Fusion of forehead EEG with machine vision for real-time fatigue detection in an automatic processing pipeline

Driving fatigue is a leading contributor to traffic accidents and fatalities. For automatic detection of fatigue, multimodal data fusion is a potential key technique, especially the merging of electroencephalogram (EEG) and eye movement. Although EEG can produce objective measures of fatigue with ve...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 35; no. 12; pp. 8859 - 8872
Main Authors Min, Jianliang, Cai, Ming, Gou, Chao, Xiong, Chen, Yao, Xuejiao
Format Journal Article
LanguageEnglish
Published London Springer London 01.04.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-022-07466-0

Cover

Abstract Driving fatigue is a leading contributor to traffic accidents and fatalities. For automatic detection of fatigue, multimodal data fusion is a potential key technique, especially the merging of electroencephalogram (EEG) and eye movement. Although EEG can produce objective measures of fatigue with very high temporal resolution, an unfriendly multichannel system limits its practical application while portable wearables and machine vision receive much attention since they are pervasive and user friendly. Hence, this study aims to construct a novel pipeline by using machine vision technique to improve the quality of driver fatigue detection based on forehead EEG. By coupling the Karolinska Sleepiness Scale (KSS) and percentage of eyelid closure (PERCLOS), the precise and reliable dataset for reflecting drivers’ fatigue levels were obtained. Moreover, major artifact contamination related to blink activity for frontal-channel EEG was removed by a synchronous video-based eyeblink event marker. In addition, the scale-invariant feature transform (SIFT) features of eyelid keypoints was applied to fuse with the EEG-driven features. Sixteen subjects participated in a realistic driving simulation experiment. Both machine and deep learning methods were used to implement the intra-subject and inter-subject cross validation. It demonstrated that our proposed method can achieve a significant performance. The present work showed the usefulness of forehead EEG and eye images that was originally merged for detecting fatigue. It provides a new strategy of using forehead EEG combined with machine vision to design a potential and automatic pipeline for driver fatigue detection.
AbstractList Driving fatigue is a leading contributor to traffic accidents and fatalities. For automatic detection of fatigue, multimodal data fusion is a potential key technique, especially the merging of electroencephalogram (EEG) and eye movement. Although EEG can produce objective measures of fatigue with very high temporal resolution, an unfriendly multichannel system limits its practical application while portable wearables and machine vision receive much attention since they are pervasive and user friendly. Hence, this study aims to construct a novel pipeline by using machine vision technique to improve the quality of driver fatigue detection based on forehead EEG. By coupling the Karolinska Sleepiness Scale (KSS) and percentage of eyelid closure (PERCLOS), the precise and reliable dataset for reflecting drivers’ fatigue levels were obtained. Moreover, major artifact contamination related to blink activity for frontal-channel EEG was removed by a synchronous video-based eyeblink event marker. In addition, the scale-invariant feature transform (SIFT) features of eyelid keypoints was applied to fuse with the EEG-driven features. Sixteen subjects participated in a realistic driving simulation experiment. Both machine and deep learning methods were used to implement the intra-subject and inter-subject cross validation. It demonstrated that our proposed method can achieve a significant performance. The present work showed the usefulness of forehead EEG and eye images that was originally merged for detecting fatigue. It provides a new strategy of using forehead EEG combined with machine vision to design a potential and automatic pipeline for driver fatigue detection.
Driving fatigue is a leading contributor to traffic accidents and fatalities. For automatic detection of fatigue, multimodal data fusion is a potential key technique, especially the merging of electroencephalogram (EEG) and eye movement. Although EEG can produce objective measures of fatigue with very high temporal resolution, an unfriendly multichannel system limits its practical application while portable wearables and machine vision receive much attention since they are pervasive and user friendly. Hence, this study aims to construct a novel pipeline by using machine vision technique to improve the quality of driver fatigue detection based on forehead EEG. By coupling the Karolinska Sleepiness Scale (KSS) and percentage of eyelid closure (PERCLOS), the precise and reliable dataset for reflecting drivers’ fatigue levels were obtained. Moreover, major artifact contamination related to blink activity for frontal-channel EEG was removed by a synchronous video-based eyeblink event marker. In addition, the scale-invariant feature transform (SIFT) features of eyelid keypoints was applied to fuse with the EEG-driven features. Sixteen subjects participated in a realistic driving simulation experiment. Both machine and deep learning methods were used to implement the intra-subject and inter-subject cross validation. It demonstrated that our proposed method can achieve a significant performance. The present work showed the usefulness of forehead EEG and eye images that was originally merged for detecting fatigue. It provides a new strategy of using forehead EEG combined with machine vision to design a potential and automatic pipeline for driver fatigue detection.
Author Cai, Ming
Gou, Chao
Xiong, Chen
Yao, Xuejiao
Min, Jianliang
Author_xml – sequence: 1
  givenname: Jianliang
  surname: Min
  fullname: Min, Jianliang
  organization: School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-Sen University, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University
– sequence: 2
  givenname: Ming
  surname: Cai
  fullname: Cai, Ming
  organization: School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-Sen University, Guangdong Province Key Laboratory of Intelligent Transportation System
– sequence: 3
  givenname: Chao
  surname: Gou
  fullname: Gou, Chao
  email: gouchao@mail.sysu.edu.cn
  organization: School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-Sen University, Guangdong Province Key Laboratory of Intelligent Transportation System
– sequence: 4
  givenname: Chen
  surname: Xiong
  fullname: Xiong, Chen
  organization: School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-Sen University, Guangdong Province Key Laboratory of Intelligent Transportation System
– sequence: 5
  givenname: Xuejiao
  surname: Yao
  fullname: Yao, Xuejiao
  organization: Research Institute for Road Safety of MPS
BookMark eNp9kEFLAzEQhYNUsK3-AU8Bz6uTZDe7e5TSVkHwoueQZmfblDZbk6zivzftCoKHwkBg3vcmM29CRq5zSMgtg3sGUD4EgIKzDDjPoMylzOCCjFkuRCagqEZkDHWeZJmLKzIJYQsAuayKMXGLPtjO0a6lbedxg7qh8_mSftm4oXttNtYh_bQnJgHUo95l0e6RtjradY-0wYgmHnXrqE7Vx26fNEMPvjMYgnVrerAH3KVR1-Sy1buAN7_vlLwv5m-zp-zldfk8e3zJjGB1zISpS1aZRrYlaBDpOKyNLngFumEVQKvLVV1I0FLmmBrY5KtatCAbWbGi1mJK7oa5aYePHkNU2673Ln2peFkLXnDJq0RVA2V8F4LHVhkb9fGW6LXdKQbqmK4a0lUpXXVKV0Gy8n_Wg7d77b_Pm8RgCgl2a_R_W51x_QDNvI7D
CitedBy_id crossref_primary_10_1016_j_jsr_2024_05_015
crossref_primary_10_1109_ACCESS_2024_3381999
crossref_primary_10_1007_s11571_024_10126_9
crossref_primary_10_1109_COMST_2023_3256323
crossref_primary_10_59324_ejtas_2024_2_5__50
Cites_doi 10.1109/JSEN.2019.2906572
10.1023/B:VISI.0000029664.99615.94
10.1109/JSEN.2018.2872623
10.1016/j.amar.2020.100114
10.1109/TITS.2018.2868499
10.1016/j.aap.2021.106107
10.1007/s12559-015-9351-y
10.1109/TITS.2016.2582900
10.1136/bmj.324.7346.1125
10.1088/1741-2560/12/3/031001
10.1037/e729262011-001
10.1088/1741-2552/ab909f
10.1109/ICAIIC51459.2021.9415193
10.1088/1741-2552/aa5a98
10.1109/ACCESS.2019.2914373
10.1016/j.bspc.2019.02.005
10.1016/j.patcog.2017.01.023
10.1109/TCYB.2019.2939399
10.1109/IPDPS.2008.4536131
10.1142/S1793536909000047
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-022-07466-0
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 8872
ExternalDocumentID 10_1007_s00521_022_07466_0
GrantInformation_xml – fundername: Key Research and Development Program of Guangzhou
  grantid: 202007050002
– fundername: National Research and Development Program of China
  grantid: 2020YFB1600400
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-3c9718cd6f70a03005e9ca5280ad1800fa7b9560a664e180ed4b93f06d68159a3
IEDL.DBID AGYKE
ISSN 0941-0643
IngestDate Sun Sep 07 03:26:58 EDT 2025
Thu Apr 24 23:09:12 EDT 2025
Wed Oct 01 02:26:14 EDT 2025
Fri Feb 21 02:43:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords SIFT
Forehead EEG
Machine vision
Driving fatigue
Eye movement
Multimodal data fusion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-3c9718cd6f70a03005e9ca5280ad1800fa7b9560a664e180ed4b93f06d68159a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2793252628
PQPubID 2043988
PageCount 14
ParticipantIDs proquest_journals_2793252628
crossref_citationtrail_10_1007_s00521_022_07466_0
crossref_primary_10_1007_s00521_022_07466_0
springer_journals_10_1007_s00521_022_07466_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References WuZHuangNEEnsemble empirical mode decomposition: a noise-assisted data analysis methodAdv Adap Data Anal2009114110.1142/S1793536909000047
ChenXChenQZhangYWangZJA novel EEMD-CCA approach to removing muscle artifacts for pervasive EEGIEEE Sens J2018198420843110.1109/JSEN.2018.2872623
Quddus A, Zandi AS, Prest L, Comeau FJ (2021) Using long short term memory and convolutional neural networks for driver drowsiness detection. Accident Anal Prev 106107
Zheng W-L, Lu B-L (2017) A multimodal approach to estimating vigilance using EEG and forehead EOG. J Neural Eng 026017
Zhang Q, Chen Y, Zhang Y, Xu Y (2008) SIFT implementation and optimization for multi-core systems. In: 2008 IEEE international symposium on parallel and distributed processing, pp 1–8
DebieERojasRFFidockJBarlowMKasmarikKAnavattiSMultimodal fusion for objective assessment of cognitive workload: a reviewIEEE T Cybern20195131542155510.1109/TCYB.2019.2939399
MaYFuRResearch and development of drivers visual behavior and driving safetyChina J Highway Transp2015288294
RamzanMKhanHUAwanSMIsmailAIlyasMMahmoodAA survey on state-of-the-art drowsiness detection techniquesIEEE Access20197619046191910.1109/ACCESS.2019.2914373
KhatunSMahajanRMorshedBIComparative study of wavelet-based unsupervised ocular artifact removal techniques for single-channel EEG dataIEEE J Transl Eng He2016418
Staudemeyer RC, Morris ER (2019) Understanding LSTM—a tutorial into long short-term memory recurrent neural networks. arXiv preprint arXiv:1909.09586
CaoLLiJXuYZhuHJiangCA hybrid vigilance monitoring study for mental fatigue and its neural activitiesCogn Comput2016822823610.1007/s12559-015-9351-y
Ko L-W, Komarov O, Lai W-K, Liang W-G, Jung T-P (2020) Eyeblink recognition improves fatigue prediction from single-channel forehead EEG in a realistic sustained attention task. J Neural Eng 036015
BakkerBZabłockiBBakerARiethmeisterVMarxBIyerGA multi-stage, multi-feature machine learning approach to detect driver sleepiness in naturalistic road driving conditionsIEEE T Intell Transp202199110
SikanderGAnwarSDriver fatigue detection systems: a reviewIEEE T Intell Transp2018202339235210.1109/TITS.2018.2868499
Urigüen JA, Garcia-Zapirain B (2015) EEG artifact removal—state-of-the-art and guidelines. J Neural Eng 031001
MandalBLiLWangGSLinJTowards detection of bus driver fatigue based on robust visual analysis of eye stateIEEE T Intell Transp20161854555710.1109/TITS.2016.2582900
GouCWuYWangKWangKWangF-YJiQA joint cascaded framework for simultaneous eye detection and eye state estimationPattern Recogn201767233110.1016/j.patcog.2017.01.023
Klauer SG, Dingus TA, Neale VL, Sudweeks JD, Ramsey DJ (2006) The impact of driver inattention on near-crash/crash risk: an analysis using the 100-car naturalistic driving study data. Department of Transportation, NHTSA, Washington
ChenXXuXLiuALeeSChenXZhangXRemoval of muscle artifacts from the EEG: a review and recommendationsIEEE Sens J2019195353536810.1109/JSEN.2019.2906572
Connor J, Norton R, Ameratunga S, Robinson E, Civil I, Dunn R et al (2002) Driver sleepiness and risk of serious injury to car occupants: population based case control study. BMJ 1125
LuoHQiuTLiuCHuangPResearch on fatigue driving detection using forehead EEG based on adaptive multi-scale entropyBiomed Signal Proces201951505810.1016/j.bspc.2019.02.005
LoweDGDistinctive image features from scale-invariant keypointsInt J Comput Vision2004609111010.1023/B:VISI.0000029664.99615.94
Dkhil MB, Wali A, Alimi AM (2018) A hierarchical fuzzy system for an advanced driving assistance system. arXiv preprint arXiv:1806.04611
Kim K-J, Lim K-T, Woon Baek J, Shin M (2021) Low-cost real-time driver drowsiness detection based on convergence of IR images and EEG signals. In: 2021 international conference on artificial intelligence in information and communication (ICAIIC), pp 438–443
Zhang X, Wang X, Yang X, Xu C, Zhu X, Wei J (2020) Driver drowsiness detection using mixed-effect ordered logit model considering time cumulative effect. Anal Methods Accid R 100114
L Cao (7466_CR16) 2016; 8
B Bakker (7466_CR12) 2021; 99
C Gou (7466_CR18) 2017; 67
DG Lowe (7466_CR21) 2004; 60
Y Ma (7466_CR10) 2015; 28
S Khatun (7466_CR6) 2016; 4
7466_CR22
7466_CR23
Z Wu (7466_CR19) 2009; 1
E Debie (7466_CR24) 2019; 51
H Luo (7466_CR7) 2019; 51
X Chen (7466_CR25) 2019; 19
X Chen (7466_CR20) 2018; 19
7466_CR8
B Mandal (7466_CR9) 2016; 18
7466_CR5
7466_CR4
7466_CR2
7466_CR1
M Ramzan (7466_CR11) 2019; 7
7466_CR13
7466_CR15
7466_CR14
G Sikander (7466_CR3) 2018; 20
7466_CR17
References_xml – reference: Urigüen JA, Garcia-Zapirain B (2015) EEG artifact removal—state-of-the-art and guidelines. J Neural Eng 031001
– reference: GouCWuYWangKWangKWangF-YJiQA joint cascaded framework for simultaneous eye detection and eye state estimationPattern Recogn201767233110.1016/j.patcog.2017.01.023
– reference: LuoHQiuTLiuCHuangPResearch on fatigue driving detection using forehead EEG based on adaptive multi-scale entropyBiomed Signal Proces201951505810.1016/j.bspc.2019.02.005
– reference: Connor J, Norton R, Ameratunga S, Robinson E, Civil I, Dunn R et al (2002) Driver sleepiness and risk of serious injury to car occupants: population based case control study. BMJ 1125
– reference: Dkhil MB, Wali A, Alimi AM (2018) A hierarchical fuzzy system for an advanced driving assistance system. arXiv preprint arXiv:1806.04611
– reference: ChenXChenQZhangYWangZJA novel EEMD-CCA approach to removing muscle artifacts for pervasive EEGIEEE Sens J2018198420843110.1109/JSEN.2018.2872623
– reference: CaoLLiJXuYZhuHJiangCA hybrid vigilance monitoring study for mental fatigue and its neural activitiesCogn Comput2016822823610.1007/s12559-015-9351-y
– reference: Staudemeyer RC, Morris ER (2019) Understanding LSTM—a tutorial into long short-term memory recurrent neural networks. arXiv preprint arXiv:1909.09586
– reference: Kim K-J, Lim K-T, Woon Baek J, Shin M (2021) Low-cost real-time driver drowsiness detection based on convergence of IR images and EEG signals. In: 2021 international conference on artificial intelligence in information and communication (ICAIIC), pp 438–443
– reference: LoweDGDistinctive image features from scale-invariant keypointsInt J Comput Vision2004609111010.1023/B:VISI.0000029664.99615.94
– reference: Klauer SG, Dingus TA, Neale VL, Sudweeks JD, Ramsey DJ (2006) The impact of driver inattention on near-crash/crash risk: an analysis using the 100-car naturalistic driving study data. Department of Transportation, NHTSA, Washington
– reference: Zhang Q, Chen Y, Zhang Y, Xu Y (2008) SIFT implementation and optimization for multi-core systems. In: 2008 IEEE international symposium on parallel and distributed processing, pp 1–8
– reference: ChenXXuXLiuALeeSChenXZhangXRemoval of muscle artifacts from the EEG: a review and recommendationsIEEE Sens J2019195353536810.1109/JSEN.2019.2906572
– reference: MaYFuRResearch and development of drivers visual behavior and driving safetyChina J Highway Transp2015288294
– reference: Ko L-W, Komarov O, Lai W-K, Liang W-G, Jung T-P (2020) Eyeblink recognition improves fatigue prediction from single-channel forehead EEG in a realistic sustained attention task. J Neural Eng 036015
– reference: Zheng W-L, Lu B-L (2017) A multimodal approach to estimating vigilance using EEG and forehead EOG. J Neural Eng 026017
– reference: BakkerBZabłockiBBakerARiethmeisterVMarxBIyerGA multi-stage, multi-feature machine learning approach to detect driver sleepiness in naturalistic road driving conditionsIEEE T Intell Transp202199110
– reference: Quddus A, Zandi AS, Prest L, Comeau FJ (2021) Using long short term memory and convolutional neural networks for driver drowsiness detection. Accident Anal Prev 106107
– reference: WuZHuangNEEnsemble empirical mode decomposition: a noise-assisted data analysis methodAdv Adap Data Anal2009114110.1142/S1793536909000047
– reference: SikanderGAnwarSDriver fatigue detection systems: a reviewIEEE T Intell Transp2018202339235210.1109/TITS.2018.2868499
– reference: MandalBLiLWangGSLinJTowards detection of bus driver fatigue based on robust visual analysis of eye stateIEEE T Intell Transp20161854555710.1109/TITS.2016.2582900
– reference: RamzanMKhanHUAwanSMIsmailAIlyasMMahmoodAA survey on state-of-the-art drowsiness detection techniquesIEEE Access20197619046191910.1109/ACCESS.2019.2914373
– reference: Zhang X, Wang X, Yang X, Xu C, Zhu X, Wei J (2020) Driver drowsiness detection using mixed-effect ordered logit model considering time cumulative effect. Anal Methods Accid R 100114
– reference: KhatunSMahajanRMorshedBIComparative study of wavelet-based unsupervised ocular artifact removal techniques for single-channel EEG dataIEEE J Transl Eng He2016418
– reference: DebieERojasRFFidockJBarlowMKasmarikKAnavattiSMultimodal fusion for objective assessment of cognitive workload: a reviewIEEE T Cybern20195131542155510.1109/TCYB.2019.2939399
– volume: 19
  start-page: 5353
  year: 2019
  ident: 7466_CR25
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2019.2906572
– volume: 60
  start-page: 91
  year: 2004
  ident: 7466_CR21
  publication-title: Int J Comput Vision
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 19
  start-page: 8420
  year: 2018
  ident: 7466_CR20
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2018.2872623
– ident: 7466_CR8
  doi: 10.1016/j.amar.2020.100114
– ident: 7466_CR23
– volume: 20
  start-page: 2339
  year: 2018
  ident: 7466_CR3
  publication-title: IEEE T Intell Transp
  doi: 10.1109/TITS.2018.2868499
– ident: 7466_CR13
  doi: 10.1016/j.aap.2021.106107
– volume: 4
  start-page: 1
  year: 2016
  ident: 7466_CR6
  publication-title: IEEE J Transl Eng He
– volume: 8
  start-page: 228
  year: 2016
  ident: 7466_CR16
  publication-title: Cogn Comput
  doi: 10.1007/s12559-015-9351-y
– volume: 18
  start-page: 545
  year: 2016
  ident: 7466_CR9
  publication-title: IEEE T Intell Transp
  doi: 10.1109/TITS.2016.2582900
– ident: 7466_CR2
  doi: 10.1136/bmj.324.7346.1125
– ident: 7466_CR4
  doi: 10.1088/1741-2560/12/3/031001
– ident: 7466_CR1
  doi: 10.1037/e729262011-001
– ident: 7466_CR5
  doi: 10.1088/1741-2552/ab909f
– ident: 7466_CR14
  doi: 10.1109/ICAIIC51459.2021.9415193
– volume: 28
  start-page: 82
  year: 2015
  ident: 7466_CR10
  publication-title: China J Highway Transp
– volume: 99
  start-page: 1
  year: 2021
  ident: 7466_CR12
  publication-title: IEEE T Intell Transp
– ident: 7466_CR17
  doi: 10.1088/1741-2552/aa5a98
– volume: 7
  start-page: 61904
  year: 2019
  ident: 7466_CR11
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2914373
– volume: 51
  start-page: 50
  year: 2019
  ident: 7466_CR7
  publication-title: Biomed Signal Proces
  doi: 10.1016/j.bspc.2019.02.005
– ident: 7466_CR15
– volume: 67
  start-page: 23
  year: 2017
  ident: 7466_CR18
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2017.01.023
– volume: 51
  start-page: 1542
  issue: 3
  year: 2019
  ident: 7466_CR24
  publication-title: IEEE T Cybern
  doi: 10.1109/TCYB.2019.2939399
– ident: 7466_CR22
  doi: 10.1109/IPDPS.2008.4536131
– volume: 1
  start-page: 1
  year: 2009
  ident: 7466_CR19
  publication-title: Adv Adap Data Anal
  doi: 10.1142/S1793536909000047
SSID ssj0004685
Score 2.4204593
Snippet Driving fatigue is a leading contributor to traffic accidents and fatalities. For automatic detection of fatigue, multimodal data fusion is a potential key...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8859
SubjectTerms Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data integration
Data Mining and Knowledge Discovery
Driver fatigue
Electroencephalography
Eye movements
Forehead
Image Processing and Computer Vision
Machine vision
Probability and Statistics in Computer Science
S.I.: AI based Techniques and Applications for Intelligent IoT Systems
Special Issue on Artificial Intelligence based Techniques and Applications for Intelligent IoT Systems (AI-TAIoT)
Temporal resolution
Traffic accidents
Vision systems
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60vXjxLdYXe_CmwWSz2aYHEZXWIlhEFLyFfUUETaOm_9-ZTWJVUMghbDYhzOxjZna--QAOE-1y2nkD5URMx4wy0ALv0BdS_TSOch0RwPlmIscP4voxeVyASYuFobTKdk30C7WdGoqRn3AcSDzhkqdn5VtArFF0utpSaKiGWsGe-hJji9DlVBmrA92L4eT27htS0pN0ok9D-T4ibmA0HkxHEVJs5ZSNKST62T-3qrn9-evI1O9Eo1VYbkxIdl7rfA0WXLEOKy09A2tm6wYUoxmFwtg0Z2iZOlx1LRsOrxiFXtmrT6J0rMaWUweG5uNLQFzzLEd1Pc0cs67ymVoFey6YwmtWTX2JV1bW-AL8P1Y-l4Rpd5vwMBreX46Dhl4hMDjvqiA2A9yYjJV5P1Qhla13A6MSnobKRmhH5qqvyXtSUgqHDc4KPYjzUFqZohGk4i3oFNPCbQPTKTdoqijF-6GwiSb2MuMiJ4UZpHGuexC1ksxMU3ucKDBesq-qyV76GUo_89LPwh4cfb1T1pU3_u291yooa2bhRzYfMz04bpU2f_z313b-_9ouLBHrfJ3Aswed6n3m9tE2qfRBM-A-AfL53lQ
  priority: 102
  providerName: ProQuest
Title Fusion of forehead EEG with machine vision for real-time fatigue detection in an automatic processing pipeline
URI https://link.springer.com/article/10.1007/s00521-022-07466-0
https://www.proquest.com/docview/2793252628
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3058
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ADMLS
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3058
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: 8FG
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT4MwFD7R7cUX78Z5Wfrgm2KglI49TmUz3mLUJfpE2lLMorJF4cVf72mBTY2amJBAaGlKb-c77fnOAdgLpE6N5HWEZr45ZuSOZPiEupDohL6XSs8QnC-v-OmQnd0H9xUp7K22dq-PJO1KPSW7mR1MVH2psZZkHPXgeWhaf1sNaPYGD-fRJz6kDcWJmoux6mF-RZb5uZSvAmmGMr8djFp501-CYV3T0szk6bDI5aF6_-bE8b-_sgyLFQAlvXLErMCczlZhqQ7uQKq5vgZZvzAbaWScEsS1GtfshETRgJiNW_JiTTA1KZnpJgNB8PnsmEj1JMXOfiw0SXRu7bwyMsqIwKvIx9ZBLJmU7ASsMpmMJoYRr9dh2I_ujk-dKjiDo3DW5o6vuijWVMLTjitc4_Red5UIaOiKxEMUmoqONLqX4JxpfKETJrt-6vKEhwihhL8BjWyc6U0gMqQKgY4QtOOyJJAm9pnSnuZMdUM_lS3w6h6KVeW53ATQeI6nPpdtg8bYoLFt0Nhtwf70m0npt-PP3Dt1x8fVHH6LKS5dNKCchi04qPtxlvx7aVv_y74NCyaGfWkOtAON_LXQu4h0ctmG-bA_aOPwPrm8uG1XwxzvR9HV9Q2mDmnvAz9D9pE
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8gPOiLih_xBGQf9Ekb2-12r30gBuXOQ-BiDCS81f2qIcFehV4M_xx_mzPbLQcm8EbSh2a73TSz09mZ3fnND-Btpl1FK2-knEjpmFFGWuAdxkJqmKdJpRMCOB9M5eRIfDvOjpfgssfCUFplbxO9obYzQ3vkHzkqEs-45Pmn5k9ErFF0utpTaKhArWC3fImxAOzYcxd_MYQ739rdwfl-x_l4dPhlEgWWgcig-rVRagq0z8bKahirmKq3u8KojOexsgm6U5UaagoilJTCYYOzQhdpFUsrc_QFVIrjPoAVkYoCg7-Vz6Pp9x_XkJmeFBRjKMovEmmA7XjwHu3IYiun7E8hMa6_uTQu_N3_jmj9yjd-Co-Dy8q2Ox1bhSVXP4MnPR0EC9bhOdTjOW29sVnF0BN2aOUtG42-MtrqZb990qZjHZadOjB0V08j4rZnFarHr7lj1rU-M6xmJzVTeM3bmS8py5oOz4Dfx5qThjD07gUc3YugX8JyPavdK2A65wZdI6X4MBY208SWZlzipDBFnlZ6AEkvydKEWudEuXFaXlVp9tIvUfqll34ZD-D91TtNV-njzt7r_QSV4a8_Lxc6OoAP_aQtHt8-2uu7R9uEh5PDg_1yf3e6twaPiPG-Sx5ah-X2bO420C9q9ZugfAx-3re-_wPGYxnz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86QXzxW5xOzYNvWmzTNOseh27Or-GDg72VpE1kMLui7f_vXdpuU1QQ-lDaNJS7JPe75H53hJwHShu0vI7U3MdjRuEoDnfgC8l26HtGeUhwfhqKwYjfj4PxEovfRrvXR5IlpwGzNKX5VZaYqznxDXczwQ1mGDnJBfjEq2SNY6IEGNEj1l1iRtqinODDYHwP9yvazM99fDVNC7z57YjUWp7-NtmsICPtljreISs63SVbdTkGWs3OPZL2C9z6ojNDAYlqWGUT2uvdUtxqpW82aFLTkkuODSjAxamDteWpAfW8FpomOreRWSmdpFTCVeQzm9KVZiWfAP6PZpMMOex6n4z6vZfrgVOVU3BimGe548cdMERxIkzblS6mqdedWAYsdGXiAW40sq3QW5JCcA0PdMJVxzeuSEQIoEf6B6SRzlJ9SKgKWQzQRErWdnkSKKxWFmtPCx53Qt-oJvFqSUZxlWscS15Mo3mWZCv9CKQfWelHbpNczL_Jykwbf7Zu1QqKqln3ETFYbFjABAub5LJW2uL1770d_a_5GVl_vulHj3fDh2OygQXoy1ieFmnk74U-AZiSq1M7Ej8BcivbxA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusion+of+forehead+EEG+with+machine+vision+for+real-time+fatigue+detection+in+an+automatic+processing+pipeline&rft.jtitle=Neural+computing+%26+applications&rft.au=Min%2C+Jianliang&rft.au=Cai%2C+Ming&rft.au=Gou%2C+Chao&rft.au=Xiong%2C+Chen&rft.date=2023-04-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007%2Fs00521-022-07466-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_022_07466_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon