Hybridization of soft-computing algorithms with neural network for prediction obstructive sleep apnea using biomedical sensor measurements
Sleep apnea (SA) is a common respiratory disorder, especially among obese people. It is caused by either the relaxation of the upper respiratory tract muscles or the failure of the neural signal to reach the muscles responsible for breathing, both of which interrupt the patient’s sleep–wake cycles....
        Saved in:
      
    
          | Published in | Neural computing & applications Vol. 34; no. 11; pp. 8933 - 8957 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          Springer London
    
        01.06.2022
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0941-0643 1433-3058  | 
| DOI | 10.1007/s00521-022-06919-w | 
Cover
| Abstract | Sleep apnea (SA) is a common respiratory disorder, especially among obese people. It is caused by either the relaxation of the upper respiratory tract muscles or the failure of the neural signal to reach the muscles responsible for breathing, both of which interrupt the patient’s sleep–wake cycles. The traditional method for diagnosing this disorder, based on polysomnography, is complicated, vexing, expensive, time-consuming, and requires both sleep centers and specialized staff capable of connecting electrodes to the patient’s body. This paper proposes an SA prediction system based on merging five soft computing algorithms, specifically, combining the multi-verse optimizer (MVO) with an artificial neural network (ANN) to leverage measurements from heart rate, SpO
2
, and chest movement sensors. The most substantial novelty of this research is the hybridization of MVO and ANN (MVO-ANN), which improves the ANN performance by selecting the best learning rate and number of neurons in hidden ANN layers. This enables highly accurate prediction of sleep apnea events. This work’s experimental results reveal that the MVO-ANN performs better than other algorithms, with mean absolute errors of 0.042, 0.202, and 0.166 for training, testing, and validation of the ANN. In addition, the SA prediction system achieved an accuracy of 98.67%, a sensitivity of 96.71%, and a specificity of 99.24%. These results provide good evidence that the proposed method can reliably predict respiratory events in people suffering from SA. | 
    
|---|---|
| AbstractList | Sleep apnea (SA) is a common respiratory disorder, especially among obese people. It is caused by either the relaxation of the upper respiratory tract muscles or the failure of the neural signal to reach the muscles responsible for breathing, both of which interrupt the patient’s sleep–wake cycles. The traditional method for diagnosing this disorder, based on polysomnography, is complicated, vexing, expensive, time-consuming, and requires both sleep centers and specialized staff capable of connecting electrodes to the patient’s body. This paper proposes an SA prediction system based on merging five soft computing algorithms, specifically, combining the multi-verse optimizer (MVO) with an artificial neural network (ANN) to leverage measurements from heart rate, SpO
2
, and chest movement sensors. The most substantial novelty of this research is the hybridization of MVO and ANN (MVO-ANN), which improves the ANN performance by selecting the best learning rate and number of neurons in hidden ANN layers. This enables highly accurate prediction of sleep apnea events. This work’s experimental results reveal that the MVO-ANN performs better than other algorithms, with mean absolute errors of 0.042, 0.202, and 0.166 for training, testing, and validation of the ANN. In addition, the SA prediction system achieved an accuracy of 98.67%, a sensitivity of 96.71%, and a specificity of 99.24%. These results provide good evidence that the proposed method can reliably predict respiratory events in people suffering from SA. Sleep apnea (SA) is a common respiratory disorder, especially among obese people. It is caused by either the relaxation of the upper respiratory tract muscles or the failure of the neural signal to reach the muscles responsible for breathing, both of which interrupt the patient’s sleep–wake cycles. The traditional method for diagnosing this disorder, based on polysomnography, is complicated, vexing, expensive, time-consuming, and requires both sleep centers and specialized staff capable of connecting electrodes to the patient’s body. This paper proposes an SA prediction system based on merging five soft computing algorithms, specifically, combining the multi-verse optimizer (MVO) with an artificial neural network (ANN) to leverage measurements from heart rate, SpO2, and chest movement sensors. The most substantial novelty of this research is the hybridization of MVO and ANN (MVO-ANN), which improves the ANN performance by selecting the best learning rate and number of neurons in hidden ANN layers. This enables highly accurate prediction of sleep apnea events. This work’s experimental results reveal that the MVO-ANN performs better than other algorithms, with mean absolute errors of 0.042, 0.202, and 0.166 for training, testing, and validation of the ANN. In addition, the SA prediction system achieved an accuracy of 98.67%, a sensitivity of 96.71%, and a specificity of 99.24%. These results provide good evidence that the proposed method can reliably predict respiratory events in people suffering from SA.  | 
    
| Author | Chyad, Mustafa Habeeb Gharghan, Sadik Kamel Zubaidi, Salah L. Ridha, Hussein Mohammed Hamood, Haider Qasim Altayyar, Ahmed Saleh Hameed  | 
    
| Author_xml | – sequence: 1 givenname: Mustafa Habeeb surname: Chyad fullname: Chyad, Mustafa Habeeb organization: Middle Technical University, Electrical Engineering Technical College, College of Medicine, University of Al-Ameed – sequence: 2 givenname: Sadik Kamel orcidid: 0000-0002-9071-1775 surname: Gharghan fullname: Gharghan, Sadik Kamel email: sadik.gharghan@mtu.edu.iq organization: Middle Technical University, Electrical Engineering Technical College – sequence: 3 givenname: Haider Qasim surname: Hamood fullname: Hamood, Haider Qasim organization: College of Medicine, Al-Nahrain University – sequence: 4 givenname: Ahmed Saleh Hameed surname: Altayyar fullname: Altayyar, Ahmed Saleh Hameed organization: Karbala Health Department, Imam Husain Medical City – sequence: 5 givenname: Salah L. surname: Zubaidi fullname: Zubaidi, Salah L. organization: Department of Civil Engineering, Wasit University – sequence: 6 givenname: Hussein Mohammed surname: Ridha fullname: Ridha, Hussein Mohammed organization: Department of Electrical and Electronics Engineering, Faculty of Engineering, Universiti Putra Malaysia  | 
    
| BookMark | eNp9kMFu1DAQhi1UJLalL8DJEufAOHa88RFVQJEqcYGz5TjjrUtiB9thVR6Bp663qVSJQ0-_Jf_fzOg7J2chBiTkHYMPDGD_MQN0LWugbRuQiqnm-IrsmOC84dD1Z2QHStRvKfgbcp7zHQAI2Xc78u_6fkh-9H9N8THQ6GiOrjQ2zstafDhQMx1i8uV2zvRYgwZck5lqlGNMv6iLiS4JR283fsglrfX9B2meEBdqloCGrvk0a_BxPlUrnzHkis5o8ppwxlDyW_LamSnj5VNekJ9fPv-4um5uvn_9dvXpprGcqdLwUTomXW_7wVgrHBvHvWmhc9AxQCeNMp3gQgxKSIUCTef2bFRoW6O6wQG_IO-3uUuKv1fMRd_FNYW6UrdSipYJxVVttVvLpphzQqeX5GeT7jUDfXKuN-e6OtePzvWxQv1_kPXl0WxJxk8vo3xDc90TDpier3qBegCSGZ4f | 
    
| CitedBy_id | crossref_primary_10_1109_TIM_2023_3279880 crossref_primary_10_1061__ASCE_WR_1943_5452_0001602 crossref_primary_10_3390_s23146479 crossref_primary_10_1049_tje2_12226 crossref_primary_10_1080_23311916_2022_2150121 crossref_primary_10_7717_peerj_cs_1554 crossref_primary_10_1002_widm_1478 crossref_primary_10_3390_diagnostics14222505  | 
    
| Cites_doi | 10.1007/978-3-319-70742-6_15 10.18178/ijmerr.9.3.408-414 10.1007/s00521-016-2510-6 10.1007/s00607-018-0624-7 10.1109/MWSCAS48704.2020.9184554 10.1109/EMBC.2019.8856877 10.1109/ITAIC.2019.8785833 10.1016/j.eswa.2020.114230 10.1016/j.asoc.2018.03.013 10.1038/s41366-020-0549-z 10.1016/j.cmpb.2019.105001 10.1007/s11517-017-1706-y 10.1007/978-981-15-0591-1_13 10.1016/j.future.2019.01.049 10.1155/2021/2998202 10.1007/s13665-019-0221-z 10.1007/s12020-020-02369-3 10.1007/s00521-015-1870-7 10.1109/ACCESS.2020.2969227 10.4304/jcm.2.2.1-9 10.1260/0263-0923.33.4.429 10.1007/s10877-015-9664-0 10.1109/EMBC.2015.7319404 10.1007/s12046-013-0140-6 10.1016/j.eswa.2013.08.062 10.1088/1757-899X/745/1/012102 10.1155/2011/427028 10.1155/2019/9768072 10.1016/j.measurement.2020.108276 10.1007/s42452-020-2575-9 10.1145/3232651.3232660 10.1016/j.smrv.2007.03.006 10.5664/jcsm.7538 10.1007/s11517-010-0674-2 10.1109/JBHI.2018.2823265 10.1109/TBME.2010.2056924 10.1186/s12890-015-0017-z 10.1016/j.energy.2017.11.014 10.1109/LISAT.2015.7160186 10.1007/s10916-018-1146-8 10.1109/ACCESS.2020.3016832 10.1109/EMBC44109.2020.9176433 10.1109/IECBES.2014.7047603 10.1016/j.applthermaleng.2019.114817 10.1007/978-3-030-18715-6_36 10.3390/sym10100525 10.5114/aoms.2016.61499 10.1016/j.jsmc.2020.02.009 10.1007/s10916-015-0222-6 10.1111/1753-0407.13017 10.1016/j.jksues.2020.09.011 10.1007/978-3-319-70139-4_83 10.1093/sleep/26.7.907 10.1109/JBHI.2020.2967872 10.1109/TBME.2011.2167971 10.3390/w12102692 10.1016/j.future.2018.12.001 10.3390/w12071885 10.1260/0263-0923.31.3.205 10.1109/EMBC.2015.7320174 10.1016/j.mehy.2019.03.026 10.1016/j.obmed.2020.100185 10.1109/JSEN.2015.2483745  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.  | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.  | 
    
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS  | 
    
| DOI | 10.1007/s00521-022-06919-w | 
    
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central ProQuest Technology Collection (LUT) ProQuest One ProQuest Central SciTech Premium Collection (Proquest) Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China  | 
    
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Advanced Technologies & Aerospace Collection  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1433-3058 | 
    
| EndPage | 8957 | 
    
| ExternalDocumentID | 10_1007_s00521_022_06919_w | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO DWQXO PKEHL PQEST PQQKQ PQUKI PRINS  | 
    
| ID | FETCH-LOGICAL-c319t-3d6f16f8c8bacc4f1dd7a205f0510ef6a9a54344b9469e4ea5f71d9ec2a95bf03 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 0941-0643 | 
    
| IngestDate | Fri Jul 25 02:31:28 EDT 2025 Thu Apr 24 23:03:13 EDT 2025 Wed Oct 01 02:26:11 EDT 2025 Fri Feb 21 02:47:05 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 11 | 
    
| Keywords | Heart rate Sleep apnea SpO Artificial neural network Soft computing algorithm Prediction  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c319t-3d6f16f8c8bacc4f1dd7a205f0510ef6a9a54344b9469e4ea5f71d9ec2a95bf03 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-9071-1775 | 
    
| PQID | 2664214939 | 
    
| PQPubID | 2043988 | 
    
| PageCount | 25 | 
    
| ParticipantIDs | proquest_journals_2664214939 crossref_primary_10_1007_s00521_022_06919_w crossref_citationtrail_10_1007_s00521_022_06919_w springer_journals_10_1007_s00521_022_06919_w  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20220600 2022-06-00 20220601  | 
    
| PublicationDateYYYYMMDD | 2022-06-01 | 
    
| PublicationDate_xml | – month: 6 year: 2022 text: 20220600  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: Heidelberg  | 
    
| PublicationTitle | Neural computing & applications | 
    
| PublicationTitleAbbrev | Neural Comput & Applic | 
    
| PublicationYear | 2022 | 
    
| Publisher | Springer London Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer London – name: Springer Nature B.V  | 
    
| References | Liang X, Qiao X, Li Y (2019) Obstructive sleep apnea detection using combination of CNN and LSTM techniques. In: 8th Joint international information technology and artificial intelligence conference (ITAIC), Chongqing, China, 24–26. IEEE, pp 1733–1736 AlvarezDHorneroRMarcosJVdel CampoFMultivariate analysis of blood oxygen saturation recordings in obstructive sleep apnea diagnosisIEEE Trans Biomed Eng201057122816282410.1109/TBME.2010.2056924 NigroCADiburERhodiusEPulse oximetry for the detection of obstructive sleep apnea syndrome: can the memory capacity of oxygen saturation influence their diagnostic accuracy?Sleep Disorders2011201110.1155/2011/427028 SankarABSelviJAVKumarDLakshmiKSEffective enhancement of classification of respiratory states using feed forward back propagation neural networksSadhana201338337739510.1007/s12046-013-0140-6 AlmendrosIMartinez-GarciaMAFarréRGozalDObesity, sleep apnea, and cancerInt J Obes2020441653166710.1038/s41366-020-0549-z MirjaliliSMirjaliliSMHatamlouAMulti-verse optimizer: a nature-inspired algorithm for global optimizationNeural Comput Appl201627249551310.1007/s00521-015-1870-7 WangTLuCShenGDetection of sleep apnea from single-lead ECG signal using a time window artificial neural networkBiomed Res Int201910.1155/2019/9768072 BadrMSJavaheriSCentral sleep apnea: a brief reviewCurr Pulmonol Rep201981142110.1007/s13665-019-0221-z HenríquezPARuzGAA non-iterative method for pruning hidden neurons in neural networks with random weightsAppl Soft Comput2018701109112110.1016/j.asoc.2018.03.013 LinSHBransonCParkLLeungJDoshiNAuerbachSHOximetry as an accurate tool for identifying moderate to severe sleep apnea in patients with acute strokeJ Clin Sleep Med201814122065207310.5664/jcsm.7538 Yao X, Li M, Yao L, Shao L (2020) Obstructive sleep apnea and hypertension. In: Secondary hypertension. Springer, pp 461–488 GharghanSKNordinRIsmailMAliJAAccurate wireless sensor localization technique based on hybrid PSO-ANN algorithm for indoor and outdoor track cyclingIEEE Sens J201516252954110.1109/JSEN.2015.2483745 VimalaVRamarKEttappanMAn intelligent sleep apnea classification system based on EEG signalsJ Med Syst20194323610.1007/s10916-018-1146-8 ToftenSKjellstadliJTTyvoldSSMoxnessMHSA pilot study of detecting individual sleep apnea events using noncontact radar technology, pulse oximetry, and machine learningJ Sens20212021299820210.1155/2021/2998202 FathyARezkHMulti-verse optimizer for identifying the optimal parameters of PEMFC modelEnergy201814363464410.1016/j.energy.2017.11.014 ShukriSEAl-SayyedRHudaibAMirjaliliSEnhanced multi-verse optimizer for task scheduling in cloud computing environmentsExpert Syst Appl202116810.1016/j.eswa.2020.114230 MarcosJVHorneroRAlvarezDAboyMDel CampoFAutomated prediction of the apnea-hypopnea index from nocturnal oximetry recordingsIEEE Trans Biomed Eng201159114114910.1109/TBME.2011.2167971 ZubaidiSLAbdulkareemIHHashimKSAl-BugharbeeHRidhaHMGharghanSKAl-QaimFFMuradovMKotPAl-KhaddarRHybridised artificial neural network model with slime mould algorithm: a novel methodology for prediction of urban stochastic water demandWater20201210269210.3390/w12102692 AlemuHZWuWZhaoJFeedforward neural networks with a hidden layer regularization methodSymmetry2018101052510.3390/sym10100525 HaoyuLJianxingLArunkumarNHusseinAFJaberMMAn IoMT cloud-based real time sleep apnea detection scheme by using the SpO2 estimation supported by heart rate variabilityFuture Gener Comput Syst201998697710.1016/j.future.2018.12.001 MunadhilZGharghanSKMutlagAHAl-NajiAChahlJNeural network-based Alzheimer’s patient localization for wireless sensor network in an indoor environmentIEEE Access2020815052715053810.1109/ACCESS.2020.3016832 Ferduła R, Walczak T, Cofta S (2019) The application of artificial neural network in diagnosis of sleep apnea syndrome. In: Advances in manufacturing II. Springer, pp 432–443 YadollahiAGiannouliEMoussaviZSleep apnea monitoring and diagnosis based on pulse oximetery and tracheal sound signalsMed Biol Eng Comput201048111087109710.1007/s11517-010-0674-2 ErdenebayarUKimYJParkJ-UJooEYLeeK-JDeep learning approaches for automatic detection of sleep apnea events from an electrocardiogramComput Methods Programs Biomed201918010.1016/j.cmpb.2019.105001 KapanovaKGDimovISellierJMA genetic approach to automatic neural network architecture optimizationNeural Comput Appl20182951481149210.1007/s00521-016-2510-6 QieRZhangDLiuLRenYZhaoYLiuDLiuFChenXChengCGuoCObstructive sleep apnea and risk of type 2 diabetes mellitus: a systematic review and dose-response meta-analysis of cohort studiesJ Diabetes202012645546410.1111/1753-0407.13017 De FalcoIDe PietroGDella CioppaASanninoGScafuriUTarantinoEEvolution-based configuration optimization of a deep neural network for the classification of obstructive sleep apnea episodesFuture Gener Comput Syst20199837739110.1016/j.future.2019.01.049 Gutiérrez-Tobal GC, Kheirandish-Gozal L, Álvarez D, Crespo A, Philby MF, Mohammadi M, del Campo F, Gozal D, Hornero R (2015) Analysis and classification of oximetry recordings to predict obstructive sleep apnea severity in children. In: 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC), Milan, Italy, 25–29. IEEE, pp 4540–4543 ChenLZhangXWangHAn obstructive sleep apnea detection approach using kernel density classification based on single-lead electrocardiogramJ Med Syst20153954710.1007/s10916-015-0222-6 MahdiSQGharghanSKHasanMAFPGA-Based neural network for accurate distance estimation of elderly falls using WSN in an indoor environmentMeasurement202116710827610.1016/j.measurement.2020.108276 GohariMRahmanRTahmasebiMNejatPOff-road vehicle seat suspension optimisation, part I: derivation of an artificial neural network model to predict seated human spine acceleration in vertical vibrationJ Low Freq Noise Vib Act Control201433442944110.1260/0263-0923.33.4.429 Haidar R, Koprinska I, Jeffries B (2017) Sleep apnea event detection from nasal airflow using convolutional neural networks. In: International conference on neural information processing, Guangzhou, China, 14–18. Springer, pp 819–827 DongZXuXWangCCartledgeSMaddisonRIslamSMSAssociation of overweight and obesity with obstructive sleep apnoea: a systematic review and meta-analysisObes Med20201710018510.1016/j.obmed.2020.100185 ZubaidiSLHashimKEthaibSAl-BdairiNSSAl-BugharbeeHGharghanSKA novel methodology to predict monthly municipal water demand based on weather variables scenarioJ King Saud Univ-Eng Sci202010.1016/j.jksues.2020.09.011 TabrizchiHTabrizchiMTabrizchiHBreast cancer diagnosis using a multi-verse optimizer-based gradient boosting decision treeSN Appl Sci20202475210.1007/s42452-020-2575-9 HafeziMMontazeriNSahaSZhuKGavrilovicBYadollahiATaatiBSleep apnea severity estimation from tracheal movements using a deep learning modelIEEE Access20208226412264910.1109/ACCESS.2020.2969227 MotaharSJahangiriMTransient heat transfer analysis of a phase change material heat sink using experimental data and artificial neural networkAppl Therm Eng202016711481710.1016/j.applthermaleng.2019.114817 Kopaczka M, Oezkan O, Merhof D (2017) Face tracking and respiratory signal analysis for the detection of sleep apnea in thermal infrared videos with head movement. In: International conference on image analysis and processing, Catania-Italy, 11–15. Springer, pp 163–170 McNabAAThe eye and sleep apneaSleep Med Rev200711426927610.1016/j.smrv.2007.03.006 OliverNFlores-MangasFHealthgear: Automatic sleep apnea detection and monitoring with a mobile phoneJ Commun2007221910.4304/jcm.2.2.1-9 MendonçaFMostafaSSMorgado-DiasFNavarro-MesaJLJuliá-SerdáGRavelo-GarcíaAGA portable wireless device based on oximetry for sleep apnea detectionComputing2018100111203121910.1007/s00607-018-0624-7 HangL-WWangH-LChenJ-HHsuJ-CLinH-HChungW-SChenY-FValidation of overnight oximetry to diagnose patients with moderate to severe obstructive sleep apneaBMC Pulm Med20151512410.1186/s12890-015-0017-z ZhouJWuX-mZengW-jAutomatic detection of sleep apnea based on EEG detrended fluctuation analysis and support vector machineJ Clin Monit Comput201529676777210.1007/s10877-015-9664-0 GohariMRahmanRARajaRITahmasebiMA novel artificial neural network biodynamic model for prediction seated human body head acceleration in vertical directionJ Low Freq Noise Vib Act Control201231320521610.1260/0263-0923.31.3.205 Collen J, Lettieri C, Wickwire E, Holley A (2020) Obstructive sleep apnea and cardiovascular disease, a story of confounders! Sleep Breath 1–15 Almuhammadi WS, Aboalayon KA, Faezipour M (2015) Efficient obstructive sleep apnea classification based on EEG signals. In: Long Island systems, applications and technology, Farmingdale, NY, USA, 1–1. IEEE, pp 1–6 Van SteenkisteTGroenendaalWDreesenPLeeSKlerkxSDe FranciscoRDeschrijverDDhaeneTPortable detection of apnea and hypopnea events using bio-impedance of the chest and deep learningIEEE J Biomed Health Inform20202492589259810.1109/JBHI.2020.2967872 MendoncaFMostafaSSRavelo-GarcíaAGMorgado-DiasFPenzelTA review of obstructive sleep apnea detection approachesIEEE J Biomed Health Inform201823282583710.1109/JBHI.2018.2823265 Hassan O, Parvin D, Kamrul S (2020) Machine learning model based digital hardware system design for detection of sleep apnea among neonatal infants. In: 63rd international midwest symposium on circuits and systems (MWSCAS), Springfield, MA, USA, 9–12. IEEE, pp 607–610 ChessonALJrBerryRBPackAPractice parameters for the use of portable monitoring devices in the investigation of suspected obstructive sleep apnea in adultsSleep200326790791310.1093/sleep/26.7.907 TuncerSAAkılotuBToramanSA deep learning-based decision support system for diagnosis of OSAS using PTT signalsMed Hypotheses2019127152210.1016/j.mehy.2019.03.026 ChyadMHGharghanSKHamoodHQA survey on detection and prediction methods for sleep apneaIOP Conf Ser: Mater Sci Eng2020101210210.1088/1757-899X/745/1/012102 Malaekah E, Patti CR, Cvetkovic D (2014) Automatic sleep-wake detection using electrooculogram signals. I 6919_CR41 6919_CR47 M Gohari (6919_CR50) 2012; 31 6919_CR46 V Vimala (6919_CR37) 2019; 43 SK Gharghan (6919_CR32) 2015; 16 R Qie (6919_CR9) 2020; 12 SL Zubaidi (6919_CR48) 2020; 12 KG Kapanova (6919_CR56) 2018; 29 MS Badr (6919_CR6) 2019; 8 U Erdenebayar (6919_CR33) 2019; 180 T Wang (6919_CR38) 2019 6919_CR2 6919_CR1 6919_CR11 MH Chyad (6919_CR5) 2020; 1 S Motahar (6919_CR53) 2020; 167 L-W Hang (6919_CR19) 2015; 15 6919_CR16 I Almendros (6919_CR13) 2020; 44 A Yadollahi (6919_CR26) 2010; 48 CA Nigro (6919_CR45) 2011; 2011 AB Sankar (6919_CR36) 2013; 38 F Mendonça (6919_CR15) 2018; 100 D Sánchez-Morillo (6919_CR21) 2014; 41 H Tabrizchi (6919_CR62) 2020; 2 6919_CR8 6919_CR7 T Van Steenkiste (6919_CR39) 2020; 24 AA McNab (6919_CR14) 2007; 11 N Oliver (6919_CR23) 2007; 2 Z Munadhil (6919_CR49) 2020; 8 6919_CR20 C Kalkbrenner (6919_CR25) 2018; 56 6919_CR29 M Gohari (6919_CR51) 2014; 33 J Zhou (6919_CR12) 2015; 29 6919_CR28 I De Falco (6919_CR3) 2019; 98 S Mirjalili (6919_CR59) 2016; 27 JV Marcos (6919_CR22) 2011; 59 Z Dong (6919_CR4) 2020; 17 A Fathy (6919_CR60) 2018; 143 L Chen (6919_CR27) 2015; 39 ZH Ang (6919_CR54) 2020; 9 HZ Alemu (6919_CR57) 2018; 10 SA Tuncer (6919_CR63) 2019; 127 SQ Mahdi (6919_CR55) 2021; 167 SL Zubaidi (6919_CR58) 2020 PA Henríquez (6919_CR52) 2018; 70 SE Shukri (6919_CR61) 2021; 168 6919_CR30 S Toften (6919_CR42) 2021; 2021 6919_CR31 M Hafezi (6919_CR34) 2020; 8 6919_CR35 F Mendonca (6919_CR17) 2018; 23 M Ruchała (6919_CR10) 2017; 13 AL Chesson Jr (6919_CR24) 2003; 26 L Haoyu (6919_CR18) 2019; 98 D Alvarez (6919_CR43) 2010; 57 6919_CR40 SH Lin (6919_CR44) 2018; 14  | 
    
| References_xml | – reference: DongZXuXWangCCartledgeSMaddisonRIslamSMSAssociation of overweight and obesity with obstructive sleep apnoea: a systematic review and meta-analysisObes Med20201710018510.1016/j.obmed.2020.100185 – reference: Kamble PG, Theorell-Haglöw J, Wiklund U, Franklin KA, Hammar U, Lindberg E, Eriksson JW (2020) Sleep apnea in men is associated with altered lipid metabolism, glucose tolerance, insulin sensitivity, and body fat percentage. Endocrine 1–10 – reference: Collen J, Lettieri C, Wickwire E, Holley A (2020) Obstructive sleep apnea and cardiovascular disease, a story of confounders! Sleep Breath 1–15 – reference: Hung PD (2018) Central sleep apnea detection using an accelerometer. In: International conference on control and computer vision, Singapore, Singapore 15–18. ACM, pp 106–111 – reference: ErdenebayarUKimYJParkJ-UJooEYLeeK-JDeep learning approaches for automatic detection of sleep apnea events from an electrocardiogramComput Methods Programs Biomed201918010.1016/j.cmpb.2019.105001 – reference: HafeziMMontazeriNSahaSZhuKGavrilovicBYadollahiATaatiBSleep apnea severity estimation from tracheal movements using a deep learning modelIEEE Access20208226412264910.1109/ACCESS.2020.2969227 – reference: TabrizchiHTabrizchiMTabrizchiHBreast cancer diagnosis using a multi-verse optimizer-based gradient boosting decision treeSN Appl Sci20202475210.1007/s42452-020-2575-9 – reference: RuchałaMBromińskaBCyrańska-ChyrekEKuźnar-KamińskaBKostrzewskaMBatura-GabryelHObstructive sleep apnea and hormones–a novel insightArch Med Sci201713487510.5114/aoms.2016.61499 – reference: ChyadMHGharghanSKHamoodHQA survey on detection and prediction methods for sleep apneaIOP Conf Ser: Mater Sci Eng2020101210210.1088/1757-899X/745/1/012102 – reference: De FalcoIDe PietroGDella CioppaASanninoGScafuriUTarantinoEEvolution-based configuration optimization of a deep neural network for the classification of obstructive sleep apnea episodesFuture Gener Comput Syst20199837739110.1016/j.future.2019.01.049 – reference: FathyARezkHMulti-verse optimizer for identifying the optimal parameters of PEMFC modelEnergy201814363464410.1016/j.energy.2017.11.014 – reference: AlemuHZWuWZhaoJFeedforward neural networks with a hidden layer regularization methodSymmetry2018101052510.3390/sym10100525 – reference: NigroCADiburERhodiusEPulse oximetry for the detection of obstructive sleep apnea syndrome: can the memory capacity of oxygen saturation influence their diagnostic accuracy?Sleep Disorders2011201110.1155/2011/427028 – reference: LinSHBransonCParkLLeungJDoshiNAuerbachSHOximetry as an accurate tool for identifying moderate to severe sleep apnea in patients with acute strokeJ Clin Sleep Med201814122065207310.5664/jcsm.7538 – reference: McNabAAThe eye and sleep apneaSleep Med Rev200711426927610.1016/j.smrv.2007.03.006 – reference: MendonçaFMostafaSSMorgado-DiasFNavarro-MesaJLJuliá-SerdáGRavelo-GarcíaAGA portable wireless device based on oximetry for sleep apnea detectionComputing2018100111203121910.1007/s00607-018-0624-7 – reference: Malaekah E, Patti CR, Cvetkovic D (2014) Automatic sleep-wake detection using electrooculogram signals. In: IEEE conference on biomedical engineering and sciences (IECBES), Kuala Lumpur, Malaysia, 8–10. IEEE, pp 724–728 – reference: WangTLuCShenGDetection of sleep apnea from single-lead ECG signal using a time window artificial neural networkBiomed Res Int201910.1155/2019/9768072 – reference: MarcosJVHorneroRAlvarezDAboyMDel CampoFAutomated prediction of the apnea-hypopnea index from nocturnal oximetry recordingsIEEE Trans Biomed Eng201159114114910.1109/TBME.2011.2167971 – reference: OliverNFlores-MangasFHealthgear: Automatic sleep apnea detection and monitoring with a mobile phoneJ Commun2007221910.4304/jcm.2.2.1-9 – reference: VimalaVRamarKEttappanMAn intelligent sleep apnea classification system based on EEG signalsJ Med Syst20194323610.1007/s10916-018-1146-8 – reference: Zubaidi SL, Ortega-Martorell S, Al-Bugharbee H, Olier I, Hashim KS, Gharghan SK, Kot P, Al-Khaddar R (2020) Urban water demand prediction for a city that suffers from climate change and population growth: Gauteng province case study. Water 12(7):1885 – reference: Yao X, Li M, Yao L, Shao L (2020) Obstructive sleep apnea and hypertension. In: Secondary hypertension. Springer, pp 461–488 – reference: GohariMRahmanRTahmasebiMNejatPOff-road vehicle seat suspension optimisation, part I: derivation of an artificial neural network model to predict seated human spine acceleration in vertical vibrationJ Low Freq Noise Vib Act Control201433442944110.1260/0263-0923.33.4.429 – reference: Ferduła R, Walczak T, Cofta S (2019) The application of artificial neural network in diagnosis of sleep apnea syndrome. In: Advances in manufacturing II. Springer, pp 432–443 – reference: AlmendrosIMartinez-GarciaMAFarréRGozalDObesity, sleep apnea, and cancerInt J Obes2020441653166710.1038/s41366-020-0549-z – reference: Hassan O, Parvin D, Kamrul S (2020) Machine learning model based digital hardware system design for detection of sleep apnea among neonatal infants. In: 63rd international midwest symposium on circuits and systems (MWSCAS), Springfield, MA, USA, 9–12. IEEE, pp 607–610 – reference: Gutiérrez-Tobal GC, Kheirandish-Gozal L, Álvarez D, Crespo A, Philby MF, Mohammadi M, del Campo F, Gozal D, Hornero R (2015) Analysis and classification of oximetry recordings to predict obstructive sleep apnea severity in children. In: 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC), Milan, Italy, 25–29. IEEE, pp 4540–4543 – reference: GharghanSKNordinRIsmailMAliJAAccurate wireless sensor localization technique based on hybrid PSO-ANN algorithm for indoor and outdoor track cyclingIEEE Sens J201516252954110.1109/JSEN.2015.2483745 – reference: ZhouJWuX-mZengW-jAutomatic detection of sleep apnea based on EEG detrended fluctuation analysis and support vector machineJ Clin Monit Comput201529676777210.1007/s10877-015-9664-0 – reference: KapanovaKGDimovISellierJMA genetic approach to automatic neural network architecture optimizationNeural Comput Appl20182951481149210.1007/s00521-016-2510-6 – reference: Almuhammadi WS, Aboalayon KA, Faezipour M (2015) Efficient obstructive sleep apnea classification based on EEG signals. In: Long Island systems, applications and technology, Farmingdale, NY, USA, 1–1. IEEE, pp 1–6 – reference: HaoyuLJianxingLArunkumarNHusseinAFJaberMMAn IoMT cloud-based real time sleep apnea detection scheme by using the SpO2 estimation supported by heart rate variabilityFuture Gener Comput Syst201998697710.1016/j.future.2018.12.001 – reference: AngZHAngCKLimWHYuLJSolihinMIDevelopment of an artificial intelligent approach in adapting the characteristic of polynomial trajectory planning for robot manipulatorInt J Mech Eng Robot Res20209340841410.18178/ijmerr.9.3.408-414 – reference: Haidar R, Koprinska I, Jeffries B (2017) Sleep apnea event detection from nasal airflow using convolutional neural networks. In: International conference on neural information processing, Guangzhou, China, 14–18. Springer, pp 819–827 – reference: Van SteenkisteTGroenendaalWDreesenPLeeSKlerkxSDe FranciscoRDeschrijverDDhaeneTPortable detection of apnea and hypopnea events using bio-impedance of the chest and deep learningIEEE J Biomed Health Inform20202492589259810.1109/JBHI.2020.2967872 – reference: ZubaidiSLHashimKEthaibSAl-BdairiNSSAl-BugharbeeHGharghanSKA novel methodology to predict monthly municipal water demand based on weather variables scenarioJ King Saud Univ-Eng Sci202010.1016/j.jksues.2020.09.011 – reference: TuncerSAAkılotuBToramanSA deep learning-based decision support system for diagnosis of OSAS using PTT signalsMed Hypotheses2019127152210.1016/j.mehy.2019.03.026 – reference: MotaharSJahangiriMTransient heat transfer analysis of a phase change material heat sink using experimental data and artificial neural networkAppl Therm Eng202016711481710.1016/j.applthermaleng.2019.114817 – reference: MahdiSQGharghanSKHasanMAFPGA-Based neural network for accurate distance estimation of elderly falls using WSN in an indoor environmentMeasurement202116710827610.1016/j.measurement.2020.108276 – reference: ChessonALJrBerryRBPackAPractice parameters for the use of portable monitoring devices in the investigation of suspected obstructive sleep apnea in adultsSleep200326790791310.1093/sleep/26.7.907 – reference: HenríquezPARuzGAA non-iterative method for pruning hidden neurons in neural networks with random weightsAppl Soft Comput2018701109112110.1016/j.asoc.2018.03.013 – reference: MirjaliliSMirjaliliSMHatamlouAMulti-verse optimizer: a nature-inspired algorithm for global optimizationNeural Comput Appl201627249551310.1007/s00521-015-1870-7 – reference: ToftenSKjellstadliJTTyvoldSSMoxnessMHSA pilot study of detecting individual sleep apnea events using noncontact radar technology, pulse oximetry, and machine learningJ Sens20212021299820210.1155/2021/2998202 – reference: HangL-WWangH-LChenJ-HHsuJ-CLinH-HChungW-SChenY-FValidation of overnight oximetry to diagnose patients with moderate to severe obstructive sleep apneaBMC Pulm Med20151512410.1186/s12890-015-0017-z – reference: ShukriSEAl-SayyedRHudaibAMirjaliliSEnhanced multi-verse optimizer for task scheduling in cloud computing environmentsExpert Syst Appl202116810.1016/j.eswa.2020.114230 – reference: ChenLZhangXWangHAn obstructive sleep apnea detection approach using kernel density classification based on single-lead electrocardiogramJ Med Syst20153954710.1007/s10916-015-0222-6 – reference: AlvarezDHorneroRMarcosJVdel CampoFMultivariate analysis of blood oxygen saturation recordings in obstructive sleep apnea diagnosisIEEE Trans Biomed Eng201057122816282410.1109/TBME.2010.2056924 – reference: Thorey V, Hernandez AB, Arnal PJ (2019) During EH AI vs humans for the diagnosis of sleep apnea. In: 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC), Berlin, Germany, Germany, 23–27. pp 1596–1600. https://doi.org/10.1109/EMBC.2019.8856877 – reference: GohariMRahmanRARajaRITahmasebiMA novel artificial neural network biodynamic model for prediction seated human body head acceleration in vertical directionJ Low Freq Noise Vib Act Control201231320521610.1260/0263-0923.31.3.205 – reference: Kopaczka M, Oezkan O, Merhof D (2017) Face tracking and respiratory signal analysis for the detection of sleep apnea in thermal infrared videos with head movement. In: International conference on image analysis and processing, Catania-Italy, 11–15. Springer, pp 163–170 – reference: Garde A, Dehkordi P, Wensley D, Ansermino JM, Dumont GA (2015) Pulse oximetry recorded from the Phone Oximeter for detection of obstructive sleep apnea events with and without oxygen desaturation in children. In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC), MiCo - Milano Conference Center - Milan, Italy, August 25–29. IEEE, pp 7692–7695 – reference: Mahmud T, Khan IA, Mahmud TI, Fattah SA, Zhu W-P, Ahmad MO (2020) Sleep apnea event detection from sub-frame based feature variation in EEG signal using deep convolutional neural network. In: 42nd Annual international conference of the IEEE engineering in medicine & biology society (EMBC), Montreal, QC, Canada, 20–24. IEEE, pp 5580–5583 – reference: KalkbrennerCEichenlaubMRüdigerSKropf-SanchenCRottbauerWBrucherRApnea and heart rate detection from tracheal body sounds for the diagnosis of sleep-related breathing disordersMed Biol Eng Comput201856467168110.1007/s11517-017-1706-y – reference: YadollahiAGiannouliEMoussaviZSleep apnea monitoring and diagnosis based on pulse oximetery and tracheal sound signalsMed Biol Eng Comput201048111087109710.1007/s11517-010-0674-2 – reference: BadrMSJavaheriSCentral sleep apnea: a brief reviewCurr Pulmonol Rep201981142110.1007/s13665-019-0221-z – reference: MunadhilZGharghanSKMutlagAHAl-NajiAChahlJNeural network-based Alzheimer’s patient localization for wireless sensor network in an indoor environmentIEEE Access2020815052715053810.1109/ACCESS.2020.3016832 – reference: Liang X, Qiao X, Li Y (2019) Obstructive sleep apnea detection using combination of CNN and LSTM techniques. In: 8th Joint international information technology and artificial intelligence conference (ITAIC), Chongqing, China, 24–26. IEEE, pp 1733–1736 – reference: MendoncaFMostafaSSRavelo-GarcíaAGMorgado-DiasFPenzelTA review of obstructive sleep apnea detection approachesIEEE J Biomed Health Inform201823282583710.1109/JBHI.2018.2823265 – reference: SankarABSelviJAVKumarDLakshmiKSEffective enhancement of classification of respiratory states using feed forward back propagation neural networksSadhana201338337739510.1007/s12046-013-0140-6 – reference: ZubaidiSLAbdulkareemIHHashimKSAl-BugharbeeHRidhaHMGharghanSKAl-QaimFFMuradovMKotPAl-KhaddarRHybridised artificial neural network model with slime mould algorithm: a novel methodology for prediction of urban stochastic water demandWater20201210269210.3390/w12102692 – reference: QieRZhangDLiuLRenYZhaoYLiuDLiuFChenXChengCGuoCObstructive sleep apnea and risk of type 2 diabetes mellitus: a systematic review and dose-response meta-analysis of cohort studiesJ Diabetes202012645546410.1111/1753-0407.13017 – reference: Sánchez-MorilloDLópez-GordoMLeónANovel multiclass classification for home-based diagnosis of sleep apnea hypopnea syndromeExpert Syst Appl20144141654166210.1016/j.eswa.2013.08.062 – ident: 6919_CR30 doi: 10.1007/978-3-319-70742-6_15 – volume: 9 start-page: 408 issue: 3 year: 2020 ident: 6919_CR54 publication-title: Int J Mech Eng Robot Res doi: 10.18178/ijmerr.9.3.408-414 – volume: 29 start-page: 1481 issue: 5 year: 2018 ident: 6919_CR56 publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2510-6 – volume: 100 start-page: 1203 issue: 11 year: 2018 ident: 6919_CR15 publication-title: Computing doi: 10.1007/s00607-018-0624-7 – ident: 6919_CR40 doi: 10.1109/MWSCAS48704.2020.9184554 – ident: 6919_CR2 doi: 10.1109/EMBC.2019.8856877 – ident: 6919_CR41 doi: 10.1109/ITAIC.2019.8785833 – volume: 168 year: 2021 ident: 6919_CR61 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.114230 – volume: 70 start-page: 1109 year: 2018 ident: 6919_CR52 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.03.013 – volume: 44 start-page: 1653 year: 2020 ident: 6919_CR13 publication-title: Int J Obes doi: 10.1038/s41366-020-0549-z – volume: 180 year: 2019 ident: 6919_CR33 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2019.105001 – volume: 56 start-page: 671 issue: 4 year: 2018 ident: 6919_CR25 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-017-1706-y – ident: 6919_CR8 doi: 10.1007/978-981-15-0591-1_13 – volume: 98 start-page: 377 year: 2019 ident: 6919_CR3 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2019.01.049 – volume: 2021 start-page: 2998202 year: 2021 ident: 6919_CR42 publication-title: J Sens doi: 10.1155/2021/2998202 – volume: 8 start-page: 14 issue: 1 year: 2019 ident: 6919_CR6 publication-title: Curr Pulmonol Rep doi: 10.1007/s13665-019-0221-z – ident: 6919_CR11 doi: 10.1007/s12020-020-02369-3 – volume: 27 start-page: 495 issue: 2 year: 2016 ident: 6919_CR59 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1870-7 – volume: 8 start-page: 22641 year: 2020 ident: 6919_CR34 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2969227 – volume: 2 start-page: 1 issue: 2 year: 2007 ident: 6919_CR23 publication-title: J Commun doi: 10.4304/jcm.2.2.1-9 – volume: 33 start-page: 429 issue: 4 year: 2014 ident: 6919_CR51 publication-title: J Low Freq Noise Vib Act Control doi: 10.1260/0263-0923.33.4.429 – volume: 29 start-page: 767 issue: 6 year: 2015 ident: 6919_CR12 publication-title: J Clin Monit Comput doi: 10.1007/s10877-015-9664-0 – ident: 6919_CR20 doi: 10.1109/EMBC.2015.7319404 – volume: 38 start-page: 377 issue: 3 year: 2013 ident: 6919_CR36 publication-title: Sadhana doi: 10.1007/s12046-013-0140-6 – volume: 41 start-page: 1654 issue: 4 year: 2014 ident: 6919_CR21 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.08.062 – volume: 1 start-page: 012102 year: 2020 ident: 6919_CR5 publication-title: IOP Conf Ser: Mater Sci Eng doi: 10.1088/1757-899X/745/1/012102 – volume: 2011 year: 2011 ident: 6919_CR45 publication-title: Sleep Disorders doi: 10.1155/2011/427028 – year: 2019 ident: 6919_CR38 publication-title: Biomed Res Int doi: 10.1155/2019/9768072 – volume: 167 start-page: 108276 year: 2021 ident: 6919_CR55 publication-title: Measurement doi: 10.1016/j.measurement.2020.108276 – volume: 2 start-page: 752 issue: 4 year: 2020 ident: 6919_CR62 publication-title: SN Appl Sci doi: 10.1007/s42452-020-2575-9 – ident: 6919_CR31 doi: 10.1145/3232651.3232660 – volume: 11 start-page: 269 issue: 4 year: 2007 ident: 6919_CR14 publication-title: Sleep Med Rev doi: 10.1016/j.smrv.2007.03.006 – volume: 14 start-page: 2065 issue: 12 year: 2018 ident: 6919_CR44 publication-title: J Clin Sleep Med doi: 10.5664/jcsm.7538 – volume: 48 start-page: 1087 issue: 11 year: 2010 ident: 6919_CR26 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-010-0674-2 – volume: 23 start-page: 825 issue: 2 year: 2018 ident: 6919_CR17 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2018.2823265 – volume: 57 start-page: 2816 issue: 12 year: 2010 ident: 6919_CR43 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2010.2056924 – volume: 15 start-page: 24 issue: 1 year: 2015 ident: 6919_CR19 publication-title: BMC Pulm Med doi: 10.1186/s12890-015-0017-z – volume: 143 start-page: 634 year: 2018 ident: 6919_CR60 publication-title: Energy doi: 10.1016/j.energy.2017.11.014 – ident: 6919_CR28 doi: 10.1109/LISAT.2015.7160186 – volume: 43 start-page: 36 issue: 2 year: 2019 ident: 6919_CR37 publication-title: J Med Syst doi: 10.1007/s10916-018-1146-8 – volume: 8 start-page: 150527 year: 2020 ident: 6919_CR49 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3016832 – ident: 6919_CR35 doi: 10.1109/EMBC44109.2020.9176433 – ident: 6919_CR29 doi: 10.1109/IECBES.2014.7047603 – volume: 167 start-page: 114817 year: 2020 ident: 6919_CR53 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2019.114817 – ident: 6919_CR1 doi: 10.1007/978-3-030-18715-6_36 – volume: 10 start-page: 525 issue: 10 year: 2018 ident: 6919_CR57 publication-title: Symmetry doi: 10.3390/sym10100525 – volume: 13 start-page: 875 issue: 4 year: 2017 ident: 6919_CR10 publication-title: Arch Med Sci doi: 10.5114/aoms.2016.61499 – ident: 6919_CR7 doi: 10.1016/j.jsmc.2020.02.009 – volume: 39 start-page: 47 issue: 5 year: 2015 ident: 6919_CR27 publication-title: J Med Syst doi: 10.1007/s10916-015-0222-6 – volume: 12 start-page: 455 issue: 6 year: 2020 ident: 6919_CR9 publication-title: J Diabetes doi: 10.1111/1753-0407.13017 – year: 2020 ident: 6919_CR58 publication-title: J King Saud Univ-Eng Sci doi: 10.1016/j.jksues.2020.09.011 – ident: 6919_CR16 doi: 10.1007/978-3-319-70139-4_83 – volume: 26 start-page: 907 issue: 7 year: 2003 ident: 6919_CR24 publication-title: Sleep doi: 10.1093/sleep/26.7.907 – volume: 24 start-page: 2589 issue: 9 year: 2020 ident: 6919_CR39 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2020.2967872 – volume: 59 start-page: 141 issue: 1 year: 2011 ident: 6919_CR22 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2011.2167971 – volume: 12 start-page: 2692 issue: 10 year: 2020 ident: 6919_CR48 publication-title: Water doi: 10.3390/w12102692 – volume: 98 start-page: 69 year: 2019 ident: 6919_CR18 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2018.12.001 – ident: 6919_CR47 doi: 10.3390/w12071885 – volume: 31 start-page: 205 issue: 3 year: 2012 ident: 6919_CR50 publication-title: J Low Freq Noise Vib Act Control doi: 10.1260/0263-0923.31.3.205 – ident: 6919_CR46 doi: 10.1109/EMBC.2015.7320174 – volume: 127 start-page: 15 year: 2019 ident: 6919_CR63 publication-title: Med Hypotheses doi: 10.1016/j.mehy.2019.03.026 – volume: 17 start-page: 100185 year: 2020 ident: 6919_CR4 publication-title: Obes Med doi: 10.1016/j.obmed.2020.100185 – volume: 16 start-page: 529 issue: 2 year: 2015 ident: 6919_CR32 publication-title: IEEE Sens J doi: 10.1109/JSEN.2015.2483745  | 
    
| SSID | ssj0004685 | 
    
| Score | 2.3558228 | 
    
| Snippet | Sleep apnea (SA) is a common respiratory disorder, especially among obese people. It is caused by either the relaxation of the upper respiratory tract muscles... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 8933 | 
    
| SubjectTerms | Algorithms Artificial Intelligence Artificial neural networks Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Heart rate Image Processing and Computer Vision Learning theory Motion sensors Muscles Neural networks Original Article Probability and Statistics in Computer Science Respiratory diseases Sleep apnea Soft computing  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELX4WFj4RhQK8sAGlhzHTuqxQlQVEkxU6hbZjl2GNo1IRcVf4FdzTpwWECAxx74hz2ffs-_dIXTFDIdjVFMiOLOEM2OJTCNHIm59xKwZTbx2-OExGY74_ViMgyisarPd2yfJeqdeid38DSZQXyBPNJGRJMtNtC18OS9YxSPW_6SGrBtxAm_xOT08DlKZn218PY7WMea3Z9H6tBnso90QJuJ-g-sB2rDFIdprWzDg4JFH6H345iVXQUyJ5w5XsK8SUw8Ey1hNJ3Pg_8-zCvsrV-zrV4Lhosn-xhCy4vLFP9Y083WoJ_tqcTW1tsSqLKzCPjt-ghupvkcVV8B-YepsfcNYHaPR4O7pdkhCewViwO8WJM4TFyWuZ3paGcNdlOepYlQ476fWJUoqrzvlWgKFttwq4dIol9YwJYV2ND5BW8W8sKcIC6qEUTlzADgXGkgcBHZ5rPM0j01Kkw6K2r-cmVB73LfAmGarqsk1Mhkgk9XIZMsOul7NKZvKG3-O7rbgZcELqwyCD86AAsayg25aQNeff7d29r_h52iHNWuK0KiLtgApewGxykJf1kvzA9UW5E0 priority: 102 providerName: Springer Nature  | 
    
| Title | Hybridization of soft-computing algorithms with neural network for prediction obstructive sleep apnea using biomedical sensor measurements | 
    
| URI | https://link.springer.com/article/10.1007/s00521-022-06919-w https://www.proquest.com/docview/2664214939  | 
    
| Volume | 34 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3058 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ADMLS dateStart: 19930301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: 8FG dateStart: 20180401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB61yYULUB4ipY32wA1W2Ou1HR8QSqukEYgIISKVk7XP9pA6Lo6o-Av91Z2x1w0g0et6dyTvzOzM7M43A_BGGIlmVEc8lcJxKYzjRR57HktHHrMWUUbY4S_LbLGSn87T8z1Y9lgYSqvsz8T2oLYbQ3fk79GQSIHufFJ8rK85dY2i19W-hYYKrRXsh7bE2D4MBVXGGsDwZLb8-u0PpGTbpBNjGsr3kUmA0bRgOrohxVEMzqKsiAt-87ep2vmf_zyZtpZo_hQeBxeSTTueH8Ceq57Bk749Awva-hxuF78JjhWAlmzjWYNnLjftRKTM1PoC_3B7edUwuo5lVNsSCVddZjhDd5bVP-khp1uvQ63ZX441a-dqpurKKUaZ8xesg_ETx1mDkTEuvdrdPjYvYDWffT9d8NB6gRvUyS1PbObjzE_MROPWSh9bmysRpZ502PlMFYowqVIXGF476VTq89gWzghVpNpHyUsYVJvKvQKWRio1ygqPwiBTjQEeOn020Ta3icmjbARxv8ulCXXJqT3GuryvqNxypkTOlC1nypsRvL1fU3dVOR6cfdQzrwwa2pQ7eRrBu56hu8__p3b4MLXX8Eh0MsSj-AgGyBl3jH7LVo9hfzI_G8Nwevbj82wcRBNHV2J6B5h18NY | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAX3oiFUnyAE1gkjpPUhwrRl7a0XSHUSr0FP8thmw1kxap_gR_Fb2MmcbqARG-9JvYcMl_mYc83A_BKWIlu1CQ8l8JzKaznqkwDT6WniNmIpCDu8PGkGJ_Kj2f52Qr8GrgwVFY52MTOULuZpTPyd-hIpMBwPlPvm2-cpkbR7eowQkPH0Qpuq2sxFokdh_5ygSlcu3Wwi_p-LcT-3snOmMcpA9wi_OY8c0VIi7BpNw1KkSF1rtQiyQPB1YdCK030S2kUZpJeep2HMnXKW6FVbkKSodxbsIZLFCZ_a9t7k0-f_2BmdkNBMYei-iKZRdpOR96jE1l8islgUqhU8cXfrnEZ7_5zRdt5vv37cDeGrOxDj7EHsOLrh3BvGAfBonV4BD_Hl0T_isRONgusRRvPbbcQJTM9PccvOv960TI6_mXUSxMF130lOsPwmTXf6eKo329ib9sfnrVT7xumm9prRpX656xvG0AIYy1m4rj1Ynna2T6G0xtRwhNYrWe1fwosT3RutRMBwSdzgwklBpkuM650mS2TYgTp8JUrG_ug0ziOaXXVwbnTTIWaqTrNVIsRvLna0_RdQK5dvT4or4oWoa2W-B3B20Ghy9f_l_bsemkv4fb45PioOjqYHD6HO6LHE0_SdVhFLfkXGDPNzUYEJoMvN_0v_AYqlivI | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSIgLO6JQwAduYDVxnKQ5VkBVtooDlbhFXgtSm0ZNRcUv8NWMs7SAAIlz7Dnkeex59rwZhE6pZHCMCof4jGrCqNQkCl1DXKZtxCyoE1jt8H0v6PbZzZP_9EnFn2e7V0-ShabBVmlKps1UmeZc-GZvM4EGA5FygsiNyGwZrTBbKAFWdJ-2Pykj86acwGFsfg_zStnMzza-Hk2LePPbE2l-8nQ20XoZMuJ2gfEWWtLJNtqo2jHg0jt30Hv3zcqvSmElHhucwR5LZD4QLGM-HIwnL9PnUYbt9Su2tSzBcFJkgmMIX3E6sQ83xXxR1pZ91Tgbap1iniaaY5spP8CFbN8ijDNgwjB1tLhtzHZRv3P1eNElZasFIsEHp8RTgXED05ItwaVkxlUq5NTxjfVZbQIecatBZSICOq2Z5r4JXRVpSXnkC-N4e6iWjBO9j7DvcF9yRQ2Az3wBhA6CPOUJFSpPhk5QR271l2NZ1iG37TCG8byCco5MDMjEOTLxrI7O5nPSogrHn6MbFXhx6ZFZDIEIo0AHvaiOzitAF59_t3bwv-EnaPXhshPfXfduD9EaLZYXcdwGqgFo-ghCmKk4zlfpB81e63U | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybridization+of+soft-computing+algorithms+with+neural+network+for+prediction+obstructive+sleep+apnea+using+biomedical+sensor+measurements&rft.jtitle=Neural+computing+%26+applications&rft.au=Chyad+Mustafa+Habeeb&rft.au=Gharghan+Sadik+Kamel&rft.au=Hamood+Haider+Qasim&rft.au=Altayyar+Ahmed+Saleh+Hameed&rft.date=2022-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=34&rft.issue=11&rft.spage=8933&rft.epage=8957&rft_id=info:doi/10.1007%2Fs00521-022-06919-w | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |