A Fast Algorithm for Convolutional Neural Networks Using Tile-based Fast Fourier Transforms
State-of-the-art convolution algorithms accelerate training of convolutional neural networks (CNNs) by decomposing convolutions in time or Fourier domain, these decomposition implementations are designed for small filters or large inputs, respectively. We take these two aspects into account, devote...
Saved in:
| Published in | Neural processing letters Vol. 50; no. 2; pp. 1951 - 1967 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.10.2019
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1370-4621 1573-773X |
| DOI | 10.1007/s11063-019-09981-z |
Cover
| Abstract | State-of-the-art convolution algorithms accelerate training of convolutional neural networks (CNNs) by decomposing convolutions in time or Fourier domain, these decomposition implementations are designed for small filters or large inputs, respectively. We take these two aspects into account, devote to a novel decomposition strategy in Fourier domain and propose a conceptually useful algorithm for accelerating CNNs. We extend the classical Fast Fourier Transform theory to meet the requirements of convolving large inputs with small filters in faster manner. The tile-based decomposition strategy is introduced into Fourier transforms to yield a fast convolution algorithm. The algorithm, called tFFT, is simple to program, implementing tile sized transformations in Fourier domain to minimize convolution time for modern CNNs. tFFT reduces the arithmetic complexity of CNNs by over a factor of 3 compared to FFT-based convolution algorithms. We evaluate the performance of tFFT by implementing it on a set of state-of-the-art CNNs, the experiments show good results at batch sizes from 1 to 128. |
|---|---|
| AbstractList | State-of-the-art convolution algorithms accelerate training of convolutional neural networks (CNNs) by decomposing convolutions in time or Fourier domain, these decomposition implementations are designed for small filters or large inputs, respectively. We take these two aspects into account, devote to a novel decomposition strategy in Fourier domain and propose a conceptually useful algorithm for accelerating CNNs. We extend the classical Fast Fourier Transform theory to meet the requirements of convolving large inputs with small filters in faster manner. The tile-based decomposition strategy is introduced into Fourier transforms to yield a fast convolution algorithm. The algorithm, called tFFT, is simple to program, implementing tile sized transformations in Fourier domain to minimize convolution time for modern CNNs. tFFT reduces the arithmetic complexity of CNNs by over a factor of 3 compared to FFT-based convolution algorithms. We evaluate the performance of tFFT by implementing it on a set of state-of-the-art CNNs, the experiments show good results at batch sizes from 1 to 128. |
| Author | Yao, Yu Lin, Jinhua |
| Author_xml | – sequence: 1 givenname: Jinhua surname: Lin fullname: Lin, Jinhua email: ljh3832@163.com organization: School of Computer Application Technology, Changchun University of Technology, Machinery and Electronics Engineering, University of Chinese Academy of Sciences – sequence: 2 givenname: Yu surname: Yao fullname: Yao, Yu organization: School of Computer Application Technology, Changchun University of Technology |
| BookMark | eNp9kE1LAzEURYMo2Fb_gKuA62g-5ivLUqwKRTctCC5CJpPU1OmkJqlif71pRxBcdPXe4p37LmcITjvXaQCuCL4hGJe3gRBcMIQJR5jziqDdCRiQvGSoLNnLadpZiVFWUHIOhiGsME4YxQPwOoZTGSIct0vnbXxbQ-M8nLju07XbaF0nW_ikt_4w4pfz7wEugu2WcG5bjWoZdNMnTN3WW-3h3MsupJB1uABnRrZBX_7OEVhM7-aTBzR7vn-cjGdIMcIjYnVWM6oMa7TJiqIppOJl2jDLFC1TT5MzjmlhNFeslibHNcuxIbjWlWoazkbgus_dePex1SGKVeqSmgdBOalYRitC0hXtr5R3IXhtxMbbtfTfgmCxlyh6iSJJFAeJYpeg6h-kbJR7L9FL2x5HWY-G9Kdbav_X6gj1A_oCieI |
| CitedBy_id | crossref_primary_10_1088_2632_2153_ab7d2f crossref_primary_10_3390_s24144476 crossref_primary_10_1007_s10489_022_03756_1 crossref_primary_10_1007_s11063_020_10318_4 crossref_primary_10_3390_s22134679 crossref_primary_10_1049_cdt2_12016 crossref_primary_10_3390_app13159004 crossref_primary_10_1109_TIP_2020_3037467 crossref_primary_10_1137_23M1552073 crossref_primary_10_1016_j_asoc_2023_110607 crossref_primary_10_1109_TNNLS_2022_3190607 |
| Cites_doi | 10.1137/1.9781611970364 10.1016/S0747-7171(08)80013-2 10.1137/S1064827593247023 10.1109/TNNLS.2016.2516030 10.1090/S0025-5718-1965-0178586-1 10.1109/MM.2008.57 10.1007/s11063-007-9060-y 10.1007/BF00348431 10.1109/5992.814659 10.1016/j.neucom.2016.12.038 10.1016/j.neucom.2016.11.046 10.1109/CVPR.2016.435 10.1109/97.917698 10.1007/3-540-49430-8_2 10.1109/cvpr.2017.16 10.1109/TNNLS.2017.2728639 10.1109/CVPR.2016.94 10.1109/CVPR.2015.7298594 10.1109/CVPR.2016.90 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Copyright Springer Nature B.V. Oct 2019 |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Copyright Springer Nature B.V. Oct 2019 |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ |
| DOI | 10.1007/s11063-019-09981-z |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (Proquest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection ProQuest One Psychology Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-773X |
| EndPage | 1967 |
| ExternalDocumentID | 10_1007_s11063_019_09981_z |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51705032 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National High-tech R&D Program grantid: 2014AA7031010B – fundername: Science-Technology Project of the?thirteenth?Five-Year Plan grantid: 2016345 |
| GroupedDBID | -4Z -5F -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AAOBN AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMOR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACACY ACBXY ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFGXO AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA C24 C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PSYQQ PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 Z8M Z8R Z8U Z8W Z92 ZMTXR ~EX 77I AASML AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFHIU AGQPQ AHPBZ AHWEU AIXLP AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-3b4b32cf3def466d6ac97f46034c27100f539026fe9c3baf50b350f10be8cdd93 |
| IEDL.DBID | AGYKE |
| ISSN | 1370-4621 |
| IngestDate | Sat Oct 18 22:46:06 EDT 2025 Wed Oct 01 01:56:23 EDT 2025 Thu Apr 24 23:08:57 EDT 2025 Fri Feb 21 02:36:40 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Fourier transforms Decomposition implementations Small filters Convolutional neural network |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-3b4b32cf3def466d6ac97f46034c27100f539026fe9c3baf50b350f10be8cdd93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2918342811 |
| PQPubID | 2043838 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2918342811 crossref_primary_10_1007_s11063_019_09981_z crossref_citationtrail_10_1007_s11063_019_09981_z springer_journals_10_1007_s11063_019_09981_z |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20191000 2019-10-00 20191001 |
| PublicationDateYYYYMMDD | 2019-10-01 |
| PublicationDate_xml | – month: 10 year: 2019 text: 20191000 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Neural processing letters |
| PublicationTitleAbbrev | Neural Process Lett |
| PublicationYear | 2019 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Penas, Penedo, Carreira (CR23) 2008; 27 Lavin, Gray (CR17) 2015; 10 Krizhevsky, Sutskever, Hinton (CR27) 2012; 1 CR16 Coppersmith, Winograd (CR19) 1987; 9 CR15 CR14 CR13 Schatzman (CR21) 1996; 17 Cooley, Tukey (CR12) 1965; 19 Heideman, Johnson, Burrus (CR5) 1985; 34 CR2 Takahashi (CR24) 2001; 8 CR6 Winograd (CR18) 1980 Liu, Wang, Liu, Zeng, Liu, Alsaadi (CR8) 2017; 234 Shen, Wang, Qiao (CR3) 2017; 28 CR7 CR29 CR28 CR9 CR26 CR25 CR20 LeCun, Bottou, Orr, Müller (CR1) 2002; 1524 Liu, Wang, Shen, Liu (CR4) 2017; 29 Li, Dou, Niu, Lv, Wang (CR22) 2017; 230 Nickolls (CR10) 2008; 28 Rockmore (CR11) 2000; 2 B Shen (9981_CR3) 2017; 28 9981_CR13 D Coppersmith (9981_CR19) 1987; 9 A Lavin (9981_CR17) 2015; 10 DN Rockmore (9981_CR11) 2000; 2 9981_CR14 9981_CR15 9981_CR16 9981_CR9 H Liu (9981_CR4) 2017; 29 A Krizhevsky (9981_CR27) 2012; 1 9981_CR6 9981_CR7 S Winograd (9981_CR18) 1980 Y LeCun (9981_CR1) 2002; 1524 9981_CR20 9981_CR29 9981_CR2 JW Cooley (9981_CR12) 1965; 19 MT Heideman (9981_CR5) 1985; 34 9981_CR25 9981_CR26 9981_CR28 D Takahashi (9981_CR24) 2001; 8 M Penas (9981_CR23) 2008; 27 J Nickolls (9981_CR10) 2008; 28 JC Schatzman (9981_CR21) 1996; 17 W Liu (9981_CR8) 2017; 234 S Li (9981_CR22) 2017; 230 |
| References_xml | – start-page: 625 year: 1980 end-page: 633 ident: CR18 publication-title: Arithmetic complexity of computations doi: 10.1137/1.9781611970364 – volume: 9 start-page: 251 issue: 3 year: 1987 end-page: 280 ident: CR19 article-title: Matrix multiplication via arithmetic progressions publication-title: J Symb Comput doi: 10.1016/S0747-7171(08)80013-2 – volume: 17 start-page: 1150 issue: 5 year: 1996 end-page: 1166 ident: CR21 article-title: Accuracy of the discrete fourier transform and the fast fourier transform publication-title: SIAM J Sci Comput doi: 10.1137/S1064827593247023 – ident: CR14 – ident: CR2 – volume: 28 start-page: 1152 issue: 5 year: 2017 end-page: 1163 ident: CR3 article-title: Event-triggered state estimation for discrete-time multidelayed neural networks with stochastic parameters and incomplete measurements publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2016.2516030 – ident: CR16 – volume: 19 start-page: 297 issue: 90 year: 1965 end-page: 301 ident: CR12 article-title: An algorithm for the machine calculation of complex fourier series publication-title: Math Comput doi: 10.1090/S0025-5718-1965-0178586-1 – volume: 28 start-page: 13 issue: 4 year: 2008 end-page: 27 ident: CR10 article-title: Parallel computing experiences with cuda publication-title: Micro IEEE doi: 10.1109/MM.2008.57 – volume: 27 start-page: 67 issue: 1 year: 2008 end-page: 83 ident: CR23 article-title: A neural network based framework for directional primitive extraction publication-title: Neural Process Lett doi: 10.1007/s11063-007-9060-y – ident: CR6 – ident: CR29 – volume: 34 start-page: 265 issue: 3 year: 1985 end-page: 277 ident: CR5 article-title: Gauss and the history of the fast fourier transform publication-title: Arch Hist Exact Sci doi: 10.1007/BF00348431 – ident: CR25 – volume: 2 start-page: 60 issue: 1 year: 2000 end-page: 64 ident: CR11 article-title: The fft: an algorithm the whole family can use publication-title: Comput Sci Eng doi: 10.1109/5992.814659 – volume: 234 start-page: 11 year: 2017 end-page: 26 ident: CR8 article-title: A survey of deep neural network architectures and their applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.038 – volume: 230 start-page: 48 year: 2017 end-page: 59 ident: CR22 article-title: A fast and memory saved gpu acceleration algorithm of convolutional neural networks for target detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.11.046 – volume: 10 start-page: 4013 year: 2015 end-page: 4021 ident: CR17 article-title: Fast algorithms for convolutional neural networks publication-title: Comput Vision Pattern Recognit doi: 10.1109/CVPR.2016.435 – volume: 8 start-page: 145 issue: 5 year: 2001 end-page: 147 ident: CR24 article-title: An extended split-radix fft algorithm publication-title: IEEE Signal Process Lett doi: 10.1109/97.917698 – ident: CR15 – volume: 1 start-page: 1097 year: 2012 end-page: 1105 ident: CR27 article-title: ImageNet classification with deep convolutional neural networks publication-title: Int Conf Neural Inf Process Syst – ident: CR13 – volume: 1524 start-page: 9 year: 2002 end-page: 50 ident: CR1 article-title: Efficient backprop publication-title: Neural Netw Tricks Trade doi: 10.1007/3-540-49430-8_2 – volume: 29 start-page: 3726 issue: 8 year: 2017 end-page: 3737 ident: CR4 article-title: Event-triggered h∞ state estimation for delayed stochastic memristive neural networks with missing measurements: the discrete time case publication-title: IEEE Trans Neural Netw Learn Syst – ident: CR9 – ident: CR7 – ident: CR28 – ident: CR26 – ident: CR20 – volume: 27 start-page: 67 issue: 1 year: 2008 ident: 9981_CR23 publication-title: Neural Process Lett doi: 10.1007/s11063-007-9060-y – start-page: 625 volume-title: Arithmetic complexity of computations year: 1980 ident: 9981_CR18 doi: 10.1137/1.9781611970364 – ident: 9981_CR29 doi: 10.1109/cvpr.2017.16 – ident: 9981_CR14 – ident: 9981_CR6 – volume: 1 start-page: 1097 year: 2012 ident: 9981_CR27 publication-title: Int Conf Neural Inf Process Syst – ident: 9981_CR2 – volume: 9 start-page: 251 issue: 3 year: 1987 ident: 9981_CR19 publication-title: J Symb Comput doi: 10.1016/S0747-7171(08)80013-2 – volume: 29 start-page: 3726 issue: 8 year: 2017 ident: 9981_CR4 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2017.2728639 – volume: 10 start-page: 4013 year: 2015 ident: 9981_CR17 publication-title: Comput Vision Pattern Recognit doi: 10.1109/CVPR.2016.435 – ident: 9981_CR25 – ident: 9981_CR28 doi: 10.1109/CVPR.2016.94 – volume: 28 start-page: 13 issue: 4 year: 2008 ident: 9981_CR10 publication-title: Micro IEEE doi: 10.1109/MM.2008.57 – volume: 19 start-page: 297 issue: 90 year: 1965 ident: 9981_CR12 publication-title: Math Comput doi: 10.1090/S0025-5718-1965-0178586-1 – volume: 17 start-page: 1150 issue: 5 year: 1996 ident: 9981_CR21 publication-title: SIAM J Sci Comput doi: 10.1137/S1064827593247023 – volume: 230 start-page: 48 year: 2017 ident: 9981_CR22 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.11.046 – volume: 34 start-page: 265 issue: 3 year: 1985 ident: 9981_CR5 publication-title: Arch Hist Exact Sci doi: 10.1007/BF00348431 – ident: 9981_CR9 – volume: 8 start-page: 145 issue: 5 year: 2001 ident: 9981_CR24 publication-title: IEEE Signal Process Lett doi: 10.1109/97.917698 – ident: 9981_CR7 – ident: 9981_CR13 – volume: 28 start-page: 1152 issue: 5 year: 2017 ident: 9981_CR3 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2016.2516030 – volume: 2 start-page: 60 issue: 1 year: 2000 ident: 9981_CR11 publication-title: Comput Sci Eng doi: 10.1109/5992.814659 – volume: 1524 start-page: 9 year: 2002 ident: 9981_CR1 publication-title: Neural Netw Tricks Trade doi: 10.1007/3-540-49430-8_2 – ident: 9981_CR15 doi: 10.1109/CVPR.2015.7298594 – volume: 234 start-page: 11 year: 2017 ident: 9981_CR8 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.038 – ident: 9981_CR16 doi: 10.1109/CVPR.2016.90 – ident: 9981_CR20 – ident: 9981_CR26 |
| SSID | ssj0010020 |
| Score | 2.2682548 |
| Snippet | State-of-the-art convolution algorithms accelerate training of convolutional neural networks (CNNs) by decomposing convolutions in time or Fourier domain,... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1951 |
| SubjectTerms | Algorithms Artificial Intelligence Artificial neural networks Complex Systems Computational Intelligence Computer Science Decomposition Fast Fourier transformations Fourier transforms Neural networks Propagation Semantics |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH_odvHitzi_yMGbBtsmTZuDyBSHCA6RCYKH0nzpYW7TVQ_7603SdENBTyusfdCXl7xf-l5-P4DjjGutbZrGiVQpplxIzHOjMaGplDpnTPtC-12f3TzS26f0aQn6zVkY11bZrIl-oVZj6b6RnyXcBp_FynF8MXnHTjXKVVcbCY0ySCuoc08xtgztxDFjtaB9ed2_f5jXFRw68luwLMKUJXE4RlMfprO7I9db5FqIeB7j2c9UtcCfv0qmPhP11mE1QEjUrcd8A5b0aBPWGnkGFGbrFjx3Ua-cVqg7fLEvUr2-IQtQ0dV49BXCzRpx3Bz-xzeDT5HvIEADu1Rgl99UbaFXC9uhQYNyp9vw2LseXN3goKWApZ1kFSaCCpJIQ5Q2lDHFSskzexURKhPH8GNSwu1-zGguiShNGgmSRiaOhM6lUpzsQGs0HuldQEIxakgUaYtmaEkyLrOc8TIRGRUii0wH4sZthQxE407vYlgsKJKdqwvr6sK7uph14GT-zKSm2fj37oNmNIow5abFIkA6cNqM0OLvv63t_W9tH1YSFxS-ge8AWtXHpz60QKQSRyG6vgHtXdnF priority: 102 providerName: ProQuest |
| Title | A Fast Algorithm for Convolutional Neural Networks Using Tile-based Fast Fourier Transforms |
| URI | https://link.springer.com/article/10.1007/s11063-019-09981-z https://www.proquest.com/docview/2918342811 |
| Volume | 50 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-773X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010020 issn: 1370-4621 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-773X dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0010020 issn: 1370-4621 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1573-773X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010020 issn: 1370-4621 databaseCode: AAJSJ dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-773X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010020 issn: 1370-4621 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-773X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010020 issn: 1370-4621 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFH4a7WWXMQZoHazygRsYJbHjxMcMNaBNVAi1EohDFDs2oHXtRAKH_vrZjkNFxZA4OUqcp8TP9ntP7_P3AA4SrpQyZhpHsoox5UJinmqFCY2lVCljyiXaz8fsbEp_XsVX_lBY3aHdu5Sk26lXh91M9GKxPxbiw9MQLzeg7_i2etDPTq9_jZ6zB9YHcoFWEmDKotAflnldykuDtPIy1xKjzt7kmzDtvrSFmfw-fmzEsVyukTi-91c-wyfvgKKsnTFb8EHNv8BmV9wB-bW-DTcZysu6QdnsdvFw39z9Qca9RSeL-ZOfrEaIZfZwjYOS18jhD9DEbDTYWseqlZC3ZfHQpPOR6x2Y5qPJyRn2lRiwNEu0wURQQSKpSaU0ZaxipeSJuQoIlZHlB9Ix4Saa04pLIkodB4LEgQ4DoVJZVZzsQm--mKuvgETFqCZBoIwvREuScJmkjJeRSKgQSaAHEHbqKKSnKbfVMmbFimDZjl5hRq9wo1csB3D4_M7flqTjzd77nZYLv2DrIuJmbzOhWBgO4KhT2urx_6V9e1_3PfgYWb07OOA-9JqHR_XduDWNGMJGmp8O_Vw27Y_R-OLS3J1G2T_mEPGB |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V7QEuvBFLC_gAJ7BIbMeJDxVaSldb2q4Q2kqVOIT4VQ5ltyUBRH8cv42x43QFEr31tJE2mcP4y8w3mRfA81I559BNU2ZsQYXShqrKO8pFYYyrpHQx0X44k9Mj8f64OF6D30MvTCirHGxiNNR2acI38tdMIfiQK-f5m7NzGrZGhezqsEKjSasV7HYcMZYaO_bdr58YwrXbe-_wvF8wNtmd70xp2jJADcKvo1wLzZnx3DovpLSyMarEq4wLw8LsG19whZGKd8pw3fgi07zIfJ5pVxlrwzAmdAEbgguFwd_G293Zh4-XeYzAxmLIV2ZUSJantp2-eQ-jsVDLFEqWVJXTi79d44rv_pOijZ5vcgduJcpKxj3G7sKaW9yD28M6CJKsw334NCaTpu3I-PQEFdd9-UqQEJOd5eJHgjcKCbNA4k8sPm9JrFggczRNNPhT20uY9Iv0yHxg1e0DOLoWrT6E9cVy4R4B0VYKz7PMIXsSDS-VKSupGqZLoXWZ-RHkg9pqkwabh_0ap_VqJHNQdY2qrqOq64sRvLx85qwf63Hl3VvDadTpFW_rFSBH8Go4odXf_5f2-Gppz-DGdH54UB_szfY34SYLAInFg1uw3n377p4gCer004Q0Ap-vG9x_AJSkFzo |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSIiFN6JQwAMbWE1ix4nHqBDxrBhaqRJDFDs2DCWtSGDor8d2khYQIDElUpwbzmffd7q77wA4DZiUUrtp5InMR4RxgVioJMLEF0KGlEqbaL_v06shuRn5o09d_LbavUlJVj0NhqUpL7vTTHUXjW86kjF1QKbch4Uumi2DFWKIErRFD71onkcwaMiGXIGDCPXcum3mZxlfXdMCb35LkVrPE2-C9Roywqja4y2wJPNtsNGMY4D16dwBjxGM06KE0fhpokP-5xeoASnsTfL32ry0EMPFYR-2-LuAtmIADvTVgIw_yyoJcTXIDg4aVFvsgmF8OehdoXp2AhL6UJUIc8KxJxTOpCKUZjQVLNBvDibCM4w-ysdMx19KMoF5qnyHY99RrsNlKLKM4T3Qyie53AeQZ5Qo7DhSoxeS4oCJIKQs9XhAOA8c1QZuo7ZE1MTiZr7FOFlQIhtVJ1rViVV1MmuDs_k_04pW48_VnWY3kvqIFYnH9G2kgyfXbYPzZocWn3-XdvC_5Sdg9eEiTu6u-7eHYM0z9mJr-TqgVb6-ySONSUp-bM3uA5H41_E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fast+Algorithm+for+Convolutional+Neural+Networks+Using+Tile-based+Fast+Fourier+Transforms&rft.jtitle=Neural+processing+letters&rft.au=Lin%2C+Jinhua&rft.au=Yao%2C+Yu&rft.date=2019-10-01&rft.pub=Springer+US&rft.issn=1370-4621&rft.eissn=1573-773X&rft.volume=50&rft.issue=2&rft.spage=1951&rft.epage=1967&rft_id=info:doi/10.1007%2Fs11063-019-09981-z&rft.externalDocID=10_1007_s11063_019_09981_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1370-4621&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1370-4621&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1370-4621&client=summon |