Selfish herd optimization algorithm based on chaotic strategy for adaptive IIR system identification problem

The design method of adaptive infinite impulse response (IIR) filter is a challenging problem. Its design principle is to determine the filter parameters by the iteration process of the adaptive algorithm, which is to obtain an optimal model for unknown plant based on minimizing mean square error (M...

Full description

Saved in:
Bibliographic Details
Published inSoft computing (Berlin, Germany) Vol. 24; no. 10; pp. 7637 - 7684
Main Authors Zhao, Ruxin, Wang, Yongli, Liu, Chang, Hu, Peng, Jelodar, Hamed, Yuan, Chi, Li, YanChao, Masood, Isma, Rabbani, Mahdi, Li, Hao, Li, Bo
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1432-7643
1433-7479
DOI10.1007/s00500-019-04390-9

Cover

Abstract The design method of adaptive infinite impulse response (IIR) filter is a challenging problem. Its design principle is to determine the filter parameters by the iteration process of the adaptive algorithm, which is to obtain an optimal model for unknown plant based on minimizing mean square error (MSE). However, many adaptive algorithms cannot adjust the parameters of IIR filter to the minimum MSE. Therefore, a more efficient adaptive optimization algorithm is required to adjust the parameters of IIR filter. In this paper, we propose a selfish herd optimization algorithm based on chaotic strategy (CSHO) and apply it to solving IIR system identification problem. In CSHO, we add a chaotic search strategy, which is a better local optimization strategy. Its function is to search for better candidate solutions around the global optimal solution, which makes the local search of the algorithm more precise and finds out potential global optimal solutions. We use solving IIR system identification problem to verify the effectiveness of CSHO. Ten typical IIR filter models with the same order and reduced order are selected for experiments. The experimental results of CSHO compare with those of bat algorithm (BA), cellular particle swarm optimization and differential evolution (CPSO-DE), firefly algorithm (FFA), hybrid particle swarm optimization and gravitational search algorithm (HPSO-GSA), improved particle swarm optimization (IPSO) and opposition-based harmony search algorithm (OHS), respectively. The experimental results show that CSHO has better optimization accuracy, convergence speed and stability in solving most of the IIR system identification problems. At the same time, it also obtains better optimization parameters and achieves smaller difference between actual output and expected output in test samples.
AbstractList The design method of adaptive infinite impulse response (IIR) filter is a challenging problem. Its design principle is to determine the filter parameters by the iteration process of the adaptive algorithm, which is to obtain an optimal model for unknown plant based on minimizing mean square error (MSE). However, many adaptive algorithms cannot adjust the parameters of IIR filter to the minimum MSE. Therefore, a more efficient adaptive optimization algorithm is required to adjust the parameters of IIR filter. In this paper, we propose a selfish herd optimization algorithm based on chaotic strategy (CSHO) and apply it to solving IIR system identification problem. In CSHO, we add a chaotic search strategy, which is a better local optimization strategy. Its function is to search for better candidate solutions around the global optimal solution, which makes the local search of the algorithm more precise and finds out potential global optimal solutions. We use solving IIR system identification problem to verify the effectiveness of CSHO. Ten typical IIR filter models with the same order and reduced order are selected for experiments. The experimental results of CSHO compare with those of bat algorithm (BA), cellular particle swarm optimization and differential evolution (CPSO-DE), firefly algorithm (FFA), hybrid particle swarm optimization and gravitational search algorithm (HPSO-GSA), improved particle swarm optimization (IPSO) and opposition-based harmony search algorithm (OHS), respectively. The experimental results show that CSHO has better optimization accuracy, convergence speed and stability in solving most of the IIR system identification problems. At the same time, it also obtains better optimization parameters and achieves smaller difference between actual output and expected output in test samples.
Author Li, Bo
Li, YanChao
Hu, Peng
Rabbani, Mahdi
Jelodar, Hamed
Yuan, Chi
Li, Hao
Masood, Isma
Wang, Yongli
Zhao, Ruxin
Liu, Chang
Author_xml – sequence: 1
  givenname: Ruxin
  surname: Zhao
  fullname: Zhao, Ruxin
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology
– sequence: 2
  givenname: Yongli
  orcidid: 0000-0003-2219-067X
  surname: Wang
  fullname: Wang, Yongli
  email: yongliwang@njust.edu.cn
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, CETC Big Data Research Institute Co., Ltd
– sequence: 3
  givenname: Chang
  surname: Liu
  fullname: Liu, Chang
  organization: School of Mechanical and Automotive Engineering, Yangzhou Polytechnic Institute
– sequence: 4
  givenname: Peng
  surname: Hu
  fullname: Hu, Peng
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology
– sequence: 5
  givenname: Hamed
  surname: Jelodar
  fullname: Jelodar, Hamed
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology
– sequence: 6
  givenname: Chi
  surname: Yuan
  fullname: Yuan, Chi
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology
– sequence: 7
  givenname: YanChao
  surname: Li
  fullname: Li, YanChao
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology
– sequence: 8
  givenname: Isma
  surname: Masood
  fullname: Masood, Isma
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology
– sequence: 9
  givenname: Mahdi
  surname: Rabbani
  fullname: Rabbani, Mahdi
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology
– sequence: 10
  givenname: Hao
  surname: Li
  fullname: Li, Hao
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology
– sequence: 11
  givenname: Bo
  surname: Li
  fullname: Li, Bo
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology
BookMark eNp9kFtLAzEQhYNUsFX_gE8Bn1dz2033UYqXQkHw8hyy2Ukb2d3UJAr11xu7guBDn2Zgzjdz5szQZPADIHRByRUlRF5HQkpCCkLrgghek6I-QlMqOC-kkPVk37NCVoKfoFmMb4QwKks-Rd0zdNbFDd5AaLHfJte7L52cH7Du1j64tOlxoyPk4YDNRvvkDI4p6ATrHbY-YN3qjH0CXi6fcNzFBD12LQzJWWfGVdvgmw76M3RsdRfh_Leeote725fFQ7F6vF8ublaF4bROBeeWVGU23_JGV60tm7KRDCpoqaXcGmPmTHItGglzJhjjVdloK0owVjSCGn6KLse9-e77B8Sk3vxHGPJJxWoq63klucyq-agywccYwCrj0t5v_s51ihL1k60as1U5W7XPVtUZZf_QbXC9DrvDEB-hmMXDGsKfqwPUNxqQkDk
CitedBy_id crossref_primary_10_53070_bbd_1172833
crossref_primary_10_1016_j_dajour_2023_100355
crossref_primary_10_3390_machines10070561
crossref_primary_10_1016_j_jhydrol_2025_132732
crossref_primary_10_1007_s00500_023_09503_z
crossref_primary_10_1007_s13369_021_06513_7
crossref_primary_10_1016_j_prime_2023_100225
crossref_primary_10_1007_s12530_023_09526_9
crossref_primary_10_1016_j_aej_2023_12_054
crossref_primary_10_1007_s00034_025_02997_y
crossref_primary_10_1016_j_eswa_2022_117127
crossref_primary_10_46300_9106_2023_17_1
crossref_primary_10_1007_s10489_021_02353_y
crossref_primary_10_1080_02286203_2023_2240564
crossref_primary_10_1007_s11227_023_05086_6
Cites_doi 10.1007/s00500-017-2597-4
10.1016/j.chaos.2004.11.095
10.1016/j.matcom.2004.10.003
10.1016/j.eswa.2011.04.054
10.1109/TIE.2009.2031194
10.1016/j.swevo.2011.02.002
10.1016/j.apacoust.2018.06.007
10.1109/78.285655
10.1016/j.engappai.2010.05.007
10.1016/0022-5193(71)90189-5
10.1016/j.sigpro.2014.08.045
10.1016/j.procs.2017.09.146
10.1007/s10957-012-0028-3
10.1007/s11071-014-1832-0
10.1504/IJBIC.2013.053508
10.1016/j.dsp.2017.09.006
10.1016/j.yjmcc.2018.08.006
10.1016/j.conengprac.2011.04.011
10.1049/cje.2018.06.008
10.1016/j.biosystems.2017.07.010
10.1016/j.ifacol.2018.09.078
10.1016/j.ipl.2004.12.015
10.1007/s13369-016-2222-3
10.1016/j.proeng.2011.11.2476
10.1016/j.jfranklin.2014.01.001
10.1109/53.29644
10.1007/s00521-016-2338-0
10.1007/s11071-017-3383-7
10.1016/j.pisc.2016.04.059
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2019
Springer-Verlag GmbH Germany, part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00500-019-04390-9
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 7684
ExternalDocumentID 10_1007_s00500_019_04390_9
GrantInformation_xml – fundername: “13th Five-Year” Equipment Field Fund
  grantid: 61403120501
– fundername: National Natural Science Foundation of China
  grantid: 61170035; 61272420; 81674099; 61502233
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Nanjing Science and Technology Development Plan Project
  grantid: 201805036
– fundername: Fundamental Research Fund for the Central Universities
  grantid: 30916011328; 30918015103; 30918012204
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-33f065433d3ba6df5b5b72e6ed1f13fccc8273a4b7e82422365baf45ecf4b41c3
IEDL.DBID BENPR
ISSN 1432-7643
IngestDate Fri Jul 25 23:37:05 EDT 2025
Thu Apr 24 22:53:11 EDT 2025
Wed Oct 01 03:00:05 EDT 2025
Fri Feb 21 02:33:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Chaotic strategy
IIR system identification problem
Local optimization strategy
Adaptive algorithms
Selfish herd optimization algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-33f065433d3ba6df5b5b72e6ed1f13fccc8273a4b7e82422365baf45ecf4b41c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2219-067X
PQID 2917986737
PQPubID 2043697
PageCount 48
ParticipantIDs proquest_journals_2917986737
crossref_citationtrail_10_1007_s00500_019_04390_9
crossref_primary_10_1007_s00500_019_04390_9
springer_journals_10_1007_s00500_019_04390_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200500
2020-05-00
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 5
  year: 2020
  text: 20200500
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References KarabogaNA novel and efficient algorithm for adaptive filtering: artificial bee colony algorithmTurk J Electr Eng Comput Sci201119175190
SahaSMukherjeeVA novel chaos-integrated symbiotic organisms search algorithm for global optimizationSoft Comput2018223797381610.1007/s00500-017-2597-4
LiuBWangLImproved particle swarm optimization combined with chaosChaos Solitons Fract2005251261127110.1016/j.chaos.2004.11.095
KumarMBat algorithm: application to adaptive infinite impulse response system identificationArab J Sci Eng2016413587360410.1007/s13369-016-2222-3
PandaGIIR system identification using cat swarm optimizationExpert Syst Appl201138126711268310.1016/j.eswa.2011.04.054
XiangTLiaoXWongKAn improved particle swarm optimization algorithm combined with piecewise linear chaotic mapAppl Math Comput20071901637164523397551122.65363
YanWZhangJZhangSWenPA novel pipelined neural IIR adaptive filter for speech predictionAppl Acoust2018141647010.1016/j.apacoust.2018.06.007
AstromKJAdaptive Control1995ReadingAddison-Wesley1163.93350
MandalSDifferential evolution with wavelet mutation in digital FIR filter designJ Optim Theory Appl2012155315324298312110.1007/s10957-012-0028-3
UpadhyayPA novel design method for optimal IIR system identification using opposition based harmony search algorithmJ Frankl Inst201435124542488319190210.1016/j.jfranklin.2014.01.001
HuangC-YLaiC-HInhibition of ERK-Drp1 signaling and mitochondria fragmentation alleviates IGF-IIR-induced mitochondria dysfunction during heart failureJ Mol Cell Cardiol2018122586810.1016/j.yjmcc.2018.08.006
DimpleKKotaryDKAn incremental RLS for distributed parameter estimation of IIR systems present in computing nodes of a wireless sensor networkProcedia Comput Sci201711569970610.1016/j.procs.2017.09.146
ScarpinitiMNonlinear system identification using IIR spline adaptive filtersSig Process2015108303510.1016/j.sigpro.2014.08.045
SahaSKA new design method using opposition-based BAT algorithm for IIR system identification problemInt J Bio-Inspired Comput201359913210.1504/IJBIC.2013.053508
GomezCRecursive identification of IIR systems with multilevel output quantization and lossy memoryless channels with transmission errorsIFAC-PapersOnLine20185190991410.1016/j.ifacol.2018.09.078
ZhangSZhouYGrey wolf optimizer with ranking-based mutation operator for IIR model identificationChin J Electron2018271071107910.1049/cje.2018.06.008
ZouD-XDebSWangG-GSolving IIR system identification by a variant of particle swarm optimizationNeural Comput Appl20183068569810.1007/s00521-016-2338-0
WangYDingFXuLSome new results of designing an IIR filter with colored noise for signal processingDigit Signal Proc2018724458372607210.1016/j.dsp.2017.09.006
SarangiAAn approach to identification of unknown IIR systems using crossover cat swarm optimizationPerspect Sci2016830130310.1016/j.pisc.2016.04.059
HamiltonWDGeometry to the selfish herdJ Theory Biol19713129531110.1016/0022-5193(71)90189-5
YaoLSetharesWANonlinear parameter estimation via the genetic algorithmIEEE Trans Signal Process19944292793510.1109/78.285655
JiangSA new design method for adaptive IIR system identification using hybrid particle swarm optimization and gravitational search algorithmNonlinear Dyn2015925532576331746310.1007/s11071-014-1832-0
FaustoFCuevasEA global optimization algorithm inspired in the behavior of selfish herdsBiosystems2017160395510.1016/j.biosystems.2017.07.010
GriffithsEJOrponenPOptimization, block designs and No Free Lunch theoremsInf Process Lett2005945561212652910.1016/j.ipl.2004.12.015
LiangWLuWFanJThe signal detection in TWACS based on IIR filterProcedia Eng20112312012410.1016/j.proeng.2011.11.2476
Lagos-EulogioPA new design method for adaptive IIR system identification using hybrid CPSO and DENonlinear Dyn2017882371238910.1007/s11071-017-3383-7
UpadhyayPA new design method based on firefly algorithm for IIR system identification problemJ King Saud Univ Eng Sci201628174198
RashediEFilter modeling using gravitational search algorithmEng Appl Artif Intell20112411712210.1016/j.engappai.2010.05.007
DaiCSeeker optimization algorithm for digital IIR filter designIEEE Trans Ind Electron20105717101718
ChengSLiC-WFuzzy PDFF-IIR controller for PMSM drive systemsControl Eng Pract20111982883510.1016/j.conengprac.2011.04.011
ShynkJJAdaptive IIR filteringIEEE ASSP Mag1989642110.1109/53.29644
JiangCBompardEA hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimizationMath Comput Simul200568576510.1016/j.matcom.2004.10.003
DerracJGracieSMolinaDHerreraFA practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithmsSwarm Evol Comput2011131810.1016/j.swevo.2011.02.002
K Dimple (4390_CR5) 2017; 115
EJ Griffiths (4390_CR8) 2005; 94
D-X Zou (4390_CR33) 2018; 30
WD Hamilton (4390_CR9) 1971; 31
T Xiang (4390_CR29) 2007; 190
P Upadhyay (4390_CR27) 2016; 28
S Zhang (4390_CR32) 2018; 27
C Dai (4390_CR3) 2010; 57
P Lagos-Eulogio (4390_CR15) 2017; 88
C-Y Huang (4390_CR10) 2018; 122
F Fausto (4390_CR6) 2017; 160
S Cheng (4390_CR2) 2011; 19
J Derrac (4390_CR4) 2011; 1
P Upadhyay (4390_CR26) 2014; 351
W Yan (4390_CR30) 2018; 141
M Kumar (4390_CR14) 2016; 41
KJ Astrom (4390_CR1) 1995
M Scarpiniti (4390_CR24) 2015; 108
B Liu (4390_CR17) 2005; 25
JJ Shynk (4390_CR25) 1989; 6
N Karaboga (4390_CR13) 2011; 19
S Saha (4390_CR21) 2018; 22
Y Wang (4390_CR28) 2018; 72
E Rashedi (4390_CR20) 2011; 24
C Gomez (4390_CR7) 2018; 51
SK Saha (4390_CR22) 2013; 5
S Jiang (4390_CR12) 2015; 9
S Mandal (4390_CR18) 2012; 155
C Jiang (4390_CR11) 2005; 68
W Liang (4390_CR16) 2011; 23
L Yao (4390_CR31) 1994; 42
G Panda (4390_CR19) 2011; 38
A Sarangi (4390_CR23) 2016; 8
References_xml – reference: YaoLSetharesWANonlinear parameter estimation via the genetic algorithmIEEE Trans Signal Process19944292793510.1109/78.285655
– reference: DerracJGracieSMolinaDHerreraFA practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithmsSwarm Evol Comput2011131810.1016/j.swevo.2011.02.002
– reference: UpadhyayPA new design method based on firefly algorithm for IIR system identification problemJ King Saud Univ Eng Sci201628174198
– reference: DimpleKKotaryDKAn incremental RLS for distributed parameter estimation of IIR systems present in computing nodes of a wireless sensor networkProcedia Comput Sci201711569970610.1016/j.procs.2017.09.146
– reference: ShynkJJAdaptive IIR filteringIEEE ASSP Mag1989642110.1109/53.29644
– reference: KarabogaNA novel and efficient algorithm for adaptive filtering: artificial bee colony algorithmTurk J Electr Eng Comput Sci201119175190
– reference: Lagos-EulogioPA new design method for adaptive IIR system identification using hybrid CPSO and DENonlinear Dyn2017882371238910.1007/s11071-017-3383-7
– reference: SahaSMukherjeeVA novel chaos-integrated symbiotic organisms search algorithm for global optimizationSoft Comput2018223797381610.1007/s00500-017-2597-4
– reference: JiangCBompardEA hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimizationMath Comput Simul200568576510.1016/j.matcom.2004.10.003
– reference: UpadhyayPA novel design method for optimal IIR system identification using opposition based harmony search algorithmJ Frankl Inst201435124542488319190210.1016/j.jfranklin.2014.01.001
– reference: JiangSA new design method for adaptive IIR system identification using hybrid particle swarm optimization and gravitational search algorithmNonlinear Dyn2015925532576331746310.1007/s11071-014-1832-0
– reference: XiangTLiaoXWongKAn improved particle swarm optimization algorithm combined with piecewise linear chaotic mapAppl Math Comput20071901637164523397551122.65363
– reference: HuangC-YLaiC-HInhibition of ERK-Drp1 signaling and mitochondria fragmentation alleviates IGF-IIR-induced mitochondria dysfunction during heart failureJ Mol Cell Cardiol2018122586810.1016/j.yjmcc.2018.08.006
– reference: RashediEFilter modeling using gravitational search algorithmEng Appl Artif Intell20112411712210.1016/j.engappai.2010.05.007
– reference: ZouD-XDebSWangG-GSolving IIR system identification by a variant of particle swarm optimizationNeural Comput Appl20183068569810.1007/s00521-016-2338-0
– reference: DaiCSeeker optimization algorithm for digital IIR filter designIEEE Trans Ind Electron20105717101718
– reference: LiuBWangLImproved particle swarm optimization combined with chaosChaos Solitons Fract2005251261127110.1016/j.chaos.2004.11.095
– reference: AstromKJAdaptive Control1995ReadingAddison-Wesley1163.93350
– reference: GomezCRecursive identification of IIR systems with multilevel output quantization and lossy memoryless channels with transmission errorsIFAC-PapersOnLine20185190991410.1016/j.ifacol.2018.09.078
– reference: HamiltonWDGeometry to the selfish herdJ Theory Biol19713129531110.1016/0022-5193(71)90189-5
– reference: WangYDingFXuLSome new results of designing an IIR filter with colored noise for signal processingDigit Signal Proc2018724458372607210.1016/j.dsp.2017.09.006
– reference: KumarMBat algorithm: application to adaptive infinite impulse response system identificationArab J Sci Eng2016413587360410.1007/s13369-016-2222-3
– reference: SarangiAAn approach to identification of unknown IIR systems using crossover cat swarm optimizationPerspect Sci2016830130310.1016/j.pisc.2016.04.059
– reference: ChengSLiC-WFuzzy PDFF-IIR controller for PMSM drive systemsControl Eng Pract20111982883510.1016/j.conengprac.2011.04.011
– reference: YanWZhangJZhangSWenPA novel pipelined neural IIR adaptive filter for speech predictionAppl Acoust2018141647010.1016/j.apacoust.2018.06.007
– reference: SahaSKA new design method using opposition-based BAT algorithm for IIR system identification problemInt J Bio-Inspired Comput201359913210.1504/IJBIC.2013.053508
– reference: FaustoFCuevasEA global optimization algorithm inspired in the behavior of selfish herdsBiosystems2017160395510.1016/j.biosystems.2017.07.010
– reference: GriffithsEJOrponenPOptimization, block designs and No Free Lunch theoremsInf Process Lett2005945561212652910.1016/j.ipl.2004.12.015
– reference: ScarpinitiMNonlinear system identification using IIR spline adaptive filtersSig Process2015108303510.1016/j.sigpro.2014.08.045
– reference: ZhangSZhouYGrey wolf optimizer with ranking-based mutation operator for IIR model identificationChin J Electron2018271071107910.1049/cje.2018.06.008
– reference: PandaGIIR system identification using cat swarm optimizationExpert Syst Appl201138126711268310.1016/j.eswa.2011.04.054
– reference: MandalSDifferential evolution with wavelet mutation in digital FIR filter designJ Optim Theory Appl2012155315324298312110.1007/s10957-012-0028-3
– reference: LiangWLuWFanJThe signal detection in TWACS based on IIR filterProcedia Eng20112312012410.1016/j.proeng.2011.11.2476
– volume: 22
  start-page: 3797
  year: 2018
  ident: 4390_CR21
  publication-title: Soft Comput
  doi: 10.1007/s00500-017-2597-4
– volume-title: Adaptive Control
  year: 1995
  ident: 4390_CR1
– volume: 25
  start-page: 1261
  year: 2005
  ident: 4390_CR17
  publication-title: Chaos Solitons Fract
  doi: 10.1016/j.chaos.2004.11.095
– volume: 68
  start-page: 57
  year: 2005
  ident: 4390_CR11
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2004.10.003
– volume: 38
  start-page: 12671
  year: 2011
  ident: 4390_CR19
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.04.054
– volume: 57
  start-page: 1710
  year: 2010
  ident: 4390_CR3
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2009.2031194
– volume: 1
  start-page: 3
  year: 2011
  ident: 4390_CR4
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2011.02.002
– volume: 141
  start-page: 64
  year: 2018
  ident: 4390_CR30
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2018.06.007
– volume: 42
  start-page: 927
  year: 1994
  ident: 4390_CR31
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/78.285655
– volume: 24
  start-page: 117
  year: 2011
  ident: 4390_CR20
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2010.05.007
– volume: 19
  start-page: 175
  year: 2011
  ident: 4390_CR13
  publication-title: Turk J Electr Eng Comput Sci
– volume: 31
  start-page: 295
  year: 1971
  ident: 4390_CR9
  publication-title: J Theory Biol
  doi: 10.1016/0022-5193(71)90189-5
– volume: 28
  start-page: 174
  year: 2016
  ident: 4390_CR27
  publication-title: J King Saud Univ Eng Sci
– volume: 108
  start-page: 30
  year: 2015
  ident: 4390_CR24
  publication-title: Sig Process
  doi: 10.1016/j.sigpro.2014.08.045
– volume: 115
  start-page: 699
  year: 2017
  ident: 4390_CR5
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2017.09.146
– volume: 155
  start-page: 315
  year: 2012
  ident: 4390_CR18
  publication-title: J Optim Theory Appl
  doi: 10.1007/s10957-012-0028-3
– volume: 9
  start-page: 2553
  year: 2015
  ident: 4390_CR12
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-014-1832-0
– volume: 5
  start-page: 99
  year: 2013
  ident: 4390_CR22
  publication-title: Int J Bio-Inspired Comput
  doi: 10.1504/IJBIC.2013.053508
– volume: 72
  start-page: 44
  year: 2018
  ident: 4390_CR28
  publication-title: Digit Signal Proc
  doi: 10.1016/j.dsp.2017.09.006
– volume: 122
  start-page: 58
  year: 2018
  ident: 4390_CR10
  publication-title: J Mol Cell Cardiol
  doi: 10.1016/j.yjmcc.2018.08.006
– volume: 19
  start-page: 828
  year: 2011
  ident: 4390_CR2
  publication-title: Control Eng Pract
  doi: 10.1016/j.conengprac.2011.04.011
– volume: 27
  start-page: 1071
  year: 2018
  ident: 4390_CR32
  publication-title: Chin J Electron
  doi: 10.1049/cje.2018.06.008
– volume: 160
  start-page: 39
  year: 2017
  ident: 4390_CR6
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2017.07.010
– volume: 51
  start-page: 909
  year: 2018
  ident: 4390_CR7
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.09.078
– volume: 94
  start-page: 55
  year: 2005
  ident: 4390_CR8
  publication-title: Inf Process Lett
  doi: 10.1016/j.ipl.2004.12.015
– volume: 41
  start-page: 3587
  year: 2016
  ident: 4390_CR14
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-016-2222-3
– volume: 23
  start-page: 120
  year: 2011
  ident: 4390_CR16
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2011.11.2476
– volume: 190
  start-page: 1637
  year: 2007
  ident: 4390_CR29
  publication-title: Appl Math Comput
– volume: 351
  start-page: 2454
  year: 2014
  ident: 4390_CR26
  publication-title: J Frankl Inst
  doi: 10.1016/j.jfranklin.2014.01.001
– volume: 6
  start-page: 4
  year: 1989
  ident: 4390_CR25
  publication-title: IEEE ASSP Mag
  doi: 10.1109/53.29644
– volume: 30
  start-page: 685
  year: 2018
  ident: 4390_CR33
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2338-0
– volume: 88
  start-page: 2371
  year: 2017
  ident: 4390_CR15
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-017-3383-7
– volume: 8
  start-page: 301
  year: 2016
  ident: 4390_CR23
  publication-title: Perspect Sci
  doi: 10.1016/j.pisc.2016.04.059
SSID ssj0021753
Score 2.3291306
Snippet The design method of adaptive infinite impulse response (IIR) filter is a challenging problem. Its design principle is to determine the filter parameters by...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7637
SubjectTerms Adaptive algorithms
Adaptive systems
Artificial Intelligence
Computational Intelligence
Control
Engineering
Evolutionary computation
Heuristic methods
Identification systems
IIR filters
Impulse response
Iterative methods
Laplace transforms
Local optimization
Mathematical Logic and Foundations
Mathematical models
Mean square errors
Mechatronics
Methodologies and Application
Methods
Optimization algorithms
Parameter estimation
Parameters
Particle swarm optimization
Researchers
Robotics
Search algorithms
Search methods
Signal processing
System identification
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oXPQgihpRND140yXsE_ZIDAgaPagkeNpsX0JcHmGXg_56p7tdUKImnNtOdtuZztd25huASzwhUFsy31CPPIaDGow2x9Q1HFPlCnnDN1Vy8sOj1-07dwN3oJPC4jzaPX-STHfqZbKboipRQVTqMh9P6oa_DcWUb6sAxdbt6317edDS7JMIBRA9osvVyTK_S_npkFYoc-1hNPU3nRL08y_Nwkzea4uE1tjnGonjpr-yD3sagJJWpjEHsCUmZSjlxR2ItvUy7H5jKjyE6FlEchQPCS4xJ1PcZ8Y6gZOE0dt0PkqGY6I8IjZOCBuGUxRP4oz69oMgMiYhD2dqbyW93hPJCKTJiOtgpUyUrm5zBP1O--Wma-hCDQZDC04M25ZpjqrNbRp6XLrUpQ1LeIKb0kRNYKyJKCl0aEM0ERJYtufSUDquYNKhjsnsYyhMphNxAsSXFre4Xxc40KEmCwVrijrqjV-XrqRWBcx8tQKmWcxVMY0oWPIvp5Mb4OQG6eQGfgWulmNmGYfHv72ruRIE2p7jwPKVoqmaPhW4ztd01fy3tNPNup_BjqUO9GlEZRUKyXwhzhH1JPRCK_kXETf3zQ
  priority: 102
  providerName: Springer Nature
Title Selfish herd optimization algorithm based on chaotic strategy for adaptive IIR system identification problem
URI https://link.springer.com/article/10.1007/s00500-019-04390-9
https://www.proquest.com/docview/2917986737
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: AFBBN
  dateStart: 19970401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-7479
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: U2A
  dateStart: 19970404
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9pAEB4RuOSSpE2q0FC0h94SK3htA3uIKqgg0CqookFKT9Y-CxKvBHLov8-MvQY1UnLyYb0jeWbnsd6d7wP4ijsEFTktAjrkCWJcwehzmn7DaaIrNC0RUnPy3ag5mMQ_HpKHEoyKXhi6VlnExCxQm5Wmf-TXXBC0FrGqfFs_BsQaRaerBYWG9NQK5iaDGDuACidkrDJUur3Rr_FuC-ZxKbFIwLoSk7Fvo8ma6QgKhS5p0WFBJBqB-D9V7evPV0emWSbqn8CRLyFZJ7f5ByjZ5Uc4LugZmPfWU5j_tnM320wZmsWwFcaGhW-6ZHL-F79tO10wymI4uGR6KlcokG1yuNp_DKtZJo1cUzxkw-GY5aDPbGb8BaNclGekOYNJv3f_fRB4coVAo9dtgyhyWV9pZCIlm8YlKlEtbpvWhC5E62ndxspGxqpl25jGedRMlHRxYrWLVRzq6BOUl6ulPQcmHDfciIbFibEKtbS6bRtoa9FwiVO8CmGhx1R75HEiwJinO8zkTPcp6j7NdJ-KKlzu5qxz3I13364V5km9D27S_YqpwlVhsv3w29I-vy_tAg45bbqzW481KG-fnu0XrEy2qg4H7f5tHSqdfrc7ouftn5-9ul-EODrhnRdqwuTu
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7xOMCFUh4iLbQ-lBNdkbW9SXxAFbSgpECEKEjcFj8JUkjSJlXFn-tv68yuN1GR4MbZ65F2PJ6H7fk-gE9YIRgRrErokieRaMG45ywdw1miK3RNlVJz8nm30b6W32-ymzn4W_XC0LPKyicWjtoNLZ2R73NF0FrEqvJl9DMh1ii6Xa0oNHSkVnAHBcRYbOw49Y9_sIQbH3S-4Xrvcn5yfPW1nUSWgcSi-U0SIULRYCmcMLrhQmYy0-S-4V0aUvwNa1sY4rU0Td_CeMZFIzM6yMzbII1MrUC587AohVRY_C0eHXcvLqclX8TBxKQE81gM_rFtp2jeI-gVehRGlxNC1RP1f2ic5btPrmiLyHeyCisxZWWHpY29hTk_WIM3FR0Ei95hHfo_fD_cj3sMzcCxIfqih9jkyXT_DnU56T0wipo4OGC2p4cokI1LeNxHhtkz006PyP-yTueSlSDT7N7FB02lqMiAswHXr6LmTVgYDAd-C5gK3HGn6h4nSpNa7W3L19G2VD1kwfAapJUecxuRzolwo59PMZoL3eeo-7zQfa5qsDedMypxPl78ertanjzu-XE-s9AafK6WbDb8vLR3L0v7CEvtq_Oz_KzTPX0Py5wK_uLF5TYsTH799juYFU3Mh2h6DG5f29r_AUrPHd4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSAgOPAaIwYAcuEHF-tx6nIBp4zEhYNJuVfNik7p22sqBf4_Tpt1AgMQ5iQ_54thO7M8A5xghUFsy31CfPIaDJxh1jqlnOKbaFfKmb6ri5Me-1x04d0N3uFTFn2W7F1-SeU2DYmmK06spl1dl4ZuiLVEJVephH6N2w1-FNUcRJeCJHljtMuTSPJToFKAficZXl838LOOraVr4m9--SDPL09mBLe0yknaO8S6siLgK20U7BqK1swqbS9yCexC9iEiO5yOCoHCS4M0w0SWXJIzektk4HU2IsmE4GBM2ChMUT-Y5We0HQV-WhDycqtuQ9HrPJKd8JmOu04tyUbofzT4MOrev111Dt1YwGOpcati2zKpKbW7T0OPSpS5tWsIT3JQmYsdYC_2a0KFN0UIjbtmeS0PpuIJJhzomsw-gEiexOATiS4tb3G8IXOhQk4WCtUQDkfYb0pXUqoFZ7GrANO-4an8RBSVjcoZEgEgEGRKBX4OLcs00Z934c3a9ACvQGjgPLF9RsakuPDW4LABcDP8u7eh_089g_emmEzz0-vfHsGGpaDxLh6xDJZ29ixN0WVJ6mp3KTx914fg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selfish+herd+optimization+algorithm+based+on+chaotic+strategy+for+adaptive+IIR+system+identification+problem&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Zhao%2C+Ruxin&rft.au=Wang%2C+Yongli&rft.au=Liu%2C+Chang&rft.au=Hu%2C+Peng&rft.date=2020-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=24&rft.issue=10&rft.spage=7637&rft.epage=7684&rft_id=info:doi/10.1007%2Fs00500-019-04390-9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon