Morphological edge detection and brain tumor segmentation in Magnetic Resonance (MR) images based on region growing and performance evaluation of modified Fuzzy C-Means (FCM) algorithm
The medical image processing has become indispensable with an increased demand for systematic and efficient detection of brain tumor in a short period of time. There are various techniques for medical image segmentation. Detecting a wide variety of brain images in terms of shape and intensity is a c...
Saved in:
| Published in | Multimedia tools and applications Vol. 79; no. 25-26; pp. 17483 - 17496 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.07.2020
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1380-7501 1573-7721 |
| DOI | 10.1007/s11042-020-08636-9 |
Cover
| Abstract | The medical image processing has become indispensable with an increased demand for systematic and efficient detection of brain tumor in a short period of time. There are various techniques for medical image segmentation. Detecting a wide variety of brain images in terms of shape and intensity is a challenging and difficult task to bring out a reliable and authentic data for diagnosing brain tumor diseases. This paper presents an algorithm which combines Region of Interest (ROI), Region Growing and Morphological Operation (Dilation and Erosion). This method initially identifies the approximate Region Growing (RG). Region growing is a procedure that groups pixels into larger regions, which starts from the seed points. Region growing based techniques are better than the edge-based techniques in noisy images where edges are difficult to detect. The Morphological Edge Detection of the input image is done and the input image is reconstructed on the basis of dilation and erosion for the enhancement of the image. The proposed work is divided into preprocessing to reduce the noise, Fuzzy C-Means is used to Region growing, Morphological edge detection is to enhance the image. Then the morphological edge detection can be classified into two categories, one is dilation and another is Erosion. Finally apply Gaussian filter to get output. After that, Fuzzy C-Means clustering (FCM), followed by seeded region growing is applied to detect and segment the tumor from the brain MRI image. |
|---|---|
| AbstractList | The medical image processing has become indispensable with an increased demand for systematic and efficient detection of brain tumor in a short period of time. There are various techniques for medical image segmentation. Detecting a wide variety of brain images in terms of shape and intensity is a challenging and difficult task to bring out a reliable and authentic data for diagnosing brain tumor diseases. This paper presents an algorithm which combines Region of Interest (ROI), Region Growing and Morphological Operation (Dilation and Erosion). This method initially identifies the approximate Region Growing (RG). Region growing is a procedure that groups pixels into larger regions, which starts from the seed points. Region growing based techniques are better than the edge-based techniques in noisy images where edges are difficult to detect. The Morphological Edge Detection of the input image is done and the input image is reconstructed on the basis of dilation and erosion for the enhancement of the image. The proposed work is divided into preprocessing to reduce the noise, Fuzzy C-Means is used to Region growing, Morphological edge detection is to enhance the image. Then the morphological edge detection can be classified into two categories, one is dilation and another is Erosion. Finally apply Gaussian filter to get output. After that, Fuzzy C-Means clustering (FCM), followed by seeded region growing is applied to detect and segment the tumor from the brain MRI image. |
| Author | Sheela, C. Jaspin Jeba Suganthi, G. |
| Author_xml | – sequence: 1 givenname: C. Jaspin Jeba surname: Sheela fullname: Sheela, C. Jaspin Jeba email: jaspinjebasheela@gmail.com organization: St. Xavier’s Autonomous College, Palayamkottai affiliated to Manonmaniam Sundaranar University – sequence: 2 givenname: G. surname: Suganthi fullname: Suganthi, G. organization: Department of Computer Science, Women’s Christian College, Nagercoil affiliated to Manonmaniam Sundaranar University |
| BookMark | eNp9kc1u3CAUhVGVSM1PX6ArpG6SBSk_trGX1ajTRopVKWrXiMHXhMiGKeBGyZP18cqMK1XqIisQnO9cOOccnfjgAaH3jN4wSuXHxBitOKGcEto2oiHdG3TGaimIlJydlL1oKZE1ZW_ReUqPlLKm5tUZ-t2HuH8IU7DO6AnDYAEPkMFkFzzWfsC7qJ3HeZlDxAnsDD7r42U57bX1kJ3B95CC194Avurvr7GbtYWEdzrBgIs0gj0QNoYn5-3Rdg9xDHE-MvBLT8tqGkY8h8GNroDb5eXlGW9ID9onfLXd9NdYTzZElx_mS3Q66inBu7_rBfqx_fx985Xcfftyu_l0R4xgXSaiAig_7UTTtDUTAzXSNMyYnZSybmktoWpFPTIjq64C3oFudGVqDbylRdyJC_Rh9d3H8HOBlNVjWKIvIxWvOO1oUwIuKr6qTAwpRRjVPpYQ4rNiVB0aUmtDqjSkjg2pg3X7H2Tcmm0umU-vo2JFU5njLcR_r3qF-gO0bqlQ |
| CitedBy_id | crossref_primary_10_3390_diagnostics13040668 crossref_primary_10_1007_s11682_021_00598_2 crossref_primary_10_1007_s11042_020_09797_3 crossref_primary_10_1049_ipr2_12275 crossref_primary_10_1142_S0218001423560013 crossref_primary_10_1155_2022_7954111 crossref_primary_10_1002_ima_22532 crossref_primary_10_3390_diagnostics14212417 crossref_primary_10_1016_j_dsp_2025_104983 crossref_primary_10_1007_s11760_023_02849_9 crossref_primary_10_1007_s12596_023_01159_0 crossref_primary_10_7717_peerj_cs_654 crossref_primary_10_1007_s11042_023_14485_z crossref_primary_10_1007_s11042_021_11443_5 crossref_primary_10_1007_s40747_021_00310_3 crossref_primary_10_1016_j_patcog_2021_108434 crossref_primary_10_1109_ACCESS_2024_3521595 crossref_primary_10_1007_s12596_022_01078_6 crossref_primary_10_1109_ACCESS_2023_3322437 crossref_primary_10_1016_j_jksuci_2024_102236 crossref_primary_10_1007_s11042_022_12725_2 crossref_primary_10_1049_cit2_12254 crossref_primary_10_1109_ACCESS_2024_3435774 crossref_primary_10_1007_s40846_024_00860_0 crossref_primary_10_1007_s11042_023_16654_6 crossref_primary_10_1007_s11042_024_18893_7 crossref_primary_10_1007_s11042_020_10122_1 crossref_primary_10_1016_j_fss_2023_108792 crossref_primary_10_1177_09544119211039033 crossref_primary_10_1007_s42979_024_03047_1 crossref_primary_10_1016_j_compbiomed_2022_106405 crossref_primary_10_1007_s10489_021_02886_2 crossref_primary_10_1007_s00500_023_08542_w crossref_primary_10_1007_s13042_024_02338_6 crossref_primary_10_3390_s21134538 crossref_primary_10_1002_ima_22625 crossref_primary_10_1016_j_jneumeth_2025_110424 crossref_primary_10_3390_math11194189 crossref_primary_10_1134_S1061830923600855 crossref_primary_10_1016_j_matpr_2021_03_418 crossref_primary_10_1007_s11042_021_11098_2 crossref_primary_10_1007_s12559_023_10168_x crossref_primary_10_47836_pjst_31_1_33 crossref_primary_10_31857_S0130308223120047 |
| Cites_doi | 10.1007/s10278-018-0050-6 10.1007/s13246-017-0609-4 10.1109/TFUZZ.2018.2796074 10.1007/978-3-642-31552-7_35 10.1007/978-3-319-68195-5_31 10.1109/JCSSE.2016.7748902 10.1007/s11831-018-9257-4 10.5120/7275-0446 10.1186/1687-5281-2014-21 10.1007/978-981-10-8201-6_28 10.1109/ICACCCT.2014.7019383 10.1016/j.compbiomed.2010.10.007 10.1007/978-981-13-1742-2_23 10.1007/978-981-13-1595-4_29 10.1109/TITB.2005.847500 10.1016/j.jksuci.2018.11.001 10.1016/j.eij.2015.01.003 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s11042-020-08636-9 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 17496 |
| ExternalDocumentID | 10_1007_s11042_020_08636_9 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c319t-34ee65293668513d0c7c61ccb77758057e4835f1c7494e29ea6a4c5ae280d0c93 |
| IEDL.DBID | U2A |
| ISSN | 1380-7501 |
| IngestDate | Fri Jul 25 23:53:07 EDT 2025 Wed Oct 01 02:50:42 EDT 2025 Thu Apr 24 22:58:30 EDT 2025 Fri Feb 21 02:37:33 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 25-26 |
| Keywords | Sobel operator FCM Brain tumor segmentation Magnetic resonance imaging Region growing |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-34ee65293668513d0c7c61ccb77758057e4835f1c7494e29ea6a4c5ae280d0c93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2420906721 |
| PQPubID | 54626 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2420906721 crossref_primary_10_1007_s11042_020_08636_9 crossref_citationtrail_10_1007_s11042_020_08636_9 springer_journals_10_1007_s11042_020_08636_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20200700 2020-07-00 20200701 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 7 year: 2020 text: 20200700 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Hooda H et al (2014) Brain tumor segmentation: A performance analysis using k-means, fuzzy C-means and region growing algorithm, IEEE International Conference on Advanced Communication Control and Computing Technologies (ICACCCT) Kauret H et al (2016) Segmentation of tumor region from brain mri images using fuzzy C-Means clustering And seeded region growing. IOSR Journal of Computer Engineering 18, 5 Bilenia, Aniket et al (2019) Brain tumor segmentation with skull stripping and modified fuzzy C-means, Springer. Priya SS, Valarmathi A (2019) Efficient fuzzy c-means based multilevel image segmentation for brain tumor detection in MR images, Spinger. Rajendran A, Dhanasekaran R (2011) Enhanced possibilistic Fuzzy C-Means algorithm for normal and pathological brain tissue segmentation on magnetic resonance brain image, Research Article - Computer Engineering and Computer Science Shen S et al (2005) MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization. IEEE Transactions on Information Technology in Biomedicine 9(3) Li BN et al (2010) Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation. Computers in Biology and Medicine Mohamed NA et al (1998) Modified Fuzzy C-Mean in medical image segmentation. International Conference of the IEEE Engineering in Medicine and Biology Society 20(3) Bahadure NB et al (2018) Comparative approach of MRI-based brain tumor segmentation and classification using genetic algorithm. Journal of Digital Imaging Khalifa I et al (2012) MRI brain image segmentation based on wavelet and FCM algorithm international. Journal of Computer Applications 47(16) Chouhan SS et al (2018) Image segmentation using computational intelligence techniques:review ,Archives of Computational Methods in Engineering Sharma M, Mukharjee S (2013) “Brain tumor segmentation using genetic algorithm and artificial neural network fuzzy inference system (ANFIS), Advances in Computing & Information Technology. Sompong C (2016) Brain tumor segmentation using cellular automata-based fuzzy C-means, International Joint Conference on Computer Science and Software Engineering (JCSSE) Bal A et al (2018) MRI brain tumor segmentation and analysis using rough-fuzzy C-means and shape based properties Journal of King Saud University - Computer and Information Sciences Rajendran A, Dhanasekaran R et al (2012) Brain tumor segmentation on MRI brain images with fuzzy clustering and GVF snake model. Int J Comput Commun, ISSN 1841–9836 7 Shanker Ravi, Bhattacharya M (2018) Brain Tumor Segmentation of Normal and Pathological Tissues Using K-mean Clustering with Fuzzy C-mean Clustering, Springer. Moumen T Melegy and Hashim M Mokhtar et al (2014) Tumor segmentation in brain MRI using a fuzzy approach with class center priors” Journal on Image and Video Processing. Srinivas B, Rao GS (2019) Performance Evaluation of Fuzzy C Means Segmentation and Support Vector Machine Classification for MRI Brain Tumor”, Springer Nature Singapore, 2019. Srikanth Busa, Vangala NS, Grandhe P, Balaji V (2019) Automatic Brain Tumor Detection Using Fast Fuzzy C-Means Algorithm, Springer Lei T et al (2017) Significantly fast and robust fuzzy C-means clustering algorithm based on morphological reconstruction and membership filtering”, IEEE Transactions On Fuzzy Systems SahaMPandaCA review on various image segmentation techniques for brain tumor detectionInternational Journal of Scientific Research in Computer Science, Engineering and Information Technology IJSRCSEIT20183124563307 Sonali Wadgure et al (2014) Detection of brain tumor from mri of brain using Fuzzy C-Mean (FCM)”, International Journal of Science, Engineering and Technology Research (IJSETR), 3 8 Abdel-Maksoud E et al (2015) Brain tumor segmentation based on a hybrid clustering technique. Egyptian Informatics Journal Sharma AV et al (2014) Brain tumor detection based on segmentation using object labeling algorithm. International Journal of Engineering Research & Technology (IJERT) 3(5) Kaur T et al (2017) A novel fully automatic multilevel thresholding technique based on optimized intuitionistic fuzzy sets and tsallis entropy for MR brain tumor image segmentation”, Australasian Physical & Engineering Sciences in Medicine Patil SS et al (2017) Brain tumor detection using segmentation based on fuzzy transform. International Journal of Engineering Science and Computing 8636_CR26 8636_CR25 M Saha (8636_CR19) 2018; 3 8636_CR22 8636_CR21 8636_CR24 8636_CR23 8636_CR20 8636_CR18 8636_CR15 8636_CR14 8636_CR17 8636_CR16 8636_CR9 8636_CR7 8636_CR8 8636_CR5 8636_CR6 8636_CR3 8636_CR11 8636_CR4 8636_CR10 8636_CR1 8636_CR13 8636_CR2 8636_CR12 |
| References_xml | – reference: Srikanth Busa, Vangala NS, Grandhe P, Balaji V (2019) Automatic Brain Tumor Detection Using Fast Fuzzy C-Means Algorithm, Springer – reference: Shen S et al (2005) MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization. IEEE Transactions on Information Technology in Biomedicine 9(3) – reference: Sharma AV et al (2014) Brain tumor detection based on segmentation using object labeling algorithm. International Journal of Engineering Research & Technology (IJERT) 3(5) – reference: Sharma M, Mukharjee S (2013) “Brain tumor segmentation using genetic algorithm and artificial neural network fuzzy inference system (ANFIS), Advances in Computing & Information Technology. – reference: Lei T et al (2017) Significantly fast and robust fuzzy C-means clustering algorithm based on morphological reconstruction and membership filtering”, IEEE Transactions On Fuzzy Systems – reference: Srinivas B, Rao GS (2019) Performance Evaluation of Fuzzy C Means Segmentation and Support Vector Machine Classification for MRI Brain Tumor”, Springer Nature Singapore, 2019. – reference: Bilenia, Aniket et al (2019) Brain tumor segmentation with skull stripping and modified fuzzy C-means, Springer. – reference: Hooda H et al (2014) Brain tumor segmentation: A performance analysis using k-means, fuzzy C-means and region growing algorithm, IEEE International Conference on Advanced Communication Control and Computing Technologies (ICACCCT) – reference: Priya SS, Valarmathi A (2019) Efficient fuzzy c-means based multilevel image segmentation for brain tumor detection in MR images, Spinger. – reference: Bal A et al (2018) MRI brain tumor segmentation and analysis using rough-fuzzy C-means and shape based properties Journal of King Saud University - Computer and Information Sciences – reference: Kauret H et al (2016) Segmentation of tumor region from brain mri images using fuzzy C-Means clustering And seeded region growing. IOSR Journal of Computer Engineering 18, 5 – reference: Kaur T et al (2017) A novel fully automatic multilevel thresholding technique based on optimized intuitionistic fuzzy sets and tsallis entropy for MR brain tumor image segmentation”, Australasian Physical & Engineering Sciences in Medicine – reference: Li BN et al (2010) Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation. Computers in Biology and Medicine – reference: Mohamed NA et al (1998) Modified Fuzzy C-Mean in medical image segmentation. International Conference of the IEEE Engineering in Medicine and Biology Society 20(3) – reference: Rajendran A, Dhanasekaran R (2011) Enhanced possibilistic Fuzzy C-Means algorithm for normal and pathological brain tissue segmentation on magnetic resonance brain image, Research Article - Computer Engineering and Computer Science – reference: Rajendran A, Dhanasekaran R et al (2012) Brain tumor segmentation on MRI brain images with fuzzy clustering and GVF snake model. Int J Comput Commun, ISSN 1841–9836 7 – reference: Abdel-Maksoud E et al (2015) Brain tumor segmentation based on a hybrid clustering technique. Egyptian Informatics Journal – reference: Bahadure NB et al (2018) Comparative approach of MRI-based brain tumor segmentation and classification using genetic algorithm. Journal of Digital Imaging – reference: Khalifa I et al (2012) MRI brain image segmentation based on wavelet and FCM algorithm international. Journal of Computer Applications 47(16) – reference: Sonali Wadgure et al (2014) Detection of brain tumor from mri of brain using Fuzzy C-Mean (FCM)”, International Journal of Science, Engineering and Technology Research (IJSETR), 3 8 – reference: Sompong C (2016) Brain tumor segmentation using cellular automata-based fuzzy C-means, International Joint Conference on Computer Science and Software Engineering (JCSSE) – reference: SahaMPandaCA review on various image segmentation techniques for brain tumor detectionInternational Journal of Scientific Research in Computer Science, Engineering and Information Technology IJSRCSEIT20183124563307 – reference: Moumen T Melegy and Hashim M Mokhtar et al (2014) Tumor segmentation in brain MRI using a fuzzy approach with class center priors” Journal on Image and Video Processing. – reference: Shanker Ravi, Bhattacharya M (2018) Brain Tumor Segmentation of Normal and Pathological Tissues Using K-mean Clustering with Fuzzy C-mean Clustering, Springer. – reference: Chouhan SS et al (2018) Image segmentation using computational intelligence techniques:review ,Archives of Computational Methods in Engineering – reference: Patil SS et al (2017) Brain tumor detection using segmentation based on fuzzy transform. International Journal of Engineering Science and Computing – ident: 8636_CR2 doi: 10.1007/s10278-018-0050-6 – ident: 8636_CR8 doi: 10.1007/s13246-017-0609-4 – ident: 8636_CR11 doi: 10.1109/TFUZZ.2018.2796074 – ident: 8636_CR21 doi: 10.1007/978-3-642-31552-7_35 – ident: 8636_CR20 doi: 10.1007/978-3-319-68195-5_31 – ident: 8636_CR26 – ident: 8636_CR22 – volume: 3 start-page: 2456 issue: 1 year: 2018 ident: 8636_CR19 publication-title: International Journal of Scientific Research in Computer Science, Engineering and Information Technology IJSRCSEIT – ident: 8636_CR17 – ident: 8636_CR24 doi: 10.1109/JCSSE.2016.7748902 – ident: 8636_CR6 doi: 10.1007/s11831-018-9257-4 – ident: 8636_CR15 – ident: 8636_CR10 doi: 10.5120/7275-0446 – ident: 8636_CR13 doi: 10.1186/1687-5281-2014-21 – ident: 8636_CR5 doi: 10.1007/978-981-10-8201-6_28 – ident: 8636_CR7 doi: 10.1109/ICACCCT.2014.7019383 – ident: 8636_CR12 doi: 10.1016/j.compbiomed.2010.10.007 – ident: 8636_CR9 – ident: 8636_CR4 doi: 10.1007/978-981-13-1742-2_23 – ident: 8636_CR25 doi: 10.1007/978-981-13-1595-4_29 – ident: 8636_CR23 doi: 10.1109/TITB.2005.847500 – ident: 8636_CR16 – ident: 8636_CR18 – ident: 8636_CR14 – ident: 8636_CR3 doi: 10.1016/j.jksuci.2018.11.001 – ident: 8636_CR1 doi: 10.1016/j.eij.2015.01.003 |
| SSID | ssj0016524 |
| Score | 2.434075 |
| Snippet | The medical image processing has become indispensable with an increased demand for systematic and efficient detection of brain tumor in a short period of time.... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 17483 |
| SubjectTerms | Algorithms Brain Brain cancer Clustering Computer Communication Networks Computer Science Data Structures and Information Theory Dilation Edge detection Image detection Image enhancement Image processing Image reconstruction Image segmentation Magnetic resonance imaging Medical imaging Morphology Multimedia Information Systems Noise reduction Performance evaluation Special Purpose and Application-Based Systems Tumors |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB3R5dIeKKWt2BbQHHoAtVaTjfN1QAhWrFClrCpUJG6R4zgLEkm2bPYAv4yfx0zWIQWpnFbKOo7kGXuePZ73AL5lnqszCm0iI6wspI5coXzti8J4OdOnOCbnjG4yDc4u5K9L_3INpl0tDF-r7NbEdqHOa81n5D8plDgx5w3do_lfwapRnF3tJDSUlVbID1uKsTewPmJmrAGsn5xOf58_5RUC38rcRo6gWOnaMppVMZ3LpSq8nSKY7wUifh6qevz5ImXaRqLJJmxYCInHK5t_gDVTbcH7Tp4B7Wzdgnf_cA1-hIekpiHtljrkYzTMTdPexKpQVTlmrBaBzbKsb3FhZqWtSqqQniZqVnG5I_JxP3N0GNxPzg_wuqT1aIEcC3OkpqzzQD8z2tzTV9tu531pAvbc4lgXWNb5dUEQGCfL-_s7HIvEUODE_ck4OUB1M6Phb67KT3AxOf0zPhNWtkFoms-N8KQxNM6xFwQE58jkOtSBq3UWhrQ5IXxoJMG-wtWhjKUZxUYFSmpfmVHkUOPY-wyDqq7MNqAyvnEKrUJFG6fIk1EWyEhzbS2ZzNN6CG5noVRbTnOW1rhJezZmtmpKVk1bq6bxEL4_vTNfMXq82nqnM3xqZ_ci7X1xCD86Z-j__n9vX17v7Su8HbX-x7eBd2DQ3C7NLmGeJtuzjvwIrPz9cg priority: 102 providerName: ProQuest |
| Title | Morphological edge detection and brain tumor segmentation in Magnetic Resonance (MR) images based on region growing and performance evaluation of modified Fuzzy C-Means (FCM) algorithm |
| URI | https://link.springer.com/article/10.1007/s11042-020-08636-9 https://www.proquest.com/docview/2420906721 |
| Volume | 79 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-7721 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: ADMLS dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-7721 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7721 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3R9gIHKAXEQruaA4dWYCnZOF_HZbVpBUqFKlYqp8hxJstKTVLtZg_0l_HzGKdOA6hU4mQpmTiSZ-x59njeALzLPVfn7NpEzlhZSB25QvnaFyV5haFPcagwEd30PDhbyE-X_qVNCtv0t937kGS3Ug_Jbq5JJTHbHYbhXiDiHdjzDZ0XW_FiMr2LHQS-LWUbOYL9oWtTZe7v4093NGDMv8KinbdJ9uGphYk4vdXrc3hE9QE860swoJ2RB_DkNz7BF_AzbXjY-uUMzVEZFtR2t61qVHWBuakIge22ata4oWVlM49q5KepWtYmpRHNkb7h4SA8Ti9OcFXxmrNB4-8KZFFTy4GbJW_g-a9dt9dD-gEO_OHYlFg1xapkmIvJ9ubmB85ESuwc8TiZpSeorpbNetV-r17CIpl_nZ0JW5pBaJ6zrfAkEY9z7AUBQzZWqw514GqdhyFvQBgDkmRoV7o6lLGkSUwqUFL7iiaRw8Kx9wp266am14CKfHJKrULFm6PIk1EeyEib_FlWmaf1CNxeQ5m2vOWmfMZVNjAuG61mrNWs02oWj-D93TfXt6wdD0of9orP7AzeZAxdnNjEqd0RfOiNYXj9797e_J_4W3g86ezR3AA-hN12vaUjxjltPoadKDkdw9709NvnObcf5-dfLsadsf8C5Rz39g |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEF0hOLQ9lJa2aoC2c2glULuqP9ZfB4TalCgUHFUIJG5mvV6nSNgOiSMEv6yn_jZmnDVuK5Ubp0jJemPpjWfeePbNMPY-dW2VYmjjKXJlLlRoc-kpj-fazah9iqUzqujGI394Ir6feqdL7HerhaFjla1PbBx1Vil6R_4ZQ4kVUd3Q3p1ccpoaRdXVdoSGNKMVsp2mxZgRdhzo6ytM4WY7-98Q7w-OM9g77g-5mTLAFZpfzV2hte9h1PN9ZB94hypQvq1UGgTIpZHOaIEsJbdVICKhnUhLXwrlSe2EFi6mZkwYAlaEKyJM_la-7o1-HN3VMXDjxVjd0OIYm20j21mI92ySxlD6hmmF6_Po79DY8d1_SrRN5Bs8Y08NZYUvCxt7zpZ0ucZW23EQYLzDGnvyR2_DF-xXXCGErWsFem0Hma6bk18lyDKDlKZTQD0vqinM9LgwKqgS8NtYjkuSVwKVF6gniIat-Ggbzgv0fzOg2JsBLqW5EvgxnlZX-K_NtpNOCgFdL3Oociiq7DxHyg2D-c3NNfR5rDFQw9agH2-DvBgj3PXP4iU7eRAAX7Hlsir1awZSe9rKlQwkJmqhK8LUF6EiLS9C5irVY3aLUKJMD3Ua5XGRdN2fCdUEUU0aVJOoxz7eXTNZdBC5d_VmC3xivMks6Wy_xz61xtD9_P_d1u_f7R17NDyOD5PD_dHBBnvsNLZIJ5E32XI9nes3yLfq9K0xamBnD_0c3QKC6Djp |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9VAEN4QSIw-iKLGI6jzoAlEN_R-eSDGHKwglhgjCW9lu50eSWh7OKcnBH4Z8dc50wtVE3njqUm73Tb5pjOznf2-EeJNaps6pdAmU8qVpaMDUypXuzJHO2P5FAMzrujGh97ekfPl2D1eEr96Lgxvq-x9YuOos0rzP_JtCiVGyHVDczvvtkV8240-TM8ld5DiSmvfTqM1kQO8vKDl23xnf5ewfmtZ0acf4z3ZdRiQmkyvlraD6LkU8TyPMg96O-1rz9Q69X3KoymVQYcylNzUvhM6aIWoPOVoV6EVGDSYhZjI_a_4rOLOLPXo800Fg6ZtG-oGhqSobHaEnZa2ZzIphhdutKCwPRn-HRSHTPef4mwT86JH4mGXrMLH1roeiyUs18Rq3wgCOr-wJh78oWr4RFzHFYHXO1XgH3aQYd3s-SpBlRmk3JcC6kVRzWCOk6LjP5VAZ2M1KZlYCVxYYDUQhM34-xacFuT55sBRNwMayh0l6DCZVRf01Gba6UCCgEHFHKociio7zSnZhmhxdXUJYxkjhWjYjMbxFqizCYFb_yyeiqM7ge-ZWC6rEp8LUOiikWvlK1qiBbYTpJ4TaGbxEmS21iNh9gglulNP5yYeZ8mg-8yoJoRq0qCahCPx7uaeaasdcuvojR74pPMj82Sw-pF43xvDcPn_s724fbbX4h59PcnX_cODdXHfakyRtyBviOV6tsCXlGjV6avGokGc3PUn9Bvi7TaD |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Morphological+edge+detection+and+brain+tumor+segmentation+in+Magnetic+Resonance+%28MR%29+images+based+on+region+growing+and+performance+evaluation+of+modified+Fuzzy+C-Means+%28FCM%29+algorithm&rft.jtitle=Multimedia+tools+and+applications&rft.au=Sheela%2C+C.+Jaspin+Jeba&rft.au=Suganthi%2C+G.&rft.date=2020-07-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=79&rft.issue=25-26&rft.spage=17483&rft.epage=17496&rft_id=info:doi/10.1007%2Fs11042-020-08636-9&rft.externalDocID=10_1007_s11042_020_08636_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |