On the post-hoc explainability of deep echo state networks for time series forecasting, image and video classification
Since their inception, learning techniques under the reservoir computing paradigm have shown a great modeling capability for recurrent systems without the computing overheads required for other approaches, specially deep neural networks. Among them, different flavors of echo state networks have attr...
Saved in:
| Published in | Neural computing & applications Vol. 34; no. 13; pp. 10257 - 10277 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.07.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0941-0643 1433-3058 |
| DOI | 10.1007/s00521-021-06359-y |
Cover
| Abstract | Since their inception, learning techniques under the reservoir computing paradigm have shown a great modeling capability for recurrent systems without the computing overheads required for other approaches, specially deep neural networks. Among them, different flavors of echo state networks have attracted many stares through time, mainly due to the simplicity and computational efficiency of their learning algorithm. However, these advantages do not compensate for the fact that echo state networks remain as black-box models whose decisions cannot be easily explained to the general audience. This issue is even more involved for multi-layered (also referred to as
deep
) echo state networks, whose more complex hierarchical structure hinders even further the explainability of their internals to users without expertise in machine learning or even computer science. This lack of explainability can jeopardize the widespread adoption of these models in certain domains where accountability and understandability of machine learning models is a must (e.g., medical diagnosis, social politics). This work addresses this issue by conducting an explainability study of echo state networks when applied to learning tasks with time series, image and video data. Among these tasks, we stress on the latter one (video classification) which, to the best of our knowledge, has never been tackled before with echo state networks in the related literature. Specifically, the study proposes three different techniques capable of eliciting understandable information about the knowledge grasped by these recurrent models, namely potential memory, temporal patterns and pixel absence effect. Potential memory addresses questions related to the effect of the reservoir size in the capability of the model to store temporal information, whereas temporal patterns unveil the recurrent relationships captured by the model over time. Finally, pixel absence effect attempts at evaluating the effect of the absence of a given pixel when the echo state network model is used for image and video classification. The benefits of the proposed suite of techniques are showcased over three different domains of applicability: time series modeling, image and, for the first time in the related literature, video classification. The obtained results reveal that the proposed techniques not only allow for an informed understanding of the way these models work, but also serve as diagnostic tools capable of detecting issues inherited from data (e.g., presence of hidden bias). |
|---|---|
| AbstractList | Since their inception, learning techniques under the reservoir computing paradigm have shown a great modeling capability for recurrent systems without the computing overheads required for other approaches, specially deep neural networks. Among them, different flavors of echo state networks have attracted many stares through time, mainly due to the simplicity and computational efficiency of their learning algorithm. However, these advantages do not compensate for the fact that echo state networks remain as black-box models whose decisions cannot be easily explained to the general audience. This issue is even more involved for multi-layered (also referred to as deep) echo state networks, whose more complex hierarchical structure hinders even further the explainability of their internals to users without expertise in machine learning or even computer science. This lack of explainability can jeopardize the widespread adoption of these models in certain domains where accountability and understandability of machine learning models is a must (e.g., medical diagnosis, social politics). This work addresses this issue by conducting an explainability study of echo state networks when applied to learning tasks with time series, image and video data. Among these tasks, we stress on the latter one (video classification) which, to the best of our knowledge, has never been tackled before with echo state networks in the related literature. Specifically, the study proposes three different techniques capable of eliciting understandable information about the knowledge grasped by these recurrent models, namely potential memory, temporal patterns and pixel absence effect. Potential memory addresses questions related to the effect of the reservoir size in the capability of the model to store temporal information, whereas temporal patterns unveil the recurrent relationships captured by the model over time. Finally, pixel absence effect attempts at evaluating the effect of the absence of a given pixel when the echo state network model is used for image and video classification. The benefits of the proposed suite of techniques are showcased over three different domains of applicability: time series modeling, image and, for the first time in the related literature, video classification. The obtained results reveal that the proposed techniques not only allow for an informed understanding of the way these models work, but also serve as diagnostic tools capable of detecting issues inherited from data (e.g., presence of hidden bias). Since their inception, learning techniques under the reservoir computing paradigm have shown a great modeling capability for recurrent systems without the computing overheads required for other approaches, specially deep neural networks. Among them, different flavors of echo state networks have attracted many stares through time, mainly due to the simplicity and computational efficiency of their learning algorithm. However, these advantages do not compensate for the fact that echo state networks remain as black-box models whose decisions cannot be easily explained to the general audience. This issue is even more involved for multi-layered (also referred to as deep ) echo state networks, whose more complex hierarchical structure hinders even further the explainability of their internals to users without expertise in machine learning or even computer science. This lack of explainability can jeopardize the widespread adoption of these models in certain domains where accountability and understandability of machine learning models is a must (e.g., medical diagnosis, social politics). This work addresses this issue by conducting an explainability study of echo state networks when applied to learning tasks with time series, image and video data. Among these tasks, we stress on the latter one (video classification) which, to the best of our knowledge, has never been tackled before with echo state networks in the related literature. Specifically, the study proposes three different techniques capable of eliciting understandable information about the knowledge grasped by these recurrent models, namely potential memory, temporal patterns and pixel absence effect. Potential memory addresses questions related to the effect of the reservoir size in the capability of the model to store temporal information, whereas temporal patterns unveil the recurrent relationships captured by the model over time. Finally, pixel absence effect attempts at evaluating the effect of the absence of a given pixel when the echo state network model is used for image and video classification. The benefits of the proposed suite of techniques are showcased over three different domains of applicability: time series modeling, image and, for the first time in the related literature, video classification. The obtained results reveal that the proposed techniques not only allow for an informed understanding of the way these models work, but also serve as diagnostic tools capable of detecting issues inherited from data (e.g., presence of hidden bias). |
| Author | Gil-Lopez, Sergio Barredo Arrieta, Alejandro Del Ser, Javier Laña, Ibai Bilbao, Miren Nekane |
| Author_xml | – sequence: 1 givenname: Alejandro surname: Barredo Arrieta fullname: Barredo Arrieta, Alejandro organization: TECNALIA, Basque Research and Technology Alliance (BRTA) – sequence: 2 givenname: Sergio surname: Gil-Lopez fullname: Gil-Lopez, Sergio organization: TECNALIA, Basque Research and Technology Alliance (BRTA) – sequence: 3 givenname: Ibai surname: Laña fullname: Laña, Ibai organization: TECNALIA, Basque Research and Technology Alliance (BRTA) – sequence: 4 givenname: Miren Nekane surname: Bilbao fullname: Bilbao, Miren Nekane organization: University of the Basque Country (UPV/EHU) – sequence: 5 givenname: Javier orcidid: 0000-0002-1260-9775 surname: Del Ser fullname: Del Ser, Javier email: javier.delser@tecnalia.com organization: TECNALIA, Basque Research and Technology Alliance (BRTA) |
| BookMark | eNp9kMlKBDEQhoOM4Li8gKeAV1srnU4vRxncQJiLnpt0UpmJtkmbxGXe3m5HEDzMoSiK-r9a_kMyc94hIacMLhhAdRkBRM4ymKLkosk2e2TOCs4zDqKekTk0xdQq-AE5jPEZAIqyFnPysXQ0rZEOPqZs7RXFr6GX1snO9jZtqDdUIw4U1drTmGRC6jB9-vASqfGBJvuKNGKw-FOjkjFZtzqn9lWukEqn6YfV6KnqZYzWWCWT9e6Y7BvZRzz5zUfk6eb6cXGXPSxv7xdXD5nirEkZL5gUoCuuc81q6LqyYyigK5QodcNFV0Kd1xU3qBpTlaIyuoFCN40UpmJM8SNytp07BP_2jjG1z_49uHFlm5f16AdwIUZVvVWp4GMMaFpl08-dKUjbtwzayeV263ILU0wut5sRzf-hQxhfD5vdEN9CcRS7FYa_q3ZQ353Xk24 |
| CitedBy_id | crossref_primary_10_1007_s00521_024_09656_4 crossref_primary_10_1016_j_techfore_2024_123588 crossref_primary_10_1007_s00521_022_07344_9 crossref_primary_10_3390_info14050266 crossref_primary_10_1016_j_inffus_2023_01_021 crossref_primary_10_3390_e24121709 crossref_primary_10_1016_j_spasta_2023_100732 crossref_primary_10_3390_s24113640 |
| Cites_doi | 10.1016/j.cosrev.2009.03.005 10.1007/s10700-009-9065-2 10.1109/ICCV.2017.74 10.1016/j.patcog.2016.11.008 10.1016/j.inffus.2019.12.012 10.1007/978-3-030-20521-8_40 10.1109/CSE-EUC-DCABES.2016.229 10.1126/science.1091277 10.1007/978-3-030-12544-8_17 10.1007/BF00201428 10.1142/9789812833709_0030 10.1162/COLI_a_00300 10.1007/s10618-007-0064-z 10.1016/j.compchemeng.2020.106730 10.1109/2.53 10.1016/j.patrec.2013.01.008 10.1016/j.neunet.2007.04.016 10.1109/ICCV.2011.6126543 10.1162/089976602760407955 10.1007/PL00011669 10.1007/11550907_103 10.1016/j.neucom.2015.02.089 10.1201/9781351003827 10.1016/j.ins.2016.01.039 10.1016/j.neucom.2016.12.089 10.1109/CVPR.2019.01232 10.1007/978-3-030-43883-8_3 10.1109/IJCNN.2016.7727326 10.1109/IJCNN.2014.6889832 10.1016/j.physrep.2006.11.001 10.1007/978-3-642-25446-8_4 10.1007/978-3-030-28954-6 10.1109/CVPR.2015.7299059 10.3233/AIS-160372 10.1016/j.neucom.2020.07.034 10.1016/j.neunet.2019.02.001 10.1109/ICPR.2018.8545471 10.1109/ITSC45102.2020.9294200 10.1109/IJCNN.2005.1556090 10.1145/2939672.2939778 10.1016/j.atmosenv.2016.09.052 10.1109/ICPR.2004.1334462 10.18653/v1/W17-5221 10.1109/CVPR.2008.4587727 10.1016/j.cviu.2006.07.013 10.1145/882082.882086 10.1007/s12559-017-9461-9 10.18653/v1/N16-1082 10.1109/ICCV.2005.28 10.1016/S0165-0114(98)00093-1 10.1016/j.neunet.2018.08.002 10.1109/CVPR.2009.5206744 10.1007/s00138-012-0450-4 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s00521-021-06359-y |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 10277 |
| ExternalDocumentID | 10_1007_s00521_021_06359_y |
| GrantInformation_xml | – fundername: Eusko Jaurlaritza grantid: KK-2020/00049 funderid: http://dx.doi.org/10.13039/501100003086 – fundername: Eusko Jaurlaritza grantid: MATHMODE (IT1294-19); 3KIA project funderid: http://dx.doi.org/10.13039/501100003086 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-341a50d73d2d180bb6b1e50b4c56d935b6082873fec9f7657fd904d99a5f711c3 |
| IEDL.DBID | BENPR |
| ISSN | 0941-0643 |
| IngestDate | Fri Jul 25 08:30:24 EDT 2025 Wed Oct 01 02:26:07 EDT 2025 Thu Apr 24 22:56:04 EDT 2025 Fri Feb 21 02:45:49 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Keywords | Explainable artificial intelligence Randomization-based machine learning Reservoir computing Echo state networks |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-341a50d73d2d180bb6b1e50b4c56d935b6082873fec9f7657fd904d99a5f711c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1260-9775 |
| PQID | 2680640355 |
| PQPubID | 2043988 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_2680640355 crossref_citationtrail_10_1007_s00521_021_06359_y crossref_primary_10_1007_s00521_021_06359_y springer_journals_10_1007_s00521_021_06359_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220700 2022-07-00 20220701 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 7 year: 2022 text: 20220700 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2022 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | ZadehLotfi AFuzzy logicComputer1988214839310.1109/2.53 Denil M, Demiraj A, De Freitas N (2014) Extraction of salient sentences from labelled documents. arXiv:1412.6815 Murdoch W, James L, Peter J, Yu B (2018) Beyond word importance: contextual decomposition to extract interactions from lstms. arXiv:1801.05453 Lundberg SM, Erion GG, Lee S-I (2018) Consistent individualized feature attribution for tree ensembles. arXiv:1802.03888 Adebayo J, Gilmer J, Muelly M, Goodfellow I, Hardt M, Kim B (2018) Sanity checks for saliency maps. arXiv:1810.03292 Schaetti N, Salomon M, Couturier R (2016) Echo state networks-based reservoir computing for mnist handwritten digits recognition. In: IEEE international conference on computational science and engineering (CSE), pp 484–491. IEEE Wang L, Qiao Y, Tang X (2015) Action recognition with trajectory-pooled deep-convolutional descriptors. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4305–4314 Liu J, Shah M (2008) Learning human actions via information maximization. In: IEEE conference on computer vision and pattern recognition, pp 1–8. IEEE Arras L, Montavon G, Müller K-R, Samek W (2017) Explaining recurrent neural network predictions in sentiment analysis. In: Proceedings of the 8th workshop on computational approaches to subjectivity, sentiment and social media analysis, pp 159–168 Shi Y, Zeng W, Huang T, Wang Y (2015) Learning deep trajectory descriptor for action recognition in videos using deep neural networks. In: 2015 IEEE international conference on multimedia and expo (ICME), pp 1–6. IEEE CrisostomiEmanueleGallicchioClaudioMicheliAlessioRaugiMarcoTucciMauroPrediction of the italian electricity price for smart grid applicationsNeurocomputing201517028629510.1016/j.neucom.2015.02.089 Shu Na, Tang Q, Liu H (2014) A bio-inspired approach modeling spiking neural networks of visual cortex for human action recognition. In: 2014 international joint conference on neural networks (IJCNN), pp 3450–3457. IEEE Hassaballah M, Awad AI (2020) Deep learning in computer vision: principles and applications. CRC Press, Boca Raton EckmannJean-PierreKamphorstS OliffsonRuelleDavidRecurrence plots of dynamical systemsWorld Scientific Series on Nonlinear Science Series A19951644144610.1142/9789812833709_0030 Shrikumar A, Greenside P, Kundaje A (2017) Learning important features through propagating activation differences. In: International conference on machine learning, pp 3145–3153. PMLR Baccouche M, Mamalet F, Wolf C, Garcia C, Baskurt A (2011) Sequential deep learning for human action recognition. In: International workshop on human behavior understanding, pp 29–39. Springer DomineyPeter FComplex sensory-motor sequence learning based on recurrent state representation and reinforcement learningBiological cybernetics199573326527410.1007/BF00201428 Shi X, Chen Z, Wang H, Yeung D-Y, Wong W-K, Woo W-C (2015) Convolutional lstm network: a machine learning approach for precipitation nowcasting. arXiv:1506.04214 Ribeiro MT, Singh S, Guestrin C (2016) “Why should i trust you?” Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 1135–1144 JaegerHerbertHaasHaraldHarnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communicationscience20043045667788010.1126/science.1091277 WeinlandDanielRonfardRemiBoyerEdmondFree viewpoint action recognition using motion history volumesComputer vision and image understanding20061042–324925710.1016/j.cviu.2006.07.013 Souahlia A, Belatreche A, Benyettou A, Curran K (2016) An experimental evaluation of echo state network for colour image segmentation. In: 2016 International joint conference on neural networks (IJCNN), pp 1143–1150. IEEE LañaIbaiDel SerJavierPadróAlesVélezManuelCasanova-MateoCarlosThe role of local urban traffic and meteorological conditions in air pollution: A data-based case study in MadridSpain. Atmospheric Environment201614542443810.1016/j.atmosenv.2016.09.052 Del S, Javier L, Ibai, M, Eric L, Oregi I, Osaba E, Lobo JL, Bilbao MN, Vlahogianni EI (2020) Deep echo state networks for short-term traffic forecasting: performance comparison and statistical assessment. In: IEEE international conference on intelligent transportation systems (ITSC), pp 1–6. IEEE Schuldt C, Laptev I, Caputo B (2004) Recognizing human actions: a local svm approach. In: Proceedings of the 17th International conference on pattern recognition, 2004. ICPR 2004., volume 3, pp 32–36. IEEE Springenberg JT, Dosovitskiy A, Brox T, Riedmiller M (2014) Striving for simplicity: the all convolutional net. arXiv:1412.6806 Luca Anthony Thiede and Ulrich ParlitzGradient based hyperparameter optimization in echo state networksNeural Networks2019115232910.1016/j.neunet.2019.02.001 GallicchioClaudioMicheliAlessioPedrelliLucaDesign of deep echo state networksNeural Networks2018108334710.1016/j.neunet.2018.08.002 Li J, Monroe W, Jurafsky D (2016) Understanding neural networks through representation erasure. arXiv:1612.08220 Rodriguez MD, Ahmed J, Shah M (2008) Action mach a spatio-temporal maximum average correlation height filter for action recognition. In: IEEE conference on computer vision and pattern recognition, pp 1–8. IEEE Jaeger H (2002) Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the “echo state network” approach, volume 5. GMD-Forschungszentrum Informationstechnik Bonn Liu J, Luo J, Shah M (2009) Recognizing realistic actions from videos “in the wild”. In: 2009 IEEE conference on computer vision and pattern recognition, pp 1996–2003. IEEE LukoševičiusMantasJaegerHerbertReservoir computing approaches to recurrent neural network trainingComputer Science Review20093312714910.1016/j.cosrev.2009.03.005 MaassWolfgangNatschlägerThomasMarkramHenryReal-time computing without stable states: A new framework for neural computation based on perturbationsNeural computation200214112531256010.1162/089976602760407955 Steil JJ (2004) Backpropagation-decorrelation: online recurrent learning with o (n) complexity. In: 2004 IEEE international joint conference on neural networks (IEEE Cat. No. 04CH37541), vol 2, pp 843–848. IEEE Kuehne H, Jhuang H, Garrote E, Poggio T, Serre T (2011) Hmdb: a large video database for human motion recognition. In: 2011 International conference on computer vision, pp 2556–2563. IEEE Li J, Chen X, Hovy E, Jurafsky D (2016) Visualizing and understanding neural models in nlp. In: Proceedings of NAACL-HLT, pp 681–691 Lin J, Keogh E, Lonardi S, Chiu B (2003) A symbolic representation of time series, with implications for streaming algorithms. In: Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery, pp 2–11 Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision, pp 618–626 GallicchioClaudioMicheliAlessioEcho state property of deep reservoir computing networksCognitive Computation20179333735010.1007/s12559-017-9461-9 Jaeger H (2003) Adaptive nonlinear system identification with echo state networks. In: Advances in neural information processing systems, pp 609–616 LinJessicaKeoghEamonnWeiLiLonardiStefanoExperiencing sax: a novel symbolic representation of time seriesData Mining and knowledge discovery2007152107144240978310.1007/s10618-007-0064-z Blank M, Gorelick L, Shechtman E, Irani M, Basri R (2005) Actions as space-time shapes. In: Tenth IEEE international conference on computer vision (ICCV’05) Volume 1, volume 2, pp 1395–1402. IEEE MontavonGrégoireLapuschkinSebastianBinderAlexanderSamekWojciechMüllerKlaus-RobertExplaining nonlinear classification decisions with deep taylor decompositionPattern Recognition20176521122210.1016/j.patcog.2016.11.008 Gallicchio C, Scardapane S (2020) Deep randomized neural networks. Recent Trends Learn Data, pp 43–68 MarwanNorbertRomanoM CarmenThielMarcoKurthsJürgenRecurrence plots for the analysis of complex systemsPhysics reports20074385–6237329229169910.1016/j.physrep.2006.11.001 Woodward A, Ikegami T (2011) A reservoir computing approach to image classification using coupled echo state and back-propagation neural networks. In International conference image and vision computing, Auckland, New Zealand, pp 543–458 Tong Z, Tanaka G (2018) Reservoir computing with untrained convolutional neural networks for image recognition. In: International conference on pattern recognition (ICPR), pp 1289–1294. IEEE Gallicchio C, Micheli A (2019) Richness of deep echo state network dynamics. In: International work-conference on artificial neural networks, pp 480–491 Mencar C, Alonso JM (2018) Paving the way to explainable artificial intelligence with fuzzy modeling. In: International Workshop on Fuzzy Logic and Applications, pp 215–227. Springer Han D, Bo L, Sminchisescu C (2009) Selection and context for action recognition. In: 2009 IEEE 12th international conference on computer vision, pp 1933–1940 JaegerHerbertLukoševičiusMantasPopoviciDanSiewertUdoOptimization and applications of echo state networks with leaky-integrator neuronsNeural networks200720333535210.1016/j.neunet.2007.04.016 GallicchioClaudioMicheliAlessioPedrelliLucaDeep reservoir computing: A critical experimental analysisNeurocomputing2017268879910.1016/j.neucom.2016.12.089 Gallicchio C, Micheli A (2016) Deep reservoir computing: a critical analysis. In: ESANN Soomro K, Zamir AR, Shah M: Ucf101: a dataset of 101 human actions classes from videos in the wild. arXiv:1212.0402 Sharma S, Kiros R, Salakhutdinov R (2015) Action recognition using visual attention. (2015). arXiv:1511.04119 Chang Y-W, Lin C-J (2008) Feature ranking using linear svm. In: Causation and prediction challenge, pp 53–64. PMLR Samek W, Montavon G, Vedaldi A, Hansen LK, Müller K-R (2019) Explainable AI: interpreting, explaining and visualizing deep learning, vol 11700. Springer Ghad Peter F Dominey (6359_CR14) 1995; 73 Herbert Jaeger (6359_CR13) 2001; 148 Claudio Gallicchio (6359_CR11) 2017; 268 Mantas Lukoševičius (6359_CR2) 2009; 3 6359_CR48 Ibai Laña (6359_CR61) 2016; 145 6359_CR49 Norbert Marwan (6359_CR53) 2007; 438 Mehrtash T Harandi (6359_CR79) 2013; 34 6359_CR9 6359_CR6 6359_CR7 6359_CR43 6359_CR1 6359_CR44 Francisco Herrera (6359_CR38) 2009; 8 6359_CR45 6359_CR3 6359_CR46 Filippo Palumbo (6359_CR17) 2016; 8 6359_CR40 6359_CR41 6359_CR42 Eamonn Keogh (6359_CR35) 2001; 3 Jessica Lin (6359_CR33) 2007; 15 6359_CR58 6359_CR59 6359_CR16 Wolfgang Maass (6359_CR12) 2002; 14 Le Zhang (6359_CR4) 2016; 364 Grégoire Montavon (6359_CR47) 2017; 65 Claudio Gallicchio (6359_CR23) 2018; 108 6359_CR55 6359_CR56 6359_CR57 6359_CR51 6359_CR52 Claudio Gallicchio (6359_CR21) 2017; 9 6359_CR25 6359_CR69 6359_CR26 6359_CR27 Luca Anthony Thiede and Ulrich Parlitz (6359_CR8) 2019; 115 6359_CR28 Alejandro Barredo Arrieta (6359_CR10) 2020; 58 Jean-Pierre Eckmann (6359_CR54) 1995; 16 6359_CR60 6359_CR65 Herbert Jaeger (6359_CR19) 2007; 20 6359_CR22 David Baehrens (6359_CR50) 2010; 11 6359_CR67 Akos Kádár (6359_CR29) 2017; 43 6359_CR68 6359_CR62 6359_CR63 6359_CR20 Francisco Herrera (6359_CR37) 2000; 114 Kai Liu (6359_CR24) 2020; 135 Kishore K Reddy (6359_CR66) 2013; 24 6359_CR39 Daniel Weinland (6359_CR64) 2006; 104 Herbert Jaeger (6359_CR5) 2004; 304 cr-split#-6359_CR15.2 6359_CR70 cr-split#-6359_CR15.1 6359_CR71 Emanuele Crisostomi (6359_CR18) 2015; 170 6359_CR32 Lotfi A Zadeh (6359_CR36) 1988; 21 6359_CR76 6359_CR77 6359_CR34 6359_CR78 6359_CR72 6359_CR73 6359_CR30 6359_CR74 6359_CR31 6359_CR75 |
| References_xml | – reference: ReddyKishore KShahMubarakRecognizing 50 human action categories of web videosMachine vision and applications201324597198110.1007/s00138-012-0450-4 – reference: Blank M, Gorelick L, Shechtman E, Irani M, Basri R (2005) Actions as space-time shapes. In: Tenth IEEE international conference on computer vision (ICCV’05) Volume 1, volume 2, pp 1395–1402. IEEE – reference: Rodriguez MD, Ahmed J, Shah M (2008) Action mach a spatio-temporal maximum average correlation height filter for action recognition. In: IEEE conference on computer vision and pattern recognition, pp 1–8. IEEE – reference: Woodward A, Ikegami T (2011) A reservoir computing approach to image classification using coupled echo state and back-propagation neural networks. In International conference image and vision computing, Auckland, New Zealand, pp 543–458 – reference: MaassWolfgangNatschlägerThomasMarkramHenryReal-time computing without stable states: A new framework for neural computation based on perturbationsNeural computation200214112531256010.1162/089976602760407955 – reference: PalumboFilippoGallicchioClaudioPucciRitaMicheliAlessioHuman activity recognition using multisensor data fusion based on reservoir computingJournal of Ambient Intelligence and Smart Environments2016828710710.3233/AIS-160372 – reference: GallicchioClaudioMicheliAlessioEcho state property of deep reservoir computing networksCognitive Computation20179333735010.1007/s12559-017-9461-9 – reference: LañaIbaiDel SerJavierPadróAlesVélezManuelCasanova-MateoCarlosThe role of local urban traffic and meteorological conditions in air pollution: A data-based case study in MadridSpain. Atmospheric Environment201614542443810.1016/j.atmosenv.2016.09.052 – reference: Gallicchio C, Micheli A (2016) Deep reservoir computing: a critical analysis. In: ESANN – reference: Tong Z, Tanaka G (2018) Reservoir computing with untrained convolutional neural networks for image recognition. In: International conference on pattern recognition (ICPR), pp 1289–1294. IEEE – reference: Jaeger H (2002) Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the “echo state network” approach, volume 5. GMD-Forschungszentrum Informationstechnik Bonn – reference: Shu Na, Tang Q, Liu H (2014) A bio-inspired approach modeling spiking neural networks of visual cortex for human action recognition. In: 2014 international joint conference on neural networks (IJCNN), pp 3450–3457. IEEE – reference: Gallicchio C, Scardapane S (2020) Deep randomized neural networks. Recent Trends Learn Data, pp 43–68 – reference: Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision, pp 618–626 – reference: ZadehLotfi AFuzzy logicComputer1988214839310.1109/2.53 – reference: Baccouche M, Mamalet F, Wolf C, Garcia C, Baskurt A (2011) Sequential deep learning for human action recognition. In: International workshop on human behavior understanding, pp 29–39. Springer – reference: Murdoch W, James L, Peter J, Yu B (2018) Beyond word importance: contextual decomposition to extract interactions from lstms. arXiv:1801.05453 – reference: ArrietaAlejandro BarredoDíaz-RodríguezNataliaDel SerJavierBennetotAdrienTabikSihamBarbadoAlbertoSalvadorGarcíaSergioGil-LópezDanielMolinaRichardBenjaminsExplainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible aiInformation Fusion2020588211510.1016/j.inffus.2019.12.012 – reference: Liu J, Luo J, Shah M (2009) Recognizing realistic actions from videos “in the wild”. In: 2009 IEEE conference on computer vision and pattern recognition, pp 1996–2003. IEEE – reference: KeoghEamonnChakrabartiKaushikPazzaniMichaelMehrotraSharadDimensionality reduction for fast similarity search in large time series databasesKnowledge and information Systems20013326328610.1007/PL00011669 – reference: Kuehne H, Jhuang H, Garrote E, Poggio T, Serre T (2011) Hmdb: a large video database for human motion recognition. In: 2011 International conference on computer vision, pp 2556–2563. IEEE – reference: Li J, Chen X, Hovy E, Jurafsky D (2016) Visualizing and understanding neural models in nlp. In: Proceedings of NAACL-HLT, pp 681–691 – reference: Souahlia A, Belatreche A, Benyettou A, Curran K (2016) An experimental evaluation of echo state network for colour image segmentation. In: 2016 International joint conference on neural networks (IJCNN), pp 1143–1150. IEEE – reference: Del S, Javier L, Ibai, M, Eric L, Oregi I, Osaba E, Lobo JL, Bilbao MN, Vlahogianni EI (2020) Deep echo state networks for short-term traffic forecasting: performance comparison and statistical assessment. In: IEEE international conference on intelligent transportation systems (ITSC), pp 1–6. IEEE – reference: KádárAkosChrupałaGrzegorzAlishahiAfraRepresentation of linguistic form and function in recurrent neural networksComputational Linguistics2017434761780374798110.1162/COLI_a_00300 – reference: BaehrensDavidSchroeterTimonHarmelingStefanKawanabeMotoakiHansenKatjaMüllerKlaus-RobertHow to explain individual classification decisionsThe Journal of Machine Learning Research2010111803183126606531242.62049 – reference: Rojat T, Puget R, Filliat D, Del S, Javier G, Rodolphe í-R, Natalia D (2021) Explainable artificial intelligence (xai) on time series data: a survey. arXiv:2104.00950 – reference: Lin J, Keogh E, Lonardi S, Chiu B (2003) A symbolic representation of time series, with implications for streaming algorithms. In: Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery, pp 2–11 – reference: JaegerHerbertLukoševičiusMantasPopoviciDanSiewertUdoOptimization and applications of echo state networks with leaky-integrator neuronsNeural networks200720333535210.1016/j.neunet.2007.04.016 – reference: Han D, Bo L, Sminchisescu C (2009) Selection and context for action recognition. In: 2009 IEEE 12th international conference on computer vision, pp 1933–1940 – reference: LukoševičiusMantasJaegerHerbertReservoir computing approaches to recurrent neural network trainingComputer Science Review20093312714910.1016/j.cosrev.2009.03.005 – reference: DomineyPeter FComplex sensory-motor sequence learning based on recurrent state representation and reinforcement learningBiological cybernetics199573326527410.1007/BF00201428 – reference: Arras L, Montavon G, Müller K-R, Samek W (2017) Explaining recurrent neural network predictions in sentiment analysis. In: Proceedings of the 8th workshop on computational approaches to subjectivity, sentiment and social media analysis, pp 159–168 – reference: Schaetti N, Salomon M, Couturier R (2016) Echo state networks-based reservoir computing for mnist handwritten digits recognition. In: IEEE international conference on computational science and engineering (CSE), pp 484–491. IEEE – reference: Chang Y-W, Lin C-J (2008) Feature ranking using linear svm. In: Causation and prediction challenge, pp 53–64. PMLR – reference: Ghadiyaram D, Tran D, Mahajan D (2019) Large-scale weakly-supervised pre-training for video action recognition. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 12046–12055 – reference: GallicchioClaudioMicheliAlessioPedrelliLucaDesign of deep echo state networksNeural Networks2018108334710.1016/j.neunet.2018.08.002 – reference: Luca Anthony Thiede and Ulrich ParlitzGradient based hyperparameter optimization in echo state networksNeural Networks2019115232910.1016/j.neunet.2019.02.001 – reference: JaegerHerbertHaasHaraldHarnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communicationscience20043045667788010.1126/science.1091277 – reference: Steil JJ (2004) Backpropagation-decorrelation: online recurrent learning with o (n) complexity. In: 2004 IEEE international joint conference on neural networks (IEEE Cat. No. 04CH37541), vol 2, pp 843–848. IEEE – reference: Schuldt C, Laptev I, Caputo B (2004) Recognizing human actions: a local svm approach. In: Proceedings of the 17th International conference on pattern recognition, 2004. ICPR 2004., volume 3, pp 32–36. IEEE – reference: Smilkov D, Thorat N, Kim B, Viégas F, Wattenberg M (2017) Smoothgrad: removing noise by adding noise. arXiv:1706.03825 – reference: ZhangLeSuganthanPonnuthurai NA survey of randomized algorithms for training neural networksInformation Sciences201636414615510.1016/j.ins.2016.01.039 – reference: Gallicchio C, Micheli A (2019) Richness of deep echo state network dynamics. In: International work-conference on artificial neural networks, pp 480–491 – reference: Ribeiro MT, Singh S, Guestrin C (2016) “Why should i trust you?” Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 1135–1144 – reference: HerreraFranciscoAlonsoSergioChiclanaFranciscoHerrera-ViedmaEnriqueComputing with words in decision making: foundations, trends and prospectsFuzzy optimization and decision making20098433736410.1007/s10700-009-9065-2 – reference: MarwanNorbertRomanoM CarmenThielMarcoKurthsJürgenRecurrence plots for the analysis of complex systemsPhysics reports20074385–6237329229169910.1016/j.physrep.2006.11.001 – reference: Lundberg SM, Erion GG, Lee S-I (2018) Consistent individualized feature attribution for tree ensembles. arXiv:1802.03888 – reference: HerreraFranciscoHerrera-ViedmaEnriqueMartinezLuisA fusion approach for managing multi-granularity linguistic term sets in decision makingFuzzy sets and systems20001141435810.1016/S0165-0114(98)00093-1 – reference: Shi Y, Zeng W, Huang T, Wang Y (2015) Learning deep trajectory descriptor for action recognition in videos using deep neural networks. In: 2015 IEEE international conference on multimedia and expo (ICME), pp 1–6. IEEE – reference: Jaeger H (2005) Reservoir riddles: suggestions for echo state network research. In:Proceedings. 2005 IEEE international joint conference on neural networks, vol 3, pp 1460–1462. IEEE – reference: HarandiMehrtash TSandersonConradShiraziSarehLovellBrian CKernel analysis on grassmann manifolds for action recognitionPattern Recognition Letters201334151906191510.1016/j.patrec.2013.01.008 – reference: LinJessicaKeoghEamonnWeiLiLonardiStefanoExperiencing sax: a novel symbolic representation of time seriesData Mining and knowledge discovery2007152107144240978310.1007/s10618-007-0064-z – reference: Shi X, Chen Z, Wang H, Yeung D-Y, Wong W-K, Woo W-C (2015) Convolutional lstm network: a machine learning approach for precipitation nowcasting. arXiv:1506.04214 – reference: LiuKaiZhangJieNonlinear process modelling using echo state networks optimised by covariance matrix adaption evolutionary strategyComputers & Chemical Engineering202013510673010.1016/j.compchemeng.2020.106730 – reference: Wu Q, Fokoue E, Kudithipudi D (2018) On the statistical challenges of echo state networks and some potential remedies. arXiv:1802.07369 – reference: JaegerHerbertThe “echo state” approach to analysing and training recurrent neural networks-with an erratum noteBonn, Germany: German National Research Center for Information Technology GMD Technical Report20011483413 – reference: Simonyan K, Vedaldi A, Zisserman A (2013) Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv:1312.6034 – reference: Denil M, Demiraj A, De Freitas N (2014) Extraction of salient sentences from labelled documents. arXiv:1412.6815 – reference: Soomro K, Zamir AR, Shah M: Ucf101: a dataset of 101 human actions classes from videos in the wild. arXiv:1212.0402 – reference: WeinlandDanielRonfardRemiBoyerEdmondFree viewpoint action recognition using motion history volumesComputer vision and image understanding20061042–324925710.1016/j.cviu.2006.07.013 – reference: Hassaballah M, Awad AI (2020) Deep learning in computer vision: principles and applications. CRC Press, Boca Raton – reference: Li J, Monroe W, Jurafsky D (2016) Understanding neural networks through representation erasure. arXiv:1612.08220 – reference: Jaeger H (2003) Adaptive nonlinear system identification with echo state networks. In: Advances in neural information processing systems, pp 609–616 – reference: CrisostomiEmanueleGallicchioClaudioMicheliAlessioRaugiMarcoTucciMauroPrediction of the italian electricity price for smart grid applicationsNeurocomputing201517028629510.1016/j.neucom.2015.02.089 – reference: Adebayo J, Gilmer J, Muelly M, Goodfellow I, Hardt M, Kim B (2018) Sanity checks for saliency maps. arXiv:1810.03292 – reference: Sharma S, Kiros R, Salakhutdinov R (2015) Action recognition using visual attention. (2015). arXiv:1511.04119 – reference: Öztürk MM, Cankaya IA, Ipekci D (2020) Optimizing echo state network through a novel fisher maximization based stochastic gradient descent. Neurocomputing – reference: MontavonGrégoireLapuschkinSebastianBinderAlexanderSamekWojciechMüllerKlaus-RobertExplaining nonlinear classification decisions with deep taylor decompositionPattern Recognition20176521122210.1016/j.patcog.2016.11.008 – reference: LeCun Y (1998) The mnist database of handwritten digits. http://yann.lecun.com/exdb/mnist/ – reference: Liu J, Shah M (2008) Learning human actions via information maximization. In: IEEE conference on computer vision and pattern recognition, pp 1–8. IEEE – reference: Mencar C, Alonso JM (2018) Paving the way to explainable artificial intelligence with fuzzy modeling. In: International Workshop on Fuzzy Logic and Applications, pp 215–227. Springer – reference: GallicchioClaudioMicheliAlessioPedrelliLucaDeep reservoir computing: A critical experimental analysisNeurocomputing2017268879910.1016/j.neucom.2016.12.089 – reference: Springenberg JT, Dosovitskiy A, Brox T, Riedmiller M (2014) Striving for simplicity: the all convolutional net. arXiv:1412.6806 – reference: Shrikumar A, Greenside P, Kundaje A (2017) Learning important features through propagating activation differences. In: International conference on machine learning, pp 3145–3153. PMLR – reference: Wang L, Qiao Y, Tang X (2015) Action recognition with trajectory-pooled deep-convolutional descriptors. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4305–4314 – reference: Samek W, Montavon G, Vedaldi A, Hansen LK, Müller K-R (2019) Explainable AI: interpreting, explaining and visualizing deep learning, vol 11700. Springer – reference: Ancona M, Ceolini E, Öztireli C, Gross M (2017) Towards better understanding of gradient-based attribution methods for deep neural networks. arXiv:1711.06104 – reference: EckmannJean-PierreKamphorstS OliffsonRuelleDavidRecurrence plots of dynamical systemsWorld Scientific Series on Nonlinear Science Series A19951644144610.1142/9789812833709_0030 – volume: 3 start-page: 127 issue: 3 year: 2009 ident: 6359_CR2 publication-title: Computer Science Review doi: 10.1016/j.cosrev.2009.03.005 – volume: 8 start-page: 337 issue: 4 year: 2009 ident: 6359_CR38 publication-title: Fuzzy optimization and decision making doi: 10.1007/s10700-009-9065-2 – ident: 6359_CR46 doi: 10.1109/ICCV.2017.74 – ident: 6359_CR60 – volume: 65 start-page: 211 year: 2017 ident: 6359_CR47 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2016.11.008 – volume: 58 start-page: 82 year: 2020 ident: 6359_CR10 publication-title: Information Fusion doi: 10.1016/j.inffus.2019.12.012 – ident: 6359_CR20 doi: 10.1007/978-3-030-20521-8_40 – ident: 6359_CR56 doi: 10.1109/CSE-EUC-DCABES.2016.229 – volume: 304 start-page: 78 issue: 5667 year: 2004 ident: 6359_CR5 publication-title: science doi: 10.1126/science.1091277 – ident: 6359_CR51 – ident: 6359_CR39 doi: 10.1007/978-3-030-12544-8_17 – volume: 73 start-page: 265 issue: 3 year: 1995 ident: 6359_CR14 publication-title: Biological cybernetics doi: 10.1007/BF00201428 – ident: 6359_CR45 – ident: 6359_CR70 – ident: 6359_CR49 – volume: 16 start-page: 441 year: 1995 ident: 6359_CR54 publication-title: World Scientific Series on Nonlinear Science Series A doi: 10.1142/9789812833709_0030 – volume: 43 start-page: 761 issue: 4 year: 2017 ident: 6359_CR29 publication-title: Computational Linguistics doi: 10.1162/COLI_a_00300 – volume: 15 start-page: 107 issue: 2 year: 2007 ident: 6359_CR33 publication-title: Data Mining and knowledge discovery doi: 10.1007/s10618-007-0064-z – volume: 11 start-page: 1803 year: 2010 ident: 6359_CR50 publication-title: The Journal of Machine Learning Research – volume: 135 start-page: 106730 year: 2020 ident: 6359_CR24 publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2020.106730 – ident: 6359_CR41 – ident: 6359_CR22 – volume: 21 start-page: 83 issue: 4 year: 1988 ident: 6359_CR36 publication-title: Computer doi: 10.1109/2.53 – volume: 34 start-page: 1906 issue: 15 year: 2013 ident: 6359_CR79 publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2013.01.008 – volume: 20 start-page: 335 issue: 3 year: 2007 ident: 6359_CR19 publication-title: Neural networks doi: 10.1016/j.neunet.2007.04.016 – ident: 6359_CR69 doi: 10.1109/ICCV.2011.6126543 – volume: 14 start-page: 2531 issue: 11 year: 2002 ident: 6359_CR12 publication-title: Neural computation doi: 10.1162/089976602760407955 – ident: 6359_CR57 – ident: 6359_CR67 – ident: 6359_CR32 – volume: 3 start-page: 263 issue: 3 year: 2001 ident: 6359_CR35 publication-title: Knowledge and information Systems doi: 10.1007/PL00011669 – ident: 6359_CR77 – ident: #cr-split#-6359_CR15.1 doi: 10.1007/11550907_103 – volume: 170 start-page: 286 year: 2015 ident: 6359_CR18 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.02.089 – ident: 6359_CR31 doi: 10.1201/9781351003827 – ident: 6359_CR42 – volume: 364 start-page: 146 year: 2016 ident: 6359_CR4 publication-title: Information Sciences doi: 10.1016/j.ins.2016.01.039 – volume: 268 start-page: 87 year: 2017 ident: 6359_CR11 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.089 – ident: 6359_CR72 doi: 10.1109/CVPR.2019.01232 – ident: 6359_CR3 doi: 10.1007/978-3-030-43883-8_3 – ident: 6359_CR58 doi: 10.1109/IJCNN.2016.7727326 – ident: 6359_CR74 doi: 10.1109/IJCNN.2014.6889832 – volume: 438 start-page: 237 issue: 5–6 year: 2007 ident: 6359_CR53 publication-title: Physics reports doi: 10.1016/j.physrep.2006.11.001 – ident: 6359_CR73 doi: 10.1007/978-3-642-25446-8_4 – ident: 6359_CR40 doi: 10.1007/978-3-030-28954-6 – ident: 6359_CR78 doi: 10.1109/CVPR.2015.7299059 – volume: 8 start-page: 87 issue: 2 year: 2016 ident: 6359_CR17 publication-title: Journal of Ambient Intelligence and Smart Environments doi: 10.3233/AIS-160372 – ident: 6359_CR9 doi: 10.1016/j.neucom.2020.07.034 – volume: 115 start-page: 23 year: 2019 ident: 6359_CR8 publication-title: Neural Networks doi: 10.1016/j.neunet.2019.02.001 – volume: 148 start-page: 13 issue: 34 year: 2001 ident: 6359_CR13 publication-title: Bonn, Germany: German National Research Center for Information Technology GMD Technical Report – ident: 6359_CR59 doi: 10.1109/ICPR.2018.8545471 – ident: 6359_CR16 doi: 10.1109/ITSC45102.2020.9294200 – ident: 6359_CR7 doi: 10.1109/IJCNN.2005.1556090 – ident: 6359_CR76 – ident: 6359_CR28 – ident: 6359_CR52 doi: 10.1145/2939672.2939778 – ident: 6359_CR43 – volume: 145 start-page: 424 year: 2016 ident: 6359_CR61 publication-title: Spain. Atmospheric Environment doi: 10.1016/j.atmosenv.2016.09.052 – ident: 6359_CR62 doi: 10.1109/ICPR.2004.1334462 – ident: #cr-split#-6359_CR15.2 – ident: 6359_CR25 doi: 10.18653/v1/W17-5221 – ident: 6359_CR68 doi: 10.1109/CVPR.2008.4587727 – ident: 6359_CR6 – volume: 104 start-page: 249 issue: 2–3 year: 2006 ident: 6359_CR64 publication-title: Computer vision and image understanding doi: 10.1016/j.cviu.2006.07.013 – ident: 6359_CR34 doi: 10.1145/882082.882086 – volume: 9 start-page: 337 issue: 3 year: 2017 ident: 6359_CR21 publication-title: Cognitive Computation doi: 10.1007/s12559-017-9461-9 – ident: 6359_CR26 doi: 10.18653/v1/N16-1082 – ident: 6359_CR63 doi: 10.1109/ICCV.2005.28 – ident: 6359_CR30 – ident: 6359_CR55 doi: 10.1016/j.neucom.2016.12.089 – ident: 6359_CR48 – volume: 114 start-page: 43 issue: 1 year: 2000 ident: 6359_CR37 publication-title: Fuzzy sets and systems doi: 10.1016/S0165-0114(98)00093-1 – volume: 108 start-page: 33 year: 2018 ident: 6359_CR23 publication-title: Neural Networks doi: 10.1016/j.neunet.2018.08.002 – ident: 6359_CR27 – ident: 6359_CR65 doi: 10.1109/CVPR.2009.5206744 – ident: 6359_CR71 – ident: 6359_CR75 – ident: 6359_CR44 – ident: 6359_CR1 – volume: 24 start-page: 971 issue: 5 year: 2013 ident: 6359_CR66 publication-title: Machine vision and applications doi: 10.1007/s00138-012-0450-4 |
| SSID | ssj0004685 |
| Score | 2.3589182 |
| Snippet | Since their inception, learning techniques under the reservoir computing paradigm have shown a great modeling capability for recurrent systems without the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 10257 |
| SubjectTerms | Algorithms Artificial Intelligence Artificial neural networks Classification Cognitive tasks Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Domains Image classification Image Processing and Computer Vision Machine learning Mathematical models Medical imaging Multilayers Pixels Probability and Statistics in Computer Science S. I. : Effective and Efficient Deep Learning Special Issue on Effective and Efficient Deep Learning Based Solutions Structural hierarchy Time series Video data |
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB21y4VLlxZQF5ZqDr1BkPNhJz4itIBatb2wEpyi2BkLVEhWJCCWX4_tTRaKoBIHH6I4VmyPPW_seTMA360G5owkD0IRUZD4gyapramitWKJFeiMHHf4129xMk1-nPGzjhTW9N7u_ZWk36mXZDd3gmlNX1eslpTB_COs-HhbA1g5OD7_OXnGh_SpOK3l4uomcUeWeb2VfxXSE8p8cTHq9c3REKb9ny7cTP7u37ZqXz-8COL43q6swacOgOLBQmI-wweqvsCwT-6A3Vpfh7s_FVpwiLO6aYOLWiPdz6481cp5086xNlgSzZDs_omeloTVwqW8QQuE0SWtRyff5J9JF43zsN7Dy2u7hWFRlegogDVqh9-dw5KXkQ2YHk1OD0-CLklDoO3qbQOrBQvOyjQuozLMmFJChcSZSjQXpYy5Ej6mfmxIS5MKnppSsqSUsuAmDUMdb8Kgqiv6CpgZTiJKI1Ok1syTmYXSQmmmDWXMhJxGEPYzlesugrlLpHGVL2Mv-4HNmStuYPP5CHaX38wW8Tv-W3vcC0DereUmj0TmrjutUI9gr5_Pp9dvt7b1vurbsBo5boX3BR7DoL25pR2LeFr1rRPwR_vW9uI priority: 102 providerName: Springer Nature |
| Title | On the post-hoc explainability of deep echo state networks for time series forecasting, image and video classification |
| URI | https://link.springer.com/article/10.1007/s00521-021-06359-y https://www.proquest.com/docview/2680640355 |
| Volume | 34 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3058 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3058 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ADMLS dateStart: 19930301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3058 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3058 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: 8FG dateStart: 20180401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7B7qWXPmirboHVHLiVqM7DTnyo0NLugqBsq7Yr0VOU-CGQIAndpWL_PR5vwraVysGKEic-ZMYzY3u--QD2nAfmzEgehCIyQeI3mqRySxWlSpY4hc4MYYfPpuJ4lpyc8_MNmHZYGEqr7GyiN9S6VrRH_j4SGR06uaEPmpuAWKPodLWj0ChaagX9wZcY24R-RJWxetA_HE-_fvsDKelJOt2ahvJ9kriF0XgwHe2QuqfUnBeWwfJvV7WOP_85MvWeaPIcnrYhJI5WMn8BG6bagmcdPQO2s_Ul_P5SoQvvsKnni-CiVmjumisPlqJ82CXWFrUxDRpnAdEDi7BaJYXP0YWySLTzSBpq_L1RxZxypPfx8toZISwqjQTiq1FRBE4pR17Kr2A2Gf_4eBy0NAuBcvNvETg_VnCm01hHOsxYWYoyNJyVieJCy5iXwlfFj61R0qaCp1ZLlmgpC27TMFTxa-hVdWXeAGaWGxGlkS1St1CTmQuGRamYsiZjNuRmAGH3R3PV1iAnKoyr_KF6spdCzqiRFPLlAN49fNOsKnA8-vZOJ6i8nY3zfK07A9jvhLfu_v9obx8fbRueRISG8Nm7O9Bb_Lo1uy5GWZRD2MwmR0Pojz6dff5O16Ofp-Nhq46udxaN7gEZruez |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKe4ALb8RCgTnAiUY4DyfxoUI8Wm1puyDUSr2FxB4LpJIEsjz2z_HbmPE6XUCitx5yyMsHz3ge9nzzCfGYPLCSqFUU5wlGmd9o0oZSFWMamZFCl8jY4cNZPj3O3pyokzXxa8TCcFnlaBO9obad4T3yZ0le8qETDf28_xIxaxSfro4UGnWgVrDbvsVYAHbs4-IHpXDD9t5rkveTJNndOXo1jQLLQGRI_eYRmfFaSVukNrFxKZsmb2JUssmMyq1OVZP7pvCpQ6NdkavCWS0zq3WtXBHHJqVxL4mNLM00JX8bL3dm797_gcz0pKCUQ3F9UZYG2I4H7_GOLD3li7y-jhZ_u8ZVvPvPEa33fLvXxdUQssKLpY7dEGvY3hTXRjoICNbhlvj-tgUKJ6Hvhnn0sTOAP_tTD87i-tsFdA4sYg9IFhc8kAnaZRH6ABQ6A9PcA68I9Pdo6oFrsrfg02cyelC3Fhg02IHhiJ9LnLxW3RbHFzLhd8R627V4V0DpFOZJkbi6oMRQlxR8542RxmEpXaxwIuJxRisTep4z9cZpddat2UuhknyxFKrFRDw9-6dfdvw49-vNUVBVWP1DtdLVidgahbd6_f_R7p0_2iNxeXp0eFAd7M3274srCSMxfOXwpliff_2GDyg-mjcPgxKC-HDRev8bY10e3Q |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoKyEuhfIQC4XOgRuN6jzsxMcKWJXSFg6s1FuU2GO10pJE3bRi_z0z3mRbECD14EMUx4fM2PONZ74ZId6RBVYSjYpinWCUhYsmY8lVsbaWGSl0gcwdPj3TR7Ps-Fyd32Hxh2z3MSS54jRwlaamP-icP1gT3_g2k9xgHmQxTbTcEFsZF0ogjZ4lh3eYkaEpJ_kwPDNLB9rM39f43TTd4s0_QqTB8kyfiO0BMsLhSsY74gE2T8XjsR0DDLvzmbj52gDBOejaRR9dtBbwZzcP5CjOf11C68EhdoB04kEgEkGzSgJfAEFX4DbzwBqJ4RltteCc6H24_EGHDlSNAybttWAZcXOKUZDqczGbfvr-4Sga2ipElvZbH5HdqpR0eeoSFxeyrnUdo5J1ZpV2JlW1DlXwU4_W-Fyr3DsjM2dMpXwexzZ9ITabtsGXAgqvUCd54qucHDNTEPjVtZXWYyF9rHAi4vGPlnaoOc6tL-blulpykEIpebAUyuVEvF9_060qbvx39u4oqHLYfYsy0QUHKEkNJ2J_FN7t63-v9up-0_fEw28fp-XJ57Mvr8WjhIkRIZF3V2z2V9f4huBKX78NGvkLmJjgyg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+post-hoc+explainability+of+deep+echo+state+networks+for+time+series+forecasting%2C+image+and+video+classification&rft.jtitle=Neural+computing+%26+applications&rft.au=Barredo+Arrieta%2C+Alejandro&rft.au=Gil-Lopez%2C+Sergio&rft.au=La%C3%B1a%2C+Ibai&rft.au=Bilbao%2C+Miren+Nekane&rft.date=2022-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=34&rft.issue=13&rft.spage=10257&rft.epage=10277&rft_id=info:doi/10.1007%2Fs00521-021-06359-y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |