On the post-hoc explainability of deep echo state networks for time series forecasting, image and video classification

Since their inception, learning techniques under the reservoir computing paradigm have shown a great modeling capability for recurrent systems without the computing overheads required for other approaches, specially deep neural networks. Among them, different flavors of echo state networks have attr...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 34; no. 13; pp. 10257 - 10277
Main Authors Barredo Arrieta, Alejandro, Gil-Lopez, Sergio, Laña, Ibai, Bilbao, Miren Nekane, Del Ser, Javier
Format Journal Article
LanguageEnglish
Published London Springer London 01.07.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-021-06359-y

Cover

Abstract Since their inception, learning techniques under the reservoir computing paradigm have shown a great modeling capability for recurrent systems without the computing overheads required for other approaches, specially deep neural networks. Among them, different flavors of echo state networks have attracted many stares through time, mainly due to the simplicity and computational efficiency of their learning algorithm. However, these advantages do not compensate for the fact that echo state networks remain as black-box models whose decisions cannot be easily explained to the general audience. This issue is even more involved for multi-layered (also referred to as deep ) echo state networks, whose more complex hierarchical structure hinders even further the explainability of their internals to users without expertise in machine learning or even computer science. This lack of explainability can jeopardize the widespread adoption of these models in certain domains where accountability and understandability of machine learning models is a must (e.g., medical diagnosis, social politics). This work addresses this issue by conducting an explainability study of echo state networks when applied to learning tasks with time series, image and video data. Among these tasks, we stress on the latter one (video classification) which, to the best of our knowledge, has never been tackled before with echo state networks in the related literature. Specifically, the study proposes three different techniques capable of eliciting understandable information about the knowledge grasped by these recurrent models, namely potential memory, temporal patterns and pixel absence effect. Potential memory addresses questions related to the effect of the reservoir size in the capability of the model to store temporal information, whereas temporal patterns unveil the recurrent relationships captured by the model over time. Finally, pixel absence effect attempts at evaluating the effect of the absence of a given pixel when the echo state network model is used for image and video classification. The benefits of the proposed suite of techniques are showcased over three different domains of applicability: time series modeling, image and, for the first time in the related literature, video classification. The obtained results reveal that the proposed techniques not only allow for an informed understanding of the way these models work, but also serve as diagnostic tools capable of detecting issues inherited from data (e.g., presence of hidden bias).
AbstractList Since their inception, learning techniques under the reservoir computing paradigm have shown a great modeling capability for recurrent systems without the computing overheads required for other approaches, specially deep neural networks. Among them, different flavors of echo state networks have attracted many stares through time, mainly due to the simplicity and computational efficiency of their learning algorithm. However, these advantages do not compensate for the fact that echo state networks remain as black-box models whose decisions cannot be easily explained to the general audience. This issue is even more involved for multi-layered (also referred to as deep) echo state networks, whose more complex hierarchical structure hinders even further the explainability of their internals to users without expertise in machine learning or even computer science. This lack of explainability can jeopardize the widespread adoption of these models in certain domains where accountability and understandability of machine learning models is a must (e.g., medical diagnosis, social politics). This work addresses this issue by conducting an explainability study of echo state networks when applied to learning tasks with time series, image and video data. Among these tasks, we stress on the latter one (video classification) which, to the best of our knowledge, has never been tackled before with echo state networks in the related literature. Specifically, the study proposes three different techniques capable of eliciting understandable information about the knowledge grasped by these recurrent models, namely potential memory, temporal patterns and pixel absence effect. Potential memory addresses questions related to the effect of the reservoir size in the capability of the model to store temporal information, whereas temporal patterns unveil the recurrent relationships captured by the model over time. Finally, pixel absence effect attempts at evaluating the effect of the absence of a given pixel when the echo state network model is used for image and video classification. The benefits of the proposed suite of techniques are showcased over three different domains of applicability: time series modeling, image and, for the first time in the related literature, video classification. The obtained results reveal that the proposed techniques not only allow for an informed understanding of the way these models work, but also serve as diagnostic tools capable of detecting issues inherited from data (e.g., presence of hidden bias).
Since their inception, learning techniques under the reservoir computing paradigm have shown a great modeling capability for recurrent systems without the computing overheads required for other approaches, specially deep neural networks. Among them, different flavors of echo state networks have attracted many stares through time, mainly due to the simplicity and computational efficiency of their learning algorithm. However, these advantages do not compensate for the fact that echo state networks remain as black-box models whose decisions cannot be easily explained to the general audience. This issue is even more involved for multi-layered (also referred to as deep ) echo state networks, whose more complex hierarchical structure hinders even further the explainability of their internals to users without expertise in machine learning or even computer science. This lack of explainability can jeopardize the widespread adoption of these models in certain domains where accountability and understandability of machine learning models is a must (e.g., medical diagnosis, social politics). This work addresses this issue by conducting an explainability study of echo state networks when applied to learning tasks with time series, image and video data. Among these tasks, we stress on the latter one (video classification) which, to the best of our knowledge, has never been tackled before with echo state networks in the related literature. Specifically, the study proposes three different techniques capable of eliciting understandable information about the knowledge grasped by these recurrent models, namely potential memory, temporal patterns and pixel absence effect. Potential memory addresses questions related to the effect of the reservoir size in the capability of the model to store temporal information, whereas temporal patterns unveil the recurrent relationships captured by the model over time. Finally, pixel absence effect attempts at evaluating the effect of the absence of a given pixel when the echo state network model is used for image and video classification. The benefits of the proposed suite of techniques are showcased over three different domains of applicability: time series modeling, image and, for the first time in the related literature, video classification. The obtained results reveal that the proposed techniques not only allow for an informed understanding of the way these models work, but also serve as diagnostic tools capable of detecting issues inherited from data (e.g., presence of hidden bias).
Author Gil-Lopez, Sergio
Barredo Arrieta, Alejandro
Del Ser, Javier
Laña, Ibai
Bilbao, Miren Nekane
Author_xml – sequence: 1
  givenname: Alejandro
  surname: Barredo Arrieta
  fullname: Barredo Arrieta, Alejandro
  organization: TECNALIA, Basque Research and Technology Alliance (BRTA)
– sequence: 2
  givenname: Sergio
  surname: Gil-Lopez
  fullname: Gil-Lopez, Sergio
  organization: TECNALIA, Basque Research and Technology Alliance (BRTA)
– sequence: 3
  givenname: Ibai
  surname: Laña
  fullname: Laña, Ibai
  organization: TECNALIA, Basque Research and Technology Alliance (BRTA)
– sequence: 4
  givenname: Miren Nekane
  surname: Bilbao
  fullname: Bilbao, Miren Nekane
  organization: University of the Basque Country (UPV/EHU)
– sequence: 5
  givenname: Javier
  orcidid: 0000-0002-1260-9775
  surname: Del Ser
  fullname: Del Ser, Javier
  email: javier.delser@tecnalia.com
  organization: TECNALIA, Basque Research and Technology Alliance (BRTA)
BookMark eNp9kMlKBDEQhoOM4Li8gKeAV1srnU4vRxncQJiLnpt0UpmJtkmbxGXe3m5HEDzMoSiK-r9a_kMyc94hIacMLhhAdRkBRM4ymKLkosk2e2TOCs4zDqKekTk0xdQq-AE5jPEZAIqyFnPysXQ0rZEOPqZs7RXFr6GX1snO9jZtqDdUIw4U1drTmGRC6jB9-vASqfGBJvuKNGKw-FOjkjFZtzqn9lWukEqn6YfV6KnqZYzWWCWT9e6Y7BvZRzz5zUfk6eb6cXGXPSxv7xdXD5nirEkZL5gUoCuuc81q6LqyYyigK5QodcNFV0Kd1xU3qBpTlaIyuoFCN40UpmJM8SNytp07BP_2jjG1z_49uHFlm5f16AdwIUZVvVWp4GMMaFpl08-dKUjbtwzayeV263ILU0wut5sRzf-hQxhfD5vdEN9CcRS7FYa_q3ZQ353Xk24
CitedBy_id crossref_primary_10_1007_s00521_024_09656_4
crossref_primary_10_1016_j_techfore_2024_123588
crossref_primary_10_1007_s00521_022_07344_9
crossref_primary_10_3390_info14050266
crossref_primary_10_1016_j_inffus_2023_01_021
crossref_primary_10_3390_e24121709
crossref_primary_10_1016_j_spasta_2023_100732
crossref_primary_10_3390_s24113640
Cites_doi 10.1016/j.cosrev.2009.03.005
10.1007/s10700-009-9065-2
10.1109/ICCV.2017.74
10.1016/j.patcog.2016.11.008
10.1016/j.inffus.2019.12.012
10.1007/978-3-030-20521-8_40
10.1109/CSE-EUC-DCABES.2016.229
10.1126/science.1091277
10.1007/978-3-030-12544-8_17
10.1007/BF00201428
10.1142/9789812833709_0030
10.1162/COLI_a_00300
10.1007/s10618-007-0064-z
10.1016/j.compchemeng.2020.106730
10.1109/2.53
10.1016/j.patrec.2013.01.008
10.1016/j.neunet.2007.04.016
10.1109/ICCV.2011.6126543
10.1162/089976602760407955
10.1007/PL00011669
10.1007/11550907_103
10.1016/j.neucom.2015.02.089
10.1201/9781351003827
10.1016/j.ins.2016.01.039
10.1016/j.neucom.2016.12.089
10.1109/CVPR.2019.01232
10.1007/978-3-030-43883-8_3
10.1109/IJCNN.2016.7727326
10.1109/IJCNN.2014.6889832
10.1016/j.physrep.2006.11.001
10.1007/978-3-642-25446-8_4
10.1007/978-3-030-28954-6
10.1109/CVPR.2015.7299059
10.3233/AIS-160372
10.1016/j.neucom.2020.07.034
10.1016/j.neunet.2019.02.001
10.1109/ICPR.2018.8545471
10.1109/ITSC45102.2020.9294200
10.1109/IJCNN.2005.1556090
10.1145/2939672.2939778
10.1016/j.atmosenv.2016.09.052
10.1109/ICPR.2004.1334462
10.18653/v1/W17-5221
10.1109/CVPR.2008.4587727
10.1016/j.cviu.2006.07.013
10.1145/882082.882086
10.1007/s12559-017-9461-9
10.18653/v1/N16-1082
10.1109/ICCV.2005.28
10.1016/S0165-0114(98)00093-1
10.1016/j.neunet.2018.08.002
10.1109/CVPR.2009.5206744
10.1007/s00138-012-0450-4
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-021-06359-y
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 10277
ExternalDocumentID 10_1007_s00521_021_06359_y
GrantInformation_xml – fundername: Eusko Jaurlaritza
  grantid: KK-2020/00049
  funderid: http://dx.doi.org/10.13039/501100003086
– fundername: Eusko Jaurlaritza
  grantid: MATHMODE (IT1294-19); 3KIA project
  funderid: http://dx.doi.org/10.13039/501100003086
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-341a50d73d2d180bb6b1e50b4c56d935b6082873fec9f7657fd904d99a5f711c3
IEDL.DBID BENPR
ISSN 0941-0643
IngestDate Fri Jul 25 08:30:24 EDT 2025
Wed Oct 01 02:26:07 EDT 2025
Thu Apr 24 22:56:04 EDT 2025
Fri Feb 21 02:45:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Explainable artificial intelligence
Randomization-based machine learning
Reservoir computing
Echo state networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-341a50d73d2d180bb6b1e50b4c56d935b6082873fec9f7657fd904d99a5f711c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1260-9775
PQID 2680640355
PQPubID 2043988
PageCount 21
ParticipantIDs proquest_journals_2680640355
crossref_citationtrail_10_1007_s00521_021_06359_y
crossref_primary_10_1007_s00521_021_06359_y
springer_journals_10_1007_s00521_021_06359_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220700
2022-07-00
20220701
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 7
  year: 2022
  text: 20220700
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2022
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References ZadehLotfi AFuzzy logicComputer1988214839310.1109/2.53
Denil M, Demiraj A, De Freitas N (2014) Extraction of salient sentences from labelled documents. arXiv:1412.6815
Murdoch W, James L, Peter J, Yu B (2018) Beyond word importance: contextual decomposition to extract interactions from lstms. arXiv:1801.05453
Lundberg SM, Erion GG, Lee S-I (2018) Consistent individualized feature attribution for tree ensembles. arXiv:1802.03888
Adebayo J, Gilmer J, Muelly M, Goodfellow I, Hardt M, Kim B (2018) Sanity checks for saliency maps. arXiv:1810.03292
Schaetti N, Salomon M, Couturier R (2016) Echo state networks-based reservoir computing for mnist handwritten digits recognition. In: IEEE international conference on computational science and engineering (CSE), pp 484–491. IEEE
Wang L, Qiao Y, Tang X (2015) Action recognition with trajectory-pooled deep-convolutional descriptors. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4305–4314
Liu J, Shah M (2008) Learning human actions via information maximization. In: IEEE conference on computer vision and pattern recognition, pp 1–8. IEEE
Arras L, Montavon G, Müller K-R, Samek W (2017) Explaining recurrent neural network predictions in sentiment analysis. In: Proceedings of the 8th workshop on computational approaches to subjectivity, sentiment and social media analysis, pp 159–168
Shi Y, Zeng W, Huang T, Wang Y (2015) Learning deep trajectory descriptor for action recognition in videos using deep neural networks. In: 2015 IEEE international conference on multimedia and expo (ICME), pp 1–6. IEEE
CrisostomiEmanueleGallicchioClaudioMicheliAlessioRaugiMarcoTucciMauroPrediction of the italian electricity price for smart grid applicationsNeurocomputing201517028629510.1016/j.neucom.2015.02.089
Shu Na, Tang Q, Liu H (2014) A bio-inspired approach modeling spiking neural networks of visual cortex for human action recognition. In: 2014 international joint conference on neural networks (IJCNN), pp 3450–3457. IEEE
Hassaballah M, Awad AI (2020) Deep learning in computer vision: principles and applications. CRC Press, Boca Raton
EckmannJean-PierreKamphorstS OliffsonRuelleDavidRecurrence plots of dynamical systemsWorld Scientific Series on Nonlinear Science Series A19951644144610.1142/9789812833709_0030
Shrikumar A, Greenside P, Kundaje A (2017) Learning important features through propagating activation differences. In: International conference on machine learning, pp 3145–3153. PMLR
Baccouche M, Mamalet F, Wolf C, Garcia C, Baskurt A (2011) Sequential deep learning for human action recognition. In: International workshop on human behavior understanding, pp 29–39. Springer
DomineyPeter FComplex sensory-motor sequence learning based on recurrent state representation and reinforcement learningBiological cybernetics199573326527410.1007/BF00201428
Shi X, Chen Z, Wang H, Yeung D-Y, Wong W-K, Woo W-C (2015) Convolutional lstm network: a machine learning approach for precipitation nowcasting. arXiv:1506.04214
Ribeiro MT, Singh S, Guestrin C (2016) “Why should i trust you?” Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 1135–1144
JaegerHerbertHaasHaraldHarnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communicationscience20043045667788010.1126/science.1091277
WeinlandDanielRonfardRemiBoyerEdmondFree viewpoint action recognition using motion history volumesComputer vision and image understanding20061042–324925710.1016/j.cviu.2006.07.013
Souahlia A, Belatreche A, Benyettou A, Curran K (2016) An experimental evaluation of echo state network for colour image segmentation. In: 2016 International joint conference on neural networks (IJCNN), pp 1143–1150. IEEE
LañaIbaiDel SerJavierPadróAlesVélezManuelCasanova-MateoCarlosThe role of local urban traffic and meteorological conditions in air pollution: A data-based case study in MadridSpain. Atmospheric Environment201614542443810.1016/j.atmosenv.2016.09.052
Del S, Javier L, Ibai, M, Eric L, Oregi I, Osaba E, Lobo JL, Bilbao MN, Vlahogianni EI (2020) Deep echo state networks for short-term traffic forecasting: performance comparison and statistical assessment. In: IEEE international conference on intelligent transportation systems (ITSC), pp 1–6. IEEE
Schuldt C, Laptev I, Caputo B (2004) Recognizing human actions: a local svm approach. In: Proceedings of the 17th International conference on pattern recognition, 2004. ICPR 2004., volume 3, pp 32–36. IEEE
Springenberg JT, Dosovitskiy A, Brox T, Riedmiller M (2014) Striving for simplicity: the all convolutional net. arXiv:1412.6806
Luca Anthony Thiede and Ulrich ParlitzGradient based hyperparameter optimization in echo state networksNeural Networks2019115232910.1016/j.neunet.2019.02.001
GallicchioClaudioMicheliAlessioPedrelliLucaDesign of deep echo state networksNeural Networks2018108334710.1016/j.neunet.2018.08.002
Li J, Monroe W, Jurafsky D (2016) Understanding neural networks through representation erasure. arXiv:1612.08220
Rodriguez MD, Ahmed J, Shah M (2008) Action mach a spatio-temporal maximum average correlation height filter for action recognition. In: IEEE conference on computer vision and pattern recognition, pp 1–8. IEEE
Jaeger H (2002) Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the “echo state network” approach, volume 5. GMD-Forschungszentrum Informationstechnik Bonn
Liu J, Luo J, Shah M (2009) Recognizing realistic actions from videos “in the wild”. In: 2009 IEEE conference on computer vision and pattern recognition, pp 1996–2003. IEEE
LukoševičiusMantasJaegerHerbertReservoir computing approaches to recurrent neural network trainingComputer Science Review20093312714910.1016/j.cosrev.2009.03.005
MaassWolfgangNatschlägerThomasMarkramHenryReal-time computing without stable states: A new framework for neural computation based on perturbationsNeural computation200214112531256010.1162/089976602760407955
Steil JJ (2004) Backpropagation-decorrelation: online recurrent learning with o (n) complexity. In: 2004 IEEE international joint conference on neural networks (IEEE Cat. No. 04CH37541), vol 2, pp 843–848. IEEE
Kuehne H, Jhuang H, Garrote E, Poggio T, Serre T (2011) Hmdb: a large video database for human motion recognition. In: 2011 International conference on computer vision, pp 2556–2563. IEEE
Li J, Chen X, Hovy E, Jurafsky D (2016) Visualizing and understanding neural models in nlp. In: Proceedings of NAACL-HLT, pp 681–691
Lin J, Keogh E, Lonardi S, Chiu B (2003) A symbolic representation of time series, with implications for streaming algorithms. In: Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery, pp 2–11
Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision, pp 618–626
GallicchioClaudioMicheliAlessioEcho state property of deep reservoir computing networksCognitive Computation20179333735010.1007/s12559-017-9461-9
Jaeger H (2003) Adaptive nonlinear system identification with echo state networks. In: Advances in neural information processing systems, pp 609–616
LinJessicaKeoghEamonnWeiLiLonardiStefanoExperiencing sax: a novel symbolic representation of time seriesData Mining and knowledge discovery2007152107144240978310.1007/s10618-007-0064-z
Blank M, Gorelick L, Shechtman E, Irani M, Basri R (2005) Actions as space-time shapes. In: Tenth IEEE international conference on computer vision (ICCV’05) Volume 1, volume 2, pp 1395–1402. IEEE
MontavonGrégoireLapuschkinSebastianBinderAlexanderSamekWojciechMüllerKlaus-RobertExplaining nonlinear classification decisions with deep taylor decompositionPattern Recognition20176521122210.1016/j.patcog.2016.11.008
Gallicchio C, Scardapane S (2020) Deep randomized neural networks. Recent Trends Learn Data, pp 43–68
MarwanNorbertRomanoM CarmenThielMarcoKurthsJürgenRecurrence plots for the analysis of complex systemsPhysics reports20074385–6237329229169910.1016/j.physrep.2006.11.001
Woodward A, Ikegami T (2011) A reservoir computing approach to image classification using coupled echo state and back-propagation neural networks. In International conference image and vision computing, Auckland, New Zealand, pp 543–458
Tong Z, Tanaka G (2018) Reservoir computing with untrained convolutional neural networks for image recognition. In: International conference on pattern recognition (ICPR), pp 1289–1294. IEEE
Gallicchio C, Micheli A (2019) Richness of deep echo state network dynamics. In: International work-conference on artificial neural networks, pp 480–491
Mencar C, Alonso JM (2018) Paving the way to explainable artificial intelligence with fuzzy modeling. In: International Workshop on Fuzzy Logic and Applications, pp 215–227. Springer
Han D, Bo L, Sminchisescu C (2009) Selection and context for action recognition. In: 2009 IEEE 12th international conference on computer vision, pp 1933–1940
JaegerHerbertLukoševičiusMantasPopoviciDanSiewertUdoOptimization and applications of echo state networks with leaky-integrator neuronsNeural networks200720333535210.1016/j.neunet.2007.04.016
GallicchioClaudioMicheliAlessioPedrelliLucaDeep reservoir computing: A critical experimental analysisNeurocomputing2017268879910.1016/j.neucom.2016.12.089
Gallicchio C, Micheli A (2016) Deep reservoir computing: a critical analysis. In: ESANN
Soomro K, Zamir AR, Shah M: Ucf101: a dataset of 101 human actions classes from videos in the wild. arXiv:1212.0402
Sharma S, Kiros R, Salakhutdinov R (2015) Action recognition using visual attention. (2015). arXiv:1511.04119
Chang Y-W, Lin C-J (2008) Feature ranking using linear svm. In: Causation and prediction challenge, pp 53–64. PMLR
Samek W, Montavon G, Vedaldi A, Hansen LK, Müller K-R (2019) Explainable AI: interpreting, explaining and visualizing deep learning, vol 11700. Springer
Ghad
Peter F Dominey (6359_CR14) 1995; 73
Herbert Jaeger (6359_CR13) 2001; 148
Claudio Gallicchio (6359_CR11) 2017; 268
Mantas Lukoševičius (6359_CR2) 2009; 3
6359_CR48
Ibai Laña (6359_CR61) 2016; 145
6359_CR49
Norbert Marwan (6359_CR53) 2007; 438
Mehrtash T Harandi (6359_CR79) 2013; 34
6359_CR9
6359_CR6
6359_CR7
6359_CR43
6359_CR1
6359_CR44
Francisco Herrera (6359_CR38) 2009; 8
6359_CR45
6359_CR3
6359_CR46
Filippo Palumbo (6359_CR17) 2016; 8
6359_CR40
6359_CR41
6359_CR42
Eamonn Keogh (6359_CR35) 2001; 3
Jessica Lin (6359_CR33) 2007; 15
6359_CR58
6359_CR59
6359_CR16
Wolfgang Maass (6359_CR12) 2002; 14
Le Zhang (6359_CR4) 2016; 364
Grégoire Montavon (6359_CR47) 2017; 65
Claudio Gallicchio (6359_CR23) 2018; 108
6359_CR55
6359_CR56
6359_CR57
6359_CR51
6359_CR52
Claudio Gallicchio (6359_CR21) 2017; 9
6359_CR25
6359_CR69
6359_CR26
6359_CR27
Luca Anthony Thiede and Ulrich Parlitz (6359_CR8) 2019; 115
6359_CR28
Alejandro Barredo Arrieta (6359_CR10) 2020; 58
Jean-Pierre Eckmann (6359_CR54) 1995; 16
6359_CR60
6359_CR65
Herbert Jaeger (6359_CR19) 2007; 20
6359_CR22
David Baehrens (6359_CR50) 2010; 11
6359_CR67
Akos Kádár (6359_CR29) 2017; 43
6359_CR68
6359_CR62
6359_CR63
6359_CR20
Francisco Herrera (6359_CR37) 2000; 114
Kai Liu (6359_CR24) 2020; 135
Kishore K Reddy (6359_CR66) 2013; 24
6359_CR39
Daniel Weinland (6359_CR64) 2006; 104
Herbert Jaeger (6359_CR5) 2004; 304
cr-split#-6359_CR15.2
6359_CR70
cr-split#-6359_CR15.1
6359_CR71
Emanuele Crisostomi (6359_CR18) 2015; 170
6359_CR32
Lotfi A Zadeh (6359_CR36) 1988; 21
6359_CR76
6359_CR77
6359_CR34
6359_CR78
6359_CR72
6359_CR73
6359_CR30
6359_CR74
6359_CR31
6359_CR75
References_xml – reference: ReddyKishore KShahMubarakRecognizing 50 human action categories of web videosMachine vision and applications201324597198110.1007/s00138-012-0450-4
– reference: Blank M, Gorelick L, Shechtman E, Irani M, Basri R (2005) Actions as space-time shapes. In: Tenth IEEE international conference on computer vision (ICCV’05) Volume 1, volume 2, pp 1395–1402. IEEE
– reference: Rodriguez MD, Ahmed J, Shah M (2008) Action mach a spatio-temporal maximum average correlation height filter for action recognition. In: IEEE conference on computer vision and pattern recognition, pp 1–8. IEEE
– reference: Woodward A, Ikegami T (2011) A reservoir computing approach to image classification using coupled echo state and back-propagation neural networks. In International conference image and vision computing, Auckland, New Zealand, pp 543–458
– reference: MaassWolfgangNatschlägerThomasMarkramHenryReal-time computing without stable states: A new framework for neural computation based on perturbationsNeural computation200214112531256010.1162/089976602760407955
– reference: PalumboFilippoGallicchioClaudioPucciRitaMicheliAlessioHuman activity recognition using multisensor data fusion based on reservoir computingJournal of Ambient Intelligence and Smart Environments2016828710710.3233/AIS-160372
– reference: GallicchioClaudioMicheliAlessioEcho state property of deep reservoir computing networksCognitive Computation20179333735010.1007/s12559-017-9461-9
– reference: LañaIbaiDel SerJavierPadróAlesVélezManuelCasanova-MateoCarlosThe role of local urban traffic and meteorological conditions in air pollution: A data-based case study in MadridSpain. Atmospheric Environment201614542443810.1016/j.atmosenv.2016.09.052
– reference: Gallicchio C, Micheli A (2016) Deep reservoir computing: a critical analysis. In: ESANN
– reference: Tong Z, Tanaka G (2018) Reservoir computing with untrained convolutional neural networks for image recognition. In: International conference on pattern recognition (ICPR), pp 1289–1294. IEEE
– reference: Jaeger H (2002) Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the “echo state network” approach, volume 5. GMD-Forschungszentrum Informationstechnik Bonn
– reference: Shu Na, Tang Q, Liu H (2014) A bio-inspired approach modeling spiking neural networks of visual cortex for human action recognition. In: 2014 international joint conference on neural networks (IJCNN), pp 3450–3457. IEEE
– reference: Gallicchio C, Scardapane S (2020) Deep randomized neural networks. Recent Trends Learn Data, pp 43–68
– reference: Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision, pp 618–626
– reference: ZadehLotfi AFuzzy logicComputer1988214839310.1109/2.53
– reference: Baccouche M, Mamalet F, Wolf C, Garcia C, Baskurt A (2011) Sequential deep learning for human action recognition. In: International workshop on human behavior understanding, pp 29–39. Springer
– reference: Murdoch W, James L, Peter J, Yu B (2018) Beyond word importance: contextual decomposition to extract interactions from lstms. arXiv:1801.05453
– reference: ArrietaAlejandro BarredoDíaz-RodríguezNataliaDel SerJavierBennetotAdrienTabikSihamBarbadoAlbertoSalvadorGarcíaSergioGil-LópezDanielMolinaRichardBenjaminsExplainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible aiInformation Fusion2020588211510.1016/j.inffus.2019.12.012
– reference: Liu J, Luo J, Shah M (2009) Recognizing realistic actions from videos “in the wild”. In: 2009 IEEE conference on computer vision and pattern recognition, pp 1996–2003. IEEE
– reference: KeoghEamonnChakrabartiKaushikPazzaniMichaelMehrotraSharadDimensionality reduction for fast similarity search in large time series databasesKnowledge and information Systems20013326328610.1007/PL00011669
– reference: Kuehne H, Jhuang H, Garrote E, Poggio T, Serre T (2011) Hmdb: a large video database for human motion recognition. In: 2011 International conference on computer vision, pp 2556–2563. IEEE
– reference: Li J, Chen X, Hovy E, Jurafsky D (2016) Visualizing and understanding neural models in nlp. In: Proceedings of NAACL-HLT, pp 681–691
– reference: Souahlia A, Belatreche A, Benyettou A, Curran K (2016) An experimental evaluation of echo state network for colour image segmentation. In: 2016 International joint conference on neural networks (IJCNN), pp 1143–1150. IEEE
– reference: Del S, Javier L, Ibai, M, Eric L, Oregi I, Osaba E, Lobo JL, Bilbao MN, Vlahogianni EI (2020) Deep echo state networks for short-term traffic forecasting: performance comparison and statistical assessment. In: IEEE international conference on intelligent transportation systems (ITSC), pp 1–6. IEEE
– reference: KádárAkosChrupałaGrzegorzAlishahiAfraRepresentation of linguistic form and function in recurrent neural networksComputational Linguistics2017434761780374798110.1162/COLI_a_00300
– reference: BaehrensDavidSchroeterTimonHarmelingStefanKawanabeMotoakiHansenKatjaMüllerKlaus-RobertHow to explain individual classification decisionsThe Journal of Machine Learning Research2010111803183126606531242.62049
– reference: Rojat T, Puget R, Filliat D, Del S, Javier G, Rodolphe í-R, Natalia D (2021) Explainable artificial intelligence (xai) on time series data: a survey. arXiv:2104.00950
– reference: Lin J, Keogh E, Lonardi S, Chiu B (2003) A symbolic representation of time series, with implications for streaming algorithms. In: Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery, pp 2–11
– reference: JaegerHerbertLukoševičiusMantasPopoviciDanSiewertUdoOptimization and applications of echo state networks with leaky-integrator neuronsNeural networks200720333535210.1016/j.neunet.2007.04.016
– reference: Han D, Bo L, Sminchisescu C (2009) Selection and context for action recognition. In: 2009 IEEE 12th international conference on computer vision, pp 1933–1940
– reference: LukoševičiusMantasJaegerHerbertReservoir computing approaches to recurrent neural network trainingComputer Science Review20093312714910.1016/j.cosrev.2009.03.005
– reference: DomineyPeter FComplex sensory-motor sequence learning based on recurrent state representation and reinforcement learningBiological cybernetics199573326527410.1007/BF00201428
– reference: Arras L, Montavon G, Müller K-R, Samek W (2017) Explaining recurrent neural network predictions in sentiment analysis. In: Proceedings of the 8th workshop on computational approaches to subjectivity, sentiment and social media analysis, pp 159–168
– reference: Schaetti N, Salomon M, Couturier R (2016) Echo state networks-based reservoir computing for mnist handwritten digits recognition. In: IEEE international conference on computational science and engineering (CSE), pp 484–491. IEEE
– reference: Chang Y-W, Lin C-J (2008) Feature ranking using linear svm. In: Causation and prediction challenge, pp 53–64. PMLR
– reference: Ghadiyaram D, Tran D, Mahajan D (2019) Large-scale weakly-supervised pre-training for video action recognition. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 12046–12055
– reference: GallicchioClaudioMicheliAlessioPedrelliLucaDesign of deep echo state networksNeural Networks2018108334710.1016/j.neunet.2018.08.002
– reference: Luca Anthony Thiede and Ulrich ParlitzGradient based hyperparameter optimization in echo state networksNeural Networks2019115232910.1016/j.neunet.2019.02.001
– reference: JaegerHerbertHaasHaraldHarnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communicationscience20043045667788010.1126/science.1091277
– reference: Steil JJ (2004) Backpropagation-decorrelation: online recurrent learning with o (n) complexity. In: 2004 IEEE international joint conference on neural networks (IEEE Cat. No. 04CH37541), vol 2, pp 843–848. IEEE
– reference: Schuldt C, Laptev I, Caputo B (2004) Recognizing human actions: a local svm approach. In: Proceedings of the 17th International conference on pattern recognition, 2004. ICPR 2004., volume 3, pp 32–36. IEEE
– reference: Smilkov D, Thorat N, Kim B, Viégas F, Wattenberg M (2017) Smoothgrad: removing noise by adding noise. arXiv:1706.03825
– reference: ZhangLeSuganthanPonnuthurai NA survey of randomized algorithms for training neural networksInformation Sciences201636414615510.1016/j.ins.2016.01.039
– reference: Gallicchio C, Micheli A (2019) Richness of deep echo state network dynamics. In: International work-conference on artificial neural networks, pp 480–491
– reference: Ribeiro MT, Singh S, Guestrin C (2016) “Why should i trust you?” Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 1135–1144
– reference: HerreraFranciscoAlonsoSergioChiclanaFranciscoHerrera-ViedmaEnriqueComputing with words in decision making: foundations, trends and prospectsFuzzy optimization and decision making20098433736410.1007/s10700-009-9065-2
– reference: MarwanNorbertRomanoM CarmenThielMarcoKurthsJürgenRecurrence plots for the analysis of complex systemsPhysics reports20074385–6237329229169910.1016/j.physrep.2006.11.001
– reference: Lundberg SM, Erion GG, Lee S-I (2018) Consistent individualized feature attribution for tree ensembles. arXiv:1802.03888
– reference: HerreraFranciscoHerrera-ViedmaEnriqueMartinezLuisA fusion approach for managing multi-granularity linguistic term sets in decision makingFuzzy sets and systems20001141435810.1016/S0165-0114(98)00093-1
– reference: Shi Y, Zeng W, Huang T, Wang Y (2015) Learning deep trajectory descriptor for action recognition in videos using deep neural networks. In: 2015 IEEE international conference on multimedia and expo (ICME), pp 1–6. IEEE
– reference: Jaeger H (2005) Reservoir riddles: suggestions for echo state network research. In:Proceedings. 2005 IEEE international joint conference on neural networks, vol 3, pp 1460–1462. IEEE
– reference: HarandiMehrtash TSandersonConradShiraziSarehLovellBrian CKernel analysis on grassmann manifolds for action recognitionPattern Recognition Letters201334151906191510.1016/j.patrec.2013.01.008
– reference: LinJessicaKeoghEamonnWeiLiLonardiStefanoExperiencing sax: a novel symbolic representation of time seriesData Mining and knowledge discovery2007152107144240978310.1007/s10618-007-0064-z
– reference: Shi X, Chen Z, Wang H, Yeung D-Y, Wong W-K, Woo W-C (2015) Convolutional lstm network: a machine learning approach for precipitation nowcasting. arXiv:1506.04214
– reference: LiuKaiZhangJieNonlinear process modelling using echo state networks optimised by covariance matrix adaption evolutionary strategyComputers & Chemical Engineering202013510673010.1016/j.compchemeng.2020.106730
– reference: Wu Q, Fokoue E, Kudithipudi D (2018) On the statistical challenges of echo state networks and some potential remedies. arXiv:1802.07369
– reference: JaegerHerbertThe “echo state” approach to analysing and training recurrent neural networks-with an erratum noteBonn, Germany: German National Research Center for Information Technology GMD Technical Report20011483413
– reference: Simonyan K, Vedaldi A, Zisserman A (2013) Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv:1312.6034
– reference: Denil M, Demiraj A, De Freitas N (2014) Extraction of salient sentences from labelled documents. arXiv:1412.6815
– reference: Soomro K, Zamir AR, Shah M: Ucf101: a dataset of 101 human actions classes from videos in the wild. arXiv:1212.0402
– reference: WeinlandDanielRonfardRemiBoyerEdmondFree viewpoint action recognition using motion history volumesComputer vision and image understanding20061042–324925710.1016/j.cviu.2006.07.013
– reference: Hassaballah M, Awad AI (2020) Deep learning in computer vision: principles and applications. CRC Press, Boca Raton
– reference: Li J, Monroe W, Jurafsky D (2016) Understanding neural networks through representation erasure. arXiv:1612.08220
– reference: Jaeger H (2003) Adaptive nonlinear system identification with echo state networks. In: Advances in neural information processing systems, pp 609–616
– reference: CrisostomiEmanueleGallicchioClaudioMicheliAlessioRaugiMarcoTucciMauroPrediction of the italian electricity price for smart grid applicationsNeurocomputing201517028629510.1016/j.neucom.2015.02.089
– reference: Adebayo J, Gilmer J, Muelly M, Goodfellow I, Hardt M, Kim B (2018) Sanity checks for saliency maps. arXiv:1810.03292
– reference: Sharma S, Kiros R, Salakhutdinov R (2015) Action recognition using visual attention. (2015). arXiv:1511.04119
– reference: Öztürk MM, Cankaya IA, Ipekci D (2020) Optimizing echo state network through a novel fisher maximization based stochastic gradient descent. Neurocomputing
– reference: MontavonGrégoireLapuschkinSebastianBinderAlexanderSamekWojciechMüllerKlaus-RobertExplaining nonlinear classification decisions with deep taylor decompositionPattern Recognition20176521122210.1016/j.patcog.2016.11.008
– reference: LeCun Y (1998) The mnist database of handwritten digits. http://yann.lecun.com/exdb/mnist/
– reference: Liu J, Shah M (2008) Learning human actions via information maximization. In: IEEE conference on computer vision and pattern recognition, pp 1–8. IEEE
– reference: Mencar C, Alonso JM (2018) Paving the way to explainable artificial intelligence with fuzzy modeling. In: International Workshop on Fuzzy Logic and Applications, pp 215–227. Springer
– reference: GallicchioClaudioMicheliAlessioPedrelliLucaDeep reservoir computing: A critical experimental analysisNeurocomputing2017268879910.1016/j.neucom.2016.12.089
– reference: Springenberg JT, Dosovitskiy A, Brox T, Riedmiller M (2014) Striving for simplicity: the all convolutional net. arXiv:1412.6806
– reference: Shrikumar A, Greenside P, Kundaje A (2017) Learning important features through propagating activation differences. In: International conference on machine learning, pp 3145–3153. PMLR
– reference: Wang L, Qiao Y, Tang X (2015) Action recognition with trajectory-pooled deep-convolutional descriptors. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4305–4314
– reference: Samek W, Montavon G, Vedaldi A, Hansen LK, Müller K-R (2019) Explainable AI: interpreting, explaining and visualizing deep learning, vol 11700. Springer
– reference: Ancona M, Ceolini E, Öztireli C, Gross M (2017) Towards better understanding of gradient-based attribution methods for deep neural networks. arXiv:1711.06104
– reference: EckmannJean-PierreKamphorstS OliffsonRuelleDavidRecurrence plots of dynamical systemsWorld Scientific Series on Nonlinear Science Series A19951644144610.1142/9789812833709_0030
– volume: 3
  start-page: 127
  issue: 3
  year: 2009
  ident: 6359_CR2
  publication-title: Computer Science Review
  doi: 10.1016/j.cosrev.2009.03.005
– volume: 8
  start-page: 337
  issue: 4
  year: 2009
  ident: 6359_CR38
  publication-title: Fuzzy optimization and decision making
  doi: 10.1007/s10700-009-9065-2
– ident: 6359_CR46
  doi: 10.1109/ICCV.2017.74
– ident: 6359_CR60
– volume: 65
  start-page: 211
  year: 2017
  ident: 6359_CR47
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2016.11.008
– volume: 58
  start-page: 82
  year: 2020
  ident: 6359_CR10
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2019.12.012
– ident: 6359_CR20
  doi: 10.1007/978-3-030-20521-8_40
– ident: 6359_CR56
  doi: 10.1109/CSE-EUC-DCABES.2016.229
– volume: 304
  start-page: 78
  issue: 5667
  year: 2004
  ident: 6359_CR5
  publication-title: science
  doi: 10.1126/science.1091277
– ident: 6359_CR51
– ident: 6359_CR39
  doi: 10.1007/978-3-030-12544-8_17
– volume: 73
  start-page: 265
  issue: 3
  year: 1995
  ident: 6359_CR14
  publication-title: Biological cybernetics
  doi: 10.1007/BF00201428
– ident: 6359_CR45
– ident: 6359_CR70
– ident: 6359_CR49
– volume: 16
  start-page: 441
  year: 1995
  ident: 6359_CR54
  publication-title: World Scientific Series on Nonlinear Science Series A
  doi: 10.1142/9789812833709_0030
– volume: 43
  start-page: 761
  issue: 4
  year: 2017
  ident: 6359_CR29
  publication-title: Computational Linguistics
  doi: 10.1162/COLI_a_00300
– volume: 15
  start-page: 107
  issue: 2
  year: 2007
  ident: 6359_CR33
  publication-title: Data Mining and knowledge discovery
  doi: 10.1007/s10618-007-0064-z
– volume: 11
  start-page: 1803
  year: 2010
  ident: 6359_CR50
  publication-title: The Journal of Machine Learning Research
– volume: 135
  start-page: 106730
  year: 2020
  ident: 6359_CR24
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2020.106730
– ident: 6359_CR41
– ident: 6359_CR22
– volume: 21
  start-page: 83
  issue: 4
  year: 1988
  ident: 6359_CR36
  publication-title: Computer
  doi: 10.1109/2.53
– volume: 34
  start-page: 1906
  issue: 15
  year: 2013
  ident: 6359_CR79
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2013.01.008
– volume: 20
  start-page: 335
  issue: 3
  year: 2007
  ident: 6359_CR19
  publication-title: Neural networks
  doi: 10.1016/j.neunet.2007.04.016
– ident: 6359_CR69
  doi: 10.1109/ICCV.2011.6126543
– volume: 14
  start-page: 2531
  issue: 11
  year: 2002
  ident: 6359_CR12
  publication-title: Neural computation
  doi: 10.1162/089976602760407955
– ident: 6359_CR57
– ident: 6359_CR67
– ident: 6359_CR32
– volume: 3
  start-page: 263
  issue: 3
  year: 2001
  ident: 6359_CR35
  publication-title: Knowledge and information Systems
  doi: 10.1007/PL00011669
– ident: 6359_CR77
– ident: #cr-split#-6359_CR15.1
  doi: 10.1007/11550907_103
– volume: 170
  start-page: 286
  year: 2015
  ident: 6359_CR18
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.02.089
– ident: 6359_CR31
  doi: 10.1201/9781351003827
– ident: 6359_CR42
– volume: 364
  start-page: 146
  year: 2016
  ident: 6359_CR4
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2016.01.039
– volume: 268
  start-page: 87
  year: 2017
  ident: 6359_CR11
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.089
– ident: 6359_CR72
  doi: 10.1109/CVPR.2019.01232
– ident: 6359_CR3
  doi: 10.1007/978-3-030-43883-8_3
– ident: 6359_CR58
  doi: 10.1109/IJCNN.2016.7727326
– ident: 6359_CR74
  doi: 10.1109/IJCNN.2014.6889832
– volume: 438
  start-page: 237
  issue: 5–6
  year: 2007
  ident: 6359_CR53
  publication-title: Physics reports
  doi: 10.1016/j.physrep.2006.11.001
– ident: 6359_CR73
  doi: 10.1007/978-3-642-25446-8_4
– ident: 6359_CR40
  doi: 10.1007/978-3-030-28954-6
– ident: 6359_CR78
  doi: 10.1109/CVPR.2015.7299059
– volume: 8
  start-page: 87
  issue: 2
  year: 2016
  ident: 6359_CR17
  publication-title: Journal of Ambient Intelligence and Smart Environments
  doi: 10.3233/AIS-160372
– ident: 6359_CR9
  doi: 10.1016/j.neucom.2020.07.034
– volume: 115
  start-page: 23
  year: 2019
  ident: 6359_CR8
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2019.02.001
– volume: 148
  start-page: 13
  issue: 34
  year: 2001
  ident: 6359_CR13
  publication-title: Bonn, Germany: German National Research Center for Information Technology GMD Technical Report
– ident: 6359_CR59
  doi: 10.1109/ICPR.2018.8545471
– ident: 6359_CR16
  doi: 10.1109/ITSC45102.2020.9294200
– ident: 6359_CR7
  doi: 10.1109/IJCNN.2005.1556090
– ident: 6359_CR76
– ident: 6359_CR28
– ident: 6359_CR52
  doi: 10.1145/2939672.2939778
– ident: 6359_CR43
– volume: 145
  start-page: 424
  year: 2016
  ident: 6359_CR61
  publication-title: Spain. Atmospheric Environment
  doi: 10.1016/j.atmosenv.2016.09.052
– ident: 6359_CR62
  doi: 10.1109/ICPR.2004.1334462
– ident: #cr-split#-6359_CR15.2
– ident: 6359_CR25
  doi: 10.18653/v1/W17-5221
– ident: 6359_CR68
  doi: 10.1109/CVPR.2008.4587727
– ident: 6359_CR6
– volume: 104
  start-page: 249
  issue: 2–3
  year: 2006
  ident: 6359_CR64
  publication-title: Computer vision and image understanding
  doi: 10.1016/j.cviu.2006.07.013
– ident: 6359_CR34
  doi: 10.1145/882082.882086
– volume: 9
  start-page: 337
  issue: 3
  year: 2017
  ident: 6359_CR21
  publication-title: Cognitive Computation
  doi: 10.1007/s12559-017-9461-9
– ident: 6359_CR26
  doi: 10.18653/v1/N16-1082
– ident: 6359_CR63
  doi: 10.1109/ICCV.2005.28
– ident: 6359_CR30
– ident: 6359_CR55
  doi: 10.1016/j.neucom.2016.12.089
– ident: 6359_CR48
– volume: 114
  start-page: 43
  issue: 1
  year: 2000
  ident: 6359_CR37
  publication-title: Fuzzy sets and systems
  doi: 10.1016/S0165-0114(98)00093-1
– volume: 108
  start-page: 33
  year: 2018
  ident: 6359_CR23
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2018.08.002
– ident: 6359_CR27
– ident: 6359_CR65
  doi: 10.1109/CVPR.2009.5206744
– ident: 6359_CR71
– ident: 6359_CR75
– ident: 6359_CR44
– ident: 6359_CR1
– volume: 24
  start-page: 971
  issue: 5
  year: 2013
  ident: 6359_CR66
  publication-title: Machine vision and applications
  doi: 10.1007/s00138-012-0450-4
SSID ssj0004685
Score 2.3589182
Snippet Since their inception, learning techniques under the reservoir computing paradigm have shown a great modeling capability for recurrent systems without the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10257
SubjectTerms Algorithms
Artificial Intelligence
Artificial neural networks
Classification
Cognitive tasks
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Domains
Image classification
Image Processing and Computer Vision
Machine learning
Mathematical models
Medical imaging
Multilayers
Pixels
Probability and Statistics in Computer Science
S. I. : Effective and Efficient Deep Learning
Special Issue on Effective and Efficient Deep Learning Based Solutions
Structural hierarchy
Time series
Video data
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB21y4VLlxZQF5ZqDr1BkPNhJz4itIBatb2wEpyi2BkLVEhWJCCWX4_tTRaKoBIHH6I4VmyPPW_seTMA360G5owkD0IRUZD4gyapramitWKJFeiMHHf4129xMk1-nPGzjhTW9N7u_ZWk36mXZDd3gmlNX1eslpTB_COs-HhbA1g5OD7_OXnGh_SpOK3l4uomcUeWeb2VfxXSE8p8cTHq9c3REKb9ny7cTP7u37ZqXz-8COL43q6swacOgOLBQmI-wweqvsCwT-6A3Vpfh7s_FVpwiLO6aYOLWiPdz6481cp5086xNlgSzZDs_omeloTVwqW8QQuE0SWtRyff5J9JF43zsN7Dy2u7hWFRlegogDVqh9-dw5KXkQ2YHk1OD0-CLklDoO3qbQOrBQvOyjQuozLMmFJChcSZSjQXpYy5Ej6mfmxIS5MKnppSsqSUsuAmDUMdb8Kgqiv6CpgZTiJKI1Ok1syTmYXSQmmmDWXMhJxGEPYzlesugrlLpHGVL2Mv-4HNmStuYPP5CHaX38wW8Tv-W3vcC0DereUmj0TmrjutUI9gr5_Pp9dvt7b1vurbsBo5boX3BR7DoL25pR2LeFr1rRPwR_vW9uI
  priority: 102
  providerName: Springer Nature
Title On the post-hoc explainability of deep echo state networks for time series forecasting, image and video classification
URI https://link.springer.com/article/10.1007/s00521-021-06359-y
https://www.proquest.com/docview/2680640355
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3058
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ADMLS
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3058
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: 8FG
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7B7qWXPmirboHVHLiVqM7DTnyo0NLugqBsq7Yr0VOU-CGQIAndpWL_PR5vwraVysGKEic-ZMYzY3u--QD2nAfmzEgehCIyQeI3mqRySxWlSpY4hc4MYYfPpuJ4lpyc8_MNmHZYGEqr7GyiN9S6VrRH_j4SGR06uaEPmpuAWKPodLWj0ChaagX9wZcY24R-RJWxetA_HE-_fvsDKelJOt2ahvJ9kriF0XgwHe2QuqfUnBeWwfJvV7WOP_85MvWeaPIcnrYhJI5WMn8BG6bagmcdPQO2s_Ul_P5SoQvvsKnni-CiVmjumisPlqJ82CXWFrUxDRpnAdEDi7BaJYXP0YWySLTzSBpq_L1RxZxypPfx8toZISwqjQTiq1FRBE4pR17Kr2A2Gf_4eBy0NAuBcvNvETg_VnCm01hHOsxYWYoyNJyVieJCy5iXwlfFj61R0qaCp1ZLlmgpC27TMFTxa-hVdWXeAGaWGxGlkS1St1CTmQuGRamYsiZjNuRmAGH3R3PV1iAnKoyr_KF6spdCzqiRFPLlAN49fNOsKnA8-vZOJ6i8nY3zfK07A9jvhLfu_v9obx8fbRueRISG8Nm7O9Bb_Lo1uy5GWZRD2MwmR0Pojz6dff5O16Ofp-Nhq46udxaN7gEZruez
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKe4ALb8RCgTnAiUY4DyfxoUI8Wm1puyDUSr2FxB4LpJIEsjz2z_HbmPE6XUCitx5yyMsHz3ge9nzzCfGYPLCSqFUU5wlGmd9o0oZSFWMamZFCl8jY4cNZPj3O3pyokzXxa8TCcFnlaBO9obad4T3yZ0le8qETDf28_xIxaxSfro4UGnWgVrDbvsVYAHbs4-IHpXDD9t5rkveTJNndOXo1jQLLQGRI_eYRmfFaSVukNrFxKZsmb2JUssmMyq1OVZP7pvCpQ6NdkavCWS0zq3WtXBHHJqVxL4mNLM00JX8bL3dm797_gcz0pKCUQ3F9UZYG2I4H7_GOLD3li7y-jhZ_u8ZVvPvPEa33fLvXxdUQssKLpY7dEGvY3hTXRjoICNbhlvj-tgUKJ6Hvhnn0sTOAP_tTD87i-tsFdA4sYg9IFhc8kAnaZRH6ABQ6A9PcA68I9Pdo6oFrsrfg02cyelC3Fhg02IHhiJ9LnLxW3RbHFzLhd8R627V4V0DpFOZJkbi6oMRQlxR8542RxmEpXaxwIuJxRisTep4z9cZpddat2UuhknyxFKrFRDw9-6dfdvw49-vNUVBVWP1DtdLVidgahbd6_f_R7p0_2iNxeXp0eFAd7M3274srCSMxfOXwpliff_2GDyg-mjcPgxKC-HDRev8bY10e3Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoKyEuhfIQC4XOgRuN6jzsxMcKWJXSFg6s1FuU2GO10pJE3bRi_z0z3mRbECD14EMUx4fM2PONZ74ZId6RBVYSjYpinWCUhYsmY8lVsbaWGSl0gcwdPj3TR7Ps-Fyd32Hxh2z3MSS54jRwlaamP-icP1gT3_g2k9xgHmQxTbTcEFsZF0ogjZ4lh3eYkaEpJ_kwPDNLB9rM39f43TTd4s0_QqTB8kyfiO0BMsLhSsY74gE2T8XjsR0DDLvzmbj52gDBOejaRR9dtBbwZzcP5CjOf11C68EhdoB04kEgEkGzSgJfAEFX4DbzwBqJ4RltteCc6H24_EGHDlSNAybttWAZcXOKUZDqczGbfvr-4Sga2ipElvZbH5HdqpR0eeoSFxeyrnUdo5J1ZpV2JlW1DlXwU4_W-Fyr3DsjM2dMpXwexzZ9ITabtsGXAgqvUCd54qucHDNTEPjVtZXWYyF9rHAi4vGPlnaoOc6tL-blulpykEIpebAUyuVEvF9_060qbvx39u4oqHLYfYsy0QUHKEkNJ2J_FN7t63-v9up-0_fEw28fp-XJ57Mvr8WjhIkRIZF3V2z2V9f4huBKX78NGvkLmJjgyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+post-hoc+explainability+of+deep+echo+state+networks+for+time+series+forecasting%2C+image+and+video+classification&rft.jtitle=Neural+computing+%26+applications&rft.au=Barredo+Arrieta%2C+Alejandro&rft.au=Gil-Lopez%2C+Sergio&rft.au=La%C3%B1a%2C+Ibai&rft.au=Bilbao%2C+Miren+Nekane&rft.date=2022-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=34&rft.issue=13&rft.spage=10257&rft.epage=10277&rft_id=info:doi/10.1007%2Fs00521-021-06359-y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon