Nonsmooth spatial frictional contact dynamics of multibody systems

Nonsmooth dynamics algorithms have been widely used to solve the problems of frictional contact dynamics of multibody systems. The linear complementary problems (LCP) based algorithms have been proved to be very effective for the planar problems of frictional contact dynamics. For the spatial proble...

Full description

Saved in:
Bibliographic Details
Published inMultibody system dynamics Vol. 53; no. 1; pp. 1 - 27
Main Authors Wang, Kun, Tian, Qiang, Hu, Haiyan
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.09.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1384-5640
1573-272X
DOI10.1007/s11044-021-09786-w

Cover

Abstract Nonsmooth dynamics algorithms have been widely used to solve the problems of frictional contact dynamics of multibody systems. The linear complementary problems (LCP) based algorithms have been proved to be very effective for the planar problems of frictional contact dynamics. For the spatial problems of frictional contact dynamics, however, the nonlinear complementary problems (NCP) based algorithms usually achieve more accurate results even though the LCP based algorithms can evaluate the friction force and the relative tangential velocity approximately. In this paper, a new computation methodology is proposed to simulate the nonsmooth spatial frictional contact dynamics of multibody systems. Without approximating the friction cone, the cone complementary problems (CCP) theory is used to describe the spatial frictional continuous contact problems such that the spatial friction force can be evaluated accurately. A prediction term is introduced to make the established CCP model be applicable to the cases at high sliding speed. To improve the convergence rate of Newton iterations, the velocity variation of the nonsmooth dynamics equations is decomposed into the smooth velocities and nonsmooth (jump) velocities. The smooth velocities are computed by using the generalized- a algorithm, and the nonsmooth velocities are integrated via the implicit Euler algorithm. The accelerated projected gradient descend (APGD) algorithm is used to solve the CCP. Finally, four numerical examples are given to validate the proposed computation methodology.
AbstractList Nonsmooth dynamics algorithms have been widely used to solve the problems of frictional contact dynamics of multibody systems. The linear complementary problems (LCP) based algorithms have been proved to be very effective for the planar problems of frictional contact dynamics. For the spatial problems of frictional contact dynamics, however, the nonlinear complementary problems (NCP) based algorithms usually achieve more accurate results even though the LCP based algorithms can evaluate the friction force and the relative tangential velocity approximately. In this paper, a new computation methodology is proposed to simulate the nonsmooth spatial frictional contact dynamics of multibody systems. Without approximating the friction cone, the cone complementary problems (CCP) theory is used to describe the spatial frictional continuous contact problems such that the spatial friction force can be evaluated accurately. A prediction term is introduced to make the established CCP model be applicable to the cases at high sliding speed. To improve the convergence rate of Newton iterations, the velocity variation of the nonsmooth dynamics equations is decomposed into the smooth velocities and nonsmooth (jump) velocities. The smooth velocities are computed by using the generalized- a algorithm, and the nonsmooth velocities are integrated via the implicit Euler algorithm. The accelerated projected gradient descend (APGD) algorithm is used to solve the CCP. Finally, four numerical examples are given to validate the proposed computation methodology.
Nonsmooth dynamics algorithms have been widely used to solve the problems of frictional contact dynamics of multibody systems. The linear complementary problems (LCP) based algorithms have been proved to be very effective for the planar problems of frictional contact dynamics. For the spatial problems of frictional contact dynamics, however, the nonlinear complementary problems (NCP) based algorithms usually achieve more accurate results even though the LCP based algorithms can evaluate the friction force and the relative tangential velocity approximately. In this paper, a new computation methodology is proposed to simulate the nonsmooth spatial frictional contact dynamics of multibody systems. Without approximating the friction cone, the cone complementary problems (CCP) theory is used to describe the spatial frictional continuous contact problems such that the spatial friction force can be evaluated accurately. A prediction term is introduced to make the established CCP model be applicable to the cases at high sliding speed. To improve the convergence rate of Newton iterations, the velocity variation of the nonsmooth dynamics equations is decomposed into the smooth velocities and nonsmooth (jump) velocities. The smooth velocities are computed by using the generalized-a algorithm, and the nonsmooth velocities are integrated via the implicit Euler algorithm. The accelerated projected gradient descend (APGD) algorithm is used to solve the CCP. Finally, four numerical examples are given to validate the proposed computation methodology.
Author Hu, Haiyan
Tian, Qiang
Wang, Kun
Author_xml – sequence: 1
  givenname: Kun
  surname: Wang
  fullname: Wang, Kun
  organization: MOE Key Laboratory of Dynamics and Control of Flight Vehicle, School of Aerospace Engineering, Beijing Institute of Technology
– sequence: 2
  givenname: Qiang
  surname: Tian
  fullname: Tian, Qiang
  email: tianqiang_hust@aliyun.com
  organization: MOE Key Laboratory of Dynamics and Control of Flight Vehicle, School of Aerospace Engineering, Beijing Institute of Technology
– sequence: 3
  givenname: Haiyan
  surname: Hu
  fullname: Hu, Haiyan
  organization: MOE Key Laboratory of Dynamics and Control of Flight Vehicle, School of Aerospace Engineering, Beijing Institute of Technology
BookMark eNp9kE1LAzEURYNUsK3-AVcDrqP5nGSWWvwC0Y2Cu5BmEk2ZmdQkpcy_N7WC4KKrdxf3vPc4MzAZwmABOMfoEiMkrhLGiDGICIaoEbKG2yMwxVxQSAR5n5RMJYO8ZugEzFJaodLkrJmCm-cwpD6E_Fmltc5ed5WL3mQfhhJNGLI2uWrHQffepCq4qt902S9DO1ZpTNn26RQcO90le_Y75-Dt7vZ18QCfXu4fF9dP0FDcZEilZdwR4wRvXEsdcYTUDV1SS5fGyRZT3EpsOWLcGumsa2ohGEOiltSytqVzcLHfu47ha2NTVquwieXNpAivqWhQzUhpkX3LxJBStE6to-91HBVGaudK7V2pYkD9uFLbAsl_kPFZ7yTkqH13GKV7NJU7w4eNf18doL4BRYOBsg
CitedBy_id crossref_primary_10_1177_09544097221102286
crossref_primary_10_1007_s11071_021_06916_z
crossref_primary_10_1007_s11044_021_09803_y
crossref_primary_10_3390_math10142375
crossref_primary_10_1017_S026357472400050X
crossref_primary_10_1007_s11071_024_10021_2
crossref_primary_10_1007_s11044_024_10047_9
crossref_primary_10_1016_j_apm_2024_115747
crossref_primary_10_1007_s11012_022_01629_y
crossref_primary_10_1007_s11071_025_11009_2
crossref_primary_10_1016_j_isatra_2024_10_009
crossref_primary_10_1007_s12046_024_02525_9
crossref_primary_10_1088_1742_6596_2459_1_012068
crossref_primary_10_1007_s10483_022_2922_9
crossref_primary_10_1007_s10462_024_10936_7
crossref_primary_10_1016_j_mechmachtheory_2022_105223
crossref_primary_10_1016_j_cma_2023_116726
Cites_doi 10.1002/zamm.19810611202
10.1016/j.jterra.2004.02.002
10.1002/nme.4563
10.1177/027836499201100202
10.1016/j.cma.2010.06.030
10.1016/j.crme.2017.12.009
10.1016/S0997-7538(03)00025-1
10.1177/1464419320957450
10.1002/nme.1047
10.1007/s11071-006-9098-9
10.1023/A:1008292328909
10.1137/S003614290037873X
10.1007/978-3-642-01100-9
10.1007/s11044-019-09692-2
10.1137/S0036142900378728
10.1002/zamm.201000073
10.1007/978-3-7091-2624-0
10.1016/j.cma.2014.07.025
10.1016/j.cma.2005.08.012
10.1115/1.4037415
10.1016/j.jsv.2008.07.005
10.1016/j.mechmachtheory.2012.02.010
10.1016/j.mechmachtheory.2017.12.002
10.1016/0362-546X(78)90022-6
10.1137/S0036144599360110
10.1145/2735627
10.1007/s11071-006-9155-4
10.1007/978-3-540-75392-6
10.1137/0142022
10.1007/s11012-016-0562-4
10.1016/S0045-7825(98)00387-9
10.1007/s11044-009-9178-y
10.1002/nme.6371
10.1016/0045-7825(86)90095-2
10.1007/s11044-007-9084-0
10.1007/s10589-008-9223-4
10.1007/978-1-4612-2600-0
10.1016/j.mechmachtheory.2017.09.018
10.1016/j.apnum.2012.06.026
10.1115/1.2389231
10.1007/978-3-319-75972-2_10
10.1007/s11071-012-0582-0
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2021
The Author(s), under exclusive licence to Springer Nature B.V. 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11044-021-09786-w
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-272X
EndPage 27
ExternalDocumentID 10_1007_s11044_021_09786_w
GrantInformation_xml – fundername: National Outstanding Youth Foundation of China
  grantid: 11722216
  funderid: http://dx.doi.org/10.13039/501100010225
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c319t-38e45f2cf759fd3f2f22693b3e3bcf8d131d81e5045ec8fef96774407683e4dd3
IEDL.DBID U2A
ISSN 1384-5640
IngestDate Thu Oct 02 14:05:45 EDT 2025
Wed Oct 01 02:11:17 EDT 2025
Thu Apr 24 23:01:19 EDT 2025
Fri Feb 21 02:48:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Nonsmooth
Spatial frictional continuous contact
Nonlinear complementary problem
Cone complementary problem
Generalized
algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-38e45f2cf759fd3f2f22693b3e3bcf8d131d81e5045ec8fef96774407683e4dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2563790642
PQPubID 2043839
PageCount 27
ParticipantIDs proquest_journals_2563790642
crossref_primary_10_1007_s11044_021_09786_w
crossref_citationtrail_10_1007_s11044_021_09786_w
springer_journals_10_1007_s11044_021_09786_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Multibody system dynamics
PublicationTitleAbbrev Multibody Syst Dyn
PublicationYear 2021
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References FloresP.LeineR.GlockerC.Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approachMultibody Syst. Dyn.20102316519025786731219.7001410.1007/s11044-009-9178-y
BrülsO.AcaryV.CardonaA.Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha $\end{document} schemeComput. Methods Appl. Mech. Eng.201428113116132629361423.7465910.1016/j.cma.2014.07.025
MachadoM.MoreiraP.FloresP.LankaraniH.M.Compliant contact force models in multibody dynamics: evolution of the hertz contact theoryMech. Mach. Theory2012539912110.1016/j.mechmachtheory.2012.02.010
ChenQ.AcaryV.VirlezG.BrülsO.A nonsmooth generalized-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha $\end{document} scheme for flexible multibody systems with unilateral constraintsInt. J. Numer. Methods Eng.20139648751131300601352.7001210.1002/nme.4563
MazharH.HeynT.NegrutD.TasoraA.Using Nesterov’s method to accelerate multibody dynamics with friction and contactACM Trans. Graph.2015341141333.6825810.1145/2735627
ArnoldM.BrülsO.Convergence of the generalized-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha $\end{document} scheme for constrained mechanical systemsMultibody Syst. Dyn.20071818520223492721121.7000310.1007/s11044-007-9084-0
CottleR.PangW.The Linear Complementarity Problem1992LondonAcademic Press0757.90078
MoreauJ.J.Numerical aspects of the sweeping processComput. Methods Appl. Mech. Eng.199917732934917104560968.7000610.1016/S0045-7825(98)00387-9
AcaryV.Higher order event capturing time-stepping schemes for nonsmooth multibody systems with unilateral constraints and impactsAppl. Numer. Math.2012621259127529603631351.7000510.1016/j.apnum.2012.06.026
LötstedtP.Mechanical systems of rigid bodies subject to unilateral constraintsSIAM J. Appl. Math.19824228129665022410.1137/0142022
SchatzmanM.A class of nonlinear differential equations of second order in timeNonlinear Anal., Theory Methods Appl.197823553735126640382.3400310.1016/0362-546X(78)90022-6
Al-FahedA.M.StavroulakisG.E.PanagiotopoulosP.D.A linear complementarity approach to the frictionless gripper problemInt. J. Robot. Res.19921111212210.1177/027836499201100202
MoreauJ.J.MoreauJ.J.PanagiotopoulosP.D.Unilateral contact and dry friction in finite freedom dynamicsNonsmooth Mechanics and Applications1988ViennaSpringer18210.1007/978-3-7091-2624-0
García-VallejoD.MikkolaA.M.EscalonaJ.L.A new locking-free shear deformable finite element based on absolute nodal coordinatesNonlinear Dyn.2007502492641193.7414810.1007/s11071-006-9155-4
GalvezJ.CavalieriF.J.CosimoA.BrülsO.CardonaA.A nonsmooth frictional contact formulation for multibody system dynamicsInt. J. Numer. Methods Eng.202012135843609415843210.1002/nme.6371
NegrutD.RampalliR.OttarssonG.SajdakA.On an implementation of the Hilber-Hughes-Taylor method in the context of index 3 differential-algebraic equations of multibody dynamics (DETC2005-85096)J. Comput. Nonlinear Dyn.20072738510.1115/1.2389231
AnitescuM.PotraF.A.Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problemsNonlinear Dyn.19971423124714746720899.7000510.1023/A:1008292328909
ČeponG.BoltežarM.Dynamics of a belt-drive system using a linear complementarity problem for the belt–pulley contact descriptionJ. Sound Vib.20093191019103510.1016/j.jsv.2008.07.005
AcaryV.CadouxF.LemaréchalC.MalickJ.A formulation of the linear discrete Coulomb friction problem via convex optimizationZ. Angew. Math. Mech.20119115517527987831370.7411410.1002/zamm.201000073
StuderC.Numerics of Unilateral Contact and Friction: Modeling and Numerical Time Integration in Nonsmooth Dynamics2009BerlinSpringer1162.7000210.1007/978-3-642-01100-9
NakashimaH.OidaA.Algorithm and implementation of soil–tire contact analysis code based on dynamic FE–DE methodJ. Terramech.20044112713710.1016/j.jterra.2004.02.002
PaoliL.SchatzmanM.A numerical scheme for impact problems I: the one-dimensional caseSIAM J. Numer. Anal.20024070273319216751021.6506510.1137/S0036142900378728
KlarbringA.A mathematical programming approach to three-dimensional contact problems with frictionComput. Methods Appl. Mech. Eng.1986581752008625510595.7312510.1016/0045-7825(86)90095-2
DufvaK.KerkkänenK.MaquedaL.G.ShabanaA.A.Nonlinear dynamics of three-dimensional belt drives using the finite-element methodNonlinear Dyn.2007484494661177.7436310.1007/s11071-006-9098-9
MurtyK.G.Linear Complementarity, Linear and Nonlinear Programming1988BerlinHeldermann0634.90037
AcaryV.BrogliatoB.Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics2008BerlinSpringer1173.7400110.1007/978-3-540-75392-6
MillerA.T.ChristensenH.I.Implementation of multi-rigid-body dynamics within a robotic grasping simulatorIEEE Int. Conf. Robot. Autom.2003222622268
DuboisF.AcaryV.JeanM.The contact dynamics method: a nonsmooth storyC. R., Méc.201834624726210.1016/j.crme.2017.12.009
PaoliL.SchatzmanM.A numerical scheme for impact problems II: the multidimensional caseSIAM J. Numer. Anal.20024073476819216761027.6509310.1137/S003614290037873X
TasoraA.AnitescuM.A matrix-free cone complementarity approach for solving large-scale, nonsmooth, rigid body dynamicsComput. Methods Appl. Mech. Eng.201120043945327490131225.7000410.1016/j.cma.2010.06.030
AcaryV.BrémondM.HuberO.LeineR.AcaryV.BrülsO.On solving contact problems with Coulomb friction: formulations and numerical comparisonsAdvanced Topics in Nonsmooth Dynamics2018ChamSpringer37545710.1007/978-3-319-75972-2_10
LeineR.I.GlockerC.A set-valued force law for spatial Coulomb–Contensou frictionEur. J. Mech. A, Solids20032219321619808061038.7451310.1016/S0997-7538(03)00025-1
NegrutD.SerbanR.TasoraA.Posing multibody dynamics with friction and contact as a differential complementarity problemJ. Comput. Nonlinear Dyn.20181310.1115/1.4037415
CosimoA.GalvezJ.CavalieriF.J.A robust nonsmooth generalized-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha $\end{document} scheme for flexible systems with impactsMultibody Syst. Dyn.20204812714940501531437.7001110.1007/s11044-019-09692-2
GarcíaJ.J.BayoE.Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge1994New YorkSpringer10.1007/978-1-4612-2600-0
LiuC.TianQ.HuH.Y.New spatial curved beam and cylindrical shell elements of gradient-deficient Absolute Nodal Coordinate FormulationNonlinear Dyn.20127019031918299218410.1007/s11071-012-0582-0
LötstedtP.Coulomb friction in two-dimensional rigid body systemsZ. Angew. Math. Mech.19816160561564924010.1002/zamm.19810611202
AnitescuM.TasoraA.An iterative approach for cone complementarity problems for nonsmooth dynamicsComput. Optim. Appl.20104720723527181781200.9016010.1007/s10589-008-9223-4
PfeifferF.FoergM.UlbrichH.Numerical aspects of non-smooth multibody dynamicsComput. Methods Appl. Mech. Eng.20061956891690822583211120.7030510.1016/j.cma.2005.08.012
Yu, X., Matikainen, M.K., Harish, A.B., Mikkola, A.: Procedure for non-smooth contact for planar flexible beams with cone complementarity problem. Proc. Inst. Mech. Eng., Part K, J. Multi-Body Dyn. (2020)
PfeifferF.Non-smooth engineering dynamicsMeccanica20165131673184357567710.1007/s11012-016-0562-4
TianQ.FloresP.LankaraniH.M.A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect jointsMech. Mach. Theory201812215710.1016/j.mechmachtheory.2017.12.002
CavalieriF.J.CardonaA.Non-smooth model of a frictionless and dry three-dimensional revolute joint with clearance for multibody system dynamicsMech. Mach. Theory201812133535410.1016/j.mechmachtheory.2017.09.018
AnitescuM.HartG.D.A constraint-stabilized time-stepping approach for rigid multibody dynamics with joints, contact and frictionInt. J. Numer. Methods Eng.2004602335237120740201075.7050110.1002/nme.1047
Cebulla, T.H.: Spatial dynamics of pushbelt CVTs: model enhancements to a non-smooth flexible multibody system. Ph.D., Technical University of Munich (2014)
StewartD.Rigid-body dynamics with friction and impactSIAM Rev.20004233917380970962.7001010.1137/S0036144599360110
D. Stewart (9786_CR39) 2000; 42
V. Acary (9786_CR41) 2018
L. Paoli (9786_CR31) 2002; 40
K.G. Murty (9786_CR10) 1988
M. Anitescu (9786_CR38) 1997; 14
A. Tasora (9786_CR23) 2011; 200
H. Nakashima (9786_CR4) 2004; 41
M. Anitescu (9786_CR25) 2010; 47
9786_CR43
A.T. Miller (9786_CR21) 2003; 2
A.M. Al-Fahed (9786_CR16) 1992; 11
9786_CR24
F. Pfeiffer (9786_CR22) 2016; 51
P. Lötstedt (9786_CR11) 1981; 61
R. Cottle (9786_CR9) 1992
J.J. Moreau (9786_CR14) 1999; 177
J.J. Moreau (9786_CR13) 1988
D. Negrut (9786_CR28) 2007; 2
D. García-Vallejo (9786_CR45) 2007; 50
M. Arnold (9786_CR29) 2007; 18
O. Brüls (9786_CR35) 2014; 281
J.J. García (9786_CR44) 1994
J. Galvez (9786_CR37) 2020; 121
Q. Tian (9786_CR3) 2018; 122
G. Čepon (9786_CR18) 2009; 319
C. Studer (9786_CR2) 2009
R.I. Leine (9786_CR8) 2003; 22
P. Lötstedt (9786_CR12) 1982; 42
H. Mazhar (9786_CR27) 2015; 34
L. Paoli (9786_CR30) 2002; 40
P. Flores (9786_CR17) 2010; 23
F.J. Cavalieri (9786_CR34) 2018; 121
F. Dubois (9786_CR7) 2018; 346
D. Negrut (9786_CR26) 2018; 13
V. Acary (9786_CR42) 2011; 91
A. Klarbring (9786_CR20) 1986; 58
K. Dufva (9786_CR5) 2007; 48
M. Schatzman (9786_CR15) 1978; 2
M. Anitescu (9786_CR40) 2004; 60
V. Acary (9786_CR32) 2012; 62
V. Acary (9786_CR1) 2008
F. Pfeiffer (9786_CR19) 2006; 195
C. Liu (9786_CR46) 2012; 70
Q. Chen (9786_CR33) 2013; 96
M. Machado (9786_CR6) 2012; 53
A. Cosimo (9786_CR36) 2020; 48
References_xml – reference: FloresP.LeineR.GlockerC.Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approachMultibody Syst. Dyn.20102316519025786731219.7001410.1007/s11044-009-9178-y
– reference: AnitescuM.TasoraA.An iterative approach for cone complementarity problems for nonsmooth dynamicsComput. Optim. Appl.20104720723527181781200.9016010.1007/s10589-008-9223-4
– reference: LeineR.I.GlockerC.A set-valued force law for spatial Coulomb–Contensou frictionEur. J. Mech. A, Solids20032219321619808061038.7451310.1016/S0997-7538(03)00025-1
– reference: DufvaK.KerkkänenK.MaquedaL.G.ShabanaA.A.Nonlinear dynamics of three-dimensional belt drives using the finite-element methodNonlinear Dyn.2007484494661177.7436310.1007/s11071-006-9098-9
– reference: TianQ.FloresP.LankaraniH.M.A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect jointsMech. Mach. Theory201812215710.1016/j.mechmachtheory.2017.12.002
– reference: Al-FahedA.M.StavroulakisG.E.PanagiotopoulosP.D.A linear complementarity approach to the frictionless gripper problemInt. J. Robot. Res.19921111212210.1177/027836499201100202
– reference: TasoraA.AnitescuM.A matrix-free cone complementarity approach for solving large-scale, nonsmooth, rigid body dynamicsComput. Methods Appl. Mech. Eng.201120043945327490131225.7000410.1016/j.cma.2010.06.030
– reference: GarcíaJ.J.BayoE.Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge1994New YorkSpringer10.1007/978-1-4612-2600-0
– reference: NakashimaH.OidaA.Algorithm and implementation of soil–tire contact analysis code based on dynamic FE–DE methodJ. Terramech.20044112713710.1016/j.jterra.2004.02.002
– reference: CottleR.PangW.The Linear Complementarity Problem1992LondonAcademic Press0757.90078
– reference: ArnoldM.BrülsO.Convergence of the generalized-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha $\end{document} scheme for constrained mechanical systemsMultibody Syst. Dyn.20071818520223492721121.7000310.1007/s11044-007-9084-0
– reference: AcaryV.BrémondM.HuberO.LeineR.AcaryV.BrülsO.On solving contact problems with Coulomb friction: formulations and numerical comparisonsAdvanced Topics in Nonsmooth Dynamics2018ChamSpringer37545710.1007/978-3-319-75972-2_10
– reference: AcaryV.BrogliatoB.Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics2008BerlinSpringer1173.7400110.1007/978-3-540-75392-6
– reference: BrülsO.AcaryV.CardonaA.Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha $\end{document} schemeComput. Methods Appl. Mech. Eng.201428113116132629361423.7465910.1016/j.cma.2014.07.025
– reference: Cebulla, T.H.: Spatial dynamics of pushbelt CVTs: model enhancements to a non-smooth flexible multibody system. Ph.D., Technical University of Munich (2014)
– reference: LiuC.TianQ.HuH.Y.New spatial curved beam and cylindrical shell elements of gradient-deficient Absolute Nodal Coordinate FormulationNonlinear Dyn.20127019031918299218410.1007/s11071-012-0582-0
– reference: MachadoM.MoreiraP.FloresP.LankaraniH.M.Compliant contact force models in multibody dynamics: evolution of the hertz contact theoryMech. Mach. Theory2012539912110.1016/j.mechmachtheory.2012.02.010
– reference: García-VallejoD.MikkolaA.M.EscalonaJ.L.A new locking-free shear deformable finite element based on absolute nodal coordinatesNonlinear Dyn.2007502492641193.7414810.1007/s11071-006-9155-4
– reference: KlarbringA.A mathematical programming approach to three-dimensional contact problems with frictionComput. Methods Appl. Mech. Eng.1986581752008625510595.7312510.1016/0045-7825(86)90095-2
– reference: MillerA.T.ChristensenH.I.Implementation of multi-rigid-body dynamics within a robotic grasping simulatorIEEE Int. Conf. Robot. Autom.2003222622268
– reference: NegrutD.SerbanR.TasoraA.Posing multibody dynamics with friction and contact as a differential complementarity problemJ. Comput. Nonlinear Dyn.20181310.1115/1.4037415
– reference: LötstedtP.Coulomb friction in two-dimensional rigid body systemsZ. Angew. Math. Mech.19816160561564924010.1002/zamm.19810611202
– reference: LötstedtP.Mechanical systems of rigid bodies subject to unilateral constraintsSIAM J. Appl. Math.19824228129665022410.1137/0142022
– reference: NegrutD.RampalliR.OttarssonG.SajdakA.On an implementation of the Hilber-Hughes-Taylor method in the context of index 3 differential-algebraic equations of multibody dynamics (DETC2005-85096)J. Comput. Nonlinear Dyn.20072738510.1115/1.2389231
– reference: AcaryV.CadouxF.LemaréchalC.MalickJ.A formulation of the linear discrete Coulomb friction problem via convex optimizationZ. Angew. Math. Mech.20119115517527987831370.7411410.1002/zamm.201000073
– reference: MoreauJ.J.MoreauJ.J.PanagiotopoulosP.D.Unilateral contact and dry friction in finite freedom dynamicsNonsmooth Mechanics and Applications1988ViennaSpringer18210.1007/978-3-7091-2624-0
– reference: GalvezJ.CavalieriF.J.CosimoA.BrülsO.CardonaA.A nonsmooth frictional contact formulation for multibody system dynamicsInt. J. Numer. Methods Eng.202012135843609415843210.1002/nme.6371
– reference: PfeifferF.FoergM.UlbrichH.Numerical aspects of non-smooth multibody dynamicsComput. Methods Appl. Mech. Eng.20061956891690822583211120.7030510.1016/j.cma.2005.08.012
– reference: CavalieriF.J.CardonaA.Non-smooth model of a frictionless and dry three-dimensional revolute joint with clearance for multibody system dynamicsMech. Mach. Theory201812133535410.1016/j.mechmachtheory.2017.09.018
– reference: MurtyK.G.Linear Complementarity, Linear and Nonlinear Programming1988BerlinHeldermann0634.90037
– reference: SchatzmanM.A class of nonlinear differential equations of second order in timeNonlinear Anal., Theory Methods Appl.197823553735126640382.3400310.1016/0362-546X(78)90022-6
– reference: PaoliL.SchatzmanM.A numerical scheme for impact problems I: the one-dimensional caseSIAM J. Numer. Anal.20024070273319216751021.6506510.1137/S0036142900378728
– reference: ČeponG.BoltežarM.Dynamics of a belt-drive system using a linear complementarity problem for the belt–pulley contact descriptionJ. Sound Vib.20093191019103510.1016/j.jsv.2008.07.005
– reference: PfeifferF.Non-smooth engineering dynamicsMeccanica20165131673184357567710.1007/s11012-016-0562-4
– reference: StuderC.Numerics of Unilateral Contact and Friction: Modeling and Numerical Time Integration in Nonsmooth Dynamics2009BerlinSpringer1162.7000210.1007/978-3-642-01100-9
– reference: Yu, X., Matikainen, M.K., Harish, A.B., Mikkola, A.: Procedure for non-smooth contact for planar flexible beams with cone complementarity problem. Proc. Inst. Mech. Eng., Part K, J. Multi-Body Dyn. (2020)
– reference: StewartD.Rigid-body dynamics with friction and impactSIAM Rev.20004233917380970962.7001010.1137/S0036144599360110
– reference: CosimoA.GalvezJ.CavalieriF.J.A robust nonsmooth generalized-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha $\end{document} scheme for flexible systems with impactsMultibody Syst. Dyn.20204812714940501531437.7001110.1007/s11044-019-09692-2
– reference: AnitescuM.HartG.D.A constraint-stabilized time-stepping approach for rigid multibody dynamics with joints, contact and frictionInt. J. Numer. Methods Eng.2004602335237120740201075.7050110.1002/nme.1047
– reference: MazharH.HeynT.NegrutD.TasoraA.Using Nesterov’s method to accelerate multibody dynamics with friction and contactACM Trans. Graph.2015341141333.6825810.1145/2735627
– reference: DuboisF.AcaryV.JeanM.The contact dynamics method: a nonsmooth storyC. R., Méc.201834624726210.1016/j.crme.2017.12.009
– reference: MoreauJ.J.Numerical aspects of the sweeping processComput. Methods Appl. Mech. Eng.199917732934917104560968.7000610.1016/S0045-7825(98)00387-9
– reference: ChenQ.AcaryV.VirlezG.BrülsO.A nonsmooth generalized-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha $\end{document} scheme for flexible multibody systems with unilateral constraintsInt. J. Numer. Methods Eng.20139648751131300601352.7001210.1002/nme.4563
– reference: AnitescuM.PotraF.A.Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problemsNonlinear Dyn.19971423124714746720899.7000510.1023/A:1008292328909
– reference: AcaryV.Higher order event capturing time-stepping schemes for nonsmooth multibody systems with unilateral constraints and impactsAppl. Numer. Math.2012621259127529603631351.7000510.1016/j.apnum.2012.06.026
– reference: PaoliL.SchatzmanM.A numerical scheme for impact problems II: the multidimensional caseSIAM J. Numer. Anal.20024073476819216761027.6509310.1137/S003614290037873X
– volume: 61
  start-page: 605
  year: 1981
  ident: 9786_CR11
  publication-title: Z. Angew. Math. Mech.
  doi: 10.1002/zamm.19810611202
– volume: 41
  start-page: 127
  year: 2004
  ident: 9786_CR4
  publication-title: J. Terramech.
  doi: 10.1016/j.jterra.2004.02.002
– volume: 96
  start-page: 487
  year: 2013
  ident: 9786_CR33
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.4563
– volume: 11
  start-page: 112
  year: 1992
  ident: 9786_CR16
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/027836499201100202
– volume: 200
  start-page: 439
  year: 2011
  ident: 9786_CR23
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2010.06.030
– volume: 346
  start-page: 247
  year: 2018
  ident: 9786_CR7
  publication-title: C. R., Méc.
  doi: 10.1016/j.crme.2017.12.009
– ident: 9786_CR43
– volume: 22
  start-page: 193
  year: 2003
  ident: 9786_CR8
  publication-title: Eur. J. Mech. A, Solids
  doi: 10.1016/S0997-7538(03)00025-1
– ident: 9786_CR24
  doi: 10.1177/1464419320957450
– volume: 60
  start-page: 2335
  year: 2004
  ident: 9786_CR40
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1047
– volume: 48
  start-page: 449
  year: 2007
  ident: 9786_CR5
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-006-9098-9
– volume: 14
  start-page: 231
  year: 1997
  ident: 9786_CR38
  publication-title: Nonlinear Dyn.
  doi: 10.1023/A:1008292328909
– volume: 40
  start-page: 734
  year: 2002
  ident: 9786_CR31
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S003614290037873X
– volume-title: Numerics of Unilateral Contact and Friction: Modeling and Numerical Time Integration in Nonsmooth Dynamics
  year: 2009
  ident: 9786_CR2
  doi: 10.1007/978-3-642-01100-9
– volume: 48
  start-page: 127
  year: 2020
  ident: 9786_CR36
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-019-09692-2
– volume: 40
  start-page: 702
  year: 2002
  ident: 9786_CR30
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142900378728
– volume: 91
  start-page: 155
  year: 2011
  ident: 9786_CR42
  publication-title: Z. Angew. Math. Mech.
  doi: 10.1002/zamm.201000073
– volume-title: Linear Complementarity, Linear and Nonlinear Programming
  year: 1988
  ident: 9786_CR10
– start-page: 1
  volume-title: Nonsmooth Mechanics and Applications
  year: 1988
  ident: 9786_CR13
  doi: 10.1007/978-3-7091-2624-0
– volume: 281
  start-page: 131
  year: 2014
  ident: 9786_CR35
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2014.07.025
– volume: 195
  start-page: 6891
  year: 2006
  ident: 9786_CR19
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2005.08.012
– volume: 13
  year: 2018
  ident: 9786_CR26
  publication-title: J. Comput. Nonlinear Dyn.
  doi: 10.1115/1.4037415
– volume: 319
  start-page: 1019
  year: 2009
  ident: 9786_CR18
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2008.07.005
– volume: 53
  start-page: 99
  year: 2012
  ident: 9786_CR6
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2012.02.010
– volume: 122
  start-page: 1
  year: 2018
  ident: 9786_CR3
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2017.12.002
– volume: 2
  start-page: 355
  year: 1978
  ident: 9786_CR15
  publication-title: Nonlinear Anal., Theory Methods Appl.
  doi: 10.1016/0362-546X(78)90022-6
– volume: 42
  start-page: 3
  year: 2000
  ident: 9786_CR39
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144599360110
– volume: 34
  start-page: 1
  year: 2015
  ident: 9786_CR27
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2735627
– volume: 50
  start-page: 249
  year: 2007
  ident: 9786_CR45
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-006-9155-4
– volume-title: Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics
  year: 2008
  ident: 9786_CR1
  doi: 10.1007/978-3-540-75392-6
– volume: 2
  start-page: 2262
  year: 2003
  ident: 9786_CR21
  publication-title: IEEE Int. Conf. Robot. Autom.
– volume: 42
  start-page: 281
  year: 1982
  ident: 9786_CR12
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0142022
– volume: 51
  start-page: 3167
  year: 2016
  ident: 9786_CR22
  publication-title: Meccanica
  doi: 10.1007/s11012-016-0562-4
– volume: 177
  start-page: 329
  year: 1999
  ident: 9786_CR14
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(98)00387-9
– volume: 23
  start-page: 165
  year: 2010
  ident: 9786_CR17
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-009-9178-y
– volume: 121
  start-page: 3584
  year: 2020
  ident: 9786_CR37
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.6371
– volume: 58
  start-page: 175
  year: 1986
  ident: 9786_CR20
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(86)90095-2
– volume: 18
  start-page: 185
  year: 2007
  ident: 9786_CR29
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-007-9084-0
– volume: 47
  start-page: 207
  year: 2010
  ident: 9786_CR25
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-008-9223-4
– volume-title: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge
  year: 1994
  ident: 9786_CR44
  doi: 10.1007/978-1-4612-2600-0
– volume: 121
  start-page: 335
  year: 2018
  ident: 9786_CR34
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2017.09.018
– volume: 62
  start-page: 1259
  year: 2012
  ident: 9786_CR32
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2012.06.026
– volume-title: The Linear Complementarity Problem
  year: 1992
  ident: 9786_CR9
– volume: 2
  start-page: 73
  year: 2007
  ident: 9786_CR28
  publication-title: J. Comput. Nonlinear Dyn.
  doi: 10.1115/1.2389231
– start-page: 375
  volume-title: Advanced Topics in Nonsmooth Dynamics
  year: 2018
  ident: 9786_CR41
  doi: 10.1007/978-3-319-75972-2_10
– volume: 70
  start-page: 1903
  year: 2012
  ident: 9786_CR46
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-012-0582-0
SSID ssj0021549
Score 2.3823743
Snippet Nonsmooth dynamics algorithms have been widely used to solve the problems of frictional contact dynamics of multibody systems. The linear complementary...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Automotive Engineering
Computation
Control
Dynamical Systems
Electrical Engineering
Engineering
Friction
Mechanical Engineering
Multibody systems
Nonlinear dynamics
Optimization
Velocity
Vibration
Title Nonsmooth spatial frictional contact dynamics of multibody systems
URI https://link.springer.com/article/10.1007/s11044-021-09786-w
https://www.proquest.com/docview/2563790642
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-272X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021549
  issn: 1384-5640
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-272X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021549
  issn: 1384-5640
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-272X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021549
  issn: 1384-5640
  databaseCode: U2A
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAo4AolMoDG1hqYiexx4JaKhCdqFSmyM8JGkSCKv49dh4tIEBijnPDPeLvcnffAZxzSiyXiW-rCEJMQ0MxE5phbVlARaAGkfUV3ftpPJnR23k0r4fC8qbbvSlJll_q9bCbyxwo9i0FfvYgxstNaEeezst58SwcrtIsTzpWplmM4iimg3pU5mcZX6-jNcb8VhYtb5vxHuzUMBENK7vuw4ZZdGC3hoyoDsi8A9uf-AQP4GrqfOg5c8pHue-UdhL8GqDqdx_yXelCFUhXS-hzlFlU9hPKTL-jitI5P4TZePRwPcH1kgSsXPQUmDBDIxsqm0TcamJD6wAVJ5IYIpVlOiCBZoGJHHQzilljeZx4UkCXZhBDtSZH0FpkC3MMSCphmbAkEZK4REhyGYdCUCsU1zbRvAtBo6tU1QzifpHFU7rmPvb6TZ1-01K_6bILF6t3Xir-jD9P9xoTpHUs5akDZSThPlHqwmVjlvXj36Wd_O_4KWyFlWfgQdCDVvH6Zs4c4ihkH9rDm8e7Ub90tA-6K89M
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFL2CMgADb0R5emADoyZ2EnsEBJRXJyrBFPm5AC0iqRB8PXbiUECAxBzHSnzt-Jz43HMBdjkllsvMyyqiGNPYUMyEZlhbFlERqU5i_YnudS_t9unFbXIbksKKRu3eHElWX-pxsptjDhR7SYHPPUjxyyRMUUdQ4hZMHZ7dXZ58EC1vO1YRLUZxktJOSJb5uZevG9IYZX47GK32m9N56DdPWstM7g9GpTxQb99MHP_7KgswFwAoOqxnzCJMmMESzAcwisJSL5Zg9pNT4TIc9dzsfBy6sKLCa7BdD77AUP0jEXm9u1Al0nV5-wINLaqUinKoX1FtFl2sQP_05Oa4i0P5BazcuiwxYYYmNlY2S7jVxMbWQTVOJDFEKst0RCLNIpM4UGgUs8byNPN2g47AEEO1JqvQGgwHZg2QVMIyYUkmJHEUS3KZxkJQKxTXNtO8DVETg1wFb3JfIuMhH7sq-yHL3ZDl1ZDlL23Y-7jnqXbm-LP1ZhPaPKzSIndwj2TcU7A27DeRGl_-vbf1_zXfgenuzfVVfnXeu9yAmbgOPO5Em9Aqn0dmy-GaUm6HafwOs3Pt3g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BkRAc2BFl9YEbWDSxk9jHslSsFQcqcYu8zQlaRIIQf4-dpBQQIHGOM1Jmkd9kZt4A7EvOUOostFVEMeWx41QoK6hFEXEVmU6CoaJ700_PB_zyPrn_NMVfdbuPS5L1TENgaRqWR08WjyaDbz6L4DS0F4Q5hJS-TsMMD0QJ3qMHcfcj5QoEZFXKJThNUt5pxmZ-lvH1aprgzW8l0urm6S3BQgMZSbe28TJMueEKLDbwkTTBWazA_CduwVU47nt_ehx5Q5AidE17CWElUP3rj4TPVaYktl5IX5ARkqq3UI_sG6npnYs1GPTO7k7OabMwgRofSSVlwvEEY4NZItEyjNGDK8k0c0wbFDZikRWRSzyMc0agQ5lmgSDQpxzMcWvZOrSGo6HbAKKNQqGQZUoznxRpqdNYKY7KSIuZlW2IxrrKTcMmHpZaPOQTHuSg39zrN6_0m7-24eDjnaeaS-PP09tjE-RNXBW5B2gskyFpasPh2CyTx79L2_zf8T2YvT3t5dcX_astmItrJ6GdaBta5fOL2_FApNS7la-9Az111OA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonsmooth+spatial+frictional+contact+dynamics+of+multibody+systems&rft.jtitle=Multibody+system+dynamics&rft.au=Wang%2C+Kun&rft.au=Tian%2C+Qiang&rft.au=Hu%2C+Haiyan&rft.date=2021-09-01&rft.pub=Springer+Netherlands&rft.issn=1384-5640&rft.eissn=1573-272X&rft.volume=53&rft.issue=1&rft.spage=1&rft.epage=27&rft_id=info:doi/10.1007%2Fs11044-021-09786-w&rft.externalDocID=10_1007_s11044_021_09786_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5640&client=summon