Hybridization of soft-computing algorithms with neural network for prediction obstructive sleep apnea using biomedical sensor measurements

Sleep apnea (SA) is a common respiratory disorder, especially among obese people. It is caused by either the relaxation of the upper respiratory tract muscles or the failure of the neural signal to reach the muscles responsible for breathing, both of which interrupt the patient’s sleep–wake cycles....

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 34; no. 11; pp. 8933 - 8957
Main Authors Chyad, Mustafa Habeeb, Gharghan, Sadik Kamel, Hamood, Haider Qasim, Altayyar, Ahmed Saleh Hameed, Zubaidi, Salah L., Ridha, Hussein Mohammed
Format Journal Article
LanguageEnglish
Published London Springer London 01.06.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-022-06919-w

Cover

Abstract Sleep apnea (SA) is a common respiratory disorder, especially among obese people. It is caused by either the relaxation of the upper respiratory tract muscles or the failure of the neural signal to reach the muscles responsible for breathing, both of which interrupt the patient’s sleep–wake cycles. The traditional method for diagnosing this disorder, based on polysomnography, is complicated, vexing, expensive, time-consuming, and requires both sleep centers and specialized staff capable of connecting electrodes to the patient’s body. This paper proposes an SA prediction system based on merging five soft computing algorithms, specifically, combining the multi-verse optimizer (MVO) with an artificial neural network (ANN) to leverage measurements from heart rate, SpO 2 , and chest movement sensors. The most substantial novelty of this research is the hybridization of MVO and ANN (MVO-ANN), which improves the ANN performance by selecting the best learning rate and number of neurons in hidden ANN layers. This enables highly accurate prediction of sleep apnea events. This work’s experimental results reveal that the MVO-ANN performs better than other algorithms, with mean absolute errors of 0.042, 0.202, and 0.166 for training, testing, and validation of the ANN. In addition, the SA prediction system achieved an accuracy of 98.67%, a sensitivity of 96.71%, and a specificity of 99.24%. These results provide good evidence that the proposed method can reliably predict respiratory events in people suffering from SA.
AbstractList Sleep apnea (SA) is a common respiratory disorder, especially among obese people. It is caused by either the relaxation of the upper respiratory tract muscles or the failure of the neural signal to reach the muscles responsible for breathing, both of which interrupt the patient’s sleep–wake cycles. The traditional method for diagnosing this disorder, based on polysomnography, is complicated, vexing, expensive, time-consuming, and requires both sleep centers and specialized staff capable of connecting electrodes to the patient’s body. This paper proposes an SA prediction system based on merging five soft computing algorithms, specifically, combining the multi-verse optimizer (MVO) with an artificial neural network (ANN) to leverage measurements from heart rate, SpO 2 , and chest movement sensors. The most substantial novelty of this research is the hybridization of MVO and ANN (MVO-ANN), which improves the ANN performance by selecting the best learning rate and number of neurons in hidden ANN layers. This enables highly accurate prediction of sleep apnea events. This work’s experimental results reveal that the MVO-ANN performs better than other algorithms, with mean absolute errors of 0.042, 0.202, and 0.166 for training, testing, and validation of the ANN. In addition, the SA prediction system achieved an accuracy of 98.67%, a sensitivity of 96.71%, and a specificity of 99.24%. These results provide good evidence that the proposed method can reliably predict respiratory events in people suffering from SA.
Sleep apnea (SA) is a common respiratory disorder, especially among obese people. It is caused by either the relaxation of the upper respiratory tract muscles or the failure of the neural signal to reach the muscles responsible for breathing, both of which interrupt the patient’s sleep–wake cycles. The traditional method for diagnosing this disorder, based on polysomnography, is complicated, vexing, expensive, time-consuming, and requires both sleep centers and specialized staff capable of connecting electrodes to the patient’s body. This paper proposes an SA prediction system based on merging five soft computing algorithms, specifically, combining the multi-verse optimizer (MVO) with an artificial neural network (ANN) to leverage measurements from heart rate, SpO2, and chest movement sensors. The most substantial novelty of this research is the hybridization of MVO and ANN (MVO-ANN), which improves the ANN performance by selecting the best learning rate and number of neurons in hidden ANN layers. This enables highly accurate prediction of sleep apnea events. This work’s experimental results reveal that the MVO-ANN performs better than other algorithms, with mean absolute errors of 0.042, 0.202, and 0.166 for training, testing, and validation of the ANN. In addition, the SA prediction system achieved an accuracy of 98.67%, a sensitivity of 96.71%, and a specificity of 99.24%. These results provide good evidence that the proposed method can reliably predict respiratory events in people suffering from SA.
Author Chyad, Mustafa Habeeb
Gharghan, Sadik Kamel
Zubaidi, Salah L.
Ridha, Hussein Mohammed
Hamood, Haider Qasim
Altayyar, Ahmed Saleh Hameed
Author_xml – sequence: 1
  givenname: Mustafa Habeeb
  surname: Chyad
  fullname: Chyad, Mustafa Habeeb
  organization: Middle Technical University, Electrical Engineering Technical College, College of Medicine, University of Al-Ameed
– sequence: 2
  givenname: Sadik Kamel
  orcidid: 0000-0002-9071-1775
  surname: Gharghan
  fullname: Gharghan, Sadik Kamel
  email: sadik.gharghan@mtu.edu.iq
  organization: Middle Technical University, Electrical Engineering Technical College
– sequence: 3
  givenname: Haider Qasim
  surname: Hamood
  fullname: Hamood, Haider Qasim
  organization: College of Medicine, Al-Nahrain University
– sequence: 4
  givenname: Ahmed Saleh Hameed
  surname: Altayyar
  fullname: Altayyar, Ahmed Saleh Hameed
  organization: Karbala Health Department, Imam Husain Medical City
– sequence: 5
  givenname: Salah L.
  surname: Zubaidi
  fullname: Zubaidi, Salah L.
  organization: Department of Civil Engineering, Wasit University
– sequence: 6
  givenname: Hussein Mohammed
  surname: Ridha
  fullname: Ridha, Hussein Mohammed
  organization: Department of Electrical and Electronics Engineering, Faculty of Engineering, Universiti Putra Malaysia
BookMark eNp9kMFu1DAQhi1UJLalL8DJEufAOHa88RFVQJEqcYGz5TjjrUtiB9thVR6Bp663qVSJQ0-_Jf_fzOg7J2chBiTkHYMPDGD_MQN0LWugbRuQiqnm-IrsmOC84dD1Z2QHStRvKfgbcp7zHQAI2Xc78u_6fkh-9H9N8THQ6GiOrjQ2zstafDhQMx1i8uV2zvRYgwZck5lqlGNMv6iLiS4JR283fsglrfX9B2meEBdqloCGrvk0a_BxPlUrnzHkis5o8ppwxlDyW_LamSnj5VNekJ9fPv-4um5uvn_9dvXpprGcqdLwUTomXW_7wVgrHBvHvWmhc9AxQCeNMp3gQgxKSIUCTef2bFRoW6O6wQG_IO-3uUuKv1fMRd_FNYW6UrdSipYJxVVttVvLpphzQqeX5GeT7jUDfXKuN-e6OtePzvWxQv1_kPXl0WxJxk8vo3xDc90TDpier3qBegCSGZ4f
CitedBy_id crossref_primary_10_1109_TIM_2023_3279880
crossref_primary_10_1061__ASCE_WR_1943_5452_0001602
crossref_primary_10_3390_s23146479
crossref_primary_10_1049_tje2_12226
crossref_primary_10_1080_23311916_2022_2150121
crossref_primary_10_7717_peerj_cs_1554
crossref_primary_10_1002_widm_1478
crossref_primary_10_3390_diagnostics14222505
Cites_doi 10.1007/978-3-319-70742-6_15
10.18178/ijmerr.9.3.408-414
10.1007/s00521-016-2510-6
10.1007/s00607-018-0624-7
10.1109/MWSCAS48704.2020.9184554
10.1109/EMBC.2019.8856877
10.1109/ITAIC.2019.8785833
10.1016/j.eswa.2020.114230
10.1016/j.asoc.2018.03.013
10.1038/s41366-020-0549-z
10.1016/j.cmpb.2019.105001
10.1007/s11517-017-1706-y
10.1007/978-981-15-0591-1_13
10.1016/j.future.2019.01.049
10.1155/2021/2998202
10.1007/s13665-019-0221-z
10.1007/s12020-020-02369-3
10.1007/s00521-015-1870-7
10.1109/ACCESS.2020.2969227
10.4304/jcm.2.2.1-9
10.1260/0263-0923.33.4.429
10.1007/s10877-015-9664-0
10.1109/EMBC.2015.7319404
10.1007/s12046-013-0140-6
10.1016/j.eswa.2013.08.062
10.1088/1757-899X/745/1/012102
10.1155/2011/427028
10.1155/2019/9768072
10.1016/j.measurement.2020.108276
10.1007/s42452-020-2575-9
10.1145/3232651.3232660
10.1016/j.smrv.2007.03.006
10.5664/jcsm.7538
10.1007/s11517-010-0674-2
10.1109/JBHI.2018.2823265
10.1109/TBME.2010.2056924
10.1186/s12890-015-0017-z
10.1016/j.energy.2017.11.014
10.1109/LISAT.2015.7160186
10.1007/s10916-018-1146-8
10.1109/ACCESS.2020.3016832
10.1109/EMBC44109.2020.9176433
10.1109/IECBES.2014.7047603
10.1016/j.applthermaleng.2019.114817
10.1007/978-3-030-18715-6_36
10.3390/sym10100525
10.5114/aoms.2016.61499
10.1016/j.jsmc.2020.02.009
10.1007/s10916-015-0222-6
10.1111/1753-0407.13017
10.1016/j.jksues.2020.09.011
10.1007/978-3-319-70139-4_83
10.1093/sleep/26.7.907
10.1109/JBHI.2020.2967872
10.1109/TBME.2011.2167971
10.3390/w12102692
10.1016/j.future.2018.12.001
10.3390/w12071885
10.1260/0263-0923.31.3.205
10.1109/EMBC.2015.7320174
10.1016/j.mehy.2019.03.026
10.1016/j.obmed.2020.100185
10.1109/JSEN.2015.2483745
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-022-06919-w
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
ProQuest Technology Collection (LUT)
ProQuest One
ProQuest Central
SciTech Premium Collection (Proquest)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 8957
ExternalDocumentID 10_1007_s00521_022_06919_w
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-3d6f16f8c8bacc4f1dd7a205f0510ef6a9a54344b9469e4ea5f71d9ec2a95bf03
IEDL.DBID BENPR
ISSN 0941-0643
IngestDate Fri Jul 25 02:31:28 EDT 2025
Thu Apr 24 23:03:13 EDT 2025
Wed Oct 01 02:26:11 EDT 2025
Fri Feb 21 02:47:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Heart rate
Sleep apnea
SpO
Artificial neural network
Soft computing algorithm
Prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-3d6f16f8c8bacc4f1dd7a205f0510ef6a9a54344b9469e4ea5f71d9ec2a95bf03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9071-1775
PQID 2664214939
PQPubID 2043988
PageCount 25
ParticipantIDs proquest_journals_2664214939
crossref_primary_10_1007_s00521_022_06919_w
crossref_citationtrail_10_1007_s00521_022_06919_w
springer_journals_10_1007_s00521_022_06919_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220600
2022-06-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 6
  year: 2022
  text: 20220600
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2022
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Liang X, Qiao X, Li Y (2019) Obstructive sleep apnea detection using combination of CNN and LSTM techniques. In: 8th Joint international information technology and artificial intelligence conference (ITAIC), Chongqing, China, 24–26. IEEE, pp 1733–1736
AlvarezDHorneroRMarcosJVdel CampoFMultivariate analysis of blood oxygen saturation recordings in obstructive sleep apnea diagnosisIEEE Trans Biomed Eng201057122816282410.1109/TBME.2010.2056924
NigroCADiburERhodiusEPulse oximetry for the detection of obstructive sleep apnea syndrome: can the memory capacity of oxygen saturation influence their diagnostic accuracy?Sleep Disorders2011201110.1155/2011/427028
SankarABSelviJAVKumarDLakshmiKSEffective enhancement of classification of respiratory states using feed forward back propagation neural networksSadhana201338337739510.1007/s12046-013-0140-6
AlmendrosIMartinez-GarciaMAFarréRGozalDObesity, sleep apnea, and cancerInt J Obes2020441653166710.1038/s41366-020-0549-z
MirjaliliSMirjaliliSMHatamlouAMulti-verse optimizer: a nature-inspired algorithm for global optimizationNeural Comput Appl201627249551310.1007/s00521-015-1870-7
WangTLuCShenGDetection of sleep apnea from single-lead ECG signal using a time window artificial neural networkBiomed Res Int201910.1155/2019/9768072
BadrMSJavaheriSCentral sleep apnea: a brief reviewCurr Pulmonol Rep201981142110.1007/s13665-019-0221-z
HenríquezPARuzGAA non-iterative method for pruning hidden neurons in neural networks with random weightsAppl Soft Comput2018701109112110.1016/j.asoc.2018.03.013
LinSHBransonCParkLLeungJDoshiNAuerbachSHOximetry as an accurate tool for identifying moderate to severe sleep apnea in patients with acute strokeJ Clin Sleep Med201814122065207310.5664/jcsm.7538
Yao X, Li M, Yao L, Shao L (2020) Obstructive sleep apnea and hypertension. In: Secondary hypertension. Springer, pp 461–488
GharghanSKNordinRIsmailMAliJAAccurate wireless sensor localization technique based on hybrid PSO-ANN algorithm for indoor and outdoor track cyclingIEEE Sens J201516252954110.1109/JSEN.2015.2483745
VimalaVRamarKEttappanMAn intelligent sleep apnea classification system based on EEG signalsJ Med Syst20194323610.1007/s10916-018-1146-8
ToftenSKjellstadliJTTyvoldSSMoxnessMHSA pilot study of detecting individual sleep apnea events using noncontact radar technology, pulse oximetry, and machine learningJ Sens20212021299820210.1155/2021/2998202
FathyARezkHMulti-verse optimizer for identifying the optimal parameters of PEMFC modelEnergy201814363464410.1016/j.energy.2017.11.014
ShukriSEAl-SayyedRHudaibAMirjaliliSEnhanced multi-verse optimizer for task scheduling in cloud computing environmentsExpert Syst Appl202116810.1016/j.eswa.2020.114230
MarcosJVHorneroRAlvarezDAboyMDel CampoFAutomated prediction of the apnea-hypopnea index from nocturnal oximetry recordingsIEEE Trans Biomed Eng201159114114910.1109/TBME.2011.2167971
ZubaidiSLAbdulkareemIHHashimKSAl-BugharbeeHRidhaHMGharghanSKAl-QaimFFMuradovMKotPAl-KhaddarRHybridised artificial neural network model with slime mould algorithm: a novel methodology for prediction of urban stochastic water demandWater20201210269210.3390/w12102692
AlemuHZWuWZhaoJFeedforward neural networks with a hidden layer regularization methodSymmetry2018101052510.3390/sym10100525
HaoyuLJianxingLArunkumarNHusseinAFJaberMMAn IoMT cloud-based real time sleep apnea detection scheme by using the SpO2 estimation supported by heart rate variabilityFuture Gener Comput Syst201998697710.1016/j.future.2018.12.001
MunadhilZGharghanSKMutlagAHAl-NajiAChahlJNeural network-based Alzheimer’s patient localization for wireless sensor network in an indoor environmentIEEE Access2020815052715053810.1109/ACCESS.2020.3016832
Ferduła R, Walczak T, Cofta S (2019) The application of artificial neural network in diagnosis of sleep apnea syndrome. In: Advances in manufacturing II. Springer, pp 432–443
YadollahiAGiannouliEMoussaviZSleep apnea monitoring and diagnosis based on pulse oximetery and tracheal sound signalsMed Biol Eng Comput201048111087109710.1007/s11517-010-0674-2
ErdenebayarUKimYJParkJ-UJooEYLeeK-JDeep learning approaches for automatic detection of sleep apnea events from an electrocardiogramComput Methods Programs Biomed201918010.1016/j.cmpb.2019.105001
KapanovaKGDimovISellierJMA genetic approach to automatic neural network architecture optimizationNeural Comput Appl20182951481149210.1007/s00521-016-2510-6
QieRZhangDLiuLRenYZhaoYLiuDLiuFChenXChengCGuoCObstructive sleep apnea and risk of type 2 diabetes mellitus: a systematic review and dose-response meta-analysis of cohort studiesJ Diabetes202012645546410.1111/1753-0407.13017
De FalcoIDe PietroGDella CioppaASanninoGScafuriUTarantinoEEvolution-based configuration optimization of a deep neural network for the classification of obstructive sleep apnea episodesFuture Gener Comput Syst20199837739110.1016/j.future.2019.01.049
Gutiérrez-Tobal GC, Kheirandish-Gozal L, Álvarez D, Crespo A, Philby MF, Mohammadi M, del Campo F, Gozal D, Hornero R (2015) Analysis and classification of oximetry recordings to predict obstructive sleep apnea severity in children. In: 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC), Milan, Italy, 25–29. IEEE, pp 4540–4543
ChenLZhangXWangHAn obstructive sleep apnea detection approach using kernel density classification based on single-lead electrocardiogramJ Med Syst20153954710.1007/s10916-015-0222-6
MahdiSQGharghanSKHasanMAFPGA-Based neural network for accurate distance estimation of elderly falls using WSN in an indoor environmentMeasurement202116710827610.1016/j.measurement.2020.108276
GohariMRahmanRTahmasebiMNejatPOff-road vehicle seat suspension optimisation, part I: derivation of an artificial neural network model to predict seated human spine acceleration in vertical vibrationJ Low Freq Noise Vib Act Control201433442944110.1260/0263-0923.33.4.429
Haidar R, Koprinska I, Jeffries B (2017) Sleep apnea event detection from nasal airflow using convolutional neural networks. In: International conference on neural information processing, Guangzhou, China, 14–18. Springer, pp 819–827
DongZXuXWangCCartledgeSMaddisonRIslamSMSAssociation of overweight and obesity with obstructive sleep apnoea: a systematic review and meta-analysisObes Med20201710018510.1016/j.obmed.2020.100185
ZubaidiSLHashimKEthaibSAl-BdairiNSSAl-BugharbeeHGharghanSKA novel methodology to predict monthly municipal water demand based on weather variables scenarioJ King Saud Univ-Eng Sci202010.1016/j.jksues.2020.09.011
TabrizchiHTabrizchiMTabrizchiHBreast cancer diagnosis using a multi-verse optimizer-based gradient boosting decision treeSN Appl Sci20202475210.1007/s42452-020-2575-9
HafeziMMontazeriNSahaSZhuKGavrilovicBYadollahiATaatiBSleep apnea severity estimation from tracheal movements using a deep learning modelIEEE Access20208226412264910.1109/ACCESS.2020.2969227
MotaharSJahangiriMTransient heat transfer analysis of a phase change material heat sink using experimental data and artificial neural networkAppl Therm Eng202016711481710.1016/j.applthermaleng.2019.114817
Kopaczka M, Oezkan O, Merhof D (2017) Face tracking and respiratory signal analysis for the detection of sleep apnea in thermal infrared videos with head movement. In: International conference on image analysis and processing, Catania-Italy, 11–15. Springer, pp 163–170
McNabAAThe eye and sleep apneaSleep Med Rev200711426927610.1016/j.smrv.2007.03.006
OliverNFlores-MangasFHealthgear: Automatic sleep apnea detection and monitoring with a mobile phoneJ Commun2007221910.4304/jcm.2.2.1-9
MendonçaFMostafaSSMorgado-DiasFNavarro-MesaJLJuliá-SerdáGRavelo-GarcíaAGA portable wireless device based on oximetry for sleep apnea detectionComputing2018100111203121910.1007/s00607-018-0624-7
HangL-WWangH-LChenJ-HHsuJ-CLinH-HChungW-SChenY-FValidation of overnight oximetry to diagnose patients with moderate to severe obstructive sleep apneaBMC Pulm Med20151512410.1186/s12890-015-0017-z
ZhouJWuX-mZengW-jAutomatic detection of sleep apnea based on EEG detrended fluctuation analysis and support vector machineJ Clin Monit Comput201529676777210.1007/s10877-015-9664-0
GohariMRahmanRARajaRITahmasebiMA novel artificial neural network biodynamic model for prediction seated human body head acceleration in vertical directionJ Low Freq Noise Vib Act Control201231320521610.1260/0263-0923.31.3.205
Collen J, Lettieri C, Wickwire E, Holley A (2020) Obstructive sleep apnea and cardiovascular disease, a story of confounders! Sleep Breath 1–15
Almuhammadi WS, Aboalayon KA, Faezipour M (2015) Efficient obstructive sleep apnea classification based on EEG signals. In: Long Island systems, applications and technology, Farmingdale, NY, USA, 1–1. IEEE, pp 1–6
Van SteenkisteTGroenendaalWDreesenPLeeSKlerkxSDe FranciscoRDeschrijverDDhaeneTPortable detection of apnea and hypopnea events using bio-impedance of the chest and deep learningIEEE J Biomed Health Inform20202492589259810.1109/JBHI.2020.2967872
MendoncaFMostafaSSRavelo-GarcíaAGMorgado-DiasFPenzelTA review of obstructive sleep apnea detection approachesIEEE J Biomed Health Inform201823282583710.1109/JBHI.2018.2823265
Hassan O, Parvin D, Kamrul S (2020) Machine learning model based digital hardware system design for detection of sleep apnea among neonatal infants. In: 63rd international midwest symposium on circuits and systems (MWSCAS), Springfield, MA, USA, 9–12. IEEE, pp 607–610
ChessonALJrBerryRBPackAPractice parameters for the use of portable monitoring devices in the investigation of suspected obstructive sleep apnea in adultsSleep200326790791310.1093/sleep/26.7.907
TuncerSAAkılotuBToramanSA deep learning-based decision support system for diagnosis of OSAS using PTT signalsMed Hypotheses2019127152210.1016/j.mehy.2019.03.026
ChyadMHGharghanSKHamoodHQA survey on detection and prediction methods for sleep apneaIOP Conf Ser: Mater Sci Eng2020101210210.1088/1757-899X/745/1/012102
Malaekah E, Patti CR, Cvetkovic D (2014) Automatic sleep-wake detection using electrooculogram signals. I
6919_CR41
6919_CR47
M Gohari (6919_CR50) 2012; 31
6919_CR46
V Vimala (6919_CR37) 2019; 43
SK Gharghan (6919_CR32) 2015; 16
R Qie (6919_CR9) 2020; 12
SL Zubaidi (6919_CR48) 2020; 12
KG Kapanova (6919_CR56) 2018; 29
MS Badr (6919_CR6) 2019; 8
U Erdenebayar (6919_CR33) 2019; 180
T Wang (6919_CR38) 2019
6919_CR2
6919_CR1
6919_CR11
MH Chyad (6919_CR5) 2020; 1
S Motahar (6919_CR53) 2020; 167
L-W Hang (6919_CR19) 2015; 15
6919_CR16
I Almendros (6919_CR13) 2020; 44
A Yadollahi (6919_CR26) 2010; 48
CA Nigro (6919_CR45) 2011; 2011
AB Sankar (6919_CR36) 2013; 38
F Mendonça (6919_CR15) 2018; 100
D Sánchez-Morillo (6919_CR21) 2014; 41
H Tabrizchi (6919_CR62) 2020; 2
6919_CR8
6919_CR7
T Van Steenkiste (6919_CR39) 2020; 24
AA McNab (6919_CR14) 2007; 11
N Oliver (6919_CR23) 2007; 2
Z Munadhil (6919_CR49) 2020; 8
6919_CR20
C Kalkbrenner (6919_CR25) 2018; 56
6919_CR29
M Gohari (6919_CR51) 2014; 33
J Zhou (6919_CR12) 2015; 29
6919_CR28
I De Falco (6919_CR3) 2019; 98
S Mirjalili (6919_CR59) 2016; 27
JV Marcos (6919_CR22) 2011; 59
Z Dong (6919_CR4) 2020; 17
A Fathy (6919_CR60) 2018; 143
L Chen (6919_CR27) 2015; 39
ZH Ang (6919_CR54) 2020; 9
HZ Alemu (6919_CR57) 2018; 10
SA Tuncer (6919_CR63) 2019; 127
SQ Mahdi (6919_CR55) 2021; 167
SL Zubaidi (6919_CR58) 2020
PA Henríquez (6919_CR52) 2018; 70
SE Shukri (6919_CR61) 2021; 168
6919_CR30
S Toften (6919_CR42) 2021; 2021
6919_CR31
M Hafezi (6919_CR34) 2020; 8
6919_CR35
F Mendonca (6919_CR17) 2018; 23
M Ruchała (6919_CR10) 2017; 13
AL Chesson Jr (6919_CR24) 2003; 26
L Haoyu (6919_CR18) 2019; 98
D Alvarez (6919_CR43) 2010; 57
6919_CR40
SH Lin (6919_CR44) 2018; 14
References_xml – reference: DongZXuXWangCCartledgeSMaddisonRIslamSMSAssociation of overweight and obesity with obstructive sleep apnoea: a systematic review and meta-analysisObes Med20201710018510.1016/j.obmed.2020.100185
– reference: Kamble PG, Theorell-Haglöw J, Wiklund U, Franklin KA, Hammar U, Lindberg E, Eriksson JW (2020) Sleep apnea in men is associated with altered lipid metabolism, glucose tolerance, insulin sensitivity, and body fat percentage. Endocrine 1–10
– reference: Collen J, Lettieri C, Wickwire E, Holley A (2020) Obstructive sleep apnea and cardiovascular disease, a story of confounders! Sleep Breath 1–15
– reference: Hung PD (2018) Central sleep apnea detection using an accelerometer. In: International conference on control and computer vision, Singapore, Singapore 15–18. ACM, pp 106–111
– reference: ErdenebayarUKimYJParkJ-UJooEYLeeK-JDeep learning approaches for automatic detection of sleep apnea events from an electrocardiogramComput Methods Programs Biomed201918010.1016/j.cmpb.2019.105001
– reference: HafeziMMontazeriNSahaSZhuKGavrilovicBYadollahiATaatiBSleep apnea severity estimation from tracheal movements using a deep learning modelIEEE Access20208226412264910.1109/ACCESS.2020.2969227
– reference: TabrizchiHTabrizchiMTabrizchiHBreast cancer diagnosis using a multi-verse optimizer-based gradient boosting decision treeSN Appl Sci20202475210.1007/s42452-020-2575-9
– reference: RuchałaMBromińskaBCyrańska-ChyrekEKuźnar-KamińskaBKostrzewskaMBatura-GabryelHObstructive sleep apnea and hormones–a novel insightArch Med Sci201713487510.5114/aoms.2016.61499
– reference: ChyadMHGharghanSKHamoodHQA survey on detection and prediction methods for sleep apneaIOP Conf Ser: Mater Sci Eng2020101210210.1088/1757-899X/745/1/012102
– reference: De FalcoIDe PietroGDella CioppaASanninoGScafuriUTarantinoEEvolution-based configuration optimization of a deep neural network for the classification of obstructive sleep apnea episodesFuture Gener Comput Syst20199837739110.1016/j.future.2019.01.049
– reference: FathyARezkHMulti-verse optimizer for identifying the optimal parameters of PEMFC modelEnergy201814363464410.1016/j.energy.2017.11.014
– reference: AlemuHZWuWZhaoJFeedforward neural networks with a hidden layer regularization methodSymmetry2018101052510.3390/sym10100525
– reference: NigroCADiburERhodiusEPulse oximetry for the detection of obstructive sleep apnea syndrome: can the memory capacity of oxygen saturation influence their diagnostic accuracy?Sleep Disorders2011201110.1155/2011/427028
– reference: LinSHBransonCParkLLeungJDoshiNAuerbachSHOximetry as an accurate tool for identifying moderate to severe sleep apnea in patients with acute strokeJ Clin Sleep Med201814122065207310.5664/jcsm.7538
– reference: McNabAAThe eye and sleep apneaSleep Med Rev200711426927610.1016/j.smrv.2007.03.006
– reference: MendonçaFMostafaSSMorgado-DiasFNavarro-MesaJLJuliá-SerdáGRavelo-GarcíaAGA portable wireless device based on oximetry for sleep apnea detectionComputing2018100111203121910.1007/s00607-018-0624-7
– reference: Malaekah E, Patti CR, Cvetkovic D (2014) Automatic sleep-wake detection using electrooculogram signals. In: IEEE conference on biomedical engineering and sciences (IECBES), Kuala Lumpur, Malaysia, 8–10. IEEE, pp 724–728
– reference: WangTLuCShenGDetection of sleep apnea from single-lead ECG signal using a time window artificial neural networkBiomed Res Int201910.1155/2019/9768072
– reference: MarcosJVHorneroRAlvarezDAboyMDel CampoFAutomated prediction of the apnea-hypopnea index from nocturnal oximetry recordingsIEEE Trans Biomed Eng201159114114910.1109/TBME.2011.2167971
– reference: OliverNFlores-MangasFHealthgear: Automatic sleep apnea detection and monitoring with a mobile phoneJ Commun2007221910.4304/jcm.2.2.1-9
– reference: VimalaVRamarKEttappanMAn intelligent sleep apnea classification system based on EEG signalsJ Med Syst20194323610.1007/s10916-018-1146-8
– reference: Zubaidi SL, Ortega-Martorell S, Al-Bugharbee H, Olier I, Hashim KS, Gharghan SK, Kot P, Al-Khaddar R (2020) Urban water demand prediction for a city that suffers from climate change and population growth: Gauteng province case study. Water 12(7):1885
– reference: Yao X, Li M, Yao L, Shao L (2020) Obstructive sleep apnea and hypertension. In: Secondary hypertension. Springer, pp 461–488
– reference: GohariMRahmanRTahmasebiMNejatPOff-road vehicle seat suspension optimisation, part I: derivation of an artificial neural network model to predict seated human spine acceleration in vertical vibrationJ Low Freq Noise Vib Act Control201433442944110.1260/0263-0923.33.4.429
– reference: Ferduła R, Walczak T, Cofta S (2019) The application of artificial neural network in diagnosis of sleep apnea syndrome. In: Advances in manufacturing II. Springer, pp 432–443
– reference: AlmendrosIMartinez-GarciaMAFarréRGozalDObesity, sleep apnea, and cancerInt J Obes2020441653166710.1038/s41366-020-0549-z
– reference: Hassan O, Parvin D, Kamrul S (2020) Machine learning model based digital hardware system design for detection of sleep apnea among neonatal infants. In: 63rd international midwest symposium on circuits and systems (MWSCAS), Springfield, MA, USA, 9–12. IEEE, pp 607–610
– reference: Gutiérrez-Tobal GC, Kheirandish-Gozal L, Álvarez D, Crespo A, Philby MF, Mohammadi M, del Campo F, Gozal D, Hornero R (2015) Analysis and classification of oximetry recordings to predict obstructive sleep apnea severity in children. In: 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC), Milan, Italy, 25–29. IEEE, pp 4540–4543
– reference: GharghanSKNordinRIsmailMAliJAAccurate wireless sensor localization technique based on hybrid PSO-ANN algorithm for indoor and outdoor track cyclingIEEE Sens J201516252954110.1109/JSEN.2015.2483745
– reference: ZhouJWuX-mZengW-jAutomatic detection of sleep apnea based on EEG detrended fluctuation analysis and support vector machineJ Clin Monit Comput201529676777210.1007/s10877-015-9664-0
– reference: KapanovaKGDimovISellierJMA genetic approach to automatic neural network architecture optimizationNeural Comput Appl20182951481149210.1007/s00521-016-2510-6
– reference: Almuhammadi WS, Aboalayon KA, Faezipour M (2015) Efficient obstructive sleep apnea classification based on EEG signals. In: Long Island systems, applications and technology, Farmingdale, NY, USA, 1–1. IEEE, pp 1–6
– reference: HaoyuLJianxingLArunkumarNHusseinAFJaberMMAn IoMT cloud-based real time sleep apnea detection scheme by using the SpO2 estimation supported by heart rate variabilityFuture Gener Comput Syst201998697710.1016/j.future.2018.12.001
– reference: AngZHAngCKLimWHYuLJSolihinMIDevelopment of an artificial intelligent approach in adapting the characteristic of polynomial trajectory planning for robot manipulatorInt J Mech Eng Robot Res20209340841410.18178/ijmerr.9.3.408-414
– reference: Haidar R, Koprinska I, Jeffries B (2017) Sleep apnea event detection from nasal airflow using convolutional neural networks. In: International conference on neural information processing, Guangzhou, China, 14–18. Springer, pp 819–827
– reference: Van SteenkisteTGroenendaalWDreesenPLeeSKlerkxSDe FranciscoRDeschrijverDDhaeneTPortable detection of apnea and hypopnea events using bio-impedance of the chest and deep learningIEEE J Biomed Health Inform20202492589259810.1109/JBHI.2020.2967872
– reference: ZubaidiSLHashimKEthaibSAl-BdairiNSSAl-BugharbeeHGharghanSKA novel methodology to predict monthly municipal water demand based on weather variables scenarioJ King Saud Univ-Eng Sci202010.1016/j.jksues.2020.09.011
– reference: TuncerSAAkılotuBToramanSA deep learning-based decision support system for diagnosis of OSAS using PTT signalsMed Hypotheses2019127152210.1016/j.mehy.2019.03.026
– reference: MotaharSJahangiriMTransient heat transfer analysis of a phase change material heat sink using experimental data and artificial neural networkAppl Therm Eng202016711481710.1016/j.applthermaleng.2019.114817
– reference: MahdiSQGharghanSKHasanMAFPGA-Based neural network for accurate distance estimation of elderly falls using WSN in an indoor environmentMeasurement202116710827610.1016/j.measurement.2020.108276
– reference: ChessonALJrBerryRBPackAPractice parameters for the use of portable monitoring devices in the investigation of suspected obstructive sleep apnea in adultsSleep200326790791310.1093/sleep/26.7.907
– reference: HenríquezPARuzGAA non-iterative method for pruning hidden neurons in neural networks with random weightsAppl Soft Comput2018701109112110.1016/j.asoc.2018.03.013
– reference: MirjaliliSMirjaliliSMHatamlouAMulti-verse optimizer: a nature-inspired algorithm for global optimizationNeural Comput Appl201627249551310.1007/s00521-015-1870-7
– reference: ToftenSKjellstadliJTTyvoldSSMoxnessMHSA pilot study of detecting individual sleep apnea events using noncontact radar technology, pulse oximetry, and machine learningJ Sens20212021299820210.1155/2021/2998202
– reference: HangL-WWangH-LChenJ-HHsuJ-CLinH-HChungW-SChenY-FValidation of overnight oximetry to diagnose patients with moderate to severe obstructive sleep apneaBMC Pulm Med20151512410.1186/s12890-015-0017-z
– reference: ShukriSEAl-SayyedRHudaibAMirjaliliSEnhanced multi-verse optimizer for task scheduling in cloud computing environmentsExpert Syst Appl202116810.1016/j.eswa.2020.114230
– reference: ChenLZhangXWangHAn obstructive sleep apnea detection approach using kernel density classification based on single-lead electrocardiogramJ Med Syst20153954710.1007/s10916-015-0222-6
– reference: AlvarezDHorneroRMarcosJVdel CampoFMultivariate analysis of blood oxygen saturation recordings in obstructive sleep apnea diagnosisIEEE Trans Biomed Eng201057122816282410.1109/TBME.2010.2056924
– reference: Thorey V, Hernandez AB, Arnal PJ (2019) During EH AI vs humans for the diagnosis of sleep apnea. In: 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC), Berlin, Germany, Germany, 23–27. pp 1596–1600. https://doi.org/10.1109/EMBC.2019.8856877
– reference: GohariMRahmanRARajaRITahmasebiMA novel artificial neural network biodynamic model for prediction seated human body head acceleration in vertical directionJ Low Freq Noise Vib Act Control201231320521610.1260/0263-0923.31.3.205
– reference: Kopaczka M, Oezkan O, Merhof D (2017) Face tracking and respiratory signal analysis for the detection of sleep apnea in thermal infrared videos with head movement. In: International conference on image analysis and processing, Catania-Italy, 11–15. Springer, pp 163–170
– reference: Garde A, Dehkordi P, Wensley D, Ansermino JM, Dumont GA (2015) Pulse oximetry recorded from the Phone Oximeter for detection of obstructive sleep apnea events with and without oxygen desaturation in children. In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC), MiCo - Milano Conference Center - Milan, Italy, August 25–29. IEEE, pp 7692–7695
– reference: Mahmud T, Khan IA, Mahmud TI, Fattah SA, Zhu W-P, Ahmad MO (2020) Sleep apnea event detection from sub-frame based feature variation in EEG signal using deep convolutional neural network. In: 42nd Annual international conference of the IEEE engineering in medicine & biology society (EMBC), Montreal, QC, Canada, 20–24. IEEE, pp 5580–5583
– reference: KalkbrennerCEichenlaubMRüdigerSKropf-SanchenCRottbauerWBrucherRApnea and heart rate detection from tracheal body sounds for the diagnosis of sleep-related breathing disordersMed Biol Eng Comput201856467168110.1007/s11517-017-1706-y
– reference: YadollahiAGiannouliEMoussaviZSleep apnea monitoring and diagnosis based on pulse oximetery and tracheal sound signalsMed Biol Eng Comput201048111087109710.1007/s11517-010-0674-2
– reference: BadrMSJavaheriSCentral sleep apnea: a brief reviewCurr Pulmonol Rep201981142110.1007/s13665-019-0221-z
– reference: MunadhilZGharghanSKMutlagAHAl-NajiAChahlJNeural network-based Alzheimer’s patient localization for wireless sensor network in an indoor environmentIEEE Access2020815052715053810.1109/ACCESS.2020.3016832
– reference: Liang X, Qiao X, Li Y (2019) Obstructive sleep apnea detection using combination of CNN and LSTM techniques. In: 8th Joint international information technology and artificial intelligence conference (ITAIC), Chongqing, China, 24–26. IEEE, pp 1733–1736
– reference: MendoncaFMostafaSSRavelo-GarcíaAGMorgado-DiasFPenzelTA review of obstructive sleep apnea detection approachesIEEE J Biomed Health Inform201823282583710.1109/JBHI.2018.2823265
– reference: SankarABSelviJAVKumarDLakshmiKSEffective enhancement of classification of respiratory states using feed forward back propagation neural networksSadhana201338337739510.1007/s12046-013-0140-6
– reference: ZubaidiSLAbdulkareemIHHashimKSAl-BugharbeeHRidhaHMGharghanSKAl-QaimFFMuradovMKotPAl-KhaddarRHybridised artificial neural network model with slime mould algorithm: a novel methodology for prediction of urban stochastic water demandWater20201210269210.3390/w12102692
– reference: QieRZhangDLiuLRenYZhaoYLiuDLiuFChenXChengCGuoCObstructive sleep apnea and risk of type 2 diabetes mellitus: a systematic review and dose-response meta-analysis of cohort studiesJ Diabetes202012645546410.1111/1753-0407.13017
– reference: Sánchez-MorilloDLópez-GordoMLeónANovel multiclass classification for home-based diagnosis of sleep apnea hypopnea syndromeExpert Syst Appl20144141654166210.1016/j.eswa.2013.08.062
– ident: 6919_CR30
  doi: 10.1007/978-3-319-70742-6_15
– volume: 9
  start-page: 408
  issue: 3
  year: 2020
  ident: 6919_CR54
  publication-title: Int J Mech Eng Robot Res
  doi: 10.18178/ijmerr.9.3.408-414
– volume: 29
  start-page: 1481
  issue: 5
  year: 2018
  ident: 6919_CR56
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2510-6
– volume: 100
  start-page: 1203
  issue: 11
  year: 2018
  ident: 6919_CR15
  publication-title: Computing
  doi: 10.1007/s00607-018-0624-7
– ident: 6919_CR40
  doi: 10.1109/MWSCAS48704.2020.9184554
– ident: 6919_CR2
  doi: 10.1109/EMBC.2019.8856877
– ident: 6919_CR41
  doi: 10.1109/ITAIC.2019.8785833
– volume: 168
  year: 2021
  ident: 6919_CR61
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.114230
– volume: 70
  start-page: 1109
  year: 2018
  ident: 6919_CR52
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.03.013
– volume: 44
  start-page: 1653
  year: 2020
  ident: 6919_CR13
  publication-title: Int J Obes
  doi: 10.1038/s41366-020-0549-z
– volume: 180
  year: 2019
  ident: 6919_CR33
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2019.105001
– volume: 56
  start-page: 671
  issue: 4
  year: 2018
  ident: 6919_CR25
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-017-1706-y
– ident: 6919_CR8
  doi: 10.1007/978-981-15-0591-1_13
– volume: 98
  start-page: 377
  year: 2019
  ident: 6919_CR3
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2019.01.049
– volume: 2021
  start-page: 2998202
  year: 2021
  ident: 6919_CR42
  publication-title: J Sens
  doi: 10.1155/2021/2998202
– volume: 8
  start-page: 14
  issue: 1
  year: 2019
  ident: 6919_CR6
  publication-title: Curr Pulmonol Rep
  doi: 10.1007/s13665-019-0221-z
– ident: 6919_CR11
  doi: 10.1007/s12020-020-02369-3
– volume: 27
  start-page: 495
  issue: 2
  year: 2016
  ident: 6919_CR59
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1870-7
– volume: 8
  start-page: 22641
  year: 2020
  ident: 6919_CR34
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2969227
– volume: 2
  start-page: 1
  issue: 2
  year: 2007
  ident: 6919_CR23
  publication-title: J Commun
  doi: 10.4304/jcm.2.2.1-9
– volume: 33
  start-page: 429
  issue: 4
  year: 2014
  ident: 6919_CR51
  publication-title: J Low Freq Noise Vib Act Control
  doi: 10.1260/0263-0923.33.4.429
– volume: 29
  start-page: 767
  issue: 6
  year: 2015
  ident: 6919_CR12
  publication-title: J Clin Monit Comput
  doi: 10.1007/s10877-015-9664-0
– ident: 6919_CR20
  doi: 10.1109/EMBC.2015.7319404
– volume: 38
  start-page: 377
  issue: 3
  year: 2013
  ident: 6919_CR36
  publication-title: Sadhana
  doi: 10.1007/s12046-013-0140-6
– volume: 41
  start-page: 1654
  issue: 4
  year: 2014
  ident: 6919_CR21
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.08.062
– volume: 1
  start-page: 012102
  year: 2020
  ident: 6919_CR5
  publication-title: IOP Conf Ser: Mater Sci Eng
  doi: 10.1088/1757-899X/745/1/012102
– volume: 2011
  year: 2011
  ident: 6919_CR45
  publication-title: Sleep Disorders
  doi: 10.1155/2011/427028
– year: 2019
  ident: 6919_CR38
  publication-title: Biomed Res Int
  doi: 10.1155/2019/9768072
– volume: 167
  start-page: 108276
  year: 2021
  ident: 6919_CR55
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108276
– volume: 2
  start-page: 752
  issue: 4
  year: 2020
  ident: 6919_CR62
  publication-title: SN Appl Sci
  doi: 10.1007/s42452-020-2575-9
– ident: 6919_CR31
  doi: 10.1145/3232651.3232660
– volume: 11
  start-page: 269
  issue: 4
  year: 2007
  ident: 6919_CR14
  publication-title: Sleep Med Rev
  doi: 10.1016/j.smrv.2007.03.006
– volume: 14
  start-page: 2065
  issue: 12
  year: 2018
  ident: 6919_CR44
  publication-title: J Clin Sleep Med
  doi: 10.5664/jcsm.7538
– volume: 48
  start-page: 1087
  issue: 11
  year: 2010
  ident: 6919_CR26
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-010-0674-2
– volume: 23
  start-page: 825
  issue: 2
  year: 2018
  ident: 6919_CR17
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2018.2823265
– volume: 57
  start-page: 2816
  issue: 12
  year: 2010
  ident: 6919_CR43
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2010.2056924
– volume: 15
  start-page: 24
  issue: 1
  year: 2015
  ident: 6919_CR19
  publication-title: BMC Pulm Med
  doi: 10.1186/s12890-015-0017-z
– volume: 143
  start-page: 634
  year: 2018
  ident: 6919_CR60
  publication-title: Energy
  doi: 10.1016/j.energy.2017.11.014
– ident: 6919_CR28
  doi: 10.1109/LISAT.2015.7160186
– volume: 43
  start-page: 36
  issue: 2
  year: 2019
  ident: 6919_CR37
  publication-title: J Med Syst
  doi: 10.1007/s10916-018-1146-8
– volume: 8
  start-page: 150527
  year: 2020
  ident: 6919_CR49
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3016832
– ident: 6919_CR35
  doi: 10.1109/EMBC44109.2020.9176433
– ident: 6919_CR29
  doi: 10.1109/IECBES.2014.7047603
– volume: 167
  start-page: 114817
  year: 2020
  ident: 6919_CR53
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2019.114817
– ident: 6919_CR1
  doi: 10.1007/978-3-030-18715-6_36
– volume: 10
  start-page: 525
  issue: 10
  year: 2018
  ident: 6919_CR57
  publication-title: Symmetry
  doi: 10.3390/sym10100525
– volume: 13
  start-page: 875
  issue: 4
  year: 2017
  ident: 6919_CR10
  publication-title: Arch Med Sci
  doi: 10.5114/aoms.2016.61499
– ident: 6919_CR7
  doi: 10.1016/j.jsmc.2020.02.009
– volume: 39
  start-page: 47
  issue: 5
  year: 2015
  ident: 6919_CR27
  publication-title: J Med Syst
  doi: 10.1007/s10916-015-0222-6
– volume: 12
  start-page: 455
  issue: 6
  year: 2020
  ident: 6919_CR9
  publication-title: J Diabetes
  doi: 10.1111/1753-0407.13017
– year: 2020
  ident: 6919_CR58
  publication-title: J King Saud Univ-Eng Sci
  doi: 10.1016/j.jksues.2020.09.011
– ident: 6919_CR16
  doi: 10.1007/978-3-319-70139-4_83
– volume: 26
  start-page: 907
  issue: 7
  year: 2003
  ident: 6919_CR24
  publication-title: Sleep
  doi: 10.1093/sleep/26.7.907
– volume: 24
  start-page: 2589
  issue: 9
  year: 2020
  ident: 6919_CR39
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2020.2967872
– volume: 59
  start-page: 141
  issue: 1
  year: 2011
  ident: 6919_CR22
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2011.2167971
– volume: 12
  start-page: 2692
  issue: 10
  year: 2020
  ident: 6919_CR48
  publication-title: Water
  doi: 10.3390/w12102692
– volume: 98
  start-page: 69
  year: 2019
  ident: 6919_CR18
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2018.12.001
– ident: 6919_CR47
  doi: 10.3390/w12071885
– volume: 31
  start-page: 205
  issue: 3
  year: 2012
  ident: 6919_CR50
  publication-title: J Low Freq Noise Vib Act Control
  doi: 10.1260/0263-0923.31.3.205
– ident: 6919_CR46
  doi: 10.1109/EMBC.2015.7320174
– volume: 127
  start-page: 15
  year: 2019
  ident: 6919_CR63
  publication-title: Med Hypotheses
  doi: 10.1016/j.mehy.2019.03.026
– volume: 17
  start-page: 100185
  year: 2020
  ident: 6919_CR4
  publication-title: Obes Med
  doi: 10.1016/j.obmed.2020.100185
– volume: 16
  start-page: 529
  issue: 2
  year: 2015
  ident: 6919_CR32
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2015.2483745
SSID ssj0004685
Score 2.3558228
Snippet Sleep apnea (SA) is a common respiratory disorder, especially among obese people. It is caused by either the relaxation of the upper respiratory tract muscles...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8933
SubjectTerms Algorithms
Artificial Intelligence
Artificial neural networks
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Heart rate
Image Processing and Computer Vision
Learning theory
Motion sensors
Muscles
Neural networks
Original Article
Probability and Statistics in Computer Science
Respiratory diseases
Sleep apnea
Soft computing
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELX4WFj4RhQK8sAGlhzHTuqxQlQVEkxU6hbZjl2GNo1IRcVf4FdzTpwWECAxx74hz2ffs-_dIXTFDIdjVFMiOLOEM2OJTCNHIm59xKwZTbx2-OExGY74_ViMgyisarPd2yfJeqdeid38DSZQXyBPNJGRJMtNtC18OS9YxSPW_6SGrBtxAm_xOT08DlKZn218PY7WMea3Z9H6tBnso90QJuJ-g-sB2rDFIdprWzDg4JFH6H345iVXQUyJ5w5XsK8SUw8Ey1hNJ3Pg_8-zCvsrV-zrV4Lhosn-xhCy4vLFP9Y083WoJ_tqcTW1tsSqLKzCPjt-ghupvkcVV8B-YepsfcNYHaPR4O7pdkhCewViwO8WJM4TFyWuZ3paGcNdlOepYlQ476fWJUoqrzvlWgKFttwq4dIol9YwJYV2ND5BW8W8sKcIC6qEUTlzADgXGkgcBHZ5rPM0j01Kkw6K2r-cmVB73LfAmGarqsk1Mhkgk9XIZMsOul7NKZvKG3-O7rbgZcELqwyCD86AAsayg25aQNeff7d29r_h52iHNWuK0KiLtgApewGxykJf1kvzA9UW5E0
  priority: 102
  providerName: Springer Nature
Title Hybridization of soft-computing algorithms with neural network for prediction obstructive sleep apnea using biomedical sensor measurements
URI https://link.springer.com/article/10.1007/s00521-022-06919-w
https://www.proquest.com/docview/2664214939
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ADMLS
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: 8FG
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB61yYULUB4ipY32wA1W2Ou1HR8QSqukEYgIISKVk7XP9pA6Lo6o-Av91Z2x1w0g0et6dyTvzOzM7M43A_BGGIlmVEc8lcJxKYzjRR57HktHHrMWUUbY4S_LbLGSn87T8z1Y9lgYSqvsz8T2oLYbQ3fk79GQSIHufFJ8rK85dY2i19W-hYYKrRXsh7bE2D4MBVXGGsDwZLb8-u0PpGTbpBNjGsr3kUmA0bRgOrohxVEMzqKsiAt-87ep2vmf_zyZtpZo_hQeBxeSTTueH8Ceq57Bk749Awva-hxuF78JjhWAlmzjWYNnLjftRKTM1PoC_3B7edUwuo5lVNsSCVddZjhDd5bVP-khp1uvQ63ZX441a-dqpurKKUaZ8xesg_ETx1mDkTEuvdrdPjYvYDWffT9d8NB6gRvUyS1PbObjzE_MROPWSh9bmysRpZ502PlMFYowqVIXGF476VTq89gWzghVpNpHyUsYVJvKvQKWRio1ygqPwiBTjQEeOn020Ta3icmjbARxv8ulCXXJqT3GuryvqNxypkTOlC1nypsRvL1fU3dVOR6cfdQzrwwa2pQ7eRrBu56hu8__p3b4MLXX8Eh0MsSj-AgGyBl3jH7LVo9hfzI_G8Nwevbj82wcRBNHV2J6B5h18NY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAX3oiFUnyAE1gkjpPUhwrRl7a0XSHUSr0FP8thmw1kxap_gR_Fb2MmcbqARG-9JvYcMl_mYc83A_BKWIlu1CQ8l8JzKaznqkwDT6WniNmIpCDu8PGkGJ_Kj2f52Qr8GrgwVFY52MTOULuZpTPyd-hIpMBwPlPvm2-cpkbR7eowQkPH0Qpuq2sxFokdh_5ygSlcu3Wwi_p-LcT-3snOmMcpA9wi_OY8c0VIi7BpNw1KkSF1rtQiyQPB1YdCK030S2kUZpJeep2HMnXKW6FVbkKSodxbsIZLFCZ_a9t7k0-f_2BmdkNBMYei-iKZRdpOR96jE1l8islgUqhU8cXfrnEZ7_5zRdt5vv37cDeGrOxDj7EHsOLrh3BvGAfBonV4BD_Hl0T_isRONgusRRvPbbcQJTM9PccvOv960TI6_mXUSxMF130lOsPwmTXf6eKo329ib9sfnrVT7xumm9prRpX656xvG0AIYy1m4rj1Ynna2T6G0xtRwhNYrWe1fwosT3RutRMBwSdzgwklBpkuM650mS2TYgTp8JUrG_ug0ziOaXXVwbnTTIWaqTrNVIsRvLna0_RdQK5dvT4or4oWoa2W-B3B20Ghy9f_l_bsemkv4fb45PioOjqYHD6HO6LHE0_SdVhFLfkXGDPNzUYEJoMvN_0v_AYqlivI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSIgLO6JQwAduYDVxnKQ5VkBVtooDlbhFXgtSm0ZNRcUv8NWMs7SAAIlz7Dnkeex59rwZhE6pZHCMCof4jGrCqNQkCl1DXKZtxCyoE1jt8H0v6PbZzZP_9EnFn2e7V0-ShabBVmlKps1UmeZc-GZvM4EGA5FygsiNyGwZrTBbKAFWdJ-2Pykj86acwGFsfg_zStnMzza-Hk2LePPbE2l-8nQ20XoZMuJ2gfEWWtLJNtqo2jHg0jt30Hv3zcqvSmElHhucwR5LZD4QLGM-HIwnL9PnUYbt9Su2tSzBcFJkgmMIX3E6sQ83xXxR1pZ91Tgbap1iniaaY5spP8CFbN8ijDNgwjB1tLhtzHZRv3P1eNElZasFIsEHp8RTgXED05ItwaVkxlUq5NTxjfVZbQIecatBZSICOq2Z5r4JXRVpSXnkC-N4e6iWjBO9j7DvcF9yRQ2Az3wBhA6CPOUJFSpPhk5QR271l2NZ1iG37TCG8byCco5MDMjEOTLxrI7O5nPSogrHn6MbFXhx6ZFZDIEIo0AHvaiOzitAF59_t3bwv-EnaPXhshPfXfduD9EaLZYXcdwGqgFo-ghCmKk4zlfpB81e63U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybridization+of+soft-computing+algorithms+with+neural+network+for+prediction+obstructive+sleep+apnea+using+biomedical+sensor+measurements&rft.jtitle=Neural+computing+%26+applications&rft.au=Chyad+Mustafa+Habeeb&rft.au=Gharghan+Sadik+Kamel&rft.au=Hamood+Haider+Qasim&rft.au=Altayyar+Ahmed+Saleh+Hameed&rft.date=2022-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=34&rft.issue=11&rft.spage=8933&rft.epage=8957&rft_id=info:doi/10.1007%2Fs00521-022-06919-w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon