A Fast Algorithm for Convolutional Neural Networks Using Tile-based Fast Fourier Transforms

State-of-the-art convolution algorithms accelerate training of convolutional neural networks (CNNs) by decomposing convolutions in time or Fourier domain, these decomposition implementations are designed for small filters or large inputs, respectively. We take these two aspects into account, devote...

Full description

Saved in:
Bibliographic Details
Published inNeural processing letters Vol. 50; no. 2; pp. 1951 - 1967
Main Authors Lin, Jinhua, Yao, Yu
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1370-4621
1573-773X
DOI10.1007/s11063-019-09981-z

Cover

Abstract State-of-the-art convolution algorithms accelerate training of convolutional neural networks (CNNs) by decomposing convolutions in time or Fourier domain, these decomposition implementations are designed for small filters or large inputs, respectively. We take these two aspects into account, devote to a novel decomposition strategy in Fourier domain and propose a conceptually useful algorithm for accelerating CNNs. We extend the classical Fast Fourier Transform theory to meet the requirements of convolving large inputs with small filters in faster manner. The tile-based decomposition strategy is introduced into Fourier transforms to yield a fast convolution algorithm. The algorithm, called tFFT, is simple to program, implementing tile sized transformations in Fourier domain to minimize convolution time for modern CNNs. tFFT reduces the arithmetic complexity of CNNs by over a factor of 3 compared to FFT-based convolution algorithms. We evaluate the performance of tFFT by implementing it on a set of state-of-the-art CNNs, the experiments show good results at batch sizes from 1 to 128.
AbstractList State-of-the-art convolution algorithms accelerate training of convolutional neural networks (CNNs) by decomposing convolutions in time or Fourier domain, these decomposition implementations are designed for small filters or large inputs, respectively. We take these two aspects into account, devote to a novel decomposition strategy in Fourier domain and propose a conceptually useful algorithm for accelerating CNNs. We extend the classical Fast Fourier Transform theory to meet the requirements of convolving large inputs with small filters in faster manner. The tile-based decomposition strategy is introduced into Fourier transforms to yield a fast convolution algorithm. The algorithm, called tFFT, is simple to program, implementing tile sized transformations in Fourier domain to minimize convolution time for modern CNNs. tFFT reduces the arithmetic complexity of CNNs by over a factor of 3 compared to FFT-based convolution algorithms. We evaluate the performance of tFFT by implementing it on a set of state-of-the-art CNNs, the experiments show good results at batch sizes from 1 to 128.
Author Yao, Yu
Lin, Jinhua
Author_xml – sequence: 1
  givenname: Jinhua
  surname: Lin
  fullname: Lin, Jinhua
  email: ljh3832@163.com
  organization: School of Computer Application Technology, Changchun University of Technology, Machinery and Electronics Engineering, University of Chinese Academy of Sciences
– sequence: 2
  givenname: Yu
  surname: Yao
  fullname: Yao, Yu
  organization: School of Computer Application Technology, Changchun University of Technology
BookMark eNp9kE1LAzEURYMo2Fb_gKuA62g-5ivLUqwKRTctCC5CJpPU1OmkJqlif71pRxBcdPXe4p37LmcITjvXaQCuCL4hGJe3gRBcMIQJR5jziqDdCRiQvGSoLNnLadpZiVFWUHIOhiGsME4YxQPwOoZTGSIct0vnbXxbQ-M8nLju07XbaF0nW_ikt_4w4pfz7wEugu2WcG5bjWoZdNMnTN3WW-3h3MsupJB1uABnRrZBX_7OEVhM7-aTBzR7vn-cjGdIMcIjYnVWM6oMa7TJiqIppOJl2jDLFC1TT5MzjmlhNFeslibHNcuxIbjWlWoazkbgus_dePex1SGKVeqSmgdBOalYRitC0hXtr5R3IXhtxMbbtfTfgmCxlyh6iSJJFAeJYpeg6h-kbJR7L9FL2x5HWY-G9Kdbav_X6gj1A_oCieI
CitedBy_id crossref_primary_10_1088_2632_2153_ab7d2f
crossref_primary_10_3390_s24144476
crossref_primary_10_1007_s10489_022_03756_1
crossref_primary_10_1007_s11063_020_10318_4
crossref_primary_10_3390_s22134679
crossref_primary_10_1049_cdt2_12016
crossref_primary_10_3390_app13159004
crossref_primary_10_1109_TIP_2020_3037467
crossref_primary_10_1137_23M1552073
crossref_primary_10_1016_j_asoc_2023_110607
crossref_primary_10_1109_TNNLS_2022_3190607
Cites_doi 10.1137/1.9781611970364
10.1016/S0747-7171(08)80013-2
10.1137/S1064827593247023
10.1109/TNNLS.2016.2516030
10.1090/S0025-5718-1965-0178586-1
10.1109/MM.2008.57
10.1007/s11063-007-9060-y
10.1007/BF00348431
10.1109/5992.814659
10.1016/j.neucom.2016.12.038
10.1016/j.neucom.2016.11.046
10.1109/CVPR.2016.435
10.1109/97.917698
10.1007/3-540-49430-8_2
10.1109/cvpr.2017.16
10.1109/TNNLS.2017.2728639
10.1109/CVPR.2016.94
10.1109/CVPR.2015.7298594
10.1109/CVPR.2016.90
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Copyright Springer Nature B.V. Oct 2019
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Copyright Springer Nature B.V. Oct 2019
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
DOI 10.1007/s11063-019-09981-z
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-773X
EndPage 1967
ExternalDocumentID 10_1007_s11063_019_09981_z
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51705032
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National High-tech R&D Program
  grantid: 2014AA7031010B
– fundername: Science-Technology Project of the?thirteenth?Five-Year Plan
  grantid: 2016345
GroupedDBID -4Z
-5F
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AAOBN
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PSYQQ
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z8M
Z8R
Z8U
Z8W
Z92
ZMTXR
~EX
77I
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-3b4b32cf3def466d6ac97f46034c27100f539026fe9c3baf50b350f10be8cdd93
IEDL.DBID AGYKE
ISSN 1370-4621
IngestDate Sat Oct 18 22:46:06 EDT 2025
Wed Oct 01 01:56:23 EDT 2025
Thu Apr 24 23:08:57 EDT 2025
Fri Feb 21 02:36:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Fourier transforms
Decomposition implementations
Small filters
Convolutional neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-3b4b32cf3def466d6ac97f46034c27100f539026fe9c3baf50b350f10be8cdd93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918342811
PQPubID 2043838
PageCount 17
ParticipantIDs proquest_journals_2918342811
crossref_primary_10_1007_s11063_019_09981_z
crossref_citationtrail_10_1007_s11063_019_09981_z
springer_journals_10_1007_s11063_019_09981_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191000
2019-10-00
20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 20191000
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Neural processing letters
PublicationTitleAbbrev Neural Process Lett
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Penas, Penedo, Carreira (CR23) 2008; 27
Lavin, Gray (CR17) 2015; 10
Krizhevsky, Sutskever, Hinton (CR27) 2012; 1
CR16
Coppersmith, Winograd (CR19) 1987; 9
CR15
CR14
CR13
Schatzman (CR21) 1996; 17
Cooley, Tukey (CR12) 1965; 19
Heideman, Johnson, Burrus (CR5) 1985; 34
CR2
Takahashi (CR24) 2001; 8
CR6
Winograd (CR18) 1980
Liu, Wang, Liu, Zeng, Liu, Alsaadi (CR8) 2017; 234
Shen, Wang, Qiao (CR3) 2017; 28
CR7
CR29
CR28
CR9
CR26
CR25
CR20
LeCun, Bottou, Orr, Müller (CR1) 2002; 1524
Liu, Wang, Shen, Liu (CR4) 2017; 29
Li, Dou, Niu, Lv, Wang (CR22) 2017; 230
Nickolls (CR10) 2008; 28
Rockmore (CR11) 2000; 2
B Shen (9981_CR3) 2017; 28
9981_CR13
D Coppersmith (9981_CR19) 1987; 9
A Lavin (9981_CR17) 2015; 10
DN Rockmore (9981_CR11) 2000; 2
9981_CR14
9981_CR15
9981_CR16
9981_CR9
H Liu (9981_CR4) 2017; 29
A Krizhevsky (9981_CR27) 2012; 1
9981_CR6
9981_CR7
S Winograd (9981_CR18) 1980
Y LeCun (9981_CR1) 2002; 1524
9981_CR20
9981_CR29
9981_CR2
JW Cooley (9981_CR12) 1965; 19
MT Heideman (9981_CR5) 1985; 34
9981_CR25
9981_CR26
9981_CR28
D Takahashi (9981_CR24) 2001; 8
M Penas (9981_CR23) 2008; 27
J Nickolls (9981_CR10) 2008; 28
JC Schatzman (9981_CR21) 1996; 17
W Liu (9981_CR8) 2017; 234
S Li (9981_CR22) 2017; 230
References_xml – start-page: 625
  year: 1980
  end-page: 633
  ident: CR18
  publication-title: Arithmetic complexity of computations
  doi: 10.1137/1.9781611970364
– volume: 9
  start-page: 251
  issue: 3
  year: 1987
  end-page: 280
  ident: CR19
  article-title: Matrix multiplication via arithmetic progressions
  publication-title: J Symb Comput
  doi: 10.1016/S0747-7171(08)80013-2
– volume: 17
  start-page: 1150
  issue: 5
  year: 1996
  end-page: 1166
  ident: CR21
  article-title: Accuracy of the discrete fourier transform and the fast fourier transform
  publication-title: SIAM J Sci Comput
  doi: 10.1137/S1064827593247023
– ident: CR14
– ident: CR2
– volume: 28
  start-page: 1152
  issue: 5
  year: 2017
  end-page: 1163
  ident: CR3
  article-title: Event-triggered state estimation for discrete-time multidelayed neural networks with stochastic parameters and incomplete measurements
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2016.2516030
– ident: CR16
– volume: 19
  start-page: 297
  issue: 90
  year: 1965
  end-page: 301
  ident: CR12
  article-title: An algorithm for the machine calculation of complex fourier series
  publication-title: Math Comput
  doi: 10.1090/S0025-5718-1965-0178586-1
– volume: 28
  start-page: 13
  issue: 4
  year: 2008
  end-page: 27
  ident: CR10
  article-title: Parallel computing experiences with cuda
  publication-title: Micro IEEE
  doi: 10.1109/MM.2008.57
– volume: 27
  start-page: 67
  issue: 1
  year: 2008
  end-page: 83
  ident: CR23
  article-title: A neural network based framework for directional primitive extraction
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-007-9060-y
– ident: CR6
– ident: CR29
– volume: 34
  start-page: 265
  issue: 3
  year: 1985
  end-page: 277
  ident: CR5
  article-title: Gauss and the history of the fast fourier transform
  publication-title: Arch Hist Exact Sci
  doi: 10.1007/BF00348431
– ident: CR25
– volume: 2
  start-page: 60
  issue: 1
  year: 2000
  end-page: 64
  ident: CR11
  article-title: The fft: an algorithm the whole family can use
  publication-title: Comput Sci Eng
  doi: 10.1109/5992.814659
– volume: 234
  start-page: 11
  year: 2017
  end-page: 26
  ident: CR8
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.038
– volume: 230
  start-page: 48
  year: 2017
  end-page: 59
  ident: CR22
  article-title: A fast and memory saved gpu acceleration algorithm of convolutional neural networks for target detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.11.046
– volume: 10
  start-page: 4013
  year: 2015
  end-page: 4021
  ident: CR17
  article-title: Fast algorithms for convolutional neural networks
  publication-title: Comput Vision Pattern Recognit
  doi: 10.1109/CVPR.2016.435
– volume: 8
  start-page: 145
  issue: 5
  year: 2001
  end-page: 147
  ident: CR24
  article-title: An extended split-radix fft algorithm
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/97.917698
– ident: CR15
– volume: 1
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: CR27
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Int Conf Neural Inf Process Syst
– ident: CR13
– volume: 1524
  start-page: 9
  year: 2002
  end-page: 50
  ident: CR1
  article-title: Efficient backprop
  publication-title: Neural Netw Tricks Trade
  doi: 10.1007/3-540-49430-8_2
– volume: 29
  start-page: 3726
  issue: 8
  year: 2017
  end-page: 3737
  ident: CR4
  article-title: Event-triggered h∞ state estimation for delayed stochastic memristive neural networks with missing measurements: the discrete time case
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: CR9
– ident: CR7
– ident: CR28
– ident: CR26
– ident: CR20
– volume: 27
  start-page: 67
  issue: 1
  year: 2008
  ident: 9981_CR23
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-007-9060-y
– start-page: 625
  volume-title: Arithmetic complexity of computations
  year: 1980
  ident: 9981_CR18
  doi: 10.1137/1.9781611970364
– ident: 9981_CR29
  doi: 10.1109/cvpr.2017.16
– ident: 9981_CR14
– ident: 9981_CR6
– volume: 1
  start-page: 1097
  year: 2012
  ident: 9981_CR27
  publication-title: Int Conf Neural Inf Process Syst
– ident: 9981_CR2
– volume: 9
  start-page: 251
  issue: 3
  year: 1987
  ident: 9981_CR19
  publication-title: J Symb Comput
  doi: 10.1016/S0747-7171(08)80013-2
– volume: 29
  start-page: 3726
  issue: 8
  year: 2017
  ident: 9981_CR4
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2017.2728639
– volume: 10
  start-page: 4013
  year: 2015
  ident: 9981_CR17
  publication-title: Comput Vision Pattern Recognit
  doi: 10.1109/CVPR.2016.435
– ident: 9981_CR25
– ident: 9981_CR28
  doi: 10.1109/CVPR.2016.94
– volume: 28
  start-page: 13
  issue: 4
  year: 2008
  ident: 9981_CR10
  publication-title: Micro IEEE
  doi: 10.1109/MM.2008.57
– volume: 19
  start-page: 297
  issue: 90
  year: 1965
  ident: 9981_CR12
  publication-title: Math Comput
  doi: 10.1090/S0025-5718-1965-0178586-1
– volume: 17
  start-page: 1150
  issue: 5
  year: 1996
  ident: 9981_CR21
  publication-title: SIAM J Sci Comput
  doi: 10.1137/S1064827593247023
– volume: 230
  start-page: 48
  year: 2017
  ident: 9981_CR22
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.11.046
– volume: 34
  start-page: 265
  issue: 3
  year: 1985
  ident: 9981_CR5
  publication-title: Arch Hist Exact Sci
  doi: 10.1007/BF00348431
– ident: 9981_CR9
– volume: 8
  start-page: 145
  issue: 5
  year: 2001
  ident: 9981_CR24
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/97.917698
– ident: 9981_CR7
– ident: 9981_CR13
– volume: 28
  start-page: 1152
  issue: 5
  year: 2017
  ident: 9981_CR3
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2016.2516030
– volume: 2
  start-page: 60
  issue: 1
  year: 2000
  ident: 9981_CR11
  publication-title: Comput Sci Eng
  doi: 10.1109/5992.814659
– volume: 1524
  start-page: 9
  year: 2002
  ident: 9981_CR1
  publication-title: Neural Netw Tricks Trade
  doi: 10.1007/3-540-49430-8_2
– ident: 9981_CR15
  doi: 10.1109/CVPR.2015.7298594
– volume: 234
  start-page: 11
  year: 2017
  ident: 9981_CR8
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.038
– ident: 9981_CR16
  doi: 10.1109/CVPR.2016.90
– ident: 9981_CR20
– ident: 9981_CR26
SSID ssj0010020
Score 2.2682548
Snippet State-of-the-art convolution algorithms accelerate training of convolutional neural networks (CNNs) by decomposing convolutions in time or Fourier domain,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1951
SubjectTerms Algorithms
Artificial Intelligence
Artificial neural networks
Complex Systems
Computational Intelligence
Computer Science
Decomposition
Fast Fourier transformations
Fourier transforms
Neural networks
Propagation
Semantics
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH_odvHitzi_yMGbBtsmTZuDyBSHCA6RCYKH0nzpYW7TVQ_7603SdENBTyusfdCXl7xf-l5-P4DjjGutbZrGiVQpplxIzHOjMaGplDpnTPtC-12f3TzS26f0aQn6zVkY11bZrIl-oVZj6b6RnyXcBp_FynF8MXnHTjXKVVcbCY0ySCuoc08xtgztxDFjtaB9ed2_f5jXFRw68luwLMKUJXE4RlMfprO7I9db5FqIeB7j2c9UtcCfv0qmPhP11mE1QEjUrcd8A5b0aBPWGnkGFGbrFjx3Ua-cVqg7fLEvUr2-IQtQ0dV49BXCzRpx3Bz-xzeDT5HvIEADu1Rgl99UbaFXC9uhQYNyp9vw2LseXN3goKWApZ1kFSaCCpJIQ5Q2lDHFSskzexURKhPH8GNSwu1-zGguiShNGgmSRiaOhM6lUpzsQGs0HuldQEIxakgUaYtmaEkyLrOc8TIRGRUii0wH4sZthQxE407vYlgsKJKdqwvr6sK7uph14GT-zKSm2fj37oNmNIow5abFIkA6cNqM0OLvv63t_W9tH1YSFxS-ge8AWtXHpz60QKQSRyG6vgHtXdnF
  priority: 102
  providerName: ProQuest
Title A Fast Algorithm for Convolutional Neural Networks Using Tile-based Fast Fourier Transforms
URI https://link.springer.com/article/10.1007/s11063-019-09981-z
https://www.proquest.com/docview/2918342811
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-773X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-773X
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: AAJSJ
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFH4a7WWXMQZoHazygRsYJbHjxMcMNaBNVAi1EohDFDs2oHXtRAKH_vrZjkNFxZA4OUqcp8TP9ntP7_P3AA4SrpQyZhpHsoox5UJinmqFCY2lVCljyiXaz8fsbEp_XsVX_lBY3aHdu5Sk26lXh91M9GKxPxbiw9MQLzeg7_i2etDPTq9_jZ6zB9YHcoFWEmDKotAflnldykuDtPIy1xKjzt7kmzDtvrSFmfw-fmzEsVyukTi-91c-wyfvgKKsnTFb8EHNv8BmV9wB-bW-DTcZysu6QdnsdvFw39z9Qca9RSeL-ZOfrEaIZfZwjYOS18jhD9DEbDTYWseqlZC3ZfHQpPOR6x2Y5qPJyRn2lRiwNEu0wURQQSKpSaU0ZaxipeSJuQoIlZHlB9Ix4Saa04pLIkodB4LEgQ4DoVJZVZzsQm--mKuvgETFqCZBoIwvREuScJmkjJeRSKgQSaAHEHbqKKSnKbfVMmbFimDZjl5hRq9wo1csB3D4_M7flqTjzd77nZYLv2DrIuJmbzOhWBgO4KhT2urx_6V9e1_3PfgYWb07OOA-9JqHR_XduDWNGMJGmp8O_Vw27Y_R-OLS3J1G2T_mEPGB
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V7QEuvBFLC_gAJ7BIbMeJDxVaSldb2q4Q2kqVOIT4VQ5ltyUBRH8cv42x43QFEr31tJE2mcP4y8w3mRfA81I559BNU2ZsQYXShqrKO8pFYYyrpHQx0X44k9Mj8f64OF6D30MvTCirHGxiNNR2acI38tdMIfiQK-f5m7NzGrZGhezqsEKjSasV7HYcMZYaO_bdr58YwrXbe-_wvF8wNtmd70xp2jJADcKvo1wLzZnx3DovpLSyMarEq4wLw8LsG19whZGKd8pw3fgi07zIfJ5pVxlrwzAmdAEbgguFwd_G293Zh4-XeYzAxmLIV2ZUSJantp2-eQ-jsVDLFEqWVJXTi79d44rv_pOijZ5vcgduJcpKxj3G7sKaW9yD28M6CJKsw334NCaTpu3I-PQEFdd9-UqQEJOd5eJHgjcKCbNA4k8sPm9JrFggczRNNPhT20uY9Iv0yHxg1e0DOLoWrT6E9cVy4R4B0VYKz7PMIXsSDS-VKSupGqZLoXWZ-RHkg9pqkwabh_0ap_VqJHNQdY2qrqOq64sRvLx85qwf63Hl3VvDadTpFW_rFSBH8Go4odXf_5f2-Gppz-DGdH54UB_szfY34SYLAInFg1uw3n377p4gCer004Q0Ap-vG9x_AJSkFzo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSIiFN6JQwAMbWE1ix4nHqBDxrBhaqRJDFDs2DCWtSGDor8d2khYQIDElUpwbzmffd7q77wA4DZiUUrtp5InMR4RxgVioJMLEF0KGlEqbaL_v06shuRn5o09d_LbavUlJVj0NhqUpL7vTTHUXjW86kjF1QKbch4Uumi2DFWKIErRFD71onkcwaMiGXIGDCPXcum3mZxlfXdMCb35LkVrPE2-C9Roywqja4y2wJPNtsNGMY4D16dwBjxGM06KE0fhpokP-5xeoASnsTfL32ry0EMPFYR-2-LuAtmIADvTVgIw_yyoJcTXIDg4aVFvsgmF8OehdoXp2AhL6UJUIc8KxJxTOpCKUZjQVLNBvDibCM4w-ysdMx19KMoF5qnyHY99RrsNlKLKM4T3Qyie53AeQZ5Qo7DhSoxeS4oCJIKQs9XhAOA8c1QZuo7ZE1MTiZr7FOFlQIhtVJ1rViVV1MmuDs_k_04pW48_VnWY3kvqIFYnH9G2kgyfXbYPzZocWn3-XdvC_5Sdg9eEiTu6u-7eHYM0z9mJr-TqgVb6-ySONSUp-bM3uA5H41_E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fast+Algorithm+for+Convolutional+Neural+Networks+Using+Tile-based+Fast+Fourier+Transforms&rft.jtitle=Neural+processing+letters&rft.au=Lin%2C+Jinhua&rft.au=Yao%2C+Yu&rft.date=2019-10-01&rft.pub=Springer+US&rft.issn=1370-4621&rft.eissn=1573-773X&rft.volume=50&rft.issue=2&rft.spage=1951&rft.epage=1967&rft_id=info:doi/10.1007%2Fs11063-019-09981-z&rft.externalDocID=10_1007_s11063_019_09981_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1370-4621&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1370-4621&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1370-4621&client=summon