Morphological edge detection and brain tumor segmentation in Magnetic Resonance (MR) images based on region growing and performance evaluation of modified Fuzzy C-Means (FCM) algorithm

The medical image processing has become indispensable with an increased demand for systematic and efficient detection of brain tumor in a short period of time. There are various techniques for medical image segmentation. Detecting a wide variety of brain images in terms of shape and intensity is a c...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 79; no. 25-26; pp. 17483 - 17496
Main Authors Sheela, C. Jaspin Jeba, Suganthi, G.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1380-7501
1573-7721
DOI10.1007/s11042-020-08636-9

Cover

Abstract The medical image processing has become indispensable with an increased demand for systematic and efficient detection of brain tumor in a short period of time. There are various techniques for medical image segmentation. Detecting a wide variety of brain images in terms of shape and intensity is a challenging and difficult task to bring out a reliable and authentic data for diagnosing brain tumor diseases. This paper presents an algorithm which combines Region of Interest (ROI), Region Growing and Morphological Operation (Dilation and Erosion). This method initially identifies the approximate Region Growing (RG). Region growing is a procedure that groups pixels into larger regions, which starts from the seed points. Region growing based techniques are better than the edge-based techniques in noisy images where edges are difficult to detect. The Morphological Edge Detection of the input image is done and the input image is reconstructed on the basis of dilation and erosion for the enhancement of the image. The proposed work is divided into preprocessing to reduce the noise, Fuzzy C-Means is used to Region growing, Morphological edge detection is to enhance the image. Then the morphological edge detection can be classified into two categories, one is dilation and another is Erosion. Finally apply Gaussian filter to get output. After that, Fuzzy C-Means clustering (FCM), followed by seeded region growing is applied to detect and segment the tumor from the brain MRI image.
AbstractList The medical image processing has become indispensable with an increased demand for systematic and efficient detection of brain tumor in a short period of time. There are various techniques for medical image segmentation. Detecting a wide variety of brain images in terms of shape and intensity is a challenging and difficult task to bring out a reliable and authentic data for diagnosing brain tumor diseases. This paper presents an algorithm which combines Region of Interest (ROI), Region Growing and Morphological Operation (Dilation and Erosion). This method initially identifies the approximate Region Growing (RG). Region growing is a procedure that groups pixels into larger regions, which starts from the seed points. Region growing based techniques are better than the edge-based techniques in noisy images where edges are difficult to detect. The Morphological Edge Detection of the input image is done and the input image is reconstructed on the basis of dilation and erosion for the enhancement of the image. The proposed work is divided into preprocessing to reduce the noise, Fuzzy C-Means is used to Region growing, Morphological edge detection is to enhance the image. Then the morphological edge detection can be classified into two categories, one is dilation and another is Erosion. Finally apply Gaussian filter to get output. After that, Fuzzy C-Means clustering (FCM), followed by seeded region growing is applied to detect and segment the tumor from the brain MRI image.
Author Sheela, C. Jaspin Jeba
Suganthi, G.
Author_xml – sequence: 1
  givenname: C. Jaspin Jeba
  surname: Sheela
  fullname: Sheela, C. Jaspin Jeba
  email: jaspinjebasheela@gmail.com
  organization: St. Xavier’s Autonomous College, Palayamkottai affiliated to Manonmaniam Sundaranar University
– sequence: 2
  givenname: G.
  surname: Suganthi
  fullname: Suganthi, G.
  organization: Department of Computer Science, Women’s Christian College, Nagercoil affiliated to Manonmaniam Sundaranar University
BookMark eNp9kc1u3CAUhVGVSM1PX6ArpG6SBSk_trGX1ajTRopVKWrXiMHXhMiGKeBGyZP18cqMK1XqIisQnO9cOOccnfjgAaH3jN4wSuXHxBitOKGcEto2oiHdG3TGaimIlJydlL1oKZE1ZW_ReUqPlLKm5tUZ-t2HuH8IU7DO6AnDYAEPkMFkFzzWfsC7qJ3HeZlDxAnsDD7r42U57bX1kJ3B95CC194Avurvr7GbtYWEdzrBgIs0gj0QNoYn5-3Rdg9xDHE-MvBLT8tqGkY8h8GNroDb5eXlGW9ID9onfLXd9NdYTzZElx_mS3Q66inBu7_rBfqx_fx985Xcfftyu_l0R4xgXSaiAig_7UTTtDUTAzXSNMyYnZSybmktoWpFPTIjq64C3oFudGVqDbylRdyJC_Rh9d3H8HOBlNVjWKIvIxWvOO1oUwIuKr6qTAwpRRjVPpYQ4rNiVB0aUmtDqjSkjg2pg3X7H2Tcmm0umU-vo2JFU5njLcR_r3qF-gO0bqlQ
CitedBy_id crossref_primary_10_3390_diagnostics13040668
crossref_primary_10_1007_s11682_021_00598_2
crossref_primary_10_1007_s11042_020_09797_3
crossref_primary_10_1049_ipr2_12275
crossref_primary_10_1142_S0218001423560013
crossref_primary_10_1155_2022_7954111
crossref_primary_10_1002_ima_22532
crossref_primary_10_3390_diagnostics14212417
crossref_primary_10_1016_j_dsp_2025_104983
crossref_primary_10_1007_s11760_023_02849_9
crossref_primary_10_1007_s12596_023_01159_0
crossref_primary_10_7717_peerj_cs_654
crossref_primary_10_1007_s11042_023_14485_z
crossref_primary_10_1007_s11042_021_11443_5
crossref_primary_10_1007_s40747_021_00310_3
crossref_primary_10_1016_j_patcog_2021_108434
crossref_primary_10_1109_ACCESS_2024_3521595
crossref_primary_10_1007_s12596_022_01078_6
crossref_primary_10_1109_ACCESS_2023_3322437
crossref_primary_10_1016_j_jksuci_2024_102236
crossref_primary_10_1007_s11042_022_12725_2
crossref_primary_10_1049_cit2_12254
crossref_primary_10_1109_ACCESS_2024_3435774
crossref_primary_10_1007_s40846_024_00860_0
crossref_primary_10_1007_s11042_023_16654_6
crossref_primary_10_1007_s11042_024_18893_7
crossref_primary_10_1007_s11042_020_10122_1
crossref_primary_10_1016_j_fss_2023_108792
crossref_primary_10_1177_09544119211039033
crossref_primary_10_1007_s42979_024_03047_1
crossref_primary_10_1016_j_compbiomed_2022_106405
crossref_primary_10_1007_s10489_021_02886_2
crossref_primary_10_1007_s00500_023_08542_w
crossref_primary_10_1007_s13042_024_02338_6
crossref_primary_10_3390_s21134538
crossref_primary_10_1002_ima_22625
crossref_primary_10_1016_j_jneumeth_2025_110424
crossref_primary_10_3390_math11194189
crossref_primary_10_1134_S1061830923600855
crossref_primary_10_1016_j_matpr_2021_03_418
crossref_primary_10_1007_s11042_021_11098_2
crossref_primary_10_1007_s12559_023_10168_x
crossref_primary_10_47836_pjst_31_1_33
crossref_primary_10_31857_S0130308223120047
Cites_doi 10.1007/s10278-018-0050-6
10.1007/s13246-017-0609-4
10.1109/TFUZZ.2018.2796074
10.1007/978-3-642-31552-7_35
10.1007/978-3-319-68195-5_31
10.1109/JCSSE.2016.7748902
10.1007/s11831-018-9257-4
10.5120/7275-0446
10.1186/1687-5281-2014-21
10.1007/978-981-10-8201-6_28
10.1109/ICACCCT.2014.7019383
10.1016/j.compbiomed.2010.10.007
10.1007/978-981-13-1742-2_23
10.1007/978-981-13-1595-4_29
10.1109/TITB.2005.847500
10.1016/j.jksuci.2018.11.001
10.1016/j.eij.2015.01.003
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-020-08636-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 17496
ExternalDocumentID 10_1007_s11042_020_08636_9
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-34ee65293668513d0c7c61ccb77758057e4835f1c7494e29ea6a4c5ae280d0c93
IEDL.DBID U2A
ISSN 1380-7501
IngestDate Fri Jul 25 23:53:07 EDT 2025
Wed Oct 01 02:50:42 EDT 2025
Thu Apr 24 22:58:30 EDT 2025
Fri Feb 21 02:37:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 25-26
Keywords Sobel operator
FCM
Brain tumor segmentation
Magnetic resonance imaging
Region growing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-34ee65293668513d0c7c61ccb77758057e4835f1c7494e29ea6a4c5ae280d0c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2420906721
PQPubID 54626
PageCount 14
ParticipantIDs proquest_journals_2420906721
crossref_primary_10_1007_s11042_020_08636_9
crossref_citationtrail_10_1007_s11042_020_08636_9
springer_journals_10_1007_s11042_020_08636_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200700
2020-07-00
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 7
  year: 2020
  text: 20200700
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Hooda H et al (2014) Brain tumor segmentation: A performance analysis using k-means, fuzzy C-means and region growing algorithm, IEEE International Conference on Advanced Communication Control and Computing Technologies (ICACCCT)
Kauret H et al (2016) Segmentation of tumor region from brain mri images using fuzzy C-Means clustering And seeded region growing. IOSR Journal of Computer Engineering 18, 5
Bilenia, Aniket et al (2019) Brain tumor segmentation with skull stripping and modified fuzzy C-means, Springer.
Priya SS, Valarmathi A (2019) Efficient fuzzy c-means based multilevel image segmentation for brain tumor detection in MR images, Spinger.
Rajendran A, Dhanasekaran R (2011) Enhanced possibilistic Fuzzy C-Means algorithm for normal and pathological brain tissue segmentation on magnetic resonance brain image, Research Article - Computer Engineering and Computer Science
Shen S et al (2005) MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization. IEEE Transactions on Information Technology in Biomedicine 9(3)
Li BN et al (2010) Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation. Computers in Biology and Medicine
Mohamed NA et al (1998) Modified Fuzzy C-Mean in medical image segmentation. International Conference of the IEEE Engineering in Medicine and Biology Society 20(3)
Bahadure NB et al (2018) Comparative approach of MRI-based brain tumor segmentation and classification using genetic algorithm. Journal of Digital Imaging
Khalifa I et al (2012) MRI brain image segmentation based on wavelet and FCM algorithm international. Journal of Computer Applications 47(16)
Chouhan SS et al (2018) Image segmentation using computational intelligence techniques:review ,Archives of Computational Methods in Engineering
Sharma M, Mukharjee S (2013) “Brain tumor segmentation using genetic algorithm and artificial neural network fuzzy inference system (ANFIS), Advances in Computing & Information Technology.
Sompong C (2016) Brain tumor segmentation using cellular automata-based fuzzy C-means, International Joint Conference on Computer Science and Software Engineering (JCSSE)
Bal A et al (2018) MRI brain tumor segmentation and analysis using rough-fuzzy C-means and shape based properties Journal of King Saud University - Computer and Information Sciences
Rajendran A, Dhanasekaran R et al (2012) Brain tumor segmentation on MRI brain images with fuzzy clustering and GVF snake model. Int J Comput Commun, ISSN 1841–9836 7
Shanker Ravi, Bhattacharya M (2018) Brain Tumor Segmentation of Normal and Pathological Tissues Using K-mean Clustering with Fuzzy C-mean Clustering, Springer.
Moumen T Melegy and Hashim M Mokhtar et al (2014) Tumor segmentation in brain MRI using a fuzzy approach with class center priors” Journal on Image and Video Processing.
Srinivas B, Rao GS (2019) Performance Evaluation of Fuzzy C Means Segmentation and Support Vector Machine Classification for MRI Brain Tumor”, Springer Nature Singapore, 2019.
Srikanth Busa, Vangala NS, Grandhe P, Balaji V (2019) Automatic Brain Tumor Detection Using Fast Fuzzy C-Means Algorithm, Springer
Lei T et al (2017) Significantly fast and robust fuzzy C-means clustering algorithm based on morphological reconstruction and membership filtering”, IEEE Transactions On Fuzzy Systems
SahaMPandaCA review on various image segmentation techniques for brain tumor detectionInternational Journal of Scientific Research in Computer Science, Engineering and Information Technology IJSRCSEIT20183124563307
Sonali Wadgure et al (2014) Detection of brain tumor from mri of brain using Fuzzy C-Mean (FCM)”, International Journal of Science, Engineering and Technology Research (IJSETR), 3 8
Abdel-Maksoud E et al (2015) Brain tumor segmentation based on a hybrid clustering technique. Egyptian Informatics Journal
Sharma AV et al (2014) Brain tumor detection based on segmentation using object labeling algorithm. International Journal of Engineering Research & Technology (IJERT) 3(5)
Kaur T et al (2017) A novel fully automatic multilevel thresholding technique based on optimized intuitionistic fuzzy sets and tsallis entropy for MR brain tumor image segmentation”, Australasian Physical & Engineering Sciences in Medicine
Patil SS et al (2017) Brain tumor detection using segmentation based on fuzzy transform. International Journal of Engineering Science and Computing
8636_CR26
8636_CR25
M Saha (8636_CR19) 2018; 3
8636_CR22
8636_CR21
8636_CR24
8636_CR23
8636_CR20
8636_CR18
8636_CR15
8636_CR14
8636_CR17
8636_CR16
8636_CR9
8636_CR7
8636_CR8
8636_CR5
8636_CR6
8636_CR3
8636_CR11
8636_CR4
8636_CR10
8636_CR1
8636_CR13
8636_CR2
8636_CR12
References_xml – reference: Srikanth Busa, Vangala NS, Grandhe P, Balaji V (2019) Automatic Brain Tumor Detection Using Fast Fuzzy C-Means Algorithm, Springer
– reference: Shen S et al (2005) MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization. IEEE Transactions on Information Technology in Biomedicine 9(3)
– reference: Sharma AV et al (2014) Brain tumor detection based on segmentation using object labeling algorithm. International Journal of Engineering Research & Technology (IJERT) 3(5)
– reference: Sharma M, Mukharjee S (2013) “Brain tumor segmentation using genetic algorithm and artificial neural network fuzzy inference system (ANFIS), Advances in Computing & Information Technology.
– reference: Lei T et al (2017) Significantly fast and robust fuzzy C-means clustering algorithm based on morphological reconstruction and membership filtering”, IEEE Transactions On Fuzzy Systems
– reference: Srinivas B, Rao GS (2019) Performance Evaluation of Fuzzy C Means Segmentation and Support Vector Machine Classification for MRI Brain Tumor”, Springer Nature Singapore, 2019.
– reference: Bilenia, Aniket et al (2019) Brain tumor segmentation with skull stripping and modified fuzzy C-means, Springer.
– reference: Hooda H et al (2014) Brain tumor segmentation: A performance analysis using k-means, fuzzy C-means and region growing algorithm, IEEE International Conference on Advanced Communication Control and Computing Technologies (ICACCCT)
– reference: Priya SS, Valarmathi A (2019) Efficient fuzzy c-means based multilevel image segmentation for brain tumor detection in MR images, Spinger.
– reference: Bal A et al (2018) MRI brain tumor segmentation and analysis using rough-fuzzy C-means and shape based properties Journal of King Saud University - Computer and Information Sciences
– reference: Kauret H et al (2016) Segmentation of tumor region from brain mri images using fuzzy C-Means clustering And seeded region growing. IOSR Journal of Computer Engineering 18, 5
– reference: Kaur T et al (2017) A novel fully automatic multilevel thresholding technique based on optimized intuitionistic fuzzy sets and tsallis entropy for MR brain tumor image segmentation”, Australasian Physical & Engineering Sciences in Medicine
– reference: Li BN et al (2010) Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation. Computers in Biology and Medicine
– reference: Mohamed NA et al (1998) Modified Fuzzy C-Mean in medical image segmentation. International Conference of the IEEE Engineering in Medicine and Biology Society 20(3)
– reference: Rajendran A, Dhanasekaran R (2011) Enhanced possibilistic Fuzzy C-Means algorithm for normal and pathological brain tissue segmentation on magnetic resonance brain image, Research Article - Computer Engineering and Computer Science
– reference: Rajendran A, Dhanasekaran R et al (2012) Brain tumor segmentation on MRI brain images with fuzzy clustering and GVF snake model. Int J Comput Commun, ISSN 1841–9836 7
– reference: Abdel-Maksoud E et al (2015) Brain tumor segmentation based on a hybrid clustering technique. Egyptian Informatics Journal
– reference: Bahadure NB et al (2018) Comparative approach of MRI-based brain tumor segmentation and classification using genetic algorithm. Journal of Digital Imaging
– reference: Khalifa I et al (2012) MRI brain image segmentation based on wavelet and FCM algorithm international. Journal of Computer Applications 47(16)
– reference: Sonali Wadgure et al (2014) Detection of brain tumor from mri of brain using Fuzzy C-Mean (FCM)”, International Journal of Science, Engineering and Technology Research (IJSETR), 3 8
– reference: Sompong C (2016) Brain tumor segmentation using cellular automata-based fuzzy C-means, International Joint Conference on Computer Science and Software Engineering (JCSSE)
– reference: SahaMPandaCA review on various image segmentation techniques for brain tumor detectionInternational Journal of Scientific Research in Computer Science, Engineering and Information Technology IJSRCSEIT20183124563307
– reference: Moumen T Melegy and Hashim M Mokhtar et al (2014) Tumor segmentation in brain MRI using a fuzzy approach with class center priors” Journal on Image and Video Processing.
– reference: Shanker Ravi, Bhattacharya M (2018) Brain Tumor Segmentation of Normal and Pathological Tissues Using K-mean Clustering with Fuzzy C-mean Clustering, Springer.
– reference: Chouhan SS et al (2018) Image segmentation using computational intelligence techniques:review ,Archives of Computational Methods in Engineering
– reference: Patil SS et al (2017) Brain tumor detection using segmentation based on fuzzy transform. International Journal of Engineering Science and Computing
– ident: 8636_CR2
  doi: 10.1007/s10278-018-0050-6
– ident: 8636_CR8
  doi: 10.1007/s13246-017-0609-4
– ident: 8636_CR11
  doi: 10.1109/TFUZZ.2018.2796074
– ident: 8636_CR21
  doi: 10.1007/978-3-642-31552-7_35
– ident: 8636_CR20
  doi: 10.1007/978-3-319-68195-5_31
– ident: 8636_CR26
– ident: 8636_CR22
– volume: 3
  start-page: 2456
  issue: 1
  year: 2018
  ident: 8636_CR19
  publication-title: International Journal of Scientific Research in Computer Science, Engineering and Information Technology IJSRCSEIT
– ident: 8636_CR17
– ident: 8636_CR24
  doi: 10.1109/JCSSE.2016.7748902
– ident: 8636_CR6
  doi: 10.1007/s11831-018-9257-4
– ident: 8636_CR15
– ident: 8636_CR10
  doi: 10.5120/7275-0446
– ident: 8636_CR13
  doi: 10.1186/1687-5281-2014-21
– ident: 8636_CR5
  doi: 10.1007/978-981-10-8201-6_28
– ident: 8636_CR7
  doi: 10.1109/ICACCCT.2014.7019383
– ident: 8636_CR12
  doi: 10.1016/j.compbiomed.2010.10.007
– ident: 8636_CR9
– ident: 8636_CR4
  doi: 10.1007/978-981-13-1742-2_23
– ident: 8636_CR25
  doi: 10.1007/978-981-13-1595-4_29
– ident: 8636_CR23
  doi: 10.1109/TITB.2005.847500
– ident: 8636_CR16
– ident: 8636_CR18
– ident: 8636_CR14
– ident: 8636_CR3
  doi: 10.1016/j.jksuci.2018.11.001
– ident: 8636_CR1
  doi: 10.1016/j.eij.2015.01.003
SSID ssj0016524
Score 2.434075
Snippet The medical image processing has become indispensable with an increased demand for systematic and efficient detection of brain tumor in a short period of time....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17483
SubjectTerms Algorithms
Brain
Brain cancer
Clustering
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Dilation
Edge detection
Image detection
Image enhancement
Image processing
Image reconstruction
Image segmentation
Magnetic resonance imaging
Medical imaging
Morphology
Multimedia Information Systems
Noise reduction
Performance evaluation
Special Purpose and Application-Based Systems
Tumors
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB3R5dIeKKWt2BbQHHoAtVaTjfN1QAhWrFClrCpUJG6R4zgLEkm2bPYAv4yfx0zWIQWpnFbKOo7kGXuePZ73AL5lnqszCm0iI6wspI5coXzti8J4OdOnOCbnjG4yDc4u5K9L_3INpl0tDF-r7NbEdqHOa81n5D8plDgx5w3do_lfwapRnF3tJDSUlVbID1uKsTewPmJmrAGsn5xOf58_5RUC38rcRo6gWOnaMppVMZ3LpSq8nSKY7wUifh6qevz5ImXaRqLJJmxYCInHK5t_gDVTbcH7Tp4B7Wzdgnf_cA1-hIekpiHtljrkYzTMTdPexKpQVTlmrBaBzbKsb3FhZqWtSqqQniZqVnG5I_JxP3N0GNxPzg_wuqT1aIEcC3OkpqzzQD8z2tzTV9tu531pAvbc4lgXWNb5dUEQGCfL-_s7HIvEUODE_ck4OUB1M6Phb67KT3AxOf0zPhNWtkFoms-N8KQxNM6xFwQE58jkOtSBq3UWhrQ5IXxoJMG-wtWhjKUZxUYFSmpfmVHkUOPY-wyDqq7MNqAyvnEKrUJFG6fIk1EWyEhzbS2ZzNN6CG5noVRbTnOW1rhJezZmtmpKVk1bq6bxEL4_vTNfMXq82nqnM3xqZ_ci7X1xCD86Z-j__n9vX17v7Su8HbX-x7eBd2DQ3C7NLmGeJtuzjvwIrPz9cg
  priority: 102
  providerName: ProQuest
Title Morphological edge detection and brain tumor segmentation in Magnetic Resonance (MR) images based on region growing and performance evaluation of modified Fuzzy C-Means (FCM) algorithm
URI https://link.springer.com/article/10.1007/s11042-020-08636-9
https://www.proquest.com/docview/2420906721
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: ADMLS
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3R9gIHKAXEQruaA4dWYCnZOF_HZbVpBUqFKlYqp8hxJstKTVLtZg_0l_HzGKdOA6hU4mQpmTiSZ-x59njeALzLPVfn7NpEzlhZSB25QvnaFyV5haFPcagwEd30PDhbyE-X_qVNCtv0t937kGS3Ug_Jbq5JJTHbHYbhXiDiHdjzDZ0XW_FiMr2LHQS-LWUbOYL9oWtTZe7v4093NGDMv8KinbdJ9uGphYk4vdXrc3hE9QE860swoJ2RB_DkNz7BF_AzbXjY-uUMzVEZFtR2t61qVHWBuakIge22ata4oWVlM49q5KepWtYmpRHNkb7h4SA8Ti9OcFXxmrNB4-8KZFFTy4GbJW_g-a9dt9dD-gEO_OHYlFg1xapkmIvJ9ubmB85ESuwc8TiZpSeorpbNetV-r17CIpl_nZ0JW5pBaJ6zrfAkEY9z7AUBQzZWqw514GqdhyFvQBgDkmRoV7o6lLGkSUwqUFL7iiaRw8Kx9wp266am14CKfHJKrULFm6PIk1EeyEib_FlWmaf1CNxeQ5m2vOWmfMZVNjAuG61mrNWs02oWj-D93TfXt6wdD0of9orP7AzeZAxdnNjEqd0RfOiNYXj9797e_J_4W3g86ezR3AA-hN12vaUjxjltPoadKDkdw9709NvnObcf5-dfLsadsf8C5Rz39g
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEF0hOLQ9lJa2aoC2c2glULuqP9ZfB4TalCgUHFUIJG5mvV6nSNgOiSMEv6yn_jZmnDVuK5Ubp0jJemPpjWfeePbNMPY-dW2VYmjjKXJlLlRoc-kpj-fazah9iqUzqujGI394Ir6feqdL7HerhaFjla1PbBx1Vil6R_4ZQ4kVUd3Q3p1ccpoaRdXVdoSGNKMVsp2mxZgRdhzo6ytM4WY7-98Q7w-OM9g77g-5mTLAFZpfzV2hte9h1PN9ZB94hypQvq1UGgTIpZHOaIEsJbdVICKhnUhLXwrlSe2EFi6mZkwYAlaEKyJM_la-7o1-HN3VMXDjxVjd0OIYm20j21mI92ySxlD6hmmF6_Po79DY8d1_SrRN5Bs8Y08NZYUvCxt7zpZ0ucZW23EQYLzDGnvyR2_DF-xXXCGErWsFem0Hma6bk18lyDKDlKZTQD0vqinM9LgwKqgS8NtYjkuSVwKVF6gniIat-Ggbzgv0fzOg2JsBLqW5EvgxnlZX-K_NtpNOCgFdL3Oociiq7DxHyg2D-c3NNfR5rDFQw9agH2-DvBgj3PXP4iU7eRAAX7Hlsir1awZSe9rKlQwkJmqhK8LUF6EiLS9C5irVY3aLUKJMD3Ua5XGRdN2fCdUEUU0aVJOoxz7eXTNZdBC5d_VmC3xivMks6Wy_xz61xtD9_P_d1u_f7R17NDyOD5PD_dHBBnvsNLZIJ5E32XI9nes3yLfq9K0xamBnD_0c3QKC6Djp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9VAEN4QSIw-iKLGI6jzoAlEN_R-eSDGHKwglhgjCW9lu50eSWh7OKcnBH4Z8dc50wtVE3njqUm73Tb5pjOznf2-EeJNaps6pdAmU8qVpaMDUypXuzJHO2P5FAMzrujGh97ekfPl2D1eEr96Lgxvq-x9YuOos0rzP_JtCiVGyHVDczvvtkV8240-TM8ld5DiSmvfTqM1kQO8vKDl23xnf5ewfmtZ0acf4z3ZdRiQmkyvlraD6LkU8TyPMg96O-1rz9Q69X3KoymVQYcylNzUvhM6aIWoPOVoV6EVGDSYhZjI_a_4rOLOLPXo800Fg6ZtG-oGhqSobHaEnZa2ZzIphhdutKCwPRn-HRSHTPef4mwT86JH4mGXrMLH1roeiyUs18Rq3wgCOr-wJh78oWr4RFzHFYHXO1XgH3aQYd3s-SpBlRmk3JcC6kVRzWCOk6LjP5VAZ2M1KZlYCVxYYDUQhM34-xacFuT55sBRNwMayh0l6DCZVRf01Gba6UCCgEHFHKociio7zSnZhmhxdXUJYxkjhWjYjMbxFqizCYFb_yyeiqM7ge-ZWC6rEp8LUOiikWvlK1qiBbYTpJ4TaGbxEmS21iNh9gglulNP5yYeZ8mg-8yoJoRq0qCahCPx7uaeaasdcuvojR74pPMj82Sw-pF43xvDcPn_s724fbbX4h59PcnX_cODdXHfakyRtyBviOV6tsCXlGjV6avGokGc3PUn9Bvi7TaD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Morphological+edge+detection+and+brain+tumor+segmentation+in+Magnetic+Resonance+%28MR%29+images+based+on+region+growing+and+performance+evaluation+of+modified+Fuzzy+C-Means+%28FCM%29+algorithm&rft.jtitle=Multimedia+tools+and+applications&rft.au=Sheela%2C+C.+Jaspin+Jeba&rft.au=Suganthi%2C+G.&rft.date=2020-07-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=79&rft.issue=25-26&rft.spage=17483&rft.epage=17496&rft_id=info:doi/10.1007%2Fs11042-020-08636-9&rft.externalDocID=10_1007_s11042_020_08636_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon