MDFEM: Multivariate decomposition finite element method for elliptic PDEs with uniform random diffusion coefficients using higher-order QMC and FEM

We introduce the multivariate decomposition finite element method (MDFEM) for solving elliptic PDEs with uniform random diffusion coefficients. We show that the MDFEM can be used to reduce the computational complexity of estimating the expected value of a linear functional of the solution of the PDE...

Full description

Saved in:
Bibliographic Details
Published inNumerische Mathematik Vol. 148; no. 3; pp. 633 - 669
Main Authors Nguyen, Dong T. P., Nuyens, Dirk
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0029-599X
0945-3245
DOI10.1007/s00211-021-01212-9

Cover

Abstract We introduce the multivariate decomposition finite element method (MDFEM) for solving elliptic PDEs with uniform random diffusion coefficients. We show that the MDFEM can be used to reduce the computational complexity of estimating the expected value of a linear functional of the solution of the PDE. The proposed algorithm combines the multivariate decomposition method, to compute infinite-dimensional integrals, with the finite element method, to solve different instances of the PDE. The strategy of the MDFEM is to decompose the infinite-dimensional problem into multiple finite-dimensional ones which lends itself to easier parallelization than to solve a single large dimensional problem. Our first result adjusts the analysis of the multivariate decomposition method to incorporate the ( ln ( n ) ) d -factor which typically appears in error bounds for d -dimensional n -point cubature formulae and we take care of the fact that n needs to come, e.g., in powers of 2 for higher order approximations. For the further analysis we specialize the cubature methods to be two types of quasi-Monte Carlo (QMC) rules, being digitally shifted polynomial lattice rules and interlaced polynomial lattice rules. The second and main contribution then presents a bound on the error of the MDFEM and shows higher-order convergence w.r.t. the total computational cost in case of the interlaced polynomial lattice rules in combination with a higher-order finite element method. We show that the cost to achieve an error ϵ is of order ϵ - a MDFEM with a MDFEM = 1 / λ + d ′ / τ if the QMC cubature errors can be bounded by n - λ and the FE approximations converge like h τ with cost h d ′ , where λ = τ ( 1 - p ∗ ) / ( p ∗ ( 1 + d ′ / τ ) ) and p ∗ is a parameter representing the “sparsity” of the random field expansion. A comparison with a dimension truncation algorithm shows that the MDFEM will perform better than the truncation algorithm if p ∗ is sufficiently small, i.e., the representation of the random field is sufficiently sparse.
AbstractList We introduce the multivariate decomposition finite element method (MDFEM) for solving elliptic PDEs with uniform random diffusion coefficients. We show that the MDFEM can be used to reduce the computational complexity of estimating the expected value of a linear functional of the solution of the PDE. The proposed algorithm combines the multivariate decomposition method, to compute infinite-dimensional integrals, with the finite element method, to solve different instances of the PDE. The strategy of the MDFEM is to decompose the infinite-dimensional problem into multiple finite-dimensional ones which lends itself to easier parallelization than to solve a single large dimensional problem. Our first result adjusts the analysis of the multivariate decomposition method to incorporate the (ln(n))d-factor which typically appears in error bounds for d-dimensional n-point cubature formulae and we take care of the fact that n needs to come, e.g., in powers of 2 for higher order approximations. For the further analysis we specialize the cubature methods to be two types of quasi-Monte Carlo (QMC) rules, being digitally shifted polynomial lattice rules and interlaced polynomial lattice rules. The second and main contribution then presents a bound on the error of the MDFEM and shows higher-order convergence w.r.t. the total computational cost in case of the interlaced polynomial lattice rules in combination with a higher-order finite element method. We show that the cost to achieve an error ϵ is of order ϵ-aMDFEM with aMDFEM=1/λ+d′/τ if the QMC cubature errors can be bounded by n-λ and the FE approximations converge like hτ with cost hd′, where λ=τ(1-p∗)/(p∗(1+d′/τ)) and p∗ is a parameter representing the “sparsity” of the random field expansion. A comparison with a dimension truncation algorithm shows that the MDFEM will perform better than the truncation algorithm if p∗ is sufficiently small, i.e., the representation of the random field is sufficiently sparse.
We introduce the multivariate decomposition finite element method (MDFEM) for solving elliptic PDEs with uniform random diffusion coefficients. We show that the MDFEM can be used to reduce the computational complexity of estimating the expected value of a linear functional of the solution of the PDE. The proposed algorithm combines the multivariate decomposition method, to compute infinite-dimensional integrals, with the finite element method, to solve different instances of the PDE. The strategy of the MDFEM is to decompose the infinite-dimensional problem into multiple finite-dimensional ones which lends itself to easier parallelization than to solve a single large dimensional problem. Our first result adjusts the analysis of the multivariate decomposition method to incorporate the ( ln ( n ) ) d -factor which typically appears in error bounds for d -dimensional n -point cubature formulae and we take care of the fact that n needs to come, e.g., in powers of 2 for higher order approximations. For the further analysis we specialize the cubature methods to be two types of quasi-Monte Carlo (QMC) rules, being digitally shifted polynomial lattice rules and interlaced polynomial lattice rules. The second and main contribution then presents a bound on the error of the MDFEM and shows higher-order convergence w.r.t. the total computational cost in case of the interlaced polynomial lattice rules in combination with a higher-order finite element method. We show that the cost to achieve an error ϵ is of order ϵ - a MDFEM with a MDFEM = 1 / λ + d ′ / τ if the QMC cubature errors can be bounded by n - λ and the FE approximations converge like h τ with cost h d ′ , where λ = τ ( 1 - p ∗ ) / ( p ∗ ( 1 + d ′ / τ ) ) and p ∗ is a parameter representing the “sparsity” of the random field expansion. A comparison with a dimension truncation algorithm shows that the MDFEM will perform better than the truncation algorithm if p ∗ is sufficiently small, i.e., the representation of the random field is sufficiently sparse.
Author Nuyens, Dirk
Nguyen, Dong T. P.
Author_xml – sequence: 1
  givenname: Dong T. P.
  surname: Nguyen
  fullname: Nguyen, Dong T. P.
  organization: Faculty of Computer Science and Engineering, Ho Chi Minh City University of Technology, VNU-HCM
– sequence: 2
  givenname: Dirk
  surname: Nuyens
  fullname: Nuyens, Dirk
  email: dirk.nuyens@cs.kuleuven.be
  organization: Department of Computer Science, KU Leuven
BookMark eNp9UctuHCEQRJEtxY_8QE5IPhM3MMwMuVnrdWLJq9iSD7khloFdrBnYAGMr3-EfNpuNFCkHX7pbRVV1izpFRyEGi9BnCl8oQHeZARilpBYClFFG5Ad0ArIRhLNGHNUZmCRCyp8f0WnOTwC0axt6gl5X1zfL1Ve8msfin3Xyulg8WBOnXcy--Biw88FX0I52sqHgyZZtHLCLqUKj3xVv8P31MuMXX7Z4Dr6-TDjpMMQJD965Oe9dTLTOeeOrRcYVChu89ZutTSSmwSb8sFrgqsH1mnN07PSY7ae__Qw93iwfF9_J3Y9vt4urO2I4lYXwoQHRDK0UVPLWMgZUgjWN0MIYKwA0X3cNZbwHwzrj1u2672DoGkb7Vkh-hi4OtrsUf802F_UU5xTqRsWEaPtWcgqV1R9YJsWck3XK-KL3H1OS9qOioPYJqEMCqhb1JwG1X8D-k-6Sn3T6_b6IH0S5ksPGpn9XvaN6A-zZmw8
CitedBy_id crossref_primary_10_1007_s00211_021_01212_9
crossref_primary_10_1007_s43670_022_00037_3
crossref_primary_10_1080_17476933_2023_2205136
crossref_primary_10_1051_m2an_2021029
Cites_doi 10.1051/m2an/2016051
10.1016/j.jco.2015.09.006
10.1142/S0218202513500218
10.1007/s11075-011-9482-5
10.1016/j.jco.2013.04.008
10.1017/S1446181112000077
10.1016/j.cam.2017.05.031
10.1007/s10208-010-9072-2
10.1007/s10208-014-9198-8
10.1007/s10208-008-9029-x
10.1007/s10208-016-9329-5
10.1007/978-3-7643-8994-9
10.1093/imanum/dry028
10.1016/j.jco.2011.01.006
10.1137/17M111626X
10.1016/j.jco.2010.02.002
10.1090/S0025-5718-05-01742-4
10.1017/S0962492913000044
10.1007/s11075-011-9497-y
10.1007/s00211-018-0991-1
10.1090/S0025-5718-09-02319-9
10.1137/17M1161890
10.1016/j.jat.2017.05.003
10.1137/110845537
10.1007/s10208-014-9237-5
10.1017/S0962492904000182
10.1016/j.jco.2013.05.004
10.1051/m2an/2016045
10.1137/16M1082597
10.1137/130943984
10.1016/j.jco.2009.12.003
10.1007/s00211-014-0689-y
10.1016/j.jat.2014.04.014
10.1142/S0219530511001728
10.1007/s00211-021-01212-9
10.1007/3-540-31186-6_22
10.1007/978-3-319-72456-0_18
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
DOI 10.1007/s00211-021-01212-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 0945-3245
EndPage 669
ExternalDocumentID 10_1007_s00211_021_01212_9
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
41~
5QI
5VS
67Z
692
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KQ8
LAS
LLZTM
LO0
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P2P
P9R
PF0
PKN
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XJT
YLTOR
YNT
YQT
Z45
Z5O
Z7R
Z7X
Z83
Z86
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABUFD
ID FETCH-LOGICAL-c319t-3d4054d6951936e220190ec45a5cce500a3b7412380c27cfb6b870d742186593
IEDL.DBID U2A
ISSN 0029-599X
IngestDate Mon Oct 06 16:24:29 EDT 2025
Wed Oct 01 00:48:34 EDT 2025
Thu Apr 24 23:09:34 EDT 2025
Fri Feb 21 02:48:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 65D30
65D32
65N30
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-3d4054d6951936e220190ec45a5cce500a3b7412380c27cfb6b870d742186593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2556869310
PQPubID 2043616
PageCount 37
ParticipantIDs proquest_journals_2556869310
crossref_citationtrail_10_1007_s00211_021_01212_9
crossref_primary_10_1007_s00211_021_01212_9
springer_journals_10_1007_s00211_021_01212_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Numerische Mathematik
PublicationTitleAbbrev Numer. Math
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Bachmayr, Cohen, Dũng, Schwab (CR2) 2017; 55
Dick, Gnewuch (CR10) 2014; 184
Kuo, Schwab, Sloan (CR27) 2011; 53
CR15
Gantner, Herrmann, Schwab (CR16) 2018; 56
CR36
CR35
CR34
Cohen, DeVore, Schwab (CR7) 2011; 9
CR32
Dũng, Griebel (CR14) 2016; 33
Kuo, Schwab, Sloan (CR29) 2015; 15
Bachmayr, Cohen, Migliorati (CR3) 2017; 51
Dick, Gnewuch (CR9) 2014; 14
Hickernell, Kritzer, Kuo, Nuyens (CR22) 2012; 59
Kuo, Sloan, Wasilkowski, Woźniakowski (CR30) 2010; 26
Cohen, DeVore, Schwab (CR6) 2010; 10
Kuo, Sloan, Wasilkowski, Woźniakowski (CR31) 2010; 79
Kazashi (CR24) 2017; 39
Kuo, Nuyens, Plaskota, Sloan, Wasilkowski (CR26) 2017; 326
Tucsnak, Weiss (CR38) 2009
Gnewuch, Hefter, Hinrichs, Ritter (CR18) 2017; 222
Creutzig, Dereich, Müller-Gronbach, Ritter (CR8) 2009; 9
Dick, Kuo, Sloan (CR13) 2013; 22
Hickernell, Müller-Gronbach, Niu, Ritter (CR23) 2010; 26
Plaskota, Wasilkowski (CR37) 2011; 27
Bungartz, Griebel (CR5) 2004; 13
Bachmayr, Cohen, DeVore, Migliorati (CR1) 2017; 51
Dick, Kuo, Le Gia, Nuyens, Schwab (CR11) 2014; 52
Dick, Kuo, Pillichshammer, Sloan (CR12) 2005; 74
Herrmann, Schwab (CR21) 2019; 141
Nistor, Schwab (CR33) 2013; 23
Baldeaux, Dick, Leobacher, Nuyens, Pillichshammer (CR4) 2012; 59
Wasilkowski (CR39) 2013; 29
Graham, Kuo, Nichols, Scheichl, Schwab, Sloan (CR20) 2015; 131
Gilbert, Kuo, Nuyens, Wasilkowski (CR17) 2018; 40
Kuo, Nuyens (CR25) 2016; 16
Kuo, Schwab, Sloan (CR28) 2012; 50
Gnewuch, Mayer, Ritter (CR19) 2014; 30
IG Graham (1212_CR20) 2015; 131
FY Kuo (1212_CR27) 2011; 53
M Bachmayr (1212_CR1) 2017; 51
M Gnewuch (1212_CR19) 2014; 30
GW Wasilkowski (1212_CR39) 2013; 29
J Dick (1212_CR9) 2014; 14
M Tucsnak (1212_CR38) 2009
A Cohen (1212_CR6) 2010; 10
J Dick (1212_CR10) 2014; 184
M Bachmayr (1212_CR3) 2017; 51
FY Kuo (1212_CR25) 2016; 16
J Dick (1212_CR11) 2014; 52
L Plaskota (1212_CR37) 2011; 27
M Gnewuch (1212_CR18) 2017; 222
J Baldeaux (1212_CR4) 2012; 59
FY Kuo (1212_CR29) 2015; 15
1212_CR15
D Dũng (1212_CR14) 2016; 33
M Bachmayr (1212_CR2) 2017; 55
FJ Hickernell (1212_CR22) 2012; 59
Y Kazashi (1212_CR24) 2017; 39
FY Kuo (1212_CR26) 2017; 326
A Cohen (1212_CR7) 2011; 9
RN Gantner (1212_CR16) 2018; 56
FY Kuo (1212_CR30) 2010; 26
V Nistor (1212_CR33) 2013; 23
FY Kuo (1212_CR28) 2012; 50
J Creutzig (1212_CR8) 2009; 9
FY Kuo (1212_CR31) 2010; 79
H-J Bungartz (1212_CR5) 2004; 13
J Dick (1212_CR12) 2005; 74
AD Gilbert (1212_CR17) 2018; 40
J Dick (1212_CR13) 2013; 22
1212_CR32
1212_CR35
L Herrmann (1212_CR21) 2019; 141
FJ Hickernell (1212_CR23) 2010; 26
1212_CR36
1212_CR34
References_xml – volume: 51
  start-page: 341
  issue: 1
  year: 2017
  end-page: 363
  ident: CR1
  article-title: Sparse polynomial approximation of parametric elliptic PDEs. Part II: lognormal coefficients
  publication-title: ESAIM: Math. Model. Numer. Anal.
  doi: 10.1051/m2an/2016051
– volume: 33
  start-page: 55
  year: 2016
  end-page: 88
  ident: CR14
  article-title: Hyperbolic cross approximation in infinite dimensions
  publication-title: J. Complex.
  doi: 10.1016/j.jco.2015.09.006
– volume: 23
  start-page: 1729
  issue: 09
  year: 2013
  end-page: 1760
  ident: CR33
  article-title: High-order Galerkin approximations for parametric second-order elliptic partial differential equations
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202513500218
– volume: 59
  start-page: 161
  issue: 2
  year: 2012
  end-page: 183
  ident: CR22
  article-title: Weighted compound integration rules with higher order convergence for all
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-011-9482-5
– volume: 29
  start-page: 351
  issue: 5
  year: 2013
  end-page: 369
  ident: CR39
  article-title: On tractability of linear tensor product problems for -variate classes of functions
  publication-title: J. Complex.
  doi: 10.1016/j.jco.2013.04.008
– volume: 53
  start-page: 1
  issue: 1
  year: 2011
  end-page: 37
  ident: CR27
  article-title: Quasi-Monte Carlo methods for high-dimensional integration: the standard (weighted Hilbert space) setting and beyond
  publication-title: ANZIAM J.
  doi: 10.1017/S1446181112000077
– volume: 326
  start-page: 217
  year: 2017
  end-page: 234
  ident: CR26
  article-title: Infinite-dimensional integration and the multivariate decomposition method
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2017.05.031
– volume: 10
  start-page: 615
  issue: 6
  year: 2010
  end-page: 646
  ident: CR6
  article-title: Convergence rates of best -term Galerkin approximations for a class of elliptic sPDEs
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-010-9072-2
– volume: 14
  start-page: 1027
  issue: 5
  year: 2014
  end-page: 1077
  ident: CR9
  article-title: Infinite-dimensional integration in weighted Hilbert spaces: anchored decompositions, optimal deterministic algorithms, and higher-order convergence
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-014-9198-8
– volume: 9
  start-page: 391
  issue: 4
  year: 2009
  end-page: 429
  ident: CR8
  article-title: Infinite-dimensional quadrature and approximation of distributions
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-008-9029-x
– volume: 16
  start-page: 1631
  issue: 6
  year: 2016
  end-page: 1696
  ident: CR25
  article-title: Application of quasi-Monte Carlo methods to elliptic PDEs with random diffusion coefficients: a survey of analysis and implementation
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-016-9329-5
– year: 2009
  ident: CR38
  publication-title: Observation and Control for Operator Semigroups
  doi: 10.1007/978-3-7643-8994-9
– volume: 39
  start-page: 1563
  year: 2017
  end-page: 1593
  ident: CR24
  article-title: Quasi-Monte Carlo integration with product weights for elliptic PDEs with log-normal coefficients
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/dry028
– ident: CR35
– volume: 27
  start-page: 505
  issue: 6
  year: 2011
  end-page: 518
  ident: CR37
  article-title: Tractability of infinite-dimensional integration in the worst case and randomized settings
  publication-title: J. Complex.
  doi: 10.1016/j.jco.2011.01.006
– volume: 55
  start-page: 2151
  issue: 5
  year: 2017
  end-page: 2186
  ident: CR2
  article-title: Fully discrete approximation of parametric and stochastic elliptic PDEs
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/17M111626X
– volume: 26
  start-page: 229
  issue: 3
  year: 2010
  end-page: 254
  ident: CR23
  article-title: Multi-level Monte Carlo algorithms for infinite-dimensional integration on
  publication-title: J. Complex.
  doi: 10.1016/j.jco.2010.02.002
– volume: 74
  start-page: 1895
  issue: 252
  year: 2005
  end-page: 1921
  ident: CR12
  article-title: Construction algorithms for polynomial lattice rules for multivariate integration
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-05-01742-4
– volume: 22
  start-page: 133
  year: 2013
  end-page: 288
  ident: CR13
  article-title: High-dimensional integration: the quasi-Monte Carlo way
  publication-title: Acta Numer.
  doi: 10.1017/S0962492913000044
– volume: 59
  start-page: 403
  issue: 3
  year: 2012
  end-page: 431
  ident: CR4
  article-title: Efficient calculation of the worst-case error and (fast) component-by-component construction of higher order polynomial lattice rules
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-011-9497-y
– volume: 141
  start-page: 63
  issue: 1
  year: 2019
  end-page: 102
  ident: CR21
  article-title: QMC integration for lognormal-parametric, elliptic PDEs: local supports and product weights
  publication-title: Numer. Math.
  doi: 10.1007/s00211-018-0991-1
– volume: 79
  start-page: 953
  issue: 270
  year: 2010
  end-page: 966
  ident: CR31
  article-title: On decompositions of multivariate functions
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-09-02319-9
– ident: CR15
– volume: 40
  start-page: A3240
  issue: 5
  year: 2018
  end-page: A3266
  ident: CR17
  article-title: Efficient implementations of the multivariate decomposition method for approximating infinite-variate integrals
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/17M1161890
– volume: 222
  start-page: 8
  year: 2017
  end-page: 19
  ident: CR18
  article-title: Embeddings of weighted Hilbert spaces and applications to multivariate and infinite-dimensional integration
  publication-title: J. Approx. Theory
  doi: 10.1016/j.jat.2017.05.003
– volume: 50
  start-page: 3351
  issue: 6
  year: 2012
  end-page: 3374
  ident: CR28
  article-title: Quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/110845537
– volume: 15
  start-page: 411
  issue: 2
  year: 2015
  end-page: 449
  ident: CR29
  article-title: Multi-level quasi-Monte Carlo finite element methods for a class of elliptic PDEs with random coefficients
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-014-9237-5
– volume: 13
  start-page: 147
  year: 2004
  end-page: 269
  ident: CR5
  article-title: Sparse grids
  publication-title: Acta Numer.
  doi: 10.1017/S0962492904000182
– volume: 30
  start-page: 29
  issue: 2
  year: 2014
  end-page: 47
  ident: CR19
  article-title: On weighted Hilbert spaces and integration of functions of infinitely many variables
  publication-title: J. Complex.
  doi: 10.1016/j.jco.2013.05.004
– ident: CR32
– volume: 51
  start-page: 321
  issue: 1
  year: 2017
  end-page: 339
  ident: CR3
  article-title: Sparse polynomial approximation of parametric elliptic PDEs. Part I: affine coefficients
  publication-title: ESAIM: Math. Model. Numer. Anal.
  doi: 10.1051/m2an/2016045
– volume: 56
  start-page: 111
  issue: 1
  year: 2018
  end-page: 135
  ident: CR16
  article-title: Quasi-Monte Carlo integration for affine-parametric, elliptic PDEs: local supports and product weights
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/16M1082597
– ident: CR34
– ident: CR36
– volume: 52
  start-page: 2676
  issue: 6
  year: 2014
  end-page: 2702
  ident: CR11
  article-title: Higher order QMC Petrov–Galerkin discretization for affine parametric operator equations with random field inputs
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/130943984
– volume: 26
  start-page: 422
  issue: 5
  year: 2010
  end-page: 454
  ident: CR30
  article-title: Liberating the dimension
  publication-title: J. Complex.
  doi: 10.1016/j.jco.2009.12.003
– volume: 131
  start-page: 329
  issue: 2
  year: 2015
  end-page: 368
  ident: CR20
  article-title: Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients
  publication-title: Numer. Math.
  doi: 10.1007/s00211-014-0689-y
– volume: 184
  start-page: 111
  year: 2014
  end-page: 145
  ident: CR10
  article-title: Optimal randomized changing dimension algorithms for infinite-dimensional integration on function spaces with ANOVA-type decomposition
  publication-title: J. Approx. Theory
  doi: 10.1016/j.jat.2014.04.014
– volume: 9
  start-page: 11
  issue: 01
  year: 2011
  end-page: 47
  ident: CR7
  article-title: Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs
  publication-title: Anal. Appl.
  doi: 10.1142/S0219530511001728
– volume: 29
  start-page: 351
  issue: 5
  year: 2013
  ident: 1212_CR39
  publication-title: J. Complex.
  doi: 10.1016/j.jco.2013.04.008
– volume: 26
  start-page: 229
  issue: 3
  year: 2010
  ident: 1212_CR23
  publication-title: J. Complex.
  doi: 10.1016/j.jco.2010.02.002
– ident: 1212_CR35
– volume: 141
  start-page: 63
  issue: 1
  year: 2019
  ident: 1212_CR21
  publication-title: Numer. Math.
  doi: 10.1007/s00211-018-0991-1
– volume: 40
  start-page: A3240
  issue: 5
  year: 2018
  ident: 1212_CR17
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/17M1161890
– volume: 10
  start-page: 615
  issue: 6
  year: 2010
  ident: 1212_CR6
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-010-9072-2
– volume: 15
  start-page: 411
  issue: 2
  year: 2015
  ident: 1212_CR29
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-014-9237-5
– volume: 55
  start-page: 2151
  issue: 5
  year: 2017
  ident: 1212_CR2
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/17M111626X
– ident: 1212_CR32
  doi: 10.1007/s00211-021-01212-9
– volume: 39
  start-page: 1563
  year: 2017
  ident: 1212_CR24
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/dry028
– volume: 30
  start-page: 29
  issue: 2
  year: 2014
  ident: 1212_CR19
  publication-title: J. Complex.
  doi: 10.1016/j.jco.2013.05.004
– volume: 33
  start-page: 55
  year: 2016
  ident: 1212_CR14
  publication-title: J. Complex.
  doi: 10.1016/j.jco.2015.09.006
– volume: 27
  start-page: 505
  issue: 6
  year: 2011
  ident: 1212_CR37
  publication-title: J. Complex.
  doi: 10.1016/j.jco.2011.01.006
– volume: 13
  start-page: 147
  year: 2004
  ident: 1212_CR5
  publication-title: Acta Numer.
  doi: 10.1017/S0962492904000182
– volume: 16
  start-page: 1631
  issue: 6
  year: 2016
  ident: 1212_CR25
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-016-9329-5
– volume: 9
  start-page: 11
  issue: 01
  year: 2011
  ident: 1212_CR7
  publication-title: Anal. Appl.
  doi: 10.1142/S0219530511001728
– volume-title: Observation and Control for Operator Semigroups
  year: 2009
  ident: 1212_CR38
  doi: 10.1007/978-3-7643-8994-9
– volume: 26
  start-page: 422
  issue: 5
  year: 2010
  ident: 1212_CR30
  publication-title: J. Complex.
  doi: 10.1016/j.jco.2009.12.003
– volume: 51
  start-page: 321
  issue: 1
  year: 2017
  ident: 1212_CR3
  publication-title: ESAIM: Math. Model. Numer. Anal.
  doi: 10.1051/m2an/2016045
– volume: 59
  start-page: 403
  issue: 3
  year: 2012
  ident: 1212_CR4
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-011-9497-y
– volume: 56
  start-page: 111
  issue: 1
  year: 2018
  ident: 1212_CR16
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/16M1082597
– volume: 131
  start-page: 329
  issue: 2
  year: 2015
  ident: 1212_CR20
  publication-title: Numer. Math.
  doi: 10.1007/s00211-014-0689-y
– volume: 53
  start-page: 1
  issue: 1
  year: 2011
  ident: 1212_CR27
  publication-title: ANZIAM J.
  doi: 10.1017/S1446181112000077
– ident: 1212_CR34
– ident: 1212_CR36
  doi: 10.1007/3-540-31186-6_22
– volume: 79
  start-page: 953
  issue: 270
  year: 2010
  ident: 1212_CR31
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-09-02319-9
– volume: 23
  start-page: 1729
  issue: 09
  year: 2013
  ident: 1212_CR33
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202513500218
– volume: 50
  start-page: 3351
  issue: 6
  year: 2012
  ident: 1212_CR28
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/110845537
– volume: 22
  start-page: 133
  year: 2013
  ident: 1212_CR13
  publication-title: Acta Numer.
  doi: 10.1017/S0962492913000044
– volume: 59
  start-page: 161
  issue: 2
  year: 2012
  ident: 1212_CR22
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-011-9482-5
– volume: 9
  start-page: 391
  issue: 4
  year: 2009
  ident: 1212_CR8
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-008-9029-x
– volume: 184
  start-page: 111
  year: 2014
  ident: 1212_CR10
  publication-title: J. Approx. Theory
  doi: 10.1016/j.jat.2014.04.014
– volume: 14
  start-page: 1027
  issue: 5
  year: 2014
  ident: 1212_CR9
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-014-9198-8
– volume: 51
  start-page: 341
  issue: 1
  year: 2017
  ident: 1212_CR1
  publication-title: ESAIM: Math. Model. Numer. Anal.
  doi: 10.1051/m2an/2016051
– volume: 52
  start-page: 2676
  issue: 6
  year: 2014
  ident: 1212_CR11
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/130943984
– volume: 222
  start-page: 8
  year: 2017
  ident: 1212_CR18
  publication-title: J. Approx. Theory
  doi: 10.1016/j.jat.2017.05.003
– volume: 326
  start-page: 217
  year: 2017
  ident: 1212_CR26
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2017.05.031
– volume: 74
  start-page: 1895
  issue: 252
  year: 2005
  ident: 1212_CR12
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-05-01742-4
– ident: 1212_CR15
  doi: 10.1007/978-3-319-72456-0_18
SSID ssj0017641
Score 2.3306887
Snippet We introduce the multivariate decomposition finite element method (MDFEM) for solving elliptic PDEs with uniform random diffusion coefficients. We show that...
We introduce the multivariate decomposition finite element method (MDFEM) for solving elliptic PDEs with uniform random diffusion coefficients. We show that...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 633
SubjectTerms Algorithms
Approximation
Computing costs
Convergence
Decomposition
Elliptic differential equations
Errors
Fields (mathematics)
Finite element analysis
Finite element method
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Monte Carlo simulation
Multivariate analysis
Numerical Analysis
Numerical and Computational Physics
Parallel processing
Partial differential equations
Polynomials
Simulation
Theoretical
Title MDFEM: Multivariate decomposition finite element method for elliptic PDEs with uniform random diffusion coefficients using higher-order QMC and FEM
URI https://link.springer.com/article/10.1007/s00211-021-01212-9
https://www.proquest.com/docview/2556869310
Volume 148
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 0945-3245
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017641
  issn: 0029-599X
  databaseCode: AFBBN
  dateStart: 19591201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 0945-3245
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017641
  issn: 0029-599X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 0945-3245
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017641
  issn: 0029-599X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50vejBt7i6yhy8aWH7SGq9LftQlIqCwnoq2yRVQbtid_0j_mFnsm1FUcFLLm1C6SSZb5JvvgE4SEOf65lkFOS4mRMIXzlpRs1xltEMUkZ5hvOd40t5dhucD8WwTAorKrZ7dSVpd-o62Y3dEYW-Hoe_tOE60TwsCJbzoll863Xqu4NQBm5F7BBRNCxTZX4e46s7-sSY365FrbcZrMJyCROxM7PrGsyZfB1WqhIMWK7IdViKa9nVYgPe496gH5-gzap9oyiYgCRqw7TxkpuF2SODTDQz1jjOCkgjIVdkZU7aPxRe9foF8vksTnPO23pG8md6_IxcTGXKp2uoxsZKTzALA5k6f48PljDiWClPvI67SH2QvmYTbgb9m-6ZU1ZdcBQtx4nja8JwgZYRYztpPI-zzY0KxEgoZUS7PfJTgiHk6tvKC1WWypTWvKYQ2z2WIvK3oJGPc7MNaIwMXaH1SAvCDYKRUZiadiiljuQokE1wq3-fqFKRnAtjPCW1lrK1V0JNYu2VRE04rPu8zPQ4_ny7VZk0KddmkVjRNRkRrm3CUWXmz8e_j7bzv9d3YdGzM425vS1oTF6nZo8QzCTdh4XO6d1Ff99O3A-O3edl
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHIADSwFR1jlwg0jNYodwQ9CqLKlAKlJvUWM7gERbRFp-hB9mxk2CQIDExZfEVpSxPW_sN28ADtPQ53omGQU5buYEwldOmlFzkmU0g5RRnuF857gj2_fBVU_0iqSwvGS7l1eSdqeukt3YHVHo63H4SxuuE83CPAtYsWL-vXdW3R2EMnBLYoeIol6RKvPzGF_d0SfG_HYtar1NaxWWC5iIZ1O7rsGMGdZgpSzBgMWKrMFSXMmu5uvwHl-0mvEp2qzaN4qCCUiiNkwbL7hZmD0xyEQzZY3jtIA0EnJFVuak_UPh7UUzRz6fxcmQ87YGSP5MjwbIxVQmfLqGamSs9ASzMJCp8w_4aAkjjpXyxLv4HKkP0tdsQLfV7J63naLqgqNoOY4dXxOGC7SMGNtJ43mcbW5UIPpCKSMajb6fEgwhV99QXqiyVKa05jWF2O6JFJG_CXPD0dBsARojQ1do3deCcINgZBSmphFKqSPZD2Qd3PLfJ6pQJOfCGM9JpaVs7ZVQk1h7JVEdjqo-L1M9jj_f3i1NmhRrM0-s6JqMCNfW4bg08-fj30fb_t_rB7DQ7sY3yc1l53oHFj0765jnuwtz49eJ2SM0M0737eT9AEY96L0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xSAgO7IiyzoEbRDSLHcIN0VZsQSCB1FvU2A4gQYpoy4_ww8w4C4sAiYsvia0oY3ve2G_eAOykoc_1TDIKctzMCYSvnDSj5iDLaAYpozzD-c7xpTy5Dc66ovspi9-y3asrySKngVWa8uH-s87268Q3dk0UBnscCtPm60TjMBmwUALN6FvvqL5HCGXgViQPEUXdMm3m5zG-uqYPvPntitR6ns48zJaQEY8KGy_AmMkXYa4qx4Dl6lyEmbiWYB0swVvc6rTjQ7QZtq8UEROoRG2YQl7ytDB7YMCJpmCQY1FMGgnFIqt00l6i8KrVHiCf1eIo5xyuJyTfpvtPyIVVRnzShqpvrAwFMzKQafR3eG_JI46V9cTr-BipD9LXLMNNp31zfOKUFRgcRUtz6Pia8FygZcQ4TxrP48xzowLRE0oZ0Wz2_JQgCbn9pvJClaUypfWvKdx2D6SI_BWYyPu5WQU0Roau0LqnBWEIwSgpTE0zlFJHshfIBrjVv09UqU7ORTIek1pX2doroSax9kqiBuzWfZ4LbY4_396oTJqU63SQWAE2GRHGbcBeZeaPx7-Ptva_17dh6qrVSS5OL8_XYdqzk44pvxswMXwZmU0CNsN0y87dd9Kv7Pk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MDFEM%3A+Multivariate+decomposition+finite+element+method+for+elliptic+PDEs+with+uniform+random+diffusion+coefficients+using+higher-order+QMC+and+FEM&rft.jtitle=Numerische+Mathematik&rft.au=Nguyen%2C+Dong+T.+P.&rft.au=Nuyens%2C+Dirk&rft.date=2021-07-01&rft.issn=0029-599X&rft.eissn=0945-3245&rft.volume=148&rft.issue=3&rft.spage=633&rft.epage=669&rft_id=info:doi/10.1007%2Fs00211-021-01212-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00211_021_01212_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-599X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-599X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-599X&client=summon