j.chaos.2019.04.020 10.3934/math.20231516 10.1140/epjp/s13360-021-01159-8 10.1016/j.aej.2023.05.071 10.1016/j.chaos.2018.06.032 10.1016/j.heliyon.2023.e19682 10.1017/S0950268815001314 10.3389/fenvs.2023.1171701 10.1038/nrmicro1323 10.1142/S1793962321500136 10.1155/2014/838396 10.1016/j.aej.2022.04.039 10.2298/TSCI160111018A 10.1007/978-1-4613-0065-6 10.1142/S0218348X24400139 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 7TN 7UA AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ L.G PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PYCSY |
| DOI | 10.1007/s40808-024-02071-7 |
| DatabaseName | CrossRef Oceanic Abstracts Water Resources Abstracts ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Natural Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Physics Computer Science |
| EISSN | 2363-6211 |
| EndPage | 5448 |
| ExternalDocumentID | 10_1007_s40808_024_02071_7 |
| GroupedDBID | -EM 0R~ 203 406 AAAVM AACDK AAHNG AAIAL AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYQN AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADINQ ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEUYN AEVLU AEXYK AFBBN AFKRA AFQWF AFRAH AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AHBYD AHSBF AHYZX AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ASPBG ATCPS AUKKA AVWKF AVXWI AXYYD AZFZN BENPR BGNMA BHPHI BKSAR CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FEDTE FERAY FIGPU FINBP FNLPD FSGXE GGCAI GJIRD HCIFZ HQYDN HRMNR HVGLF IKXTQ IWAJR J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PATMY PCBAR PT4 PYCSY RIG RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW Z5O ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PUEGO 7TN 7UA AZQEC C1K DWQXO F1W GNUQQ H96 L.G PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-3d9571eaee0e53362a62f82fbec7fa1ee675797bee04e1a249f0711b6f3a417b3 |
| IEDL.DBID | BENPR |
| ISSN | 2363-6203 |
| IngestDate | Sat Aug 23 14:27:28 EDT 2025 Wed Oct 01 01:33:52 EDT 2025 Thu Apr 24 23:08:22 EDT 2025 Fri Feb 21 02:38:06 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Local and global stability Fractal-fractional operators Sensitivity analysis Bifurcation analysis Fractal newton approximation Nipah virus epidemic Reproduction number Fractional lagrange polynomial Numerical algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-3d9571eaee0e53362a62f82fbec7fa1ee675797bee04e1a249f0711b6f3a417b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3092502669 |
| PQPubID | 2044383 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_3092502669 crossref_citationtrail_10_1007_s40808_024_02071_7 crossref_primary_10_1007_s40808_024_02071_7 springer_journals_10_1007_s40808_024_02071_7 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240800 2024-08-00 20240801 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 8 year: 2024 text: 20240800 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Modeling earth systems and environment |
| PublicationTitleAbbrev | Model. Earth Syst. Environ |
| PublicationYear | 2024 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | Chua, Goh, Wong, Kamarulzaman, Tan, Ksiazek, Zaki, Paul, Lam, Tan (CR19) 1999; 354 Barua, Ibrahim, Dénes (CR13) 2023; 8 Yavuz, Yaşkıran (CR44) 2018; 13 Ashraf, Ali, Sohail, Eldin (CR5) 2023; 11 CR37 Baleanu, Shekari, Torkzadeh, Ranjbar, Jajarmi, Nouri (CR10) 2023; 166 CR14 Almarashi, Alzahrani, Othman, Altoum, Iqbal, Ahmad, Musa (CR3) 2023; 47 Evirgen (CR22) 2023; 418 Nisar, Farman, Abdel-Aty, Cao (CR33) 2023; 75 Chakraborty, Sazzad, Hossain, Islam, Parveen, Husain, Banu, Podder, Afroj, Rollin, Daszak (CR16) 2016; 144 Zubair, Zanib, Asjad (CR48) 2024; 43 Chen, Sun, Zhang, Korošsak (CR18) 2010; 59 Atangana (CR6) 2017; 59 SamreenUllah, Nawaz, AlQahtani, Li, Hassan (CR36) 2023; 51 Atangana, Qureshi (CR8) 2019; 123 Barua, Denes (CR12) 2023; 9 Sweilam, Al-Mekhlafi, Baleanu (CR42) 2019; 17 Alqahtani, Ramzan, Zanib, Nazir, Masood, Malik (CR4) 2024; 101 Baleanu, Shekari, Torkzadeh, Ranjbar, Jajarmi, Nouri (CR11) 2023; 166 Kumar, Chauhan, Momani, Hadid (CR29) 2020; 40 Solís-Pérez, Gómez-Aguilar, Atangana (CR41) 2018; 114 Halpin, Hyatt, Fogarty, Middleton, Bingham, Epstein, Rahman, Hughes, Smith, Field, Daszak (CR27) 2011; 85 Zewdie, Gakkhar, Gupta (CR46) 2023; 11 Fatmawati, Herdicho, Windarto, Chukwu, Tasman (CR23) 2021; 25 Singh, Dhama, Chakraborty, Tiwari, Natesan, Khandia, Munjal, Vora, Latheef, Karthik, Singh (CR39) 2019; 39 Chadha, Comer, Lowe, Rota, Rollin, Bellini, Ksiazek, Mishra (CR15) 2006; 12 Naik (CR31) 2020; 13 Atangana, Baleanu (CR7) 2016; 20 Gurley, Montgomery, Hossain, Bell, Azad, Islam, Molla, Carroll, Ksiazek, Rota, Lowe (CR26) 2007; 13 Montgomery, Hossain, Gurley, Carroll, Croisier, Bertherat, Asgari, Formenty, Keeler, Comer, Bell (CR30) 2008; 14 Abboubakar, Kumar, Rangaig, Kumar (CR1) 2021; 12 Balasubramaniam, Prakash, Rihan, Lakshmanan (CR9) 2014; 2014 Paton, Leo, Zaki, Auchus, Lee, Ling, Chew, Ang, Rollin, Umapathi, Sng (CR35) 1999; 354 Shah, Ali, Zeb, Khan, Alqudah, Abdeljawad (CR38) 2022; 61 Eaton, Broder, Middleton, Wang (CR21) 2006; 4 CR43 Khan, Ullah, Kumar (CR28) 2021; 136 Ali, Rabiei, Hosseini (CR2) 2023; 207 Van den Driessche, Watmough (CR20) 2002; 180 Chattu, Kumar, Kumary, Kajal, David (CR17) 2018; 7 Ghori, Naik, Zu, Eskandari, Naik (CR24) 2022; 45 Ngoteya, Gyekye (CR32) 2015; 4 Goswami, Hategekimana (CR25) 2022; 22 Zewdie, Gakkhar, Gupta (CR47) 2023; 11 Zewdie, Gakkhar (CR45) 2020; 2020 Olaniyi, Lawal, Obabiyi (CR34) 2016; 46 Sinha, Sinha (CR40) 2019; 2 KB Chua (2071_CR19) 1999; 354 S Ashraf (2071_CR5) 2023; 11 HF Fatmawati (2071_CR23) 2021; 25 FN Ngoteya (2071_CR32) 2015; 4 NK Goswami (2071_CR25) 2022; 22 A Atangana (2071_CR8) 2019; 123 S SamreenUllah (2071_CR36) 2023; 51 JM Montgomery (2071_CR30) 2008; 14 S Kumar (2071_CR29) 2020; 40 AS Alqahtani (2071_CR4) 2024; 101 AD Zewdie (2071_CR47) 2023; 11 JE Solís-Pérez (2071_CR41) 2018; 114 A Chakraborty (2071_CR16) 2016; 144 MA Khan (2071_CR28) 2021; 136 S Olaniyi (2071_CR34) 2016; 46 H Abboubakar (2071_CR1) 2021; 12 KS Nisar (2071_CR33) 2023; 75 NH Sweilam (2071_CR42) 2019; 17 M Yavuz (2071_CR44) 2018; 13 2071_CR14 2071_CR37 S Barua (2071_CR12) 2023; 9 P Van den Driessche (2071_CR20) 2002; 180 VK Chattu (2071_CR17) 2018; 7 Z Ali (2071_CR2) 2023; 207 A Almarashi (2071_CR3) 2023; 47 D Baleanu (2071_CR11) 2023; 166 MB Ghori (2071_CR24) 2022; 45 NI Paton (2071_CR35) 1999; 354 ES Gurley (2071_CR26) 2007; 13 2071_CR43 F Evirgen (2071_CR22) 2023; 418 AD Zewdie (2071_CR45) 2020; 2020 S Barua (2071_CR13) 2023; 8 K Halpin (2071_CR27) 2011; 85 A Atangana (2071_CR6) 2017; 59 PA Naik (2071_CR31) 2020; 13 A Atangana (2071_CR7) 2016; 20 P Balasubramaniam (2071_CR9) 2014; 2014 T Zubair (2071_CR48) 2024; 43 AD Zewdie (2071_CR46) 2023; 11 D Sinha (2071_CR40) 2019; 2 D Baleanu (2071_CR10) 2023; 166 BT Eaton (2071_CR21) 2006; 4 RK Singh (2071_CR39) 2019; 39 MS Chadha (2071_CR15) 2006; 12 W Chen (2071_CR18) 2010; 59 K Shah (2071_CR38) 2022; 61 |
| References_xml | – ident: CR43 – volume: 166 start-page: 112990 year: 2023 ident: CR10 article-title: Stability analysis and system properties of Nipah virus transmission: a fractional calculus case study publication-title: Chaos Soliton Fract doi: 10.1016/j.chaos.2022.112990 – volume: 418 start-page: 114654 year: 2023 ident: CR22 article-title: Transmission of Nipah virus dynamics under Caputo fractional derivative publication-title: J Comput Appl Math doi: 10.1016/j.cam.2022.114654 – volume: 40 start-page: e22707 issue: 1 year: 2020 ident: CR29 article-title: Numerical investigations on COVID-19 model through singular and non-singular fractional operators publication-title: Numer Methods Partial Differ Equ doi: 10.1002/num.22707 – volume: 13 start-page: 1031 issue: 7 year: 2007 ident: CR26 article-title: Person-to-person transmission of nipah virus in a Bangladeshi community publication-title: EID – volume: 59 start-page: 1758 issue: 1754 year: 2010 ident: CR18 article-title: Anomalous diffusion modeling by fractal and fractional derivatives publication-title: Comput Math Appl – volume: 101 start-page: 193 year: 2024 end-page: 204 ident: CR4 article-title: Mathematical modeling and simulation for malaria disease transmission using the CF fractional derivative publication-title: Alex Eng J doi: 10.1016/j.aej.2024.05.055 – volume: 46 start-page: 160 issue: 2 year: 2016 end-page: 167 ident: CR34 article-title: Stability and sensitivity analysis of a deterministic epidemiological model with pseudo-recovery publication-title: IAENG Int J Appl Math – volume: 7 start-page: 275 issue: 2 year: 2018 ident: CR17 article-title: Nipah virus epidemic in southern India and emphasizing one health approach to ensure global health security publication-title: Fam Med Prim Care Rev doi: 10.4103/jfmpc.jfmpc_137_18 – volume: 13 start-page: 2050071 issue: 08 year: 2020 ident: CR31 article-title: Global dynamics of a fractional-order SIR epidemic model with memory publication-title: Int J Biomath doi: 10.1142/S1793524520500710 – volume: 354 start-page: 1253 issue: 9186 year: 1999 end-page: 1256 ident: CR35 article-title: Outbreak of nipah-virus infection among abattoir workers in Singapore publication-title: Lancet doi: 10.1016/S0140-6736(99)04379-2 – volume: 17 start-page: 125 year: 2019 end-page: 137 ident: CR42 article-title: Optimal control for a fractional tuberculosis infection model including the impact of diabetes and resistant strains publication-title: J Adv Res doi: 10.1016/j.jare.2019.01.007 – ident: CR14 – ident: CR37 – volume: 354 start-page: 1257 issue: 9186 year: 1999 end-page: 1259 ident: CR19 article-title: Fatal encephalitis due to nipah virus among pig-farmers in Malaysia publication-title: Lancet doi: 10.1016/S0140-6736(99)04299-3 – volume: 13 start-page: 13 issue: 2 year: 2018 ident: CR44 article-title: Conformable derivative operator in modelling neuronal dynamics publication-title: Appl Appl Math: Int J (AAM) – volume: 43 start-page: 238 issue: 4 year: 2024 ident: CR48 article-title: A novel definition of the caputo fractional finite difference approach for Maxwell fluid publication-title: Comput Appl Math doi: 10.1007/s40314-024-02728-0 – volume: 2020 start-page: 1 year: 2020 end-page: 10 ident: CR45 article-title: A mathematical model for Nipah virus infection publication-title: J Appl Math doi: 10.1155/2020/6050834 – volume: 45 start-page: 3665 issue: 7 year: 2022 end-page: 3688 ident: CR24 article-title: Global dynamics and bifurcation analysis of a fractional-order SEIR epidemic model with saturation incidence rate publication-title: Math Methods Appl Sci doi: 10.1002/mma.8010 – volume: 207 start-page: 466 year: 2023 end-page: 481 ident: CR2 article-title: A fractal–fractional-order modified Predator-Prey mathematical model with immigrations publication-title: Math Comput Simul doi: 10.1016/j.matcom.2023.01.006 – volume: 180 start-page: 29 year: 2002 end-page: 48 ident: CR20 article-title: Reproductive numbers and sub-thresholdendemic equilibria for compartment models of disease transmission publication-title: Math Biosci doi: 10.1016/S0025-5564(02)00108-6 – volume: 51 start-page: 06629 year: 2023 ident: CR36 article-title: A mathematical study unfolding the transmission and control of deadly Nipah virus infection under optimized preventive measures: New insights using fractional calculus publication-title: Results Phys doi: 10.1016/j.rinp.2023.106629 – volume: 4 start-page: 363 issue: 5 year: 2015 end-page: 368 ident: CR32 article-title: Sensitivity analysis of parameters in a competition model publication-title: Appl Comput Math doi: 10.11648/j.acm.20150405.15 – volume: 39 start-page: 26 issue: 1 year: 2019 end-page: 55 ident: CR39 article-title: Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies–a comprehensive review publication-title: Vet Q doi: 10.1080/01652176.2019.1580827 – volume: 11 start-page: 1974 year: 2023 end-page: 1994 ident: CR46 article-title: Human–animal Nipah virus transmission: Model analysis and optimal control publication-title: Int J Dynam Control doi: 10.1007/s40435-022-01089-y – volume: 47 start-page: 103065 year: 2023 ident: CR3 article-title: Numerical investigation of thermal improvement of system in existence of nanofluid and magnetic force publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2023.103065 – volume: 123 start-page: 320 year: 2019 end-page: 337 ident: CR8 article-title: Modeling attractors of chaotic dynamical systems with fractal-fractional operators publication-title: Chaos Solit Fract doi: 10.1016/j.chaos.2019.04.020 – volume: 8 start-page: 29604 issue: 12 year: 2023 end-page: 29627 ident: CR13 article-title: A compartmental model for the spread of Nipah virus in a periodic environment publication-title: AIMS Math doi: 10.3934/math.20231516 – volume: 25 start-page: 104238 year: 2021 ident: CR23 article-title: An optimal control of malaria transmission model with mosquito seasonal factor publication-title: Res Phys – volume: 136 start-page: 1 year: 2021 end-page: 20 ident: CR28 article-title: A robust study on 2019-nCOV outbreaks through non-singular derivative publication-title: Eur Phys J Plus doi: 10.1140/epjp/s13360-021-01159-8 – volume: 75 start-page: 81 year: 2023 end-page: 113 ident: CR33 article-title: A review on epidemic models in sight of fractional calculus publication-title: Alex Eng J doi: 10.1016/j.aej.2023.05.071 – volume: 114 start-page: 175 year: 2018 end-page: 185 ident: CR41 article-title: Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws publication-title: Chaos Solit Fract doi: 10.1016/j.chaos.2018.06.032 – volume: 166 start-page: 112990 year: 2023 ident: CR11 article-title: Stability analysis and system properties of Nipah virus transmission: a fractional calculus case study publication-title: Chaos Solit Fract doi: 10.1016/j.chaos.2022.112990 – volume: 9 start-page: e19682 year: 2023 ident: CR12 article-title: Global dynamics of a compartmental model for the spread of Nipah virus publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e19682 – volume: 2 start-page: 82 issue: 9 year: 2019 end-page: 89 ident: CR40 article-title: Mathematical model of zoonotic nipah virus in south-east asia region publication-title: Acta Sci Microbiol – volume: 144 start-page: 371 issue: 2 year: 2016 end-page: 380 ident: CR16 article-title: Evolving epidemiology of nipah virus infection in Bangladesh: evidence from outbreaks during 2010–2011 publication-title: Epidemiol Infect doi: 10.1017/S0950268815001314 – volume: 11 start-page: 610 year: 2023 ident: CR5 article-title: Assessing the environmental impact of industrial pollution using the complex intuitionistic fuzzy ELECTREE method: a case study of pollution control measures publication-title: Front Environ Sci doi: 10.3389/fenvs.2023.1171701 – volume: 59 start-page: 1754 year: 2017 end-page: 1758 ident: CR6 article-title: Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system publication-title: Comput Math Appl – volume: 11 start-page: 1974 issue: 4 year: 2023 end-page: 1994 ident: CR47 article-title: Human–animal Nipah virus transmission: model analysis and optimal control publication-title: Int J Dyn Control doi: 10.1007/s40435-022-01089-y – volume: 4 start-page: 23 issue: 1 year: 2006 end-page: 35 ident: CR21 article-title: Hendra and Nipah viruses: different and dangerous publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro1323 – volume: 85 start-page: 946 issue: 5 year: 2011 ident: CR27 article-title: Pteropid bats are confirmed as the reservoir hosts of henipaviruses: a comprehensive experimental study of virus transmission publication-title: ASTMH – volume: 14 start-page: 1526 issue: 10 year: 2008 ident: CR30 article-title: Risk factors for nipah virus encephalitis in Bangladesh publication-title: EID – volume: 12 start-page: 2150013 issue: 02 year: 2021 ident: CR1 article-title: A malaria model with Caputo-Fabrizio and Atangana-Baleanu derivatives publication-title: Int J Model Sim Sci Comput doi: 10.1142/S1793962321500136 – volume: 2014 start-page: 1 year: 2014 end-page: 19 ident: CR9 article-title: Hopf bifurcation and stability of periodic solutions for delay differential model of HIV infection of CD4+ T-cells publication-title: Abstr Appl Anal doi: 10.1155/2014/838396 – volume: 61 start-page: 11211 issue: 12 year: 2022 end-page: 11224 ident: CR38 article-title: Study of fractional order dynamics of nonlinear mathematical model publication-title: Alex Eng J doi: 10.1016/j.aej.2022.04.039 – volume: 22 start-page: 176 issue: 4 year: 2022 end-page: 192 ident: CR25 article-title: Optimal control techniques for the transmission risk of Nipah virus disease with awareness publication-title: Adv Syst Sci Appl – volume: 20 start-page: 763 issue: 2 year: 2016 end-page: 769 ident: CR7 article-title: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model publication-title: Therm Sci doi: 10.2298/TSCI160111018A – volume: 12 start-page: 235 issue: 2 year: 2006 ident: CR15 article-title: Nipah virus-associated encephalitis outbreak, siliguri publication-title: India EID – volume: 13 start-page: 2050071 issue: 08 year: 2020 ident: 2071_CR31 publication-title: Int J Biomath doi: 10.1142/S1793524520500710 – volume: 114 start-page: 175 year: 2018 ident: 2071_CR41 publication-title: Chaos Solit Fract doi: 10.1016/j.chaos.2018.06.032 – volume: 4 start-page: 23 issue: 1 year: 2006 ident: 2071_CR21 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro1323 – volume: 14 start-page: 1526 issue: 10 year: 2008 ident: 2071_CR30 publication-title: EID – volume: 207 start-page: 466 year: 2023 ident: 2071_CR2 publication-title: Math Comput Simul doi: 10.1016/j.matcom.2023.01.006 – volume: 11 start-page: 1974 year: 2023 ident: 2071_CR46 publication-title: Int J Dynam Control doi: 10.1007/s40435-022-01089-y – volume: 12 start-page: 235 issue: 2 year: 2006 ident: 2071_CR15 publication-title: India EID – volume: 61 start-page: 11211 issue: 12 year: 2022 ident: 2071_CR38 publication-title: Alex Eng J doi: 10.1016/j.aej.2022.04.039 – ident: 2071_CR43 – volume: 40 start-page: e22707 issue: 1 year: 2020 ident: 2071_CR29 publication-title: Numer Methods Partial Differ Equ doi: 10.1002/num.22707 – volume: 46 start-page: 160 issue: 2 year: 2016 ident: 2071_CR34 publication-title: IAENG Int J Appl Math – volume: 4 start-page: 363 issue: 5 year: 2015 ident: 2071_CR32 publication-title: Appl Comput Math doi: 10.11648/j.acm.20150405.15 – volume: 144 start-page: 371 issue: 2 year: 2016 ident: 2071_CR16 publication-title: Epidemiol Infect doi: 10.1017/S0950268815001314 – volume: 418 start-page: 114654 year: 2023 ident: 2071_CR22 publication-title: J Comput Appl Math doi: 10.1016/j.cam.2022.114654 – volume: 39 start-page: 26 issue: 1 year: 2019 ident: 2071_CR39 publication-title: Vet Q doi: 10.1080/01652176.2019.1580827 – volume: 45 start-page: 3665 issue: 7 year: 2022 ident: 2071_CR24 publication-title: Math Methods Appl Sci doi: 10.1002/mma.8010 – volume: 166 start-page: 112990 year: 2023 ident: 2071_CR11 publication-title: Chaos Solit Fract doi: 10.1016/j.chaos.2022.112990 – volume: 11 start-page: 1974 issue: 4 year: 2023 ident: 2071_CR47 publication-title: Int J Dyn Control doi: 10.1007/s40435-022-01089-y – volume: 9 start-page: e19682 year: 2023 ident: 2071_CR12 publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e19682 – volume: 2020 start-page: 1 year: 2020 ident: 2071_CR45 publication-title: J Appl Math doi: 10.1155/2020/6050834 – volume: 59 start-page: 1754 year: 2017 ident: 2071_CR6 publication-title: Comput Math Appl – volume: 25 start-page: 104238 year: 2021 ident: 2071_CR23 publication-title: Res Phys – volume: 85 start-page: 946 issue: 5 year: 2011 ident: 2071_CR27 publication-title: ASTMH – volume: 354 start-page: 1253 issue: 9186 year: 1999 ident: 2071_CR35 publication-title: Lancet doi: 10.1016/S0140-6736(99)04379-2 – volume: 12 start-page: 2150013 issue: 02 year: 2021 ident: 2071_CR1 publication-title: Int J Model Sim Sci Comput doi: 10.1142/S1793962321500136 – volume: 11 start-page: 610 year: 2023 ident: 2071_CR5 publication-title: Front Environ Sci doi: 10.3389/fenvs.2023.1171701 – volume: 123 start-page: 320 year: 2019 ident: 2071_CR8 publication-title: Chaos Solit Fract doi: 10.1016/j.chaos.2019.04.020 – ident: 2071_CR14 doi: 10.1007/978-1-4613-0065-6 – volume: 22 start-page: 176 issue: 4 year: 2022 ident: 2071_CR25 publication-title: Adv Syst Sci Appl – volume: 166 start-page: 112990 year: 2023 ident: 2071_CR10 publication-title: Chaos Soliton Fract doi: 10.1016/j.chaos.2022.112990 – volume: 75 start-page: 81 year: 2023 ident: 2071_CR33 publication-title: Alex Eng J doi: 10.1016/j.aej.2023.05.071 – volume: 47 start-page: 103065 year: 2023 ident: 2071_CR3 publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2023.103065 – volume: 51 start-page: 06629 year: 2023 ident: 2071_CR36 publication-title: Results Phys doi: 10.1016/j.rinp.2023.106629 – volume: 20 start-page: 763 issue: 2 year: 2016 ident: 2071_CR7 publication-title: Therm Sci doi: 10.2298/TSCI160111018A – volume: 7 start-page: 275 issue: 2 year: 2018 ident: 2071_CR17 publication-title: Fam Med Prim Care Rev doi: 10.4103/jfmpc.jfmpc_137_18 – volume: 180 start-page: 29 year: 2002 ident: 2071_CR20 publication-title: Math Biosci doi: 10.1016/S0025-5564(02)00108-6 – volume: 2014 start-page: 1 year: 2014 ident: 2071_CR9 publication-title: Abstr Appl Anal doi: 10.1155/2014/838396 – volume: 17 start-page: 125 year: 2019 ident: 2071_CR42 publication-title: J Adv Res doi: 10.1016/j.jare.2019.01.007 – volume: 136 start-page: 1 year: 2021 ident: 2071_CR28 publication-title: Eur Phys J Plus doi: 10.1140/epjp/s13360-021-01159-8 – volume: 354 start-page: 1257 issue: 9186 year: 1999 ident: 2071_CR19 publication-title: Lancet doi: 10.1016/S0140-6736(99)04299-3 – volume: 13 start-page: 1031 issue: 7 year: 2007 ident: 2071_CR26 publication-title: EID – volume: 8 start-page: 29604 issue: 12 year: 2023 ident: 2071_CR13 publication-title: AIMS Math doi: 10.3934/math.20231516 – ident: 2071_CR37 doi: 10.1142/S0218348X24400139 – volume: 101 start-page: 193 year: 2024 ident: 2071_CR4 publication-title: Alex Eng J doi: 10.1016/j.aej.2024.05.055 – volume: 2 start-page: 82 issue: 9 year: 2019 ident: 2071_CR40 publication-title: Acta Sci Microbiol – volume: 43 start-page: 238 issue: 4 year: 2024 ident: 2071_CR48 publication-title: Comput Appl Math doi: 10.1007/s40314-024-02728-0 – volume: 59 start-page: 1758 issue: 1754 year: 2010 ident: 2071_CR18 publication-title: Comput Math Appl – volume: 13 start-page: 13 issue: 2 year: 2018 ident: 2071_CR44 publication-title: Appl Appl Math: Int J (AAM) |
| SSID | ssj0001626699 |
| Score | 2.3123684 |
| Snippet | A zoonotic virus called the Nipah virus (NV) can create deadly illness epidemics in humans. The animal host repository for NV is the fruit bat, sometimes... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5427 |
| SubjectTerms | Bifurcations Chemistry and Earth Sciences Computer Science Differential equations Earth and Environmental Science Earth Sciences Earth System Sciences Ecosystems Environment Fractal analysis Fractal geometry Fractals Fractional calculus Henipavirus Illustrations Infectious diseases Math. Appl. in Environmental Science Mathematical analysis Mathematical Applications in the Physical Sciences Mathematical models Modelling Nipah virus Numerical models Operators (mathematics) Original Article Parameter identification Parameter sensitivity Physics Polynomials Sensitivity analysis Stability analysis Statistics for Engineering Viruses Zoonoses |
| Title | Exploring the dynamical bifurcation and stability analysis of Nipah virus; novel perspectives utilizing fractional calculus |
| URI | https://link.springer.com/article/10.1007/s40808-024-02071-7 https://www.proquest.com/docview/3092502669 |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2363-6211 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001626699 issn: 2363-6203 databaseCode: AFBBN dateStart: 20150509 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2363-6211 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0001626699 issn: 2363-6203 databaseCode: BENPR dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50RfAiPnF9kYM3DfaRNi0iouIDwUVEwVtJ0gQXlu66L1j9807SdouCHnoobeaQmWS-TGbmAziSPA8DozQNNeOUpSqhiTII5PzEi7SMhFG2GvmxE9-_soe36G0BOnUtjE2rrPdEt1HnfWVj5Kehl6K3RneSXgw-qGWNsrerNYWGqKgV8nPXYmwRlgLbGasFS1c3nafnJuoSWwmpY5yLQxoHXlhV0rh6Oob4KaHotvBB30v5T2_VQNBft6bOGd2uwWqFIsllqfZ1WNDFBizfOZbe2SZ8zTPrCOI7kpes8zhAds1kWAbpiChygtDQJcfO8K1sTkL6hnS6A_FOpt3hZHRGiv5U98igqckcEbTVXvfTSjfDsi4CRaN4G0kcbcHr7c3L9T2tWBaowuU3pmGeRtzXQmtPI_aLAxEHJgkMKpcb4WuNRwqeconfmfYFHtcMTo0vYxMK5nMZbkOr6Bd6B4ivJJ7gcOJTyVgey0RbdBfkLJVKcU-1wa9nM1NVC3LLhNHL5s2TnQYy1EDmNJDxNhzPxwzKBhz__r1fKymrFuMoa0ynDSe14prPf0vb_V_aHqwEzlZsOuA-tMbDiT5AiDKWh5XdfQPkpOP6 |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTQhe0PgSZQP8AE9gETtunAhNaIONjm0VQpu0t8x2bFGpSrumHSr8b_xtOztJI5DY2x7yECU-Jb6z73fn-wB4rWURc2csja2QVGQmpalxCORYGvWt7itnfDbyyTAZnImv5_3zNfjT5sL4sMp2TwwbdTEx3kf-Po4y1NaoTrKP00vqu0b509W2hYZqWisUO6HEWJPYcWSXP9GEq3YOPyO_33B-sH_6aUCbLgPUoPjNaVxkfcmssjayiH0SrhLuUu7w56RTzFqE1DKTGp8LyxSaKw7VMtOJi5VgUsdI9w5siFhkaPxt7O0Pv33vvDyJ_-IsdLhLYprwKG4yd0L-nkC8llJUk3ghUSr_1o4d5P3nlDYov4NNeNCgVrJbi9lDWLPlI7j7JXQFXj6G36tIPoJ4khR1l3scoEduMaudgkSVBUEoGoJxl3hXF0MhE0eGo6n6Qa5Gs0X1gZSTKzsm0y4HtCK4NsajX566m9V5GEgayXvPZfUEzm5lvp_Cejkp7TMgzGi0GBluulqIItGp9WiSFyLTxsjI9IC1s5mbpuS577wxzlfFmgMHcuRAHjiQyx68XY2Z1gU_bnx7u2VS3iz-Ku9EtQfvWsZ1j_9P7fnN1F7BvcHpyXF-fDg82oL7PMiND0XchvX5bGFfIDya65eNDBK4uG2xvwajUyGJ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+dynamical+bifurcation+and+stability+analysis+of+Nipah+virus%3B+novel+perspectives+utilizing+fractional+calculus&rft.jtitle=Modeling+earth+systems+and+environment&rft.au=Ramzan%2C+Sehrish&rft.au=Rashid%2C+Saima&rft.au=Shah%2C+Muzamil+Abbas&rft.au=Elagan%2C+Sayed+K&rft.date=2024-08-01&rft.pub=Springer+Nature+B.V&rft.issn=2363-6203&rft.eissn=2363-6211&rft.volume=10&rft.issue=4&rft.spage=5427&rft.epage=5448&rft_id=info:doi/10.1007%2Fs40808-024-02071-7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2363-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2363-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2363-6203&client=summon |