Fusion of forehead EEG with machine vision for real-time fatigue detection in an automatic processing pipeline
Driving fatigue is a leading contributor to traffic accidents and fatalities. For automatic detection of fatigue, multimodal data fusion is a potential key technique, especially the merging of electroencephalogram (EEG) and eye movement. Although EEG can produce objective measures of fatigue with ve...
Saved in:
| Published in | Neural computing & applications Vol. 35; no. 12; pp. 8859 - 8872 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.04.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0941-0643 1433-3058 |
| DOI | 10.1007/s00521-022-07466-0 |
Cover
| Abstract | Driving fatigue is a leading contributor to traffic accidents and fatalities. For automatic detection of fatigue, multimodal data fusion is a potential key technique, especially the merging of electroencephalogram (EEG) and eye movement. Although EEG can produce objective measures of fatigue with very high temporal resolution, an unfriendly multichannel system limits its practical application while portable wearables and machine vision receive much attention since they are pervasive and user friendly. Hence, this study aims to construct a novel pipeline by using machine vision technique to improve the quality of driver fatigue detection based on forehead EEG. By coupling the Karolinska Sleepiness Scale (KSS) and percentage of eyelid closure (PERCLOS), the precise and reliable dataset for reflecting drivers’ fatigue levels were obtained. Moreover, major artifact contamination related to blink activity for frontal-channel EEG was removed by a synchronous video-based eyeblink event marker. In addition, the scale-invariant feature transform (SIFT) features of eyelid keypoints was applied to fuse with the EEG-driven features. Sixteen subjects participated in a realistic driving simulation experiment. Both machine and deep learning methods were used to implement the intra-subject and inter-subject cross validation. It demonstrated that our proposed method can achieve a significant performance. The present work showed the usefulness of forehead EEG and eye images that was originally merged for detecting fatigue. It provides a new strategy of using forehead EEG combined with machine vision to design a potential and automatic pipeline for driver fatigue detection. |
|---|---|
| AbstractList | Driving fatigue is a leading contributor to traffic accidents and fatalities. For automatic detection of fatigue, multimodal data fusion is a potential key technique, especially the merging of electroencephalogram (EEG) and eye movement. Although EEG can produce objective measures of fatigue with very high temporal resolution, an unfriendly multichannel system limits its practical application while portable wearables and machine vision receive much attention since they are pervasive and user friendly. Hence, this study aims to construct a novel pipeline by using machine vision technique to improve the quality of driver fatigue detection based on forehead EEG. By coupling the Karolinska Sleepiness Scale (KSS) and percentage of eyelid closure (PERCLOS), the precise and reliable dataset for reflecting drivers’ fatigue levels were obtained. Moreover, major artifact contamination related to blink activity for frontal-channel EEG was removed by a synchronous video-based eyeblink event marker. In addition, the scale-invariant feature transform (SIFT) features of eyelid keypoints was applied to fuse with the EEG-driven features. Sixteen subjects participated in a realistic driving simulation experiment. Both machine and deep learning methods were used to implement the intra-subject and inter-subject cross validation. It demonstrated that our proposed method can achieve a significant performance. The present work showed the usefulness of forehead EEG and eye images that was originally merged for detecting fatigue. It provides a new strategy of using forehead EEG combined with machine vision to design a potential and automatic pipeline for driver fatigue detection. Driving fatigue is a leading contributor to traffic accidents and fatalities. For automatic detection of fatigue, multimodal data fusion is a potential key technique, especially the merging of electroencephalogram (EEG) and eye movement. Although EEG can produce objective measures of fatigue with very high temporal resolution, an unfriendly multichannel system limits its practical application while portable wearables and machine vision receive much attention since they are pervasive and user friendly. Hence, this study aims to construct a novel pipeline by using machine vision technique to improve the quality of driver fatigue detection based on forehead EEG. By coupling the Karolinska Sleepiness Scale (KSS) and percentage of eyelid closure (PERCLOS), the precise and reliable dataset for reflecting drivers’ fatigue levels were obtained. Moreover, major artifact contamination related to blink activity for frontal-channel EEG was removed by a synchronous video-based eyeblink event marker. In addition, the scale-invariant feature transform (SIFT) features of eyelid keypoints was applied to fuse with the EEG-driven features. Sixteen subjects participated in a realistic driving simulation experiment. Both machine and deep learning methods were used to implement the intra-subject and inter-subject cross validation. It demonstrated that our proposed method can achieve a significant performance. The present work showed the usefulness of forehead EEG and eye images that was originally merged for detecting fatigue. It provides a new strategy of using forehead EEG combined with machine vision to design a potential and automatic pipeline for driver fatigue detection. |
| Author | Cai, Ming Gou, Chao Xiong, Chen Yao, Xuejiao Min, Jianliang |
| Author_xml | – sequence: 1 givenname: Jianliang surname: Min fullname: Min, Jianliang organization: School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-Sen University, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University – sequence: 2 givenname: Ming surname: Cai fullname: Cai, Ming organization: School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-Sen University, Guangdong Province Key Laboratory of Intelligent Transportation System – sequence: 3 givenname: Chao surname: Gou fullname: Gou, Chao email: gouchao@mail.sysu.edu.cn organization: School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-Sen University, Guangdong Province Key Laboratory of Intelligent Transportation System – sequence: 4 givenname: Chen surname: Xiong fullname: Xiong, Chen organization: School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-Sen University, Guangdong Province Key Laboratory of Intelligent Transportation System – sequence: 5 givenname: Xuejiao surname: Yao fullname: Yao, Xuejiao organization: Research Institute for Road Safety of MPS |
| BookMark | eNp9kEFLAzEQhYNUsK3-AU8Bz6uTZDe7e5TSVkHwoueQZmfblDZbk6zivzftCoKHwkBg3vcmM29CRq5zSMgtg3sGUD4EgIKzDDjPoMylzOCCjFkuRCagqEZkDHWeZJmLKzIJYQsAuayKMXGLPtjO0a6lbedxg7qh8_mSftm4oXttNtYh_bQnJgHUo95l0e6RtjradY-0wYgmHnXrqE7Vx26fNEMPvjMYgnVrerAH3KVR1-Sy1buAN7_vlLwv5m-zp-zldfk8e3zJjGB1zISpS1aZRrYlaBDpOKyNLngFumEVQKvLVV1I0FLmmBrY5KtatCAbWbGi1mJK7oa5aYePHkNU2673Ln2peFkLXnDJq0RVA2V8F4LHVhkb9fGW6LXdKQbqmK4a0lUpXXVKV0Gy8n_Wg7d77b_Pm8RgCgl2a_R_W51x_QDNvI7D |
| CitedBy_id | crossref_primary_10_1016_j_jsr_2024_05_015 crossref_primary_10_1109_ACCESS_2024_3381999 crossref_primary_10_1007_s11571_024_10126_9 crossref_primary_10_1109_COMST_2023_3256323 crossref_primary_10_59324_ejtas_2024_2_5__50 |
| Cites_doi | 10.1109/JSEN.2019.2906572 10.1023/B:VISI.0000029664.99615.94 10.1109/JSEN.2018.2872623 10.1016/j.amar.2020.100114 10.1109/TITS.2018.2868499 10.1016/j.aap.2021.106107 10.1007/s12559-015-9351-y 10.1109/TITS.2016.2582900 10.1136/bmj.324.7346.1125 10.1088/1741-2560/12/3/031001 10.1037/e729262011-001 10.1088/1741-2552/ab909f 10.1109/ICAIIC51459.2021.9415193 10.1088/1741-2552/aa5a98 10.1109/ACCESS.2019.2914373 10.1016/j.bspc.2019.02.005 10.1016/j.patcog.2017.01.023 10.1109/TCYB.2019.2939399 10.1109/IPDPS.2008.4536131 10.1142/S1793536909000047 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s00521-022-07466-0 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 8872 |
| ExternalDocumentID | 10_1007_s00521_022_07466_0 |
| GrantInformation_xml | – fundername: Key Research and Development Program of Guangzhou grantid: 202007050002 – fundername: National Research and Development Program of China grantid: 2020YFB1600400 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-3c9718cd6f70a03005e9ca5280ad1800fa7b9560a664e180ed4b93f06d68159a3 |
| IEDL.DBID | AGYKE |
| ISSN | 0941-0643 |
| IngestDate | Sun Sep 07 03:26:58 EDT 2025 Thu Apr 24 23:09:12 EDT 2025 Wed Oct 01 02:26:14 EDT 2025 Fri Feb 21 02:43:33 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | SIFT Forehead EEG Machine vision Driving fatigue Eye movement Multimodal data fusion |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-3c9718cd6f70a03005e9ca5280ad1800fa7b9560a664e180ed4b93f06d68159a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2793252628 |
| PQPubID | 2043988 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2793252628 crossref_citationtrail_10_1007_s00521_022_07466_0 crossref_primary_10_1007_s00521_022_07466_0 springer_journals_10_1007_s00521_022_07466_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-01 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2023 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | WuZHuangNEEnsemble empirical mode decomposition: a noise-assisted data analysis methodAdv Adap Data Anal2009114110.1142/S1793536909000047 ChenXChenQZhangYWangZJA novel EEMD-CCA approach to removing muscle artifacts for pervasive EEGIEEE Sens J2018198420843110.1109/JSEN.2018.2872623 Quddus A, Zandi AS, Prest L, Comeau FJ (2021) Using long short term memory and convolutional neural networks for driver drowsiness detection. Accident Anal Prev 106107 Zheng W-L, Lu B-L (2017) A multimodal approach to estimating vigilance using EEG and forehead EOG. J Neural Eng 026017 Zhang Q, Chen Y, Zhang Y, Xu Y (2008) SIFT implementation and optimization for multi-core systems. In: 2008 IEEE international symposium on parallel and distributed processing, pp 1–8 DebieERojasRFFidockJBarlowMKasmarikKAnavattiSMultimodal fusion for objective assessment of cognitive workload: a reviewIEEE T Cybern20195131542155510.1109/TCYB.2019.2939399 MaYFuRResearch and development of drivers visual behavior and driving safetyChina J Highway Transp2015288294 RamzanMKhanHUAwanSMIsmailAIlyasMMahmoodAA survey on state-of-the-art drowsiness detection techniquesIEEE Access20197619046191910.1109/ACCESS.2019.2914373 KhatunSMahajanRMorshedBIComparative study of wavelet-based unsupervised ocular artifact removal techniques for single-channel EEG dataIEEE J Transl Eng He2016418 Staudemeyer RC, Morris ER (2019) Understanding LSTM—a tutorial into long short-term memory recurrent neural networks. arXiv preprint arXiv:1909.09586 CaoLLiJXuYZhuHJiangCA hybrid vigilance monitoring study for mental fatigue and its neural activitiesCogn Comput2016822823610.1007/s12559-015-9351-y Ko L-W, Komarov O, Lai W-K, Liang W-G, Jung T-P (2020) Eyeblink recognition improves fatigue prediction from single-channel forehead EEG in a realistic sustained attention task. J Neural Eng 036015 BakkerBZabłockiBBakerARiethmeisterVMarxBIyerGA multi-stage, multi-feature machine learning approach to detect driver sleepiness in naturalistic road driving conditionsIEEE T Intell Transp202199110 SikanderGAnwarSDriver fatigue detection systems: a reviewIEEE T Intell Transp2018202339235210.1109/TITS.2018.2868499 Urigüen JA, Garcia-Zapirain B (2015) EEG artifact removal—state-of-the-art and guidelines. J Neural Eng 031001 MandalBLiLWangGSLinJTowards detection of bus driver fatigue based on robust visual analysis of eye stateIEEE T Intell Transp20161854555710.1109/TITS.2016.2582900 GouCWuYWangKWangKWangF-YJiQA joint cascaded framework for simultaneous eye detection and eye state estimationPattern Recogn201767233110.1016/j.patcog.2017.01.023 Klauer SG, Dingus TA, Neale VL, Sudweeks JD, Ramsey DJ (2006) The impact of driver inattention on near-crash/crash risk: an analysis using the 100-car naturalistic driving study data. Department of Transportation, NHTSA, Washington ChenXXuXLiuALeeSChenXZhangXRemoval of muscle artifacts from the EEG: a review and recommendationsIEEE Sens J2019195353536810.1109/JSEN.2019.2906572 Connor J, Norton R, Ameratunga S, Robinson E, Civil I, Dunn R et al (2002) Driver sleepiness and risk of serious injury to car occupants: population based case control study. BMJ 1125 LuoHQiuTLiuCHuangPResearch on fatigue driving detection using forehead EEG based on adaptive multi-scale entropyBiomed Signal Proces201951505810.1016/j.bspc.2019.02.005 LoweDGDistinctive image features from scale-invariant keypointsInt J Comput Vision2004609111010.1023/B:VISI.0000029664.99615.94 Dkhil MB, Wali A, Alimi AM (2018) A hierarchical fuzzy system for an advanced driving assistance system. arXiv preprint arXiv:1806.04611 Kim K-J, Lim K-T, Woon Baek J, Shin M (2021) Low-cost real-time driver drowsiness detection based on convergence of IR images and EEG signals. In: 2021 international conference on artificial intelligence in information and communication (ICAIIC), pp 438–443 Zhang X, Wang X, Yang X, Xu C, Zhu X, Wei J (2020) Driver drowsiness detection using mixed-effect ordered logit model considering time cumulative effect. Anal Methods Accid R 100114 L Cao (7466_CR16) 2016; 8 B Bakker (7466_CR12) 2021; 99 C Gou (7466_CR18) 2017; 67 DG Lowe (7466_CR21) 2004; 60 Y Ma (7466_CR10) 2015; 28 S Khatun (7466_CR6) 2016; 4 7466_CR22 7466_CR23 Z Wu (7466_CR19) 2009; 1 E Debie (7466_CR24) 2019; 51 H Luo (7466_CR7) 2019; 51 X Chen (7466_CR25) 2019; 19 X Chen (7466_CR20) 2018; 19 7466_CR8 B Mandal (7466_CR9) 2016; 18 7466_CR5 7466_CR4 7466_CR2 7466_CR1 M Ramzan (7466_CR11) 2019; 7 7466_CR13 7466_CR15 7466_CR14 G Sikander (7466_CR3) 2018; 20 7466_CR17 |
| References_xml | – reference: Urigüen JA, Garcia-Zapirain B (2015) EEG artifact removal—state-of-the-art and guidelines. J Neural Eng 031001 – reference: GouCWuYWangKWangKWangF-YJiQA joint cascaded framework for simultaneous eye detection and eye state estimationPattern Recogn201767233110.1016/j.patcog.2017.01.023 – reference: LuoHQiuTLiuCHuangPResearch on fatigue driving detection using forehead EEG based on adaptive multi-scale entropyBiomed Signal Proces201951505810.1016/j.bspc.2019.02.005 – reference: Connor J, Norton R, Ameratunga S, Robinson E, Civil I, Dunn R et al (2002) Driver sleepiness and risk of serious injury to car occupants: population based case control study. BMJ 1125 – reference: Dkhil MB, Wali A, Alimi AM (2018) A hierarchical fuzzy system for an advanced driving assistance system. arXiv preprint arXiv:1806.04611 – reference: ChenXChenQZhangYWangZJA novel EEMD-CCA approach to removing muscle artifacts for pervasive EEGIEEE Sens J2018198420843110.1109/JSEN.2018.2872623 – reference: CaoLLiJXuYZhuHJiangCA hybrid vigilance monitoring study for mental fatigue and its neural activitiesCogn Comput2016822823610.1007/s12559-015-9351-y – reference: Staudemeyer RC, Morris ER (2019) Understanding LSTM—a tutorial into long short-term memory recurrent neural networks. arXiv preprint arXiv:1909.09586 – reference: Kim K-J, Lim K-T, Woon Baek J, Shin M (2021) Low-cost real-time driver drowsiness detection based on convergence of IR images and EEG signals. In: 2021 international conference on artificial intelligence in information and communication (ICAIIC), pp 438–443 – reference: LoweDGDistinctive image features from scale-invariant keypointsInt J Comput Vision2004609111010.1023/B:VISI.0000029664.99615.94 – reference: Klauer SG, Dingus TA, Neale VL, Sudweeks JD, Ramsey DJ (2006) The impact of driver inattention on near-crash/crash risk: an analysis using the 100-car naturalistic driving study data. Department of Transportation, NHTSA, Washington – reference: Zhang Q, Chen Y, Zhang Y, Xu Y (2008) SIFT implementation and optimization for multi-core systems. In: 2008 IEEE international symposium on parallel and distributed processing, pp 1–8 – reference: ChenXXuXLiuALeeSChenXZhangXRemoval of muscle artifacts from the EEG: a review and recommendationsIEEE Sens J2019195353536810.1109/JSEN.2019.2906572 – reference: MaYFuRResearch and development of drivers visual behavior and driving safetyChina J Highway Transp2015288294 – reference: Ko L-W, Komarov O, Lai W-K, Liang W-G, Jung T-P (2020) Eyeblink recognition improves fatigue prediction from single-channel forehead EEG in a realistic sustained attention task. J Neural Eng 036015 – reference: Zheng W-L, Lu B-L (2017) A multimodal approach to estimating vigilance using EEG and forehead EOG. J Neural Eng 026017 – reference: BakkerBZabłockiBBakerARiethmeisterVMarxBIyerGA multi-stage, multi-feature machine learning approach to detect driver sleepiness in naturalistic road driving conditionsIEEE T Intell Transp202199110 – reference: Quddus A, Zandi AS, Prest L, Comeau FJ (2021) Using long short term memory and convolutional neural networks for driver drowsiness detection. Accident Anal Prev 106107 – reference: WuZHuangNEEnsemble empirical mode decomposition: a noise-assisted data analysis methodAdv Adap Data Anal2009114110.1142/S1793536909000047 – reference: SikanderGAnwarSDriver fatigue detection systems: a reviewIEEE T Intell Transp2018202339235210.1109/TITS.2018.2868499 – reference: MandalBLiLWangGSLinJTowards detection of bus driver fatigue based on robust visual analysis of eye stateIEEE T Intell Transp20161854555710.1109/TITS.2016.2582900 – reference: RamzanMKhanHUAwanSMIsmailAIlyasMMahmoodAA survey on state-of-the-art drowsiness detection techniquesIEEE Access20197619046191910.1109/ACCESS.2019.2914373 – reference: Zhang X, Wang X, Yang X, Xu C, Zhu X, Wei J (2020) Driver drowsiness detection using mixed-effect ordered logit model considering time cumulative effect. Anal Methods Accid R 100114 – reference: KhatunSMahajanRMorshedBIComparative study of wavelet-based unsupervised ocular artifact removal techniques for single-channel EEG dataIEEE J Transl Eng He2016418 – reference: DebieERojasRFFidockJBarlowMKasmarikKAnavattiSMultimodal fusion for objective assessment of cognitive workload: a reviewIEEE T Cybern20195131542155510.1109/TCYB.2019.2939399 – volume: 19 start-page: 5353 year: 2019 ident: 7466_CR25 publication-title: IEEE Sens J doi: 10.1109/JSEN.2019.2906572 – volume: 60 start-page: 91 year: 2004 ident: 7466_CR21 publication-title: Int J Comput Vision doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 19 start-page: 8420 year: 2018 ident: 7466_CR20 publication-title: IEEE Sens J doi: 10.1109/JSEN.2018.2872623 – ident: 7466_CR8 doi: 10.1016/j.amar.2020.100114 – ident: 7466_CR23 – volume: 20 start-page: 2339 year: 2018 ident: 7466_CR3 publication-title: IEEE T Intell Transp doi: 10.1109/TITS.2018.2868499 – ident: 7466_CR13 doi: 10.1016/j.aap.2021.106107 – volume: 4 start-page: 1 year: 2016 ident: 7466_CR6 publication-title: IEEE J Transl Eng He – volume: 8 start-page: 228 year: 2016 ident: 7466_CR16 publication-title: Cogn Comput doi: 10.1007/s12559-015-9351-y – volume: 18 start-page: 545 year: 2016 ident: 7466_CR9 publication-title: IEEE T Intell Transp doi: 10.1109/TITS.2016.2582900 – ident: 7466_CR2 doi: 10.1136/bmj.324.7346.1125 – ident: 7466_CR4 doi: 10.1088/1741-2560/12/3/031001 – ident: 7466_CR1 doi: 10.1037/e729262011-001 – ident: 7466_CR5 doi: 10.1088/1741-2552/ab909f – ident: 7466_CR14 doi: 10.1109/ICAIIC51459.2021.9415193 – volume: 28 start-page: 82 year: 2015 ident: 7466_CR10 publication-title: China J Highway Transp – volume: 99 start-page: 1 year: 2021 ident: 7466_CR12 publication-title: IEEE T Intell Transp – ident: 7466_CR17 doi: 10.1088/1741-2552/aa5a98 – volume: 7 start-page: 61904 year: 2019 ident: 7466_CR11 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2914373 – volume: 51 start-page: 50 year: 2019 ident: 7466_CR7 publication-title: Biomed Signal Proces doi: 10.1016/j.bspc.2019.02.005 – ident: 7466_CR15 – volume: 67 start-page: 23 year: 2017 ident: 7466_CR18 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2017.01.023 – volume: 51 start-page: 1542 issue: 3 year: 2019 ident: 7466_CR24 publication-title: IEEE T Cybern doi: 10.1109/TCYB.2019.2939399 – ident: 7466_CR22 doi: 10.1109/IPDPS.2008.4536131 – volume: 1 start-page: 1 year: 2009 ident: 7466_CR19 publication-title: Adv Adap Data Anal doi: 10.1142/S1793536909000047 |
| SSID | ssj0004685 |
| Score | 2.4204593 |
| Snippet | Driving fatigue is a leading contributor to traffic accidents and fatalities. For automatic detection of fatigue, multimodal data fusion is a potential key... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 8859 |
| SubjectTerms | Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data integration Data Mining and Knowledge Discovery Driver fatigue Electroencephalography Eye movements Forehead Image Processing and Computer Vision Machine vision Probability and Statistics in Computer Science S.I.: AI based Techniques and Applications for Intelligent IoT Systems Special Issue on Artificial Intelligence based Techniques and Applications for Intelligent IoT Systems (AI-TAIoT) Temporal resolution Traffic accidents Vision systems |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60vXjxLdYXe_CmwWSz2aYHEZXWIlhEFLyFfUUETaOm_9-ZTWJVUMghbDYhzOxjZna--QAOE-1y2nkD5URMx4wy0ALv0BdS_TSOch0RwPlmIscP4voxeVyASYuFobTKdk30C7WdGoqRn3AcSDzhkqdn5VtArFF0utpSaKiGWsGe-hJji9DlVBmrA92L4eT27htS0pN0ok9D-T4ibmA0HkxHEVJs5ZSNKST62T-3qrn9-evI1O9Eo1VYbkxIdl7rfA0WXLEOKy09A2tm6wYUoxmFwtg0Z2iZOlx1LRsOrxiFXtmrT6J0rMaWUweG5uNLQFzzLEd1Pc0cs67ymVoFey6YwmtWTX2JV1bW-AL8P1Y-l4Rpd5vwMBreX46Dhl4hMDjvqiA2A9yYjJV5P1Qhla13A6MSnobKRmhH5qqvyXtSUgqHDc4KPYjzUFqZohGk4i3oFNPCbQPTKTdoqijF-6GwiSb2MuMiJ4UZpHGuexC1ksxMU3ucKDBesq-qyV76GUo_89LPwh4cfb1T1pU3_u291yooa2bhRzYfMz04bpU2f_z313b-_9ouLBHrfJ3Aswed6n3m9tE2qfRBM-A-AfL53lQ priority: 102 providerName: ProQuest |
| Title | Fusion of forehead EEG with machine vision for real-time fatigue detection in an automatic processing pipeline |
| URI | https://link.springer.com/article/10.1007/s00521-022-07466-0 https://www.proquest.com/docview/2793252628 |
| Volume | 35 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3058 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3058 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ADMLS dateStart: 19930301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Proquest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3058 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3058 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: 8FG dateStart: 20180401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT4MwFD7R7cUX78Z5Wfrgm2KglI49TmUz3mLUJfpE2lLMorJF4cVf72mBTY2amJBAaGlKb-c77fnOAdgLpE6N5HWEZr45ZuSOZPiEupDohL6XSs8QnC-v-OmQnd0H9xUp7K22dq-PJO1KPSW7mR1MVH2psZZkHPXgeWhaf1sNaPYGD-fRJz6kDcWJmoux6mF-RZb5uZSvAmmGMr8djFp501-CYV3T0szk6bDI5aF6_-bE8b-_sgyLFQAlvXLErMCczlZhqQ7uQKq5vgZZvzAbaWScEsS1GtfshETRgJiNW_JiTTA1KZnpJgNB8PnsmEj1JMXOfiw0SXRu7bwyMsqIwKvIx9ZBLJmU7ASsMpmMJoYRr9dh2I_ujk-dKjiDo3DW5o6vuijWVMLTjitc4_Red5UIaOiKxEMUmoqONLqX4JxpfKETJrt-6vKEhwihhL8BjWyc6U0gMqQKgY4QtOOyJJAm9pnSnuZMdUM_lS3w6h6KVeW53ATQeI6nPpdtg8bYoLFt0Nhtwf70m0npt-PP3Dt1x8fVHH6LKS5dNKCchi04qPtxlvx7aVv_y74NCyaGfWkOtAON_LXQu4h0ctmG-bA_aOPwPrm8uG1XwxzvR9HV9Q2mDmnvAz9D9pE |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8gPOiLih_xBGQf9Ekb2-12r30gBuXOQ-BiDCS81f2qIcFehV4M_xx_mzPbLQcm8EbSh2a73TSz09mZ3fnND-Btpl1FK2-knEjpmFFGWuAdxkJqmKdJpRMCOB9M5eRIfDvOjpfgssfCUFplbxO9obYzQ3vkHzkqEs-45Pmn5k9ErFF0utpTaKhArWC3fImxAOzYcxd_MYQ739rdwfl-x_l4dPhlEgWWgcig-rVRagq0z8bKahirmKq3u8KojOexsgm6U5UaagoilJTCYYOzQhdpFUsrc_QFVIrjPoAVkYoCg7-Vz6Pp9x_XkJmeFBRjKMovEmmA7XjwHu3IYiun7E8hMa6_uTQu_N3_jmj9yjd-Co-Dy8q2Ox1bhSVXP4MnPR0EC9bhOdTjOW29sVnF0BN2aOUtG42-MtrqZb990qZjHZadOjB0V08j4rZnFarHr7lj1rU-M6xmJzVTeM3bmS8py5oOz4Dfx5qThjD07gUc3YugX8JyPavdK2A65wZdI6X4MBY208SWZlzipDBFnlZ6AEkvydKEWudEuXFaXlVp9tIvUfqll34ZD-D91TtNV-njzt7r_QSV4a8_Lxc6OoAP_aQtHt8-2uu7R9uEh5PDg_1yf3e6twaPiPG-Sx5ah-X2bO420C9q9ZugfAx-3re-_wPGYxnz |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86QXzxW5xOzYNvWmzTNOseh27Or-GDg72VpE1kMLui7f_vXdpuU1QQ-lDaNJS7JPe75H53hJwHShu0vI7U3MdjRuEoDnfgC8l26HtGeUhwfhqKwYjfj4PxEovfRrvXR5IlpwGzNKX5VZaYqznxDXczwQ1mGDnJBfjEq2SNY6IEGNEj1l1iRtqinODDYHwP9yvazM99fDVNC7z57YjUWp7-NtmsICPtljreISs63SVbdTkGWs3OPZL2C9z6ojNDAYlqWGUT2uvdUtxqpW82aFLTkkuODSjAxamDteWpAfW8FpomOreRWSmdpFTCVeQzm9KVZiWfAP6PZpMMOex6n4z6vZfrgVOVU3BimGe548cdMERxIkzblS6mqdedWAYsdGXiAW40sq3QW5JCcA0PdMJVxzeuSEQIoEf6B6SRzlJ9SKgKWQzQRErWdnkSKKxWFmtPCx53Qt-oJvFqSUZxlWscS15Mo3mWZCv9CKQfWelHbpNczL_Jykwbf7Zu1QqKqln3ETFYbFjABAub5LJW2uL1770d_a_5GVl_vulHj3fDh2OygQXoy1ieFmnk74U-AZiSq1M7Ej8BcivbxA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusion+of+forehead+EEG+with+machine+vision+for+real-time+fatigue+detection+in+an+automatic+processing+pipeline&rft.jtitle=Neural+computing+%26+applications&rft.au=Min%2C+Jianliang&rft.au=Cai%2C+Ming&rft.au=Gou%2C+Chao&rft.au=Xiong%2C+Chen&rft.date=2023-04-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007%2Fs00521-022-07466-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_022_07466_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |