MDFEM: Multivariate decomposition finite element method for elliptic PDEs with uniform random diffusion coefficients using higher-order QMC and FEM
We introduce the multivariate decomposition finite element method (MDFEM) for solving elliptic PDEs with uniform random diffusion coefficients. We show that the MDFEM can be used to reduce the computational complexity of estimating the expected value of a linear functional of the solution of the PDE...
        Saved in:
      
    
          | Published in | Numerische Mathematik Vol. 148; no. 3; pp. 633 - 669 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        01.07.2021
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0029-599X 0945-3245  | 
| DOI | 10.1007/s00211-021-01212-9 | 
Cover
| Abstract | We introduce the
multivariate decomposition finite element method
(MDFEM) for solving elliptic PDEs with uniform random diffusion coefficients. We show that the MDFEM can be used to reduce the computational complexity of estimating the expected value of a linear functional of the solution of the PDE. The proposed algorithm combines the multivariate decomposition method, to compute infinite-dimensional integrals, with the finite element method, to solve different instances of the PDE. The strategy of the MDFEM is to decompose the infinite-dimensional problem into multiple finite-dimensional ones which lends itself to easier parallelization than to solve a single large dimensional problem. Our first result adjusts the analysis of the multivariate decomposition method to incorporate the
(
ln
(
n
)
)
d
-factor which typically appears in error bounds for
d
-dimensional
n
-point cubature formulae and we take care of the fact that
n
needs to come, e.g., in powers of 2 for higher order approximations. For the further analysis we specialize the cubature methods to be two types of quasi-Monte Carlo (QMC) rules, being digitally shifted polynomial lattice rules and interlaced polynomial lattice rules. The second and main contribution then presents a bound on the error of the MDFEM and shows higher-order convergence w.r.t. the total computational cost in case of the interlaced polynomial lattice rules in combination with a higher-order finite element method. We show that the cost to achieve an error
ϵ
is of order
ϵ
-
a
MDFEM
with
a
MDFEM
=
1
/
λ
+
d
′
/
τ
if the QMC cubature errors can be bounded by
n
-
λ
and the FE approximations converge like
h
τ
with cost
h
d
′
, where
λ
=
τ
(
1
-
p
∗
)
/
(
p
∗
(
1
+
d
′
/
τ
)
)
and
p
∗
is a parameter representing the “sparsity” of the random field expansion. A comparison with a dimension truncation algorithm shows that the MDFEM will perform better than the truncation algorithm if
p
∗
is sufficiently small, i.e., the representation of the random field is sufficiently sparse. | 
    
|---|---|
| AbstractList | We introduce the multivariate decomposition finite element method (MDFEM) for solving elliptic PDEs with uniform random diffusion coefficients. We show that the MDFEM can be used to reduce the computational complexity of estimating the expected value of a linear functional of the solution of the PDE. The proposed algorithm combines the multivariate decomposition method, to compute infinite-dimensional integrals, with the finite element method, to solve different instances of the PDE. The strategy of the MDFEM is to decompose the infinite-dimensional problem into multiple finite-dimensional ones which lends itself to easier parallelization than to solve a single large dimensional problem. Our first result adjusts the analysis of the multivariate decomposition method to incorporate the (ln(n))d-factor which typically appears in error bounds for d-dimensional n-point cubature formulae and we take care of the fact that n needs to come, e.g., in powers of 2 for higher order approximations. For the further analysis we specialize the cubature methods to be two types of quasi-Monte Carlo (QMC) rules, being digitally shifted polynomial lattice rules and interlaced polynomial lattice rules. The second and main contribution then presents a bound on the error of the MDFEM and shows higher-order convergence w.r.t. the total computational cost in case of the interlaced polynomial lattice rules in combination with a higher-order finite element method. We show that the cost to achieve an error ϵ is of order ϵ-aMDFEM with aMDFEM=1/λ+d′/τ if the QMC cubature errors can be bounded by n-λ and the FE approximations converge like hτ with cost hd′, where λ=τ(1-p∗)/(p∗(1+d′/τ)) and p∗ is a parameter representing the “sparsity” of the random field expansion. A comparison with a dimension truncation algorithm shows that the MDFEM will perform better than the truncation algorithm if p∗ is sufficiently small, i.e., the representation of the random field is sufficiently sparse. We introduce the multivariate decomposition finite element method (MDFEM) for solving elliptic PDEs with uniform random diffusion coefficients. We show that the MDFEM can be used to reduce the computational complexity of estimating the expected value of a linear functional of the solution of the PDE. The proposed algorithm combines the multivariate decomposition method, to compute infinite-dimensional integrals, with the finite element method, to solve different instances of the PDE. The strategy of the MDFEM is to decompose the infinite-dimensional problem into multiple finite-dimensional ones which lends itself to easier parallelization than to solve a single large dimensional problem. Our first result adjusts the analysis of the multivariate decomposition method to incorporate the ( ln ( n ) ) d -factor which typically appears in error bounds for d -dimensional n -point cubature formulae and we take care of the fact that n needs to come, e.g., in powers of 2 for higher order approximations. For the further analysis we specialize the cubature methods to be two types of quasi-Monte Carlo (QMC) rules, being digitally shifted polynomial lattice rules and interlaced polynomial lattice rules. The second and main contribution then presents a bound on the error of the MDFEM and shows higher-order convergence w.r.t. the total computational cost in case of the interlaced polynomial lattice rules in combination with a higher-order finite element method. We show that the cost to achieve an error ϵ is of order ϵ - a MDFEM with a MDFEM = 1 / λ + d ′ / τ if the QMC cubature errors can be bounded by n - λ and the FE approximations converge like h τ with cost h d ′ , where λ = τ ( 1 - p ∗ ) / ( p ∗ ( 1 + d ′ / τ ) ) and p ∗ is a parameter representing the “sparsity” of the random field expansion. A comparison with a dimension truncation algorithm shows that the MDFEM will perform better than the truncation algorithm if p ∗ is sufficiently small, i.e., the representation of the random field is sufficiently sparse.  | 
    
| Author | Nuyens, Dirk Nguyen, Dong T. P.  | 
    
| Author_xml | – sequence: 1 givenname: Dong T. P. surname: Nguyen fullname: Nguyen, Dong T. P. organization: Faculty of Computer Science and Engineering, Ho Chi Minh City University of Technology, VNU-HCM – sequence: 2 givenname: Dirk surname: Nuyens fullname: Nuyens, Dirk email: dirk.nuyens@cs.kuleuven.be organization: Department of Computer Science, KU Leuven  | 
    
| BookMark | eNp9UctuHCEQRJEtxY_8QE5IPhM3MMwMuVnrdWLJq9iSD7khloFdrBnYAGMr3-EfNpuNFCkHX7pbRVV1izpFRyEGi9BnCl8oQHeZARilpBYClFFG5Ad0ArIRhLNGHNUZmCRCyp8f0WnOTwC0axt6gl5X1zfL1Ve8msfin3Xyulg8WBOnXcy--Biw88FX0I52sqHgyZZtHLCLqUKj3xVv8P31MuMXX7Z4Dr6-TDjpMMQJD965Oe9dTLTOeeOrRcYVChu89ZutTSSmwSb8sFrgqsH1mnN07PSY7ae__Qw93iwfF9_J3Y9vt4urO2I4lYXwoQHRDK0UVPLWMgZUgjWN0MIYKwA0X3cNZbwHwzrj1u2672DoGkb7Vkh-hi4OtrsUf802F_UU5xTqRsWEaPtWcgqV1R9YJsWck3XK-KL3H1OS9qOioPYJqEMCqhb1JwG1X8D-k-6Sn3T6_b6IH0S5ksPGpn9XvaN6A-zZmw8 | 
    
| CitedBy_id | crossref_primary_10_1007_s00211_021_01212_9 crossref_primary_10_1007_s43670_022_00037_3 crossref_primary_10_1080_17476933_2023_2205136 crossref_primary_10_1051_m2an_2021029  | 
    
| Cites_doi | 10.1051/m2an/2016051 10.1016/j.jco.2015.09.006 10.1142/S0218202513500218 10.1007/s11075-011-9482-5 10.1016/j.jco.2013.04.008 10.1017/S1446181112000077 10.1016/j.cam.2017.05.031 10.1007/s10208-010-9072-2 10.1007/s10208-014-9198-8 10.1007/s10208-008-9029-x 10.1007/s10208-016-9329-5 10.1007/978-3-7643-8994-9 10.1093/imanum/dry028 10.1016/j.jco.2011.01.006 10.1137/17M111626X 10.1016/j.jco.2010.02.002 10.1090/S0025-5718-05-01742-4 10.1017/S0962492913000044 10.1007/s11075-011-9497-y 10.1007/s00211-018-0991-1 10.1090/S0025-5718-09-02319-9 10.1137/17M1161890 10.1016/j.jat.2017.05.003 10.1137/110845537 10.1007/s10208-014-9237-5 10.1017/S0962492904000182 10.1016/j.jco.2013.05.004 10.1051/m2an/2016045 10.1137/16M1082597 10.1137/130943984 10.1016/j.jco.2009.12.003 10.1007/s00211-014-0689-y 10.1016/j.jat.2014.04.014 10.1142/S0219530511001728 10.1007/s00211-021-01212-9 10.1007/3-540-31186-6_22 10.1007/978-3-319-72456-0_18  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.  | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.  | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1007/s00211-021-01212-9 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics Computer Science  | 
    
| EISSN | 0945-3245 | 
    
| EndPage | 669 | 
    
| ExternalDocumentID | 10_1007_s00211_021_01212_9 | 
    
| GroupedDBID | --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 203 29N 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 41~ 5QI 5VS 67Z 692 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KQ8 LAS LLZTM LO0 M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 P19 P2P P9R PF0 PKN PT4 PT5 QOK QOS R4E R89 R9I REI RHV RIG RNI RNS ROL RPX RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XJT YLTOR YNT YQT Z45 Z5O Z7R Z7X Z83 Z86 Z88 Z8M Z8R Z8W Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABUFD  | 
    
| ID | FETCH-LOGICAL-c319t-3d4054d6951936e220190ec45a5cce500a3b7412380c27cfb6b870d742186593 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 0029-599X | 
    
| IngestDate | Mon Oct 06 16:24:29 EDT 2025 Wed Oct 01 00:48:34 EDT 2025 Thu Apr 24 23:09:34 EDT 2025 Fri Feb 21 02:48:09 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | 65D30 65D32 65N30  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c319t-3d4054d6951936e220190ec45a5cce500a3b7412380c27cfb6b870d742186593 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2556869310 | 
    
| PQPubID | 2043616 | 
    
| PageCount | 37 | 
    
| ParticipantIDs | proquest_journals_2556869310 crossref_citationtrail_10_1007_s00211_021_01212_9 crossref_primary_10_1007_s00211_021_01212_9 springer_journals_10_1007_s00211_021_01212_9  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-07-01 | 
    
| PublicationDateYYYYMMDD | 2021-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg  | 
    
| PublicationTitle | Numerische Mathematik | 
    
| PublicationTitleAbbrev | Numer. Math | 
    
| PublicationYear | 2021 | 
    
| Publisher | Springer Berlin Heidelberg Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V  | 
    
| References | Bachmayr, Cohen, Dũng, Schwab (CR2) 2017; 55 Dick, Gnewuch (CR10) 2014; 184 Kuo, Schwab, Sloan (CR27) 2011; 53 CR15 Gantner, Herrmann, Schwab (CR16) 2018; 56 CR36 CR35 CR34 Cohen, DeVore, Schwab (CR7) 2011; 9 CR32 Dũng, Griebel (CR14) 2016; 33 Kuo, Schwab, Sloan (CR29) 2015; 15 Bachmayr, Cohen, Migliorati (CR3) 2017; 51 Dick, Gnewuch (CR9) 2014; 14 Hickernell, Kritzer, Kuo, Nuyens (CR22) 2012; 59 Kuo, Sloan, Wasilkowski, Woźniakowski (CR30) 2010; 26 Cohen, DeVore, Schwab (CR6) 2010; 10 Kuo, Sloan, Wasilkowski, Woźniakowski (CR31) 2010; 79 Kazashi (CR24) 2017; 39 Kuo, Nuyens, Plaskota, Sloan, Wasilkowski (CR26) 2017; 326 Tucsnak, Weiss (CR38) 2009 Gnewuch, Hefter, Hinrichs, Ritter (CR18) 2017; 222 Creutzig, Dereich, Müller-Gronbach, Ritter (CR8) 2009; 9 Dick, Kuo, Sloan (CR13) 2013; 22 Hickernell, Müller-Gronbach, Niu, Ritter (CR23) 2010; 26 Plaskota, Wasilkowski (CR37) 2011; 27 Bungartz, Griebel (CR5) 2004; 13 Bachmayr, Cohen, DeVore, Migliorati (CR1) 2017; 51 Dick, Kuo, Le Gia, Nuyens, Schwab (CR11) 2014; 52 Dick, Kuo, Pillichshammer, Sloan (CR12) 2005; 74 Herrmann, Schwab (CR21) 2019; 141 Nistor, Schwab (CR33) 2013; 23 Baldeaux, Dick, Leobacher, Nuyens, Pillichshammer (CR4) 2012; 59 Wasilkowski (CR39) 2013; 29 Graham, Kuo, Nichols, Scheichl, Schwab, Sloan (CR20) 2015; 131 Gilbert, Kuo, Nuyens, Wasilkowski (CR17) 2018; 40 Kuo, Nuyens (CR25) 2016; 16 Kuo, Schwab, Sloan (CR28) 2012; 50 Gnewuch, Mayer, Ritter (CR19) 2014; 30 IG Graham (1212_CR20) 2015; 131 FY Kuo (1212_CR27) 2011; 53 M Bachmayr (1212_CR1) 2017; 51 M Gnewuch (1212_CR19) 2014; 30 GW Wasilkowski (1212_CR39) 2013; 29 J Dick (1212_CR9) 2014; 14 M Tucsnak (1212_CR38) 2009 A Cohen (1212_CR6) 2010; 10 J Dick (1212_CR10) 2014; 184 M Bachmayr (1212_CR3) 2017; 51 FY Kuo (1212_CR25) 2016; 16 J Dick (1212_CR11) 2014; 52 L Plaskota (1212_CR37) 2011; 27 M Gnewuch (1212_CR18) 2017; 222 J Baldeaux (1212_CR4) 2012; 59 FY Kuo (1212_CR29) 2015; 15 1212_CR15 D Dũng (1212_CR14) 2016; 33 M Bachmayr (1212_CR2) 2017; 55 FJ Hickernell (1212_CR22) 2012; 59 Y Kazashi (1212_CR24) 2017; 39 FY Kuo (1212_CR26) 2017; 326 A Cohen (1212_CR7) 2011; 9 RN Gantner (1212_CR16) 2018; 56 FY Kuo (1212_CR30) 2010; 26 V Nistor (1212_CR33) 2013; 23 FY Kuo (1212_CR28) 2012; 50 J Creutzig (1212_CR8) 2009; 9 FY Kuo (1212_CR31) 2010; 79 H-J Bungartz (1212_CR5) 2004; 13 J Dick (1212_CR12) 2005; 74 AD Gilbert (1212_CR17) 2018; 40 J Dick (1212_CR13) 2013; 22 1212_CR32 1212_CR35 L Herrmann (1212_CR21) 2019; 141 FJ Hickernell (1212_CR23) 2010; 26 1212_CR36 1212_CR34  | 
    
| References_xml | – volume: 51 start-page: 341 issue: 1 year: 2017 end-page: 363 ident: CR1 article-title: Sparse polynomial approximation of parametric elliptic PDEs. Part II: lognormal coefficients publication-title: ESAIM: Math. Model. Numer. Anal. doi: 10.1051/m2an/2016051 – volume: 33 start-page: 55 year: 2016 end-page: 88 ident: CR14 article-title: Hyperbolic cross approximation in infinite dimensions publication-title: J. Complex. doi: 10.1016/j.jco.2015.09.006 – volume: 23 start-page: 1729 issue: 09 year: 2013 end-page: 1760 ident: CR33 article-title: High-order Galerkin approximations for parametric second-order elliptic partial differential equations publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202513500218 – volume: 59 start-page: 161 issue: 2 year: 2012 end-page: 183 ident: CR22 article-title: Weighted compound integration rules with higher order convergence for all publication-title: Numer. Algorithms doi: 10.1007/s11075-011-9482-5 – volume: 29 start-page: 351 issue: 5 year: 2013 end-page: 369 ident: CR39 article-title: On tractability of linear tensor product problems for -variate classes of functions publication-title: J. Complex. doi: 10.1016/j.jco.2013.04.008 – volume: 53 start-page: 1 issue: 1 year: 2011 end-page: 37 ident: CR27 article-title: Quasi-Monte Carlo methods for high-dimensional integration: the standard (weighted Hilbert space) setting and beyond publication-title: ANZIAM J. doi: 10.1017/S1446181112000077 – volume: 326 start-page: 217 year: 2017 end-page: 234 ident: CR26 article-title: Infinite-dimensional integration and the multivariate decomposition method publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2017.05.031 – volume: 10 start-page: 615 issue: 6 year: 2010 end-page: 646 ident: CR6 article-title: Convergence rates of best -term Galerkin approximations for a class of elliptic sPDEs publication-title: Found. Comput. Math. doi: 10.1007/s10208-010-9072-2 – volume: 14 start-page: 1027 issue: 5 year: 2014 end-page: 1077 ident: CR9 article-title: Infinite-dimensional integration in weighted Hilbert spaces: anchored decompositions, optimal deterministic algorithms, and higher-order convergence publication-title: Found. Comput. Math. doi: 10.1007/s10208-014-9198-8 – volume: 9 start-page: 391 issue: 4 year: 2009 end-page: 429 ident: CR8 article-title: Infinite-dimensional quadrature and approximation of distributions publication-title: Found. Comput. Math. doi: 10.1007/s10208-008-9029-x – volume: 16 start-page: 1631 issue: 6 year: 2016 end-page: 1696 ident: CR25 article-title: Application of quasi-Monte Carlo methods to elliptic PDEs with random diffusion coefficients: a survey of analysis and implementation publication-title: Found. Comput. Math. doi: 10.1007/s10208-016-9329-5 – year: 2009 ident: CR38 publication-title: Observation and Control for Operator Semigroups doi: 10.1007/978-3-7643-8994-9 – volume: 39 start-page: 1563 year: 2017 end-page: 1593 ident: CR24 article-title: Quasi-Monte Carlo integration with product weights for elliptic PDEs with log-normal coefficients publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/dry028 – ident: CR35 – volume: 27 start-page: 505 issue: 6 year: 2011 end-page: 518 ident: CR37 article-title: Tractability of infinite-dimensional integration in the worst case and randomized settings publication-title: J. Complex. doi: 10.1016/j.jco.2011.01.006 – volume: 55 start-page: 2151 issue: 5 year: 2017 end-page: 2186 ident: CR2 article-title: Fully discrete approximation of parametric and stochastic elliptic PDEs publication-title: SIAM J. Numer. Anal. doi: 10.1137/17M111626X – volume: 26 start-page: 229 issue: 3 year: 2010 end-page: 254 ident: CR23 article-title: Multi-level Monte Carlo algorithms for infinite-dimensional integration on publication-title: J. Complex. doi: 10.1016/j.jco.2010.02.002 – volume: 74 start-page: 1895 issue: 252 year: 2005 end-page: 1921 ident: CR12 article-title: Construction algorithms for polynomial lattice rules for multivariate integration publication-title: Math. Comput. doi: 10.1090/S0025-5718-05-01742-4 – volume: 22 start-page: 133 year: 2013 end-page: 288 ident: CR13 article-title: High-dimensional integration: the quasi-Monte Carlo way publication-title: Acta Numer. doi: 10.1017/S0962492913000044 – volume: 59 start-page: 403 issue: 3 year: 2012 end-page: 431 ident: CR4 article-title: Efficient calculation of the worst-case error and (fast) component-by-component construction of higher order polynomial lattice rules publication-title: Numer. Algorithms doi: 10.1007/s11075-011-9497-y – volume: 141 start-page: 63 issue: 1 year: 2019 end-page: 102 ident: CR21 article-title: QMC integration for lognormal-parametric, elliptic PDEs: local supports and product weights publication-title: Numer. Math. doi: 10.1007/s00211-018-0991-1 – volume: 79 start-page: 953 issue: 270 year: 2010 end-page: 966 ident: CR31 article-title: On decompositions of multivariate functions publication-title: Math. Comput. doi: 10.1090/S0025-5718-09-02319-9 – ident: CR15 – volume: 40 start-page: A3240 issue: 5 year: 2018 end-page: A3266 ident: CR17 article-title: Efficient implementations of the multivariate decomposition method for approximating infinite-variate integrals publication-title: SIAM J. Sci. Comput. doi: 10.1137/17M1161890 – volume: 222 start-page: 8 year: 2017 end-page: 19 ident: CR18 article-title: Embeddings of weighted Hilbert spaces and applications to multivariate and infinite-dimensional integration publication-title: J. Approx. Theory doi: 10.1016/j.jat.2017.05.003 – volume: 50 start-page: 3351 issue: 6 year: 2012 end-page: 3374 ident: CR28 article-title: Quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients publication-title: SIAM J. Numer. Anal. doi: 10.1137/110845537 – volume: 15 start-page: 411 issue: 2 year: 2015 end-page: 449 ident: CR29 article-title: Multi-level quasi-Monte Carlo finite element methods for a class of elliptic PDEs with random coefficients publication-title: Found. Comput. Math. doi: 10.1007/s10208-014-9237-5 – volume: 13 start-page: 147 year: 2004 end-page: 269 ident: CR5 article-title: Sparse grids publication-title: Acta Numer. doi: 10.1017/S0962492904000182 – volume: 30 start-page: 29 issue: 2 year: 2014 end-page: 47 ident: CR19 article-title: On weighted Hilbert spaces and integration of functions of infinitely many variables publication-title: J. Complex. doi: 10.1016/j.jco.2013.05.004 – ident: CR32 – volume: 51 start-page: 321 issue: 1 year: 2017 end-page: 339 ident: CR3 article-title: Sparse polynomial approximation of parametric elliptic PDEs. Part I: affine coefficients publication-title: ESAIM: Math. Model. Numer. Anal. doi: 10.1051/m2an/2016045 – volume: 56 start-page: 111 issue: 1 year: 2018 end-page: 135 ident: CR16 article-title: Quasi-Monte Carlo integration for affine-parametric, elliptic PDEs: local supports and product weights publication-title: SIAM J. Numer. Anal. doi: 10.1137/16M1082597 – ident: CR34 – ident: CR36 – volume: 52 start-page: 2676 issue: 6 year: 2014 end-page: 2702 ident: CR11 article-title: Higher order QMC Petrov–Galerkin discretization for affine parametric operator equations with random field inputs publication-title: SIAM J. Numer. Anal. doi: 10.1137/130943984 – volume: 26 start-page: 422 issue: 5 year: 2010 end-page: 454 ident: CR30 article-title: Liberating the dimension publication-title: J. Complex. doi: 10.1016/j.jco.2009.12.003 – volume: 131 start-page: 329 issue: 2 year: 2015 end-page: 368 ident: CR20 article-title: Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients publication-title: Numer. Math. doi: 10.1007/s00211-014-0689-y – volume: 184 start-page: 111 year: 2014 end-page: 145 ident: CR10 article-title: Optimal randomized changing dimension algorithms for infinite-dimensional integration on function spaces with ANOVA-type decomposition publication-title: J. Approx. Theory doi: 10.1016/j.jat.2014.04.014 – volume: 9 start-page: 11 issue: 01 year: 2011 end-page: 47 ident: CR7 article-title: Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs publication-title: Anal. Appl. doi: 10.1142/S0219530511001728 – volume: 29 start-page: 351 issue: 5 year: 2013 ident: 1212_CR39 publication-title: J. Complex. doi: 10.1016/j.jco.2013.04.008 – volume: 26 start-page: 229 issue: 3 year: 2010 ident: 1212_CR23 publication-title: J. Complex. doi: 10.1016/j.jco.2010.02.002 – ident: 1212_CR35 – volume: 141 start-page: 63 issue: 1 year: 2019 ident: 1212_CR21 publication-title: Numer. Math. doi: 10.1007/s00211-018-0991-1 – volume: 40 start-page: A3240 issue: 5 year: 2018 ident: 1212_CR17 publication-title: SIAM J. Sci. Comput. doi: 10.1137/17M1161890 – volume: 10 start-page: 615 issue: 6 year: 2010 ident: 1212_CR6 publication-title: Found. Comput. Math. doi: 10.1007/s10208-010-9072-2 – volume: 15 start-page: 411 issue: 2 year: 2015 ident: 1212_CR29 publication-title: Found. Comput. Math. doi: 10.1007/s10208-014-9237-5 – volume: 55 start-page: 2151 issue: 5 year: 2017 ident: 1212_CR2 publication-title: SIAM J. Numer. Anal. doi: 10.1137/17M111626X – ident: 1212_CR32 doi: 10.1007/s00211-021-01212-9 – volume: 39 start-page: 1563 year: 2017 ident: 1212_CR24 publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/dry028 – volume: 30 start-page: 29 issue: 2 year: 2014 ident: 1212_CR19 publication-title: J. Complex. doi: 10.1016/j.jco.2013.05.004 – volume: 33 start-page: 55 year: 2016 ident: 1212_CR14 publication-title: J. Complex. doi: 10.1016/j.jco.2015.09.006 – volume: 27 start-page: 505 issue: 6 year: 2011 ident: 1212_CR37 publication-title: J. Complex. doi: 10.1016/j.jco.2011.01.006 – volume: 13 start-page: 147 year: 2004 ident: 1212_CR5 publication-title: Acta Numer. doi: 10.1017/S0962492904000182 – volume: 16 start-page: 1631 issue: 6 year: 2016 ident: 1212_CR25 publication-title: Found. Comput. Math. doi: 10.1007/s10208-016-9329-5 – volume: 9 start-page: 11 issue: 01 year: 2011 ident: 1212_CR7 publication-title: Anal. Appl. doi: 10.1142/S0219530511001728 – volume-title: Observation and Control for Operator Semigroups year: 2009 ident: 1212_CR38 doi: 10.1007/978-3-7643-8994-9 – volume: 26 start-page: 422 issue: 5 year: 2010 ident: 1212_CR30 publication-title: J. Complex. doi: 10.1016/j.jco.2009.12.003 – volume: 51 start-page: 321 issue: 1 year: 2017 ident: 1212_CR3 publication-title: ESAIM: Math. Model. Numer. Anal. doi: 10.1051/m2an/2016045 – volume: 59 start-page: 403 issue: 3 year: 2012 ident: 1212_CR4 publication-title: Numer. Algorithms doi: 10.1007/s11075-011-9497-y – volume: 56 start-page: 111 issue: 1 year: 2018 ident: 1212_CR16 publication-title: SIAM J. Numer. Anal. doi: 10.1137/16M1082597 – volume: 131 start-page: 329 issue: 2 year: 2015 ident: 1212_CR20 publication-title: Numer. Math. doi: 10.1007/s00211-014-0689-y – volume: 53 start-page: 1 issue: 1 year: 2011 ident: 1212_CR27 publication-title: ANZIAM J. doi: 10.1017/S1446181112000077 – ident: 1212_CR34 – ident: 1212_CR36 doi: 10.1007/3-540-31186-6_22 – volume: 79 start-page: 953 issue: 270 year: 2010 ident: 1212_CR31 publication-title: Math. Comput. doi: 10.1090/S0025-5718-09-02319-9 – volume: 23 start-page: 1729 issue: 09 year: 2013 ident: 1212_CR33 publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202513500218 – volume: 50 start-page: 3351 issue: 6 year: 2012 ident: 1212_CR28 publication-title: SIAM J. Numer. Anal. doi: 10.1137/110845537 – volume: 22 start-page: 133 year: 2013 ident: 1212_CR13 publication-title: Acta Numer. doi: 10.1017/S0962492913000044 – volume: 59 start-page: 161 issue: 2 year: 2012 ident: 1212_CR22 publication-title: Numer. Algorithms doi: 10.1007/s11075-011-9482-5 – volume: 9 start-page: 391 issue: 4 year: 2009 ident: 1212_CR8 publication-title: Found. Comput. Math. doi: 10.1007/s10208-008-9029-x – volume: 184 start-page: 111 year: 2014 ident: 1212_CR10 publication-title: J. Approx. Theory doi: 10.1016/j.jat.2014.04.014 – volume: 14 start-page: 1027 issue: 5 year: 2014 ident: 1212_CR9 publication-title: Found. Comput. Math. doi: 10.1007/s10208-014-9198-8 – volume: 51 start-page: 341 issue: 1 year: 2017 ident: 1212_CR1 publication-title: ESAIM: Math. Model. Numer. Anal. doi: 10.1051/m2an/2016051 – volume: 52 start-page: 2676 issue: 6 year: 2014 ident: 1212_CR11 publication-title: SIAM J. Numer. Anal. doi: 10.1137/130943984 – volume: 222 start-page: 8 year: 2017 ident: 1212_CR18 publication-title: J. Approx. Theory doi: 10.1016/j.jat.2017.05.003 – volume: 326 start-page: 217 year: 2017 ident: 1212_CR26 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2017.05.031 – volume: 74 start-page: 1895 issue: 252 year: 2005 ident: 1212_CR12 publication-title: Math. Comput. doi: 10.1090/S0025-5718-05-01742-4 – ident: 1212_CR15 doi: 10.1007/978-3-319-72456-0_18  | 
    
| SSID | ssj0017641 | 
    
| Score | 2.3306887 | 
    
| Snippet | We introduce the
multivariate decomposition finite element method
(MDFEM) for solving elliptic PDEs with uniform random diffusion coefficients. We show that... We introduce the multivariate decomposition finite element method (MDFEM) for solving elliptic PDEs with uniform random diffusion coefficients. We show that...  | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 633 | 
    
| SubjectTerms | Algorithms Approximation Computing costs Convergence Decomposition Elliptic differential equations Errors Fields (mathematics) Finite element analysis Finite element method Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Monte Carlo simulation Multivariate analysis Numerical Analysis Numerical and Computational Physics Parallel processing Partial differential equations Polynomials Simulation Theoretical  | 
    
| Title | MDFEM: Multivariate decomposition finite element method for elliptic PDEs with uniform random diffusion coefficients using higher-order QMC and FEM | 
    
| URI | https://link.springer.com/article/10.1007/s00211-021-01212-9 https://www.proquest.com/docview/2556869310  | 
    
| Volume | 148 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 0945-3245 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017641 issn: 0029-599X databaseCode: AFBBN dateStart: 19591201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 0945-3245 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017641 issn: 0029-599X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 0945-3245 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017641 issn: 0029-599X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50vejBt7i6yhy8aWH7SGq9LftQlIqCwnoq2yRVQbtid_0j_mFnsm1FUcFLLm1C6SSZb5JvvgE4SEOf65lkFOS4mRMIXzlpRs1xltEMUkZ5hvOd40t5dhucD8WwTAorKrZ7dSVpd-o62Y3dEYW-Hoe_tOE60TwsCJbzoll863Xqu4NQBm5F7BBRNCxTZX4e46s7-sSY365FrbcZrMJyCROxM7PrGsyZfB1WqhIMWK7IdViKa9nVYgPe496gH5-gzap9oyiYgCRqw7TxkpuF2SODTDQz1jjOCkgjIVdkZU7aPxRe9foF8vksTnPO23pG8md6_IxcTGXKp2uoxsZKTzALA5k6f48PljDiWClPvI67SH2QvmYTbgb9m-6ZU1ZdcBQtx4nja8JwgZYRYztpPI-zzY0KxEgoZUS7PfJTgiHk6tvKC1WWypTWvKYQ2z2WIvK3oJGPc7MNaIwMXaH1SAvCDYKRUZiadiiljuQokE1wq3-fqFKRnAtjPCW1lrK1V0JNYu2VRE04rPu8zPQ4_ny7VZk0KddmkVjRNRkRrm3CUWXmz8e_j7bzv9d3YdGzM425vS1oTF6nZo8QzCTdh4XO6d1Ff99O3A-O3edl | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHIADSwFR1jlwg0jNYodwQ9CqLKlAKlJvUWM7gERbRFp-hB9mxk2CQIDExZfEVpSxPW_sN28ADtPQ53omGQU5buYEwldOmlFzkmU0g5RRnuF857gj2_fBVU_0iqSwvGS7l1eSdqeukt3YHVHo63H4SxuuE83CPAtYsWL-vXdW3R2EMnBLYoeIol6RKvPzGF_d0SfG_HYtar1NaxWWC5iIZ1O7rsGMGdZgpSzBgMWKrMFSXMmu5uvwHl-0mvEp2qzaN4qCCUiiNkwbL7hZmD0xyEQzZY3jtIA0EnJFVuak_UPh7UUzRz6fxcmQ87YGSP5MjwbIxVQmfLqGamSs9ASzMJCp8w_4aAkjjpXyxLv4HKkP0tdsQLfV7J63naLqgqNoOY4dXxOGC7SMGNtJ43mcbW5UIPpCKSMajb6fEgwhV99QXqiyVKa05jWF2O6JFJG_CXPD0dBsARojQ1do3deCcINgZBSmphFKqSPZD2Qd3PLfJ6pQJOfCGM9JpaVs7ZVQk1h7JVEdjqo-L1M9jj_f3i1NmhRrM0-s6JqMCNfW4bg08-fj30fb_t_rB7DQ7sY3yc1l53oHFj0765jnuwtz49eJ2SM0M0737eT9AEY96L0 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xSAgO7IiyzoEbRDSLHcIN0VZsQSCB1FvU2A4gQYpoy4_ww8w4C4sAiYsvia0oY3ve2G_eAOykoc_1TDIKctzMCYSvnDSj5iDLaAYpozzD-c7xpTy5Dc66ovspi9-y3asrySKngVWa8uH-s87268Q3dk0UBnscCtPm60TjMBmwUALN6FvvqL5HCGXgViQPEUXdMm3m5zG-uqYPvPntitR6ns48zJaQEY8KGy_AmMkXYa4qx4Dl6lyEmbiWYB0swVvc6rTjQ7QZtq8UEROoRG2YQl7ytDB7YMCJpmCQY1FMGgnFIqt00l6i8KrVHiCf1eIo5xyuJyTfpvtPyIVVRnzShqpvrAwFMzKQafR3eG_JI46V9cTr-BipD9LXLMNNp31zfOKUFRgcRUtz6Pia8FygZcQ4TxrP48xzowLRE0oZ0Wz2_JQgCbn9pvJClaUypfWvKdx2D6SI_BWYyPu5WQU0Roau0LqnBWEIwSgpTE0zlFJHshfIBrjVv09UqU7ORTIek1pX2doroSax9kqiBuzWfZ4LbY4_396oTJqU63SQWAE2GRHGbcBeZeaPx7-Ptva_17dh6qrVSS5OL8_XYdqzk44pvxswMXwZmU0CNsN0y87dd9Kv7Pk | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MDFEM%3A+Multivariate+decomposition+finite+element+method+for+elliptic+PDEs+with+uniform+random+diffusion+coefficients+using+higher-order+QMC+and+FEM&rft.jtitle=Numerische+Mathematik&rft.au=Nguyen%2C+Dong+T.+P.&rft.au=Nuyens%2C+Dirk&rft.date=2021-07-01&rft.issn=0029-599X&rft.eissn=0945-3245&rft.volume=148&rft.issue=3&rft.spage=633&rft.epage=669&rft_id=info:doi/10.1007%2Fs00211-021-01212-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00211_021_01212_9 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-599X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-599X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-599X&client=summon |