Selfish herd optimization algorithm based on chaotic strategy for adaptive IIR system identification problem
The design method of adaptive infinite impulse response (IIR) filter is a challenging problem. Its design principle is to determine the filter parameters by the iteration process of the adaptive algorithm, which is to obtain an optimal model for unknown plant based on minimizing mean square error (M...
Saved in:
| Published in | Soft computing (Berlin, Germany) Vol. 24; no. 10; pp. 7637 - 7684 |
|---|---|
| Main Authors | , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2020
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1432-7643 1433-7479 |
| DOI | 10.1007/s00500-019-04390-9 |
Cover
| Abstract | The design method of adaptive infinite impulse response (IIR) filter is a challenging problem. Its design principle is to determine the filter parameters by the iteration process of the adaptive algorithm, which is to obtain an optimal model for unknown plant based on minimizing mean square error (MSE). However, many adaptive algorithms cannot adjust the parameters of IIR filter to the minimum MSE. Therefore, a more efficient adaptive optimization algorithm is required to adjust the parameters of IIR filter. In this paper, we propose a selfish herd optimization algorithm based on chaotic strategy (CSHO) and apply it to solving IIR system identification problem. In CSHO, we add a chaotic search strategy, which is a better local optimization strategy. Its function is to search for better candidate solutions around the global optimal solution, which makes the local search of the algorithm more precise and finds out potential global optimal solutions. We use solving IIR system identification problem to verify the effectiveness of CSHO. Ten typical IIR filter models with the same order and reduced order are selected for experiments. The experimental results of CSHO compare with those of bat algorithm (BA), cellular particle swarm optimization and differential evolution (CPSO-DE), firefly algorithm (FFA), hybrid particle swarm optimization and gravitational search algorithm (HPSO-GSA), improved particle swarm optimization (IPSO) and opposition-based harmony search algorithm (OHS), respectively. The experimental results show that CSHO has better optimization accuracy, convergence speed and stability in solving most of the IIR system identification problems. At the same time, it also obtains better optimization parameters and achieves smaller difference between actual output and expected output in test samples. |
|---|---|
| AbstractList | The design method of adaptive infinite impulse response (IIR) filter is a challenging problem. Its design principle is to determine the filter parameters by the iteration process of the adaptive algorithm, which is to obtain an optimal model for unknown plant based on minimizing mean square error (MSE). However, many adaptive algorithms cannot adjust the parameters of IIR filter to the minimum MSE. Therefore, a more efficient adaptive optimization algorithm is required to adjust the parameters of IIR filter. In this paper, we propose a selfish herd optimization algorithm based on chaotic strategy (CSHO) and apply it to solving IIR system identification problem. In CSHO, we add a chaotic search strategy, which is a better local optimization strategy. Its function is to search for better candidate solutions around the global optimal solution, which makes the local search of the algorithm more precise and finds out potential global optimal solutions. We use solving IIR system identification problem to verify the effectiveness of CSHO. Ten typical IIR filter models with the same order and reduced order are selected for experiments. The experimental results of CSHO compare with those of bat algorithm (BA), cellular particle swarm optimization and differential evolution (CPSO-DE), firefly algorithm (FFA), hybrid particle swarm optimization and gravitational search algorithm (HPSO-GSA), improved particle swarm optimization (IPSO) and opposition-based harmony search algorithm (OHS), respectively. The experimental results show that CSHO has better optimization accuracy, convergence speed and stability in solving most of the IIR system identification problems. At the same time, it also obtains better optimization parameters and achieves smaller difference between actual output and expected output in test samples. |
| Author | Li, Bo Li, YanChao Hu, Peng Rabbani, Mahdi Jelodar, Hamed Yuan, Chi Li, Hao Masood, Isma Wang, Yongli Zhao, Ruxin Liu, Chang |
| Author_xml | – sequence: 1 givenname: Ruxin surname: Zhao fullname: Zhao, Ruxin organization: School of Computer Science and Engineering, Nanjing University of Science and Technology – sequence: 2 givenname: Yongli orcidid: 0000-0003-2219-067X surname: Wang fullname: Wang, Yongli email: yongliwang@njust.edu.cn organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, CETC Big Data Research Institute Co., Ltd – sequence: 3 givenname: Chang surname: Liu fullname: Liu, Chang organization: School of Mechanical and Automotive Engineering, Yangzhou Polytechnic Institute – sequence: 4 givenname: Peng surname: Hu fullname: Hu, Peng organization: School of Computer Science and Engineering, Nanjing University of Science and Technology – sequence: 5 givenname: Hamed surname: Jelodar fullname: Jelodar, Hamed organization: School of Computer Science and Engineering, Nanjing University of Science and Technology – sequence: 6 givenname: Chi surname: Yuan fullname: Yuan, Chi organization: School of Computer Science and Engineering, Nanjing University of Science and Technology – sequence: 7 givenname: YanChao surname: Li fullname: Li, YanChao organization: School of Computer Science and Engineering, Nanjing University of Science and Technology – sequence: 8 givenname: Isma surname: Masood fullname: Masood, Isma organization: School of Computer Science and Engineering, Nanjing University of Science and Technology – sequence: 9 givenname: Mahdi surname: Rabbani fullname: Rabbani, Mahdi organization: School of Computer Science and Engineering, Nanjing University of Science and Technology – sequence: 10 givenname: Hao surname: Li fullname: Li, Hao organization: School of Computer Science and Engineering, Nanjing University of Science and Technology – sequence: 11 givenname: Bo surname: Li fullname: Li, Bo organization: School of Computer Science and Engineering, Nanjing University of Science and Technology |
| BookMark | eNp9kFtLAzEQhYNUsFX_gE8Bn1dz2033UYqXQkHw8hyy2Ukb2d3UJAr11xu7guBDn2Zgzjdz5szQZPADIHRByRUlRF5HQkpCCkLrgghek6I-QlMqOC-kkPVk37NCVoKfoFmMb4QwKks-Rd0zdNbFDd5AaLHfJte7L52cH7Du1j64tOlxoyPk4YDNRvvkDI4p6ATrHbY-YN3qjH0CXi6fcNzFBD12LQzJWWfGVdvgmw76M3RsdRfh_Leeote725fFQ7F6vF8ublaF4bROBeeWVGU23_JGV60tm7KRDCpoqaXcGmPmTHItGglzJhjjVdloK0owVjSCGn6KLse9-e77B8Sk3vxHGPJJxWoq63klucyq-agywccYwCrj0t5v_s51ihL1k60as1U5W7XPVtUZZf_QbXC9DrvDEB-hmMXDGsKfqwPUNxqQkDk |
| CitedBy_id | crossref_primary_10_53070_bbd_1172833 crossref_primary_10_1016_j_dajour_2023_100355 crossref_primary_10_3390_machines10070561 crossref_primary_10_1016_j_jhydrol_2025_132732 crossref_primary_10_1007_s00500_023_09503_z crossref_primary_10_1007_s13369_021_06513_7 crossref_primary_10_1016_j_prime_2023_100225 crossref_primary_10_1007_s12530_023_09526_9 crossref_primary_10_1016_j_aej_2023_12_054 crossref_primary_10_1007_s00034_025_02997_y crossref_primary_10_1016_j_eswa_2022_117127 crossref_primary_10_46300_9106_2023_17_1 crossref_primary_10_1007_s10489_021_02353_y crossref_primary_10_1080_02286203_2023_2240564 crossref_primary_10_1007_s11227_023_05086_6 |
| Cites_doi | 10.1007/s00500-017-2597-4 10.1016/j.chaos.2004.11.095 10.1016/j.matcom.2004.10.003 10.1016/j.eswa.2011.04.054 10.1109/TIE.2009.2031194 10.1016/j.swevo.2011.02.002 10.1016/j.apacoust.2018.06.007 10.1109/78.285655 10.1016/j.engappai.2010.05.007 10.1016/0022-5193(71)90189-5 10.1016/j.sigpro.2014.08.045 10.1016/j.procs.2017.09.146 10.1007/s10957-012-0028-3 10.1007/s11071-014-1832-0 10.1504/IJBIC.2013.053508 10.1016/j.dsp.2017.09.006 10.1016/j.yjmcc.2018.08.006 10.1016/j.conengprac.2011.04.011 10.1049/cje.2018.06.008 10.1016/j.biosystems.2017.07.010 10.1016/j.ifacol.2018.09.078 10.1016/j.ipl.2004.12.015 10.1007/s13369-016-2222-3 10.1016/j.proeng.2011.11.2476 10.1016/j.jfranklin.2014.01.001 10.1109/53.29644 10.1007/s00521-016-2338-0 10.1007/s11071-017-3383-7 10.1016/j.pisc.2016.04.059 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2019 Springer-Verlag GmbH Germany, part of Springer Nature 2019. |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s00500-019-04390-9 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database (ProQuest) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1433-7479 |
| EndPage | 7684 |
| ExternalDocumentID | 10_1007_s00500_019_04390_9 |
| GrantInformation_xml | – fundername: “13th Five-Year” Equipment Field Fund grantid: 61403120501 – fundername: National Natural Science Foundation of China grantid: 61170035; 61272420; 81674099; 61502233 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Nanjing Science and Technology Development Plan Project grantid: 201805036 – fundername: Fundamental Research Fund for the Central Universities grantid: 30916011328; 30918015103; 30918012204 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-33f065433d3ba6df5b5b72e6ed1f13fccc8273a4b7e82422365baf45ecf4b41c3 |
| IEDL.DBID | BENPR |
| ISSN | 1432-7643 |
| IngestDate | Fri Jul 25 23:37:05 EDT 2025 Thu Apr 24 22:53:11 EDT 2025 Wed Oct 01 03:00:05 EDT 2025 Fri Feb 21 02:33:23 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Chaotic strategy IIR system identification problem Local optimization strategy Adaptive algorithms Selfish herd optimization algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-33f065433d3ba6df5b5b72e6ed1f13fccc8273a4b7e82422365baf45ecf4b41c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2219-067X |
| PQID | 2917986737 |
| PQPubID | 2043697 |
| PageCount | 48 |
| ParticipantIDs | proquest_journals_2917986737 crossref_citationtrail_10_1007_s00500_019_04390_9 crossref_primary_10_1007_s00500_019_04390_9 springer_journals_10_1007_s00500_019_04390_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20200500 2020-05-00 20200501 |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 5 year: 2020 text: 20200500 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Fusion of Foundations, Methodologies and Applications |
| PublicationTitle | Soft computing (Berlin, Germany) |
| PublicationTitleAbbrev | Soft Comput |
| PublicationYear | 2020 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | KarabogaNA novel and efficient algorithm for adaptive filtering: artificial bee colony algorithmTurk J Electr Eng Comput Sci201119175190 SahaSMukherjeeVA novel chaos-integrated symbiotic organisms search algorithm for global optimizationSoft Comput2018223797381610.1007/s00500-017-2597-4 LiuBWangLImproved particle swarm optimization combined with chaosChaos Solitons Fract2005251261127110.1016/j.chaos.2004.11.095 KumarMBat algorithm: application to adaptive infinite impulse response system identificationArab J Sci Eng2016413587360410.1007/s13369-016-2222-3 PandaGIIR system identification using cat swarm optimizationExpert Syst Appl201138126711268310.1016/j.eswa.2011.04.054 XiangTLiaoXWongKAn improved particle swarm optimization algorithm combined with piecewise linear chaotic mapAppl Math Comput20071901637164523397551122.65363 YanWZhangJZhangSWenPA novel pipelined neural IIR adaptive filter for speech predictionAppl Acoust2018141647010.1016/j.apacoust.2018.06.007 AstromKJAdaptive Control1995ReadingAddison-Wesley1163.93350 MandalSDifferential evolution with wavelet mutation in digital FIR filter designJ Optim Theory Appl2012155315324298312110.1007/s10957-012-0028-3 UpadhyayPA novel design method for optimal IIR system identification using opposition based harmony search algorithmJ Frankl Inst201435124542488319190210.1016/j.jfranklin.2014.01.001 HuangC-YLaiC-HInhibition of ERK-Drp1 signaling and mitochondria fragmentation alleviates IGF-IIR-induced mitochondria dysfunction during heart failureJ Mol Cell Cardiol2018122586810.1016/j.yjmcc.2018.08.006 DimpleKKotaryDKAn incremental RLS for distributed parameter estimation of IIR systems present in computing nodes of a wireless sensor networkProcedia Comput Sci201711569970610.1016/j.procs.2017.09.146 ScarpinitiMNonlinear system identification using IIR spline adaptive filtersSig Process2015108303510.1016/j.sigpro.2014.08.045 SahaSKA new design method using opposition-based BAT algorithm for IIR system identification problemInt J Bio-Inspired Comput201359913210.1504/IJBIC.2013.053508 GomezCRecursive identification of IIR systems with multilevel output quantization and lossy memoryless channels with transmission errorsIFAC-PapersOnLine20185190991410.1016/j.ifacol.2018.09.078 ZhangSZhouYGrey wolf optimizer with ranking-based mutation operator for IIR model identificationChin J Electron2018271071107910.1049/cje.2018.06.008 ZouD-XDebSWangG-GSolving IIR system identification by a variant of particle swarm optimizationNeural Comput Appl20183068569810.1007/s00521-016-2338-0 WangYDingFXuLSome new results of designing an IIR filter with colored noise for signal processingDigit Signal Proc2018724458372607210.1016/j.dsp.2017.09.006 SarangiAAn approach to identification of unknown IIR systems using crossover cat swarm optimizationPerspect Sci2016830130310.1016/j.pisc.2016.04.059 HamiltonWDGeometry to the selfish herdJ Theory Biol19713129531110.1016/0022-5193(71)90189-5 YaoLSetharesWANonlinear parameter estimation via the genetic algorithmIEEE Trans Signal Process19944292793510.1109/78.285655 JiangSA new design method for adaptive IIR system identification using hybrid particle swarm optimization and gravitational search algorithmNonlinear Dyn2015925532576331746310.1007/s11071-014-1832-0 FaustoFCuevasEA global optimization algorithm inspired in the behavior of selfish herdsBiosystems2017160395510.1016/j.biosystems.2017.07.010 GriffithsEJOrponenPOptimization, block designs and No Free Lunch theoremsInf Process Lett2005945561212652910.1016/j.ipl.2004.12.015 LiangWLuWFanJThe signal detection in TWACS based on IIR filterProcedia Eng20112312012410.1016/j.proeng.2011.11.2476 Lagos-EulogioPA new design method for adaptive IIR system identification using hybrid CPSO and DENonlinear Dyn2017882371238910.1007/s11071-017-3383-7 UpadhyayPA new design method based on firefly algorithm for IIR system identification problemJ King Saud Univ Eng Sci201628174198 RashediEFilter modeling using gravitational search algorithmEng Appl Artif Intell20112411712210.1016/j.engappai.2010.05.007 DaiCSeeker optimization algorithm for digital IIR filter designIEEE Trans Ind Electron20105717101718 ChengSLiC-WFuzzy PDFF-IIR controller for PMSM drive systemsControl Eng Pract20111982883510.1016/j.conengprac.2011.04.011 ShynkJJAdaptive IIR filteringIEEE ASSP Mag1989642110.1109/53.29644 JiangCBompardEA hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimizationMath Comput Simul200568576510.1016/j.matcom.2004.10.003 DerracJGracieSMolinaDHerreraFA practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithmsSwarm Evol Comput2011131810.1016/j.swevo.2011.02.002 K Dimple (4390_CR5) 2017; 115 EJ Griffiths (4390_CR8) 2005; 94 D-X Zou (4390_CR33) 2018; 30 WD Hamilton (4390_CR9) 1971; 31 T Xiang (4390_CR29) 2007; 190 P Upadhyay (4390_CR27) 2016; 28 S Zhang (4390_CR32) 2018; 27 C Dai (4390_CR3) 2010; 57 P Lagos-Eulogio (4390_CR15) 2017; 88 C-Y Huang (4390_CR10) 2018; 122 F Fausto (4390_CR6) 2017; 160 S Cheng (4390_CR2) 2011; 19 J Derrac (4390_CR4) 2011; 1 P Upadhyay (4390_CR26) 2014; 351 W Yan (4390_CR30) 2018; 141 M Kumar (4390_CR14) 2016; 41 KJ Astrom (4390_CR1) 1995 M Scarpiniti (4390_CR24) 2015; 108 B Liu (4390_CR17) 2005; 25 JJ Shynk (4390_CR25) 1989; 6 N Karaboga (4390_CR13) 2011; 19 S Saha (4390_CR21) 2018; 22 Y Wang (4390_CR28) 2018; 72 E Rashedi (4390_CR20) 2011; 24 C Gomez (4390_CR7) 2018; 51 SK Saha (4390_CR22) 2013; 5 S Jiang (4390_CR12) 2015; 9 S Mandal (4390_CR18) 2012; 155 C Jiang (4390_CR11) 2005; 68 W Liang (4390_CR16) 2011; 23 L Yao (4390_CR31) 1994; 42 G Panda (4390_CR19) 2011; 38 A Sarangi (4390_CR23) 2016; 8 |
| References_xml | – reference: YaoLSetharesWANonlinear parameter estimation via the genetic algorithmIEEE Trans Signal Process19944292793510.1109/78.285655 – reference: DerracJGracieSMolinaDHerreraFA practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithmsSwarm Evol Comput2011131810.1016/j.swevo.2011.02.002 – reference: UpadhyayPA new design method based on firefly algorithm for IIR system identification problemJ King Saud Univ Eng Sci201628174198 – reference: DimpleKKotaryDKAn incremental RLS for distributed parameter estimation of IIR systems present in computing nodes of a wireless sensor networkProcedia Comput Sci201711569970610.1016/j.procs.2017.09.146 – reference: ShynkJJAdaptive IIR filteringIEEE ASSP Mag1989642110.1109/53.29644 – reference: KarabogaNA novel and efficient algorithm for adaptive filtering: artificial bee colony algorithmTurk J Electr Eng Comput Sci201119175190 – reference: Lagos-EulogioPA new design method for adaptive IIR system identification using hybrid CPSO and DENonlinear Dyn2017882371238910.1007/s11071-017-3383-7 – reference: SahaSMukherjeeVA novel chaos-integrated symbiotic organisms search algorithm for global optimizationSoft Comput2018223797381610.1007/s00500-017-2597-4 – reference: JiangCBompardEA hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimizationMath Comput Simul200568576510.1016/j.matcom.2004.10.003 – reference: UpadhyayPA novel design method for optimal IIR system identification using opposition based harmony search algorithmJ Frankl Inst201435124542488319190210.1016/j.jfranklin.2014.01.001 – reference: JiangSA new design method for adaptive IIR system identification using hybrid particle swarm optimization and gravitational search algorithmNonlinear Dyn2015925532576331746310.1007/s11071-014-1832-0 – reference: XiangTLiaoXWongKAn improved particle swarm optimization algorithm combined with piecewise linear chaotic mapAppl Math Comput20071901637164523397551122.65363 – reference: HuangC-YLaiC-HInhibition of ERK-Drp1 signaling and mitochondria fragmentation alleviates IGF-IIR-induced mitochondria dysfunction during heart failureJ Mol Cell Cardiol2018122586810.1016/j.yjmcc.2018.08.006 – reference: RashediEFilter modeling using gravitational search algorithmEng Appl Artif Intell20112411712210.1016/j.engappai.2010.05.007 – reference: ZouD-XDebSWangG-GSolving IIR system identification by a variant of particle swarm optimizationNeural Comput Appl20183068569810.1007/s00521-016-2338-0 – reference: DaiCSeeker optimization algorithm for digital IIR filter designIEEE Trans Ind Electron20105717101718 – reference: LiuBWangLImproved particle swarm optimization combined with chaosChaos Solitons Fract2005251261127110.1016/j.chaos.2004.11.095 – reference: AstromKJAdaptive Control1995ReadingAddison-Wesley1163.93350 – reference: GomezCRecursive identification of IIR systems with multilevel output quantization and lossy memoryless channels with transmission errorsIFAC-PapersOnLine20185190991410.1016/j.ifacol.2018.09.078 – reference: HamiltonWDGeometry to the selfish herdJ Theory Biol19713129531110.1016/0022-5193(71)90189-5 – reference: WangYDingFXuLSome new results of designing an IIR filter with colored noise for signal processingDigit Signal Proc2018724458372607210.1016/j.dsp.2017.09.006 – reference: KumarMBat algorithm: application to adaptive infinite impulse response system identificationArab J Sci Eng2016413587360410.1007/s13369-016-2222-3 – reference: SarangiAAn approach to identification of unknown IIR systems using crossover cat swarm optimizationPerspect Sci2016830130310.1016/j.pisc.2016.04.059 – reference: ChengSLiC-WFuzzy PDFF-IIR controller for PMSM drive systemsControl Eng Pract20111982883510.1016/j.conengprac.2011.04.011 – reference: YanWZhangJZhangSWenPA novel pipelined neural IIR adaptive filter for speech predictionAppl Acoust2018141647010.1016/j.apacoust.2018.06.007 – reference: SahaSKA new design method using opposition-based BAT algorithm for IIR system identification problemInt J Bio-Inspired Comput201359913210.1504/IJBIC.2013.053508 – reference: FaustoFCuevasEA global optimization algorithm inspired in the behavior of selfish herdsBiosystems2017160395510.1016/j.biosystems.2017.07.010 – reference: GriffithsEJOrponenPOptimization, block designs and No Free Lunch theoremsInf Process Lett2005945561212652910.1016/j.ipl.2004.12.015 – reference: ScarpinitiMNonlinear system identification using IIR spline adaptive filtersSig Process2015108303510.1016/j.sigpro.2014.08.045 – reference: ZhangSZhouYGrey wolf optimizer with ranking-based mutation operator for IIR model identificationChin J Electron2018271071107910.1049/cje.2018.06.008 – reference: PandaGIIR system identification using cat swarm optimizationExpert Syst Appl201138126711268310.1016/j.eswa.2011.04.054 – reference: MandalSDifferential evolution with wavelet mutation in digital FIR filter designJ Optim Theory Appl2012155315324298312110.1007/s10957-012-0028-3 – reference: LiangWLuWFanJThe signal detection in TWACS based on IIR filterProcedia Eng20112312012410.1016/j.proeng.2011.11.2476 – volume: 22 start-page: 3797 year: 2018 ident: 4390_CR21 publication-title: Soft Comput doi: 10.1007/s00500-017-2597-4 – volume-title: Adaptive Control year: 1995 ident: 4390_CR1 – volume: 25 start-page: 1261 year: 2005 ident: 4390_CR17 publication-title: Chaos Solitons Fract doi: 10.1016/j.chaos.2004.11.095 – volume: 68 start-page: 57 year: 2005 ident: 4390_CR11 publication-title: Math Comput Simul doi: 10.1016/j.matcom.2004.10.003 – volume: 38 start-page: 12671 year: 2011 ident: 4390_CR19 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.04.054 – volume: 57 start-page: 1710 year: 2010 ident: 4390_CR3 publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2009.2031194 – volume: 1 start-page: 3 year: 2011 ident: 4390_CR4 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2011.02.002 – volume: 141 start-page: 64 year: 2018 ident: 4390_CR30 publication-title: Appl Acoust doi: 10.1016/j.apacoust.2018.06.007 – volume: 42 start-page: 927 year: 1994 ident: 4390_CR31 publication-title: IEEE Trans Signal Process doi: 10.1109/78.285655 – volume: 24 start-page: 117 year: 2011 ident: 4390_CR20 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2010.05.007 – volume: 19 start-page: 175 year: 2011 ident: 4390_CR13 publication-title: Turk J Electr Eng Comput Sci – volume: 31 start-page: 295 year: 1971 ident: 4390_CR9 publication-title: J Theory Biol doi: 10.1016/0022-5193(71)90189-5 – volume: 28 start-page: 174 year: 2016 ident: 4390_CR27 publication-title: J King Saud Univ Eng Sci – volume: 108 start-page: 30 year: 2015 ident: 4390_CR24 publication-title: Sig Process doi: 10.1016/j.sigpro.2014.08.045 – volume: 115 start-page: 699 year: 2017 ident: 4390_CR5 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2017.09.146 – volume: 155 start-page: 315 year: 2012 ident: 4390_CR18 publication-title: J Optim Theory Appl doi: 10.1007/s10957-012-0028-3 – volume: 9 start-page: 2553 year: 2015 ident: 4390_CR12 publication-title: Nonlinear Dyn doi: 10.1007/s11071-014-1832-0 – volume: 5 start-page: 99 year: 2013 ident: 4390_CR22 publication-title: Int J Bio-Inspired Comput doi: 10.1504/IJBIC.2013.053508 – volume: 72 start-page: 44 year: 2018 ident: 4390_CR28 publication-title: Digit Signal Proc doi: 10.1016/j.dsp.2017.09.006 – volume: 122 start-page: 58 year: 2018 ident: 4390_CR10 publication-title: J Mol Cell Cardiol doi: 10.1016/j.yjmcc.2018.08.006 – volume: 19 start-page: 828 year: 2011 ident: 4390_CR2 publication-title: Control Eng Pract doi: 10.1016/j.conengprac.2011.04.011 – volume: 27 start-page: 1071 year: 2018 ident: 4390_CR32 publication-title: Chin J Electron doi: 10.1049/cje.2018.06.008 – volume: 160 start-page: 39 year: 2017 ident: 4390_CR6 publication-title: Biosystems doi: 10.1016/j.biosystems.2017.07.010 – volume: 51 start-page: 909 year: 2018 ident: 4390_CR7 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.09.078 – volume: 94 start-page: 55 year: 2005 ident: 4390_CR8 publication-title: Inf Process Lett doi: 10.1016/j.ipl.2004.12.015 – volume: 41 start-page: 3587 year: 2016 ident: 4390_CR14 publication-title: Arab J Sci Eng doi: 10.1007/s13369-016-2222-3 – volume: 23 start-page: 120 year: 2011 ident: 4390_CR16 publication-title: Procedia Eng doi: 10.1016/j.proeng.2011.11.2476 – volume: 190 start-page: 1637 year: 2007 ident: 4390_CR29 publication-title: Appl Math Comput – volume: 351 start-page: 2454 year: 2014 ident: 4390_CR26 publication-title: J Frankl Inst doi: 10.1016/j.jfranklin.2014.01.001 – volume: 6 start-page: 4 year: 1989 ident: 4390_CR25 publication-title: IEEE ASSP Mag doi: 10.1109/53.29644 – volume: 30 start-page: 685 year: 2018 ident: 4390_CR33 publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2338-0 – volume: 88 start-page: 2371 year: 2017 ident: 4390_CR15 publication-title: Nonlinear Dyn doi: 10.1007/s11071-017-3383-7 – volume: 8 start-page: 301 year: 2016 ident: 4390_CR23 publication-title: Perspect Sci doi: 10.1016/j.pisc.2016.04.059 |
| SSID | ssj0021753 |
| Score | 2.3291306 |
| Snippet | The design method of adaptive infinite impulse response (IIR) filter is a challenging problem. Its design principle is to determine the filter parameters by... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 7637 |
| SubjectTerms | Adaptive algorithms Adaptive systems Artificial Intelligence Computational Intelligence Control Engineering Evolutionary computation Heuristic methods Identification systems IIR filters Impulse response Iterative methods Laplace transforms Local optimization Mathematical Logic and Foundations Mathematical models Mean square errors Mechatronics Methodologies and Application Methods Optimization algorithms Parameter estimation Parameters Particle swarm optimization Researchers Robotics Search algorithms Search methods Signal processing System identification |
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oXPQgihpRND140yXsE_ZIDAgaPagkeNpsX0JcHmGXg_56p7tdUKImnNtOdtuZztd25huASzwhUFsy31CPPIaDGow2x9Q1HFPlCnnDN1Vy8sOj1-07dwN3oJPC4jzaPX-STHfqZbKboipRQVTqMh9P6oa_DcWUb6sAxdbt6317edDS7JMIBRA9osvVyTK_S_npkFYoc-1hNPU3nRL08y_Nwkzea4uE1tjnGonjpr-yD3sagJJWpjEHsCUmZSjlxR2ItvUy7H5jKjyE6FlEchQPCS4xJ1PcZ8Y6gZOE0dt0PkqGY6I8IjZOCBuGUxRP4oz69oMgMiYhD2dqbyW93hPJCKTJiOtgpUyUrm5zBP1O--Wma-hCDQZDC04M25ZpjqrNbRp6XLrUpQ1LeIKb0kRNYKyJKCl0aEM0ERJYtufSUDquYNKhjsnsYyhMphNxAsSXFre4Xxc40KEmCwVrijrqjV-XrqRWBcx8tQKmWcxVMY0oWPIvp5Mb4OQG6eQGfgWulmNmGYfHv72ruRIE2p7jwPKVoqmaPhW4ztd01fy3tNPNup_BjqUO9GlEZRUKyXwhzhH1JPRCK_kXETf3zQ priority: 102 providerName: Springer Nature |
| Title | Selfish herd optimization algorithm based on chaotic strategy for adaptive IIR system identification problem |
| URI | https://link.springer.com/article/10.1007/s00500-019-04390-9 https://www.proquest.com/docview/2917986737 |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: AFBBN dateStart: 19970401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-7479 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: U2A dateStart: 19970404 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9pAEB4RuOSSpE2q0FC0h94SK3htA3uIKqgg0CqookFKT9Y-CxKvBHLov8-MvQY1UnLyYb0jeWbnsd6d7wP4ijsEFTktAjrkCWJcwehzmn7DaaIrNC0RUnPy3ag5mMQ_HpKHEoyKXhi6VlnExCxQm5Wmf-TXXBC0FrGqfFs_BsQaRaerBYWG9NQK5iaDGDuACidkrDJUur3Rr_FuC-ZxKbFIwLoSk7Fvo8ma6QgKhS5p0WFBJBqB-D9V7evPV0emWSbqn8CRLyFZJ7f5ByjZ5Uc4LugZmPfWU5j_tnM320wZmsWwFcaGhW-6ZHL-F79tO10wymI4uGR6KlcokG1yuNp_DKtZJo1cUzxkw-GY5aDPbGb8BaNclGekOYNJv3f_fRB4coVAo9dtgyhyWV9pZCIlm8YlKlEtbpvWhC5E62ndxspGxqpl25jGedRMlHRxYrWLVRzq6BOUl6ulPQcmHDfciIbFibEKtbS6bRtoa9FwiVO8CmGhx1R75HEiwJinO8zkTPcp6j7NdJ-KKlzu5qxz3I13364V5km9D27S_YqpwlVhsv3w29I-vy_tAg45bbqzW481KG-fnu0XrEy2qg4H7f5tHSqdfrc7ouftn5-9ul-EODrhnRdqwuTu |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7xOMCFUh4iLbQ-lBNdkbW9SXxAFbSgpECEKEjcFj8JUkjSJlXFn-tv68yuN1GR4MbZ65F2PJ6H7fk-gE9YIRgRrErokieRaMG45ywdw1miK3RNlVJz8nm30b6W32-ymzn4W_XC0LPKyicWjtoNLZ2R73NF0FrEqvJl9DMh1ii6Xa0oNHSkVnAHBcRYbOw49Y9_sIQbH3S-4Xrvcn5yfPW1nUSWgcSi-U0SIULRYCmcMLrhQmYy0-S-4V0aUvwNa1sY4rU0Td_CeMZFIzM6yMzbII1MrUC587AohVRY_C0eHXcvLqclX8TBxKQE81gM_rFtp2jeI-gVehRGlxNC1RP1f2ic5btPrmiLyHeyCisxZWWHpY29hTk_WIM3FR0Ei95hHfo_fD_cj3sMzcCxIfqih9jkyXT_DnU56T0wipo4OGC2p4cokI1LeNxHhtkz006PyP-yTueSlSDT7N7FB02lqMiAswHXr6LmTVgYDAd-C5gK3HGn6h4nSpNa7W3L19G2VD1kwfAapJUecxuRzolwo59PMZoL3eeo-7zQfa5qsDedMypxPl78ertanjzu-XE-s9AafK6WbDb8vLR3L0v7CEvtq_Oz_KzTPX0Py5wK_uLF5TYsTH799juYFU3Mh2h6DG5f29r_AUrPHd4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSAgOPAaIwYAcuEHF-tx6nIBp4zEhYNJuVfNik7p22sqBf4_Tpt1AgMQ5iQ_54thO7M8A5xghUFsy31CfPIaDJxh1jqlnOKbaFfKmb6ri5Me-1x04d0N3uFTFn2W7F1-SeU2DYmmK06spl1dl4ZuiLVEJVephH6N2w1-FNUcRJeCJHljtMuTSPJToFKAficZXl838LOOraVr4m9--SDPL09mBLe0yknaO8S6siLgK20U7BqK1swqbS9yCexC9iEiO5yOCoHCS4M0w0SWXJIzektk4HU2IsmE4GBM2ChMUT-Y5We0HQV-WhDycqtuQ9HrPJKd8JmOu04tyUbofzT4MOrev111Dt1YwGOpcati2zKpKbW7T0OPSpS5tWsIT3JQmYsdYC_2a0KFN0UIjbtmeS0PpuIJJhzomsw-gEiexOATiS4tb3G8IXOhQk4WCtUQDkfYb0pXUqoFZ7GrANO-4an8RBSVjcoZEgEgEGRKBX4OLcs00Z934c3a9ACvQGjgPLF9RsakuPDW4LABcDP8u7eh_089g_emmEzz0-vfHsGGpaDxLh6xDJZ29ixN0WVJ6mp3KTx914fg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selfish+herd+optimization+algorithm+based+on+chaotic+strategy+for+adaptive+IIR+system+identification+problem&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Zhao%2C+Ruxin&rft.au=Wang%2C+Yongli&rft.au=Liu%2C+Chang&rft.au=Hu%2C+Peng&rft.date=2020-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=24&rft.issue=10&rft.spage=7637&rft.epage=7684&rft_id=info:doi/10.1007%2Fs00500-019-04390-9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |