Toward clean manufacturing: an analysis and validation of a modified Johnson–Cook material model for low and high-speed orthogonal machining of low-carbon aluminum alloy (Al 6061-T6)

In this research, sustainable machining of the aluminum alloy (Al 6061-T6) is considered. Aluminum is a durable and infinitely recyclable material as well as light in density, causing no environmental effects in comparison with other materials including steel or plastic. Currently, due to a lack of...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced manufacturing technology Vol. 129; no. 5-6; pp. 2523 - 2536
Main Authors Akram, Sohail, Jaffery, Syed Husain Imran, Anwar, Zahid, Khan, Mushtaq, Khan, Muhammad Ali
Format Journal Article
LanguageEnglish
Published London Springer London 01.11.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0268-3768
1433-3015
DOI10.1007/s00170-023-12367-0

Cover

Abstract In this research, sustainable machining of the aluminum alloy (Al 6061-T6) is considered. Aluminum is a durable and infinitely recyclable material as well as light in density, causing no environmental effects in comparison with other materials including steel or plastic. Currently, due to a lack of understanding and inefficient application of modern sustainable manufacturing tools and technologies, around 20% of the investment made in metal cutting tools was reported to have been wasted. The constitutive law describing the thermo-mechanical behavior of workpiece material significantly affects the success of any finite element modeling (FEM). Different values of Johnson–Cook (JC) material constants determined through different methods are found in the literature which consequently affects the predicted results. Current research used an inverse methodology to determine the JC material constants and compare them with published literature. The proposed JC material model was then verified through orthogonal machining of Al 6061-T6 alloy at different machining conditions. Cutting forces at high-speed machining were found to decrease remarkably due to adiabatic heating conditions and short contact time between the workpiece and tool material. The JC material constants determined through the current approach produced better predictions of the cutting forces at high-speed machining conditions suitable for sustainable manufacturing.
AbstractList In this research, sustainable machining of the aluminum alloy (Al 6061-T6) is considered. Aluminum is a durable and infinitely recyclable material as well as light in density, causing no environmental effects in comparison with other materials including steel or plastic. Currently, due to a lack of understanding and inefficient application of modern sustainable manufacturing tools and technologies, around 20% of the investment made in metal cutting tools was reported to have been wasted. The constitutive law describing the thermo-mechanical behavior of workpiece material significantly affects the success of any finite element modeling (FEM). Different values of Johnson–Cook (JC) material constants determined through different methods are found in the literature which consequently affects the predicted results. Current research used an inverse methodology to determine the JC material constants and compare them with published literature. The proposed JC material model was then verified through orthogonal machining of Al 6061-T6 alloy at different machining conditions. Cutting forces at high-speed machining were found to decrease remarkably due to adiabatic heating conditions and short contact time between the workpiece and tool material. The JC material constants determined through the current approach produced better predictions of the cutting forces at high-speed machining conditions suitable for sustainable manufacturing.
Author Khan, Mushtaq
Khan, Muhammad Ali
Anwar, Zahid
Jaffery, Syed Husain Imran
Akram, Sohail
Author_xml – sequence: 1
  givenname: Sohail
  surname: Akram
  fullname: Akram, Sohail
  organization: School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST)
– sequence: 2
  givenname: Syed Husain Imran
  surname: Jaffery
  fullname: Jaffery, Syed Husain Imran
  organization: School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST)
– sequence: 3
  givenname: Zahid
  surname: Anwar
  fullname: Anwar, Zahid
  organization: Department of Computer Science, North Dakota State University
– sequence: 4
  givenname: Mushtaq
  surname: Khan
  fullname: Khan, Mushtaq
  organization: Mechanical Engineering Department, Prince Mohammad Bin Fahd University
– sequence: 5
  givenname: Muhammad Ali
  orcidid: 0000-0003-0716-2304
  surname: Khan
  fullname: Khan, Muhammad Ali
  email: mak.ceme@ceme.nust.edu.pk
  organization: School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Department of Mechanical Engineering (CEME), National University of Sciences and Technology (NUST)
BookMark eNp9kU1uFDEQhS2USEwSLsDKEhtYGPzT7Xazi0bhT5HYDOtWjduednDbg92daHa5A5fhPJwE9wwSEousqlT63quy3wU6CzEYhF4y-pZR2rzLlLKGEsoFYVzIhtBnaMUqIYigrD5DK8qlIqKR6jm6yPmu4JJJtUK_NvEBUo-1NxDwCGG2oKc5ubB7j8sEAvhDdrk0Pb4H73qYXAw4Wgx4jL2zzvT4SxxCjuH34891jN-LzWSSA78AxmMbE_bx4WgxuN1A8t4UUUzTEHcxLBzowYWyc_EtKNGQtmUL-Hl0YR5L4-MBv772WFLJyEa-uULnFnw2L_7WS_Ttw81m_Yncfv34eX19S7Rg7VSebxWVtrZyqzVnjTSq6ivFhLVWKmiVpcpW3PCWtduqaTWwllbbuulr3Urg4hK9OvnuU_wxmzx1d3FO5ejccaW4pLVkolD8ROkUc07GdvvkRkiHjtFuSag7JdSVhLpjQh0tIvWfSLvp-L1TAuefloqTNO-XqEz6d9UTqj_Vqang
CitedBy_id crossref_primary_10_1016_j_jmrt_2025_03_070
Cites_doi 10.1016/j.procir.2018.08.198
10.1016/j.matpr.2023.02.371
10.1504/IJMMM.2008.020907
10.1016/j.procir.2015.03.052
10.1115/1.3663007
10.1115/IMECE2014-37170
10.1177/16878140187977
10.17973/MMSJ.2008_10_20081006
10.1016/j.proeng.2011.04.573
10.1115/MSEC2011-50076
10.1243/09544054JEM1462
10.1016/j.jmatprotec.2008.03.020
10.1115/1.2118767
10.3390/met12081395
10.1016/S0890-6955(02)00046-9
10.1016/j.jmatprotec.2004.04.162
10.1016/j.jestch.2023.101357
10.4028/www.scientific.net/AMR.223.152
10.1007/s00170-014-6583-z
10.1016/S0924-0136(03)00462-X
10.1016/j.jallcom.2017.06.251
10.1115/1.3664594
10.1016/j.ijmachtools.2006.03.004
10.1007/S00170-021-08640-9
10.7763/IJMMM.2015.V3.160
10.1016/j.cirp.2013.05.006
10.1007/s00170-010-2940-8
10.3390/met9040473
10.1177/0954405411407137
10.1080/10940349708945638
10.1016/0890-6955(95)00016-X
10.1007/s00170-018-2508-6
10.3390/met7060197
10.1007/s00170-018-1588-7
10.1016/j.ijmachtools.2009.02.008
10.1080/10426910701323631
10.1016/j.jallcom.2014.12.230
10.1016/j.jmatprotec.2012.09.010
10.1016/S0734-743X(97)00015-8
10.1007/s00170-004-2242-0
10.1016/S0921-5093(01)01416-2
10.1016/j.simpat.2015.03.011
10.1088/1757-899X/114/1/012005
10.3390/ma7031603
10.1016/j.ijmecsci.2017.01.020
10.1016/j.jclepro.2013.10.048
10.1007/s00170-009-2117-5
10.1177/0954405414564409
10.1016/j.msea.2020.139612
10.1016/j.jmatprotec.2004.01.046
10.5897/IJPS10.600
10.1007/s00170-022-09196-y
10.1016/j.mechmat.2014.07.005
10.1016/0013-7944(85)90052-9
10.1007/978-1-84996-432-6_55
10.1016/j.wear.2004.11.004
10.1115/1.1596571
10.1177/1687814015595739
10.1080/10940340008945698
10.1016/j.jmatprotec.2007.05.007
10.1016/j.msea.2021.141565
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.1007/s00170-023-12367-0
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
Engineering Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1433-3015
EndPage 2536
ExternalDocumentID 10_1007_s00170_023_12367_0
GroupedDBID -5B
-5G
-BR
-EM
-XW
-XX
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8V
Z8W
Z8Z
Z92
ZMTXR
ZY4
_50
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-30f806f5f6bcc2176e84d4813fff68a98f08f42e2919b479ca1904b57d5c96a23
IEDL.DBID U2A
ISSN 0268-3768
IngestDate Fri Jul 25 11:06:10 EDT 2025
Wed Oct 01 02:42:43 EDT 2025
Thu Apr 24 23:01:53 EDT 2025
Fri Feb 21 02:42:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5-6
Keywords Finite element modeling
Orthogonal machining
Inverse methodology algorithm
Johnson–Cook material model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-30f806f5f6bcc2176e84d4813fff68a98f08f42e2919b479ca1904b57d5c96a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0716-2304
PQID 2882605613
PQPubID 2044010
PageCount 14
ParticipantIDs proquest_journals_2882605613
crossref_primary_10_1007_s00170_023_12367_0
crossref_citationtrail_10_1007_s00170_023_12367_0
springer_journals_10_1007_s00170_023_12367_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231100
2023-11-00
20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 20231100
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle International journal of advanced manufacturing technology
PublicationTitleAbbrev Int J Adv Manuf Technol
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Arrazola PJ, Meslin F, Hamann JC, Le Maître L (2002) F.E.M. Abaqus/Explicit 6.1. Abaqus Users’ Conference, Newport-R.I.-EEUU, p 2730
Daoud M, Chatelain J-F, Bouzid H (2014) On the effect of Johnson Cook material constants to simulate Al2024-T3 machining using finite element modeling. In: Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition. Volume 2A: Advanced Manufacturing. Montreal, Quebec, Canada. November 14–20. https://doi.org/10.1115/IMECE2014-37170
PriyadarshiniAPalSKSamantarayAKInfluence of the Johnson Cook material model parameters and friction models on simulation of orthogonal cutting processJ Mach Form Technol201241/259
OzelTZerenEDetermination of work material flow stress and friction for FEA of machining using orthogonal cutting testsJ Mater Process Technol20041531019102510.1016/j.jmatprotec.2004.04.162
Kalpakjian S, Schmid SR (2014) Manufacturing engineering and technology. Pearson, Upper Saddle River
WarsiSSJafferySHIAhmadRKhanMAghaMHAliLDevelopment and analysis of energy consumption map for high-speed machining of Al 6061–T6 alloyInt J Adv Manuf Technol2018961–49110210.1007/s00170-018-1588-7
Schwer LE (2009) Aluminum plate perforation : a comparative case study using Lagrange with erosion , multi-material ALE , and smooth particle hydrodynamics. In: 7th Eur LS-DYNA Conf 28 Schwer Engineering & Consulting Services, Windsor
WahabMANodaN-ABordasSPZhuWXuanHNVanegas-UsecheLVAdvances in finite element analysis for computational mechanics 2015Adv Mech Eng20157716878140155957310.1177/1687814015595739
DaoudMChatelainJFBouzidAEffect of rake angle-based Johnson-Cook material constants on the prediction of residual stresses and temperatures induced during Al2024-T3 machining processInt J Mech Sci2017122March 201639240410.1016/j.ijmecsci.2017.01.020
BagciE3-D numerical analysis of orthogonal cutting process via mesh-free method.pdfInt J Phys Sci2011661267128210.5897/IJPS10.600
Jia Z, Guan B, Zang Y, Wang Y, Mu L (2021) Modified Johnson-Cook model of aluminum alloy 6016-T6 sheets at low dynamic strain rates. Mater Sci Eng: A Elsevier, A 820:141565
Salguero J et al (2022) Research on conventional and high-speed machining cutting force of 7075-T6 aluminum alloy based on finite element modeling and simulation. 12:1395
Oxley PLB (1989) The mechanics of machining: an analytical approach to assesing machinability. Ellis Horwood, Ltd
Xiong Y, Wang W, Jiang R, Lin K (2017) A study on cutting force of machining In Situ TiB2 particle-reinforced 7050Al alloy matrix composites. Metals 7(6):197
OkushimaKHitomiKAn analysis of the mechanism of orthogonal cutting and its application to discontinuous chip formationJ Eng Ind196183454555510.1115/1.3664594
AgmellMAhadiAStahlJEA fully coupled thermomechanical two-dimensional simulation model for orthogonal cutting: formulation and simulationProc Inst Mech Eng Part B J Eng Manuf2011225101735174510.1177/0954405411407137
RahmatiBSarhanAADSayutiMMorphology of surface generated by end milling AL6061-T6 using molybdenum disul fi de ( MoS 2) nanolubrication in end milling machiningJ Clean Prod20146668569110.1016/j.jclepro.2013.10.048
DaoudMJomaaWChatelainJFBouzidAA machining-based methodology to identify material constitutive law for finite element simulationInt J Adv Manuf Technol2015779–122019203310.1007/s00170-014-6583-z
UmbrelloDFinite element simulation of conventional and high speed machining of Ti6Al4V alloyJ Mater Process Technol20081961–3798710.1016/j.jmatprotec.2007.05.007
StevensonRStudy on the correlation of workpiece mechanical properties from compression and cutting testsMach Sci Technol199711677910.1080/10940349708945638
AkramSJafferySHIKhanMFahadMMubasharAAliLNumerical and experimental investigation of Johnson-Cook material models for aluminum (AL 6061–t6) alloy using orthogonal machining approachAdv Mech Eng201810911410.1177/16878140187977
Childs T (2000) Metal machining: theory and applications. Butterworth-Heinemann, Oxford
JomaaWSongmeneVBocherPSurface finish and residual stresses induced by orthogonal dry machining of AA7075-T651Materials201471603162410.3390/ma7031603mdpi.com
Zouhar J, Piska M (2008) Modelling the orthogonal machining process using cutting tools with different geometry. MM Sci J 2008(03):49–52
ZhaoYSunJLiJYanYWangPA comparative study on Johnson-Cook and modified Johnson-Cook constitutive material model to predict the dynamic behavior laser additive manufacturing FeCr alloyJ Alloys Compd201772317918710.1016/j.jallcom.2017.06.251
Shaw MC (2005) Metal cutting principles (2nd ed.). Oxford University Press, Oxford
AkramSJafferySHIKhanMMubasharAAliLA numerical investigation of effects of cutting velocity and feed rate on residual stresses in aluminum alloy Al-6061Int J Mater Mech Manuf201531263010.7763/IJMMM.2015.V3.160
XieLJSchmidtJSchmidtCBiesingerF2D FEM estimate of tool wear in turning operationWear2005258101479149010.1016/j.wear.2004.11.004
MovahhedyMRGadalaMSAltintasYSimulation of chip formation in orthogonal metal cutting process: an ale finite element approachMach Sci Technol200041154210.1080/10940340008945698University of British Columbia
ShiJLiuCROn predicting chip morphology and phase transformation in hard machiningInt J Adv Manuf Technol2006277–864565410.1007/s00170-004-2242-0
LeeSHSaitoYSakaiTUtsunomiyaHMicrostructures and mechanical properties of 6061 aluminum alloy processed by accumulative roll-bondingMater Sci Eng A20023251–222823510.1016/S0921-5093(01)01416-2
KhanMAJafferySHIBaqaiAAKhanMComparative analysis of tool wear progression of dry and cryogenic turning of titanium alloy Ti-6Al-4V under low, moderate and high tool wear conditionsInt J Adv Manuf Technol20221211–21269128710.1007/s00170-022-09196-y
XieJQBayoumiAEZbibHMA study on shear banding in chip formation of orthogonal machiningInt J Mach Tools Manuf199636783584710.1016/0890-6955(95)00016-X
AkbarFMativengaPTSheikhMAAn experimental and coupled thermo-mechanical finite element study of heat partition effects in machiningInt J Adv Manuf Technol2010465–849150710.1007/s00170-009-2117-5
RuleWKA numerical scheme for extracting strength model coefficients from Taylor test dataInt J Impact Eng199719979781010.1016/S0734-743X(97)00015-8
Miller SJ (2006) The method of least squares. Department of Mathematics and Statistics Williams College, Williamstown
KhanMAJafferySHIKhanMAssessment of sustainability of machining Ti-6Al-4V under cryogenic condition using energy map approachEng Sci Technol an Int J20234110135710.1016/j.jestch.2023.101357
OjalNCherukuriHPSchmitzTLDevlugtKTJaycoxAWA combined experimental and numerical approach that eliminates the non-uniqueness associated with the Johnson-Cook parameters obtained using inverse methodsInt J Adv Manuf Technol20221203–42373238410.1007/S00170-021-08640-9
JafferySHIKhanMAliLMativengaPTStatistical analysis of process parameters in micromachining of Ti-6Al-4V alloyProc Inst Mech Eng Part B J Eng Manuf201623061017103410.1177/0954405414564409
AgmellMAhadiAStåhlJEA numerical and experimental investigation of the deformation zones and the corresponding cutting forces in orthogonal cuttingAdv Mater Res201122315216110.4028/www.scientific.net/AMR.223.152
JafferySIDriverNMativengaPTAnalysis of process parameters in the micromachining of Ti-6Al-4V alloyProc 36th Int MATADOR Conf20102010-January23924210.1007/978-1-84996-432-6_55
JafferySIMativengaPTStudy of the use of wear maps for assessing machining performanceProc Inst Mech Eng Part B J Eng Manuf200922391097110510.1243/09544054JEM1462
SunSBrandtMDarguschMSCharacteristics of cutting forces and chip formation in machining of titanium alloysInt J Mach Tools Manuf200949756156810.1016/j.ijmachtools.2009.02.008
LiBWangXHuYLiCAnalytical prediction of cutting forces in orthogonal cutting using unequal division shear-zone modelInt J Adv Manuf Technol201154543144310.1007/s00170-010-2940-8
Agmell, M, Ahadi A, Stahl JE (2014) Identification of plasticity constants from orthogonal cutting and inverse analysis. Mech Mater 77:43–51
PotdarYKZehnderATMeasurements and simulations of temperature and deformation fields in transient metal cuttingJ Manuf Sci Eng2003125464510.1115/1.1596571
TounsiNVincentiJOthoAElbestawiMAFrom the basic mechanics of orthogonal metal cutting toward the identification of the constitutive equationInt J Mach Tools Manuf200242121373138310.1016/S0890-6955(02)00046-9
Bourne KA, Kapoor SG, DeVor RE (2011) Study of the mechanics of the micro-groove cutting process. In: Proceedings of the ASME 2011 International Manufacturing Science and Engineering Conference. ASME 2011 International Manufacturing Science and Engineering Conference, Volume 2. Corvallis, Oregon, USA. June 13–17. ASME, pp 339–348
SooSLAspinwallDKDewesRC3D FE modelling of the cutting of Inconel 718J Mater Process Technol20041501–211612310.1016/j.jmatprotec.2004.01.046
Eisseler R, Drewle K, Grötzinger K, Mohring HC (2018) Using an inverse cutting simulation-based method to determine the johnson-cook material constants of heat-treated steel. Procedia CIRP Elsevier 77:26–29
ArrazolaPJÖzelTNumerical modelling of 3D hard turning using arbitrary Lagrangian Eulerian finite element methodMech Eng20083323824910.1504/IJMMM.2008.020907
UlutanDLazogluIDincCThree-dimensional temperature predictions in machining processes using finite difference methodJ Mater Process Technol200920921111112110.1016/j.jmatprotec.2008.03.020
ManesAPeroniLScapinMGiglioMAnalysis of strain rate behavior of an Al 6061 T6 alloyProcedia Eng2011103477348210.1016/j.proeng.2011.04.573
Chen Y (2013) Prediction of subsurface damage during machining nickel-based superalloys. Clemson University, USA [PhD Thesis]
ÖzelTKarpatYIdentification of constitutive material model parameters for high-strain rate metal cutting conditions using evolutionary computational algorithmsMater Manuf Process200722565966710.1080/10426910701323631Taylor Fr
JohnsonGRCookWAFracture characteristic of three metals subjected to various strains, strain rates, temperatures and pressuresEng Fract Mech1985211314810.1016/0013-7944(8
R Stevenson (12367_CR27) 1997; 1
SHI Jaffery (12367_CR48) 2016; 230
SH Lee (12367_CR44) 2002; 325
CR Dandekar (12367_CR55) 2013; 213
I Maňková (12367_CR60) 2011; 14
M Agmell (12367_CR64) 2011; 223
12367_CR49
B Li (12367_CR71) 2011; 54
S Sun (12367_CR47) 2009; 49
12367_CR6
12367_CR3
12367_CR4
12367_CR58
T Özel (12367_CR18) 2006; 128
D Kececioglu (12367_CR25) 1960; 82
Y Zhang (12367_CR77) 2015; 31
MA Khan (12367_CR12) 2022; 121
M Daoud (12367_CR31) 2017; 122
GR Johnson (12367_CR52) 1983; 21
S Akram (12367_CR57) 2015; 3
12367_CR7
N Tounsi (12367_CR30) 2002; 42
M Agmell (12367_CR39) 2011; 225
12367_CR50
12367_CR1
SI Jaffery (12367_CR8) 2009; 223
K Okushima (12367_CR26) 1961; 83
B Wang (12367_CR78) 2015; 55
T Özel (12367_CR33) 2007; 22
12367_CR19
12367_CR24
12367_CR68
12367_CR23
H Wu (12367_CR76) 2015; 629
MA Khan (12367_CR9) 2023; 41
PJ Arrazola (12367_CR67) 2008; 3
A Priyadarshini (12367_CR61) 2012; 4
12367_CR22
12367_CR21
MA Wahab (12367_CR15) 2015; 7
J Shi (12367_CR56) 2006; 27
D Ulutan (12367_CR17) 2009; 209
12367_CR62
MR Movahhedy (12367_CR65) 2000; 4
M Storchak (12367_CR37) 2019
WK Rule (12367_CR28) 1997; 19
LJ Xie (12367_CR66) 2005; 258
YK Potdar (12367_CR51) 2003; 125
SI Jaffery (12367_CR5) 2010; 2010-January
JQ Xie (12367_CR74) 1996; 36
MNA Nasr (12367_CR16) 2007; 47
12367_CR29
N Ojal (12367_CR35) 2022; 120
12367_CR79
12367_CR34
12367_CR36
S Akram (12367_CR54) 2016; 2016
T Ozel (12367_CR69) 2004; 153
GR Johnson (12367_CR53) 1985; 21
D Umbrello (12367_CR73) 2008; 196
12367_CR32
M Daoud (12367_CR14) 2015; 77
SS Warsi (12367_CR46) 2018; 96
12367_CR70
12367_CR72
E Bagci (12367_CR38) 2011; 6
F Akbar (12367_CR63) 2010; 46
PJ Arrazola (12367_CR11) 2013; 62
B Rahmati (12367_CR45) 2014; 66
A Manes (12367_CR20) 2011; 10
YB Guo (12367_CR2) 2003; 142
12367_CR42
SL Soo (12367_CR13) 2004; 150
12367_CR41
S Akram (12367_CR43) 2018; 10
Y Zhao (12367_CR75) 2017; 723
12367_CR40
W Jomaa (12367_CR10) 2014; 7
K Saptaji (12367_CR59) 2016; 114
References_xml – reference: ÖzelTZerenEA methodology to determine work material flow stress and tool-chip interfacial friction properties by using analysis of machiningJ Manuf Sci Eng2006128111912910.1115/1.2118767
– reference: PotdarYKZehnderATMeasurements and simulations of temperature and deformation fields in transient metal cuttingJ Manuf Sci Eng2003125464510.1115/1.1596571
– reference: WarsiSSJafferySHIAhmadRKhanMAghaMHAliLDevelopment and analysis of energy consumption map for high-speed machining of Al 6061–T6 alloyInt J Adv Manuf Technol2018961–49110210.1007/s00170-018-1588-7
– reference: Schwer LE (2009) Aluminum plate perforation : a comparative case study using Lagrange with erosion , multi-material ALE , and smooth particle hydrodynamics. In: 7th Eur LS-DYNA Conf 28 Schwer Engineering & Consulting Services, Windsor
– reference: Kalpakjian S, Schmid SR (2014) Manufacturing engineering and technology. Pearson, Upper Saddle River
– reference: TounsiNVincentiJOthoAElbestawiMAFrom the basic mechanics of orthogonal metal cutting toward the identification of the constitutive equationInt J Mach Tools Manuf200242121373138310.1016/S0890-6955(02)00046-9
– reference: DaoudMChatelainJFBouzidAEffect of rake angle-based Johnson-Cook material constants on the prediction of residual stresses and temperatures induced during Al2024-T3 machining processInt J Mech Sci2017122March 201639240410.1016/j.ijmecsci.2017.01.020
– reference: WangBLiuZSimulation modelling practice and theory shear localization sensitivity analysis for Johnson – Cook constitutive parameters on serrated chips in high speed machining of Ti6Al4VSimul Model Pract Theory201555637610.1016/j.simpat.2015.03.011
– reference: ArrazolaPJÖzelTUmbrelloDDaviesMJawahirISRecent advances in modelling of metal machining processesCIRP Ann Technol201362269571810.1016/j.cirp.2013.05.006
– reference: JomaaWSongmeneVBocherPSurface finish and residual stresses induced by orthogonal dry machining of AA7075-T651Materials201471603162410.3390/ma7031603mdpi.com
– reference: Jia Z, Guan B, Zang Y, Wang Y, Mu L (2021) Modified Johnson-Cook model of aluminum alloy 6016-T6 sheets at low dynamic strain rates. Mater Sci Eng: A Elsevier, A 820:141565
– reference: JafferySIMativengaPTStudy of the use of wear maps for assessing machining performanceProc Inst Mech Eng Part B J Eng Manuf200922391097110510.1243/09544054JEM1462
– reference: Salguero J et al (2022) Research on conventional and high-speed machining cutting force of 7075-T6 aluminum alloy based on finite element modeling and simulation. 12:1395
– reference: Naik P, Naik A (2015) Determination of flow stress constants by Oxley‘s theory. Int J Latest Tech Eng Manag App Sci (IJLTEMAS) IV(X):110–116
– reference: Xiong Y, Wang W, Jiang R, Lin K (2017) A study on cutting force of machining In Situ TiB2 particle-reinforced 7050Al alloy matrix composites. Metals 7(6):197
– reference: WuHToSSerrated chip formation and their adiabatic analysis by using the constitutive model of titanium alloy in high speed cuttingJ Alloys Compd201562936837310.1016/j.jallcom.2014.12.230
– reference: StevensonRStudy on the correlation of workpiece mechanical properties from compression and cutting testsMach Sci Technol199711677910.1080/10940349708945638
– reference: Bourne KA, Kapoor SG, DeVor RE (2011) Study of the mechanics of the micro-groove cutting process. In: Proceedings of the ASME 2011 International Manufacturing Science and Engineering Conference. ASME 2011 International Manufacturing Science and Engineering Conference, Volume 2. Corvallis, Oregon, USA. June 13–17. ASME, pp 339–348
– reference: Hibbitt, Karlsson, Sorensen (2001) ABAQUS/explicit: user’s manual, vol 1. Karlsson & Sorenson Incorporated Publishing, Hibbitt
– reference: Philip A, Chakraborty K (2023) The Johnson Cook model for the machinability study. Mater Today: Proc Elsevier, Part 1:357–362
– reference: Eisseler R, Drewle K, Grötzinger K, Mohring HC (2018) Using an inverse cutting simulation-based method to determine the johnson-cook material constants of heat-treated steel. Procedia CIRP Elsevier 77:26–29
– reference: XieJQBayoumiAEZbibHMA study on shear banding in chip formation of orthogonal machiningInt J Mach Tools Manuf199636783584710.1016/0890-6955(95)00016-X
– reference: SooSLAspinwallDKDewesRC3D FE modelling of the cutting of Inconel 718J Mater Process Technol20041501–211612310.1016/j.jmatprotec.2004.01.046
– reference: SaptajiKSubbiahSFinite element study of the effect of substrate properties in micro-cutting thin workpiece materialsIOP Conf Ser: Mater Sci Eng201611411200510.1088/1757-899X/114/1/012005
– reference: JohnsonGRCookWAFracture characteristic of three metals subjected to various strains, strain rates, temperatures and pressuresEng Fract Mech1985211314810.1016/0013-7944(85)90052-9
– reference: BagciE3-D numerical analysis of orthogonal cutting process via mesh-free method.pdfInt J Phys Sci2011661267128210.5897/IJPS10.600
– reference: OjalNCherukuriHPSchmitzTLDevlugtKTJaycoxAWA combined experimental and numerical approach that eliminates the non-uniqueness associated with the Johnson-Cook parameters obtained using inverse methodsInt J Adv Manuf Technol20221203–42373238410.1007/S00170-021-08640-9
– reference: Chen Y (2013) Prediction of subsurface damage during machining nickel-based superalloys. Clemson University, USA [PhD Thesis]
– reference: AkramSJafferySHIKhanMFahadMMubasharAAliLNumerical and experimental investigation of Johnson-Cook material models for aluminum (AL 6061–t6) alloy using orthogonal machining approachAdv Mech Eng201810911410.1177/16878140187977
– reference: RuleWKA numerical scheme for extracting strength model coefficients from Taylor test dataInt J Impact Eng199719979781010.1016/S0734-743X(97)00015-8
– reference: Abdi H (2007) The method of least squares. The University of Texas at Dallas, Encycl Meas Stat, Thousand Oaks
– reference: KhanMAJafferySHIBaqaiAAKhanMComparative analysis of tool wear progression of dry and cryogenic turning of titanium alloy Ti-6Al-4V under low, moderate and high tool wear conditionsInt J Adv Manuf Technol20221211–21269128710.1007/s00170-022-09196-y
– reference: LiBWangXHuYLiCAnalytical prediction of cutting forces in orthogonal cutting using unequal division shear-zone modelInt J Adv Manuf Technol201154543144310.1007/s00170-010-2940-8
– reference: ArrazolaPJÖzelTNumerical modelling of 3D hard turning using arbitrary Lagrangian Eulerian finite element methodMech Eng20083323824910.1504/IJMMM.2008.020907
– reference: AkbarFMativengaPTSheikhMAAn experimental and coupled thermo-mechanical finite element study of heat partition effects in machiningInt J Adv Manuf Technol2010465–849150710.1007/s00170-009-2117-5
– reference: Oxley PLB (1989) The mechanics of machining: an analytical approach to assesing machinability. Ellis Horwood, Ltd
– reference: JafferySHIKhanMAliLMativengaPTStatistical analysis of process parameters in micromachining of Ti-6Al-4V alloyProc Inst Mech Eng Part B J Eng Manuf201623061017103410.1177/0954405414564409
– reference: MaňkováIKovacPKundrakJBeňoJFinite element analysis of hardened steel cuttingJ Prod Eng201114710
– reference: Shaw MC (2005) Metal cutting principles (2nd ed.). Oxford University Press, Oxford
– reference: WahabMANodaN-ABordasSPZhuWXuanHNVanegas-UsecheLVAdvances in finite element analysis for computational mechanics 2015Adv Mech Eng20157716878140155957310.1177/1687814015595739
– reference: ManesAPeroniLScapinMGiglioMAnalysis of strain rate behavior of an Al 6061 T6 alloyProcedia Eng2011103477348210.1016/j.proeng.2011.04.573
– reference: JohnsonGRCookWHA constitutive model and data for metals subjected to large strains, high strain rates and high temperaturesProc 7th Int Symp Ballistics1983211541547
– reference: UmbrelloDFinite element simulation of conventional and high speed machining of Ti6Al4V alloyJ Mater Process Technol20081961–3798710.1016/j.jmatprotec.2007.05.007
– reference: Miller SJ (2006) The method of least squares. Department of Mathematics and Statistics Williams College, Williamstown
– reference: Zouhar J, Piska M (2008) Modelling the orthogonal machining process using cutting tools with different geometry. MM Sci J 2008(03):49–52
– reference: OkushimaKHitomiKAn analysis of the mechanism of orthogonal cutting and its application to discontinuous chip formationJ Eng Ind196183454555510.1115/1.3664594
– reference: AgmellMAhadiAStahlJEA fully coupled thermomechanical two-dimensional simulation model for orthogonal cutting: formulation and simulationProc Inst Mech Eng Part B J Eng Manuf2011225101735174510.1177/0954405411407137
– reference: SunSBrandtMDarguschMSCharacteristics of cutting forces and chip formation in machining of titanium alloysInt J Mach Tools Manuf200949756156810.1016/j.ijmachtools.2009.02.008
– reference: Arrazola PJ, Meslin F, Hamann JC, Le Maître L (2002) F.E.M. Abaqus/Explicit 6.1. Abaqus Users’ Conference, Newport-R.I.-EEUU, p 2730
– reference: Ning J, Nguyen V, Huang Y, …, H K (2018) “Inverse determination of Johnson–Cook model constants of ultra-fine-grained titanium based on chip formation model and iterative gradient search,” Int J Adv Manuf Technol Springer 99(5–8):1131–1140. https://doi.org/10.1007/s00170-018-2508-6
– reference: DandekarCRShinYCMulti-scale modeling to predict sub-surface damage applied to laser-assisted machining of a particulate reinforced metal matrix compositeJ Mater Process Technol201321315316010.1016/j.jmatprotec.2012.09.010
– reference: Panov V (2006) Modelling of behaviour of metals at high strain rates. University of Cranfield, [PhD Thesis]
– reference: Lesuer DR, Kay GJ, LeBlanc MM (2001) Modeling large-strain, high-rate deformation in metals. Third Bienn. Tri-Laboratory Eng. Conf. Model. Simul 3–5, Nov 3-5, California
– reference: XieLJSchmidtJSchmidtCBiesingerF2D FEM estimate of tool wear in turning operationWear2005258101479149010.1016/j.wear.2004.11.004
– reference: UlutanDLazogluIDincCThree-dimensional temperature predictions in machining processes using finite difference methodJ Mater Process Technol200920921111112110.1016/j.jmatprotec.2008.03.020
– reference: JafferySIDriverNMativengaPTAnalysis of process parameters in the micromachining of Ti-6Al-4V alloyProc 36th Int MATADOR Conf20102010-January23924210.1007/978-1-84996-432-6_55
– reference: Niu L, Cao M, Liang Z, Han B, Zhang Q (2020) A modified Johnson-Cook model considering strain softening of A356 alloy. Elsevier, vol 789, p 139612
– reference: DaoudMJomaaWChatelainJFBouzidAA machining-based methodology to identify material constitutive law for finite element simulationInt J Adv Manuf Technol2015779–122019203310.1007/s00170-014-6583-z
– reference: KececiogluDShear-zone size, compressive stress, and shear strain in metal-cutting and their effects on mean shear-flow stressJ Eng Ind1960821798610.1115/1.3663007
– reference: LeeSHSaitoYSakaiTUtsunomiyaHMicrostructures and mechanical properties of 6061 aluminum alloy processed by accumulative roll-bondingMater Sci Eng A20023251–222823510.1016/S0921-5093(01)01416-2
– reference: MovahhedyMRGadalaMSAltintasYSimulation of chip formation in orthogonal metal cutting process: an ale finite element approachMach Sci Technol200041154210.1080/10940340008945698University of British Columbia
– reference: Agmell, M, Ahadi A, Stahl JE (2014) Identification of plasticity constants from orthogonal cutting and inverse analysis. Mech Mater 77:43–51
– reference: ZhangYOuteiroJCMabroukiTOn the selection of Johnson-Cook constitutive model parameters for Ti-6Al-4V using three types of numerical models of orthogonal cuttingProcedia CIRP20153111211710.1016/j.procir.2015.03.052
– reference: KhanMAJafferySHIKhanMAssessment of sustainability of machining Ti-6Al-4V under cryogenic condition using energy map approachEng Sci Technol an Int J20234110135710.1016/j.jestch.2023.101357
– reference: NasrMNANgEGElbestawiMAModelling the effects of tool-edge radius on residual stresses when orthogonal cutting AISI 316LInt J Mach Tools Manuf200747240141110.1016/j.ijmachtools.2006.03.004
– reference: GuoYBAn integral method to determine the mechanical behavior of materials in metal cuttingJ Mater Process Technol200314217281443914910.1016/S0924-0136(03)00462-X
– reference: StorchakMRuppPMöhringHSTDetermination of Johnson-Cook constitutive parameters for cutting simulationsMetals201910.3390/met9040473mdpi.com
– reference: AgmellMAhadiAStåhlJEA numerical and experimental investigation of the deformation zones and the corresponding cutting forces in orthogonal cuttingAdv Mater Res201122315216110.4028/www.scientific.net/AMR.223.152
– reference: Childs T (2000) Metal machining: theory and applications. Butterworth-Heinemann, Oxford
– reference: Daoud M, Chatelain J-F, Bouzid H (2014) On the effect of Johnson Cook material constants to simulate Al2024-T3 machining using finite element modeling. In: Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition. Volume 2A: Advanced Manufacturing. Montreal, Quebec, Canada. November 14–20. https://doi.org/10.1115/IMECE2014-37170
– reference: AkramSJafferySHIKhanMMubasharAAliLA numerical investigation of effects of cutting velocity and feed rate on residual stresses in aluminum alloy Al-6061Int J Mater Mech Manuf201531263010.7763/IJMMM.2015.V3.160
– reference: AkramSImranHKhanMMubasharAWarsiSRiazUA numerical investigation and experimental validation on chip morphology of aluminum alloy 6061 during orthogonal machiningMoratuwa Eng Res Conf (MERCon)20162016331336
– reference: RahmatiBSarhanAADSayutiMMorphology of surface generated by end milling AL6061-T6 using molybdenum disul fi de ( MoS 2) nanolubrication in end milling machiningJ Clean Prod20146668569110.1016/j.jclepro.2013.10.048
– reference: OzelTZerenEDetermination of work material flow stress and friction for FEA of machining using orthogonal cutting testsJ Mater Process Technol20041531019102510.1016/j.jmatprotec.2004.04.162
– reference: ZhaoYSunJLiJYanYWangPA comparative study on Johnson-Cook and modified Johnson-Cook constitutive material model to predict the dynamic behavior laser additive manufacturing FeCr alloyJ Alloys Compd201772317918710.1016/j.jallcom.2017.06.251
– reference: ShiJLiuCROn predicting chip morphology and phase transformation in hard machiningInt J Adv Manuf Technol2006277–864565410.1007/s00170-004-2242-0
– reference: ÖzelTKarpatYIdentification of constitutive material model parameters for high-strain rate metal cutting conditions using evolutionary computational algorithmsMater Manuf Process200722565966710.1080/10426910701323631Taylor Fr
– reference: Groover M (2010) Fundamentals of modern manufacturing: materials, processes, and systems (4th edn). John Wiley & Sons Inc., New York
– reference: PriyadarshiniAPalSKSamantarayAKInfluence of the Johnson Cook material model parameters and friction models on simulation of orthogonal cutting processJ Mach Form Technol201241/259
– ident: 12367_CR34
  doi: 10.1016/j.procir.2018.08.198
– ident: 12367_CR24
  doi: 10.1016/j.matpr.2023.02.371
– volume: 3
  start-page: 238
  issue: 3
  year: 2008
  ident: 12367_CR67
  publication-title: Mech Eng
  doi: 10.1504/IJMMM.2008.020907
– volume: 21
  start-page: 541
  issue: 1
  year: 1983
  ident: 12367_CR52
  publication-title: Proc 7th Int Symp Ballistics
– volume: 31
  start-page: 112
  year: 2015
  ident: 12367_CR77
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2015.03.052
– volume: 4
  start-page: 59
  issue: 1/2
  year: 2012
  ident: 12367_CR61
  publication-title: J Mach Form Technol
– volume: 82
  start-page: 79
  issue: 1
  year: 1960
  ident: 12367_CR25
  publication-title: J Eng Ind
  doi: 10.1115/1.3663007
– ident: 12367_CR19
  doi: 10.1115/IMECE2014-37170
– ident: 12367_CR29
– volume: 10
  start-page: 1
  issue: 9
  year: 2018
  ident: 12367_CR43
  publication-title: Adv Mech Eng
  doi: 10.1177/16878140187977
– ident: 12367_CR40
  doi: 10.17973/MMSJ.2008_10_20081006
– ident: 12367_CR72
– volume: 10
  start-page: 3477
  year: 2011
  ident: 12367_CR20
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2011.04.573
– ident: 12367_CR62
  doi: 10.1115/MSEC2011-50076
– ident: 12367_CR7
– volume: 223
  start-page: 1097
  issue: 9
  year: 2009
  ident: 12367_CR8
  publication-title: Proc Inst Mech Eng Part B J Eng Manuf
  doi: 10.1243/09544054JEM1462
– volume: 209
  start-page: 1111
  issue: 2
  year: 2009
  ident: 12367_CR17
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2008.03.020
– volume: 128
  start-page: 119
  issue: 1
  year: 2006
  ident: 12367_CR18
  publication-title: J Manuf Sci Eng
  doi: 10.1115/1.2118767
– ident: 12367_CR3
– ident: 12367_CR23
  doi: 10.3390/met12081395
– volume: 42
  start-page: 1373
  issue: 12
  year: 2002
  ident: 12367_CR30
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/S0890-6955(02)00046-9
– volume: 2016
  start-page: 331
  year: 2016
  ident: 12367_CR54
  publication-title: Moratuwa Eng Res Conf (MERCon)
– volume: 153
  start-page: 1019
  year: 2004
  ident: 12367_CR69
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2004.04.162
– volume: 41
  start-page: 101357
  year: 2023
  ident: 12367_CR9
  publication-title: Eng Sci Technol an Int J
  doi: 10.1016/j.jestch.2023.101357
– volume: 223
  start-page: 152
  year: 2011
  ident: 12367_CR64
  publication-title: Adv Mater Res
  doi: 10.4028/www.scientific.net/AMR.223.152
– volume: 77
  start-page: 2019
  issue: 9–12
  year: 2015
  ident: 12367_CR14
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-014-6583-z
– ident: 12367_CR58
– ident: 12367_CR68
– volume: 142
  start-page: 72
  issue: 1
  year: 2003
  ident: 12367_CR2
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(03)00462-X
– volume: 723
  start-page: 179
  year: 2017
  ident: 12367_CR75
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2017.06.251
– volume: 83
  start-page: 545
  issue: 4
  year: 1961
  ident: 12367_CR26
  publication-title: J Eng Ind
  doi: 10.1115/1.3664594
– volume: 47
  start-page: 401
  issue: 2
  year: 2007
  ident: 12367_CR16
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2006.03.004
– ident: 12367_CR50
– volume: 120
  start-page: 2373
  issue: 3–4
  year: 2022
  ident: 12367_CR35
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/S00170-021-08640-9
– volume: 3
  start-page: 26
  issue: 1
  year: 2015
  ident: 12367_CR57
  publication-title: Int J Mater Mech Manuf
  doi: 10.7763/IJMMM.2015.V3.160
– volume: 62
  start-page: 695
  issue: 2
  year: 2013
  ident: 12367_CR11
  publication-title: CIRP Ann Technol
  doi: 10.1016/j.cirp.2013.05.006
– volume: 54
  start-page: 431
  issue: 5
  year: 2011
  ident: 12367_CR71
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-010-2940-8
– ident: 12367_CR79
– ident: 12367_CR6
– year: 2019
  ident: 12367_CR37
  publication-title: Metals
  doi: 10.3390/met9040473
– volume: 225
  start-page: 1735
  issue: 10
  year: 2011
  ident: 12367_CR39
  publication-title: Proc Inst Mech Eng Part B J Eng Manuf
  doi: 10.1177/0954405411407137
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 12367_CR27
  publication-title: Mach Sci Technol
  doi: 10.1080/10940349708945638
– volume: 36
  start-page: 835
  issue: 7
  year: 1996
  ident: 12367_CR74
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/0890-6955(95)00016-X
– ident: 12367_CR36
  doi: 10.1007/s00170-018-2508-6
– ident: 12367_CR70
  doi: 10.3390/met7060197
– volume: 96
  start-page: 91
  issue: 1–4
  year: 2018
  ident: 12367_CR46
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-018-1588-7
– volume: 49
  start-page: 561
  issue: 7
  year: 2009
  ident: 12367_CR47
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2009.02.008
– volume: 22
  start-page: 659
  issue: 5
  year: 2007
  ident: 12367_CR33
  publication-title: Mater Manuf Process
  doi: 10.1080/10426910701323631
– ident: 12367_CR42
– volume: 629
  start-page: 368
  year: 2015
  ident: 12367_CR76
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2014.12.230
– volume: 213
  start-page: 153
  year: 2013
  ident: 12367_CR55
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2012.09.010
– volume: 19
  start-page: 797
  issue: 9
  year: 1997
  ident: 12367_CR28
  publication-title: Int J Impact Eng
  doi: 10.1016/S0734-743X(97)00015-8
– volume: 27
  start-page: 645
  issue: 7–8
  year: 2006
  ident: 12367_CR56
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-004-2242-0
– volume: 325
  start-page: 228
  issue: 1–2
  year: 2002
  ident: 12367_CR44
  publication-title: Mater Sci Eng A
  doi: 10.1016/S0921-5093(01)01416-2
– volume: 55
  start-page: 63
  year: 2015
  ident: 12367_CR78
  publication-title: Simul Model Pract Theory
  doi: 10.1016/j.simpat.2015.03.011
– volume: 114
  start-page: 12005
  issue: 1
  year: 2016
  ident: 12367_CR59
  publication-title: IOP Conf Ser: Mater Sci Eng
  doi: 10.1088/1757-899X/114/1/012005
– volume: 7
  start-page: 1603
  year: 2014
  ident: 12367_CR10
  publication-title: Materials
  doi: 10.3390/ma7031603
– volume: 14
  start-page: 7
  year: 2011
  ident: 12367_CR60
  publication-title: J Prod Eng
– volume: 122
  start-page: 392
  issue: March 2016
  year: 2017
  ident: 12367_CR31
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2017.01.020
– ident: 12367_CR1
– volume: 66
  start-page: 685
  year: 2014
  ident: 12367_CR45
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2013.10.048
– volume: 46
  start-page: 491
  issue: 5–8
  year: 2010
  ident: 12367_CR63
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-009-2117-5
– volume: 230
  start-page: 1017
  issue: 6
  year: 2016
  ident: 12367_CR48
  publication-title: Proc Inst Mech Eng Part B J Eng Manuf
  doi: 10.1177/0954405414564409
– ident: 12367_CR41
– ident: 12367_CR22
  doi: 10.1016/j.msea.2020.139612
– volume: 150
  start-page: 116
  issue: 1–2
  year: 2004
  ident: 12367_CR13
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2004.01.046
– volume: 6
  start-page: 1267
  issue: 6
  year: 2011
  ident: 12367_CR38
  publication-title: Int J Phys Sci
  doi: 10.5897/IJPS10.600
– volume: 121
  start-page: 1269
  issue: 1–2
  year: 2022
  ident: 12367_CR12
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-022-09196-y
– ident: 12367_CR32
  doi: 10.1016/j.mechmat.2014.07.005
– volume: 21
  start-page: 31
  issue: 1
  year: 1985
  ident: 12367_CR53
  publication-title: Eng Fract Mech
  doi: 10.1016/0013-7944(85)90052-9
– volume: 2010-January
  start-page: 239
  year: 2010
  ident: 12367_CR5
  publication-title: Proc 36th Int MATADOR Conf
  doi: 10.1007/978-1-84996-432-6_55
– volume: 258
  start-page: 1479
  issue: 10
  year: 2005
  ident: 12367_CR66
  publication-title: Wear
  doi: 10.1016/j.wear.2004.11.004
– volume: 125
  start-page: 645
  issue: 4
  year: 2003
  ident: 12367_CR51
  publication-title: J Manuf Sci Eng
  doi: 10.1115/1.1596571
– volume: 7
  start-page: 168781401559573
  issue: 7
  year: 2015
  ident: 12367_CR15
  publication-title: Adv Mech Eng
  doi: 10.1177/1687814015595739
– ident: 12367_CR49
– volume: 4
  start-page: 15
  issue: 1
  year: 2000
  ident: 12367_CR65
  publication-title: Mach Sci Technol
  doi: 10.1080/10940340008945698
– ident: 12367_CR4
– volume: 196
  start-page: 79
  issue: 1–3
  year: 2008
  ident: 12367_CR73
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2007.05.007
– ident: 12367_CR21
  doi: 10.1016/j.msea.2021.141565
SSID ssj0016168
ssib034539549
ssib019759004
ssib029851711
Score 2.3979442
Snippet In this research, sustainable machining of the aluminum alloy (Al 6061-T6) is considered. Aluminum is a durable and infinitely recyclable material as well as...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2523
SubjectTerms Aluminum alloys
Aluminum base alloys
CAE) and Design
Computer-Aided Engineering (CAD
Cutting force
Cutting parameters
Cutting speed
Cutting tools
Engineering
Environmental effects
Finite element method
High speed machining
Industrial and Production Engineering
Manufacturing
Mathematical models
Mechanical Engineering
Mechanical properties
Media Management
Metal cutting
Original Article
Sustainable development
Thermomechanical properties
Workpieces
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NihQxEC7W2YsexF8cXSUHD4oGu9PpJC2IrMsui-AgMgt7a5J0RwZmusfdGcSb7-DL-Dw-iVWZ9IwK7q3pn-pDVZKvUqnvA3gq8yroTGtObZeYoHjFXYbjygmB6NUbXXja7_gwUadn8v15eb4Hk6EXho5VDnNinKib3tMe-SuBUFBFuPt2-YWTahRVVwcJDZukFZo3kWLsGuwLYsYawf6748nHT0OE5ZUmlcxtBIqKpOl3EV7IstjUvVIdQuWxmQ4TFUND0aS2m9h8F6lnOK55PNKg8ezvpW2HV_8pscaV6-QW3EyQkx1uYuQ27LXdHbjxBxHhXfg5jadnGT63HVvYbk0ND7GD8TXDOzZRl-BFwzA2ZxslJtYHZtmib2YBkSxLalu_vv84QuiOZlYxvFlU22GIjtm8_xpNEEkyv1ziysmobtR_pnwAP6CDnfhPsouvcm8vHP7F4gQ669YLRocEvrFnh3OGCVHOp-r5PTg7OZ4enfKk6cA9DvYVL7JgMhXKoJz3mA6p1shGmrwIIShjKxMyE6RoRZVXTurKW0Qs0pW6KX2lrCjuw6jru_YBsFZqR0VPozCnK1uHM7VWZeMR0FHaa8aQD-6ofSI8J92Neb2lao4urNGFdXRhnY3hxfab5Ybu48q3DwYv12noX9a7QB3Dy8Hzu8f_t_bwamuP4LqIwUbbPwcwWl2s28cIiFbuSYry3xOTAVI
  priority: 102
  providerName: ProQuest
Title Toward clean manufacturing: an analysis and validation of a modified Johnson–Cook material model for low and high-speed orthogonal machining of low-carbon aluminum alloy (Al 6061-T6)
URI https://link.springer.com/article/10.1007/s00170-023-12367-0
https://www.proquest.com/docview/2882605613
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3015
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: ABDBF
  dateStart: 20030501
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: ADMLS
  dateStart: 19850901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3015
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3015
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NjtMwELZg9wIHxPIjCkvlAwcQWEocx3a4tat2VyAqhFppOUW2E6NKbbLatkLceAdehufhSZhxnXYXLUicHCX-OcyM_U3G8w0hL0RaeJUoxTDtEhwUJ5lNwK4s54BenVaZw_8dHybybCbenefnMSls1d1270KSYafeJbsFqhcGZwwLtGMMHPXDHOm8QItnfNBpUVoorIS50zJeYPn5vRZnIs-2sa0Ya5BpSJgDZ0SjuemYWnPzmtePrz0m_SOMGk6n8X1yL8JKOtjqwRG5VTcPyN0rZIMPyc9puCFL4btp6NI0G0xqCFmKbym8MZGeBB4qCvo331Zboq2nhi7bau4BrdJYUevX9x8nAM9hmnVQYRoq6lBAwHTRfg1TIBEyW13A6UgxNtR-QcwPA_DyJqyJ80JX5sylhVUMbJLzZrOkeBHgG305WFBwelI2la8ekdl4ND05Y7FuA3Ng0GuWJV4n0udeWufA5ZG1FpXQaea9l9oU2ifaC17zIi2sUIUzgEqEzVWVu0Ianj0mB03b1E8IrYWyGNjUEvy2vLawGyuZVw5AG7q2ukfSThyli6TmWFtjUe7omIMISxBhGURYJj3yejfmYkvp8c_ex52Uy2jeq5KDXyKD79UjbzrJ7z__fban_9f9GbnDg_LhL59jcrC-3NTPAQStbZ_c1uPTPjkcjIfDCbann9-PoB2OJh8_9YNF_AYazf0f
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaq9gAcEOVHLJTiA0ggsEgcx3aQKlRKqy1tVwhtpd5Sx4nRSrvJ0t1V1RvvwMv01IfhSZjxOruARG-9RfmZHGbG843H8w0hL0ScORUpxbDtEhIUK1kRgV8VnAN6tVolFvc7jnqyeyw-n6QnK-Sq7YXBY5XtmugX6rKxuEf-jgMUlB7ufhh_Zzg1Cqur7QgNE0YrlFueYiw0dhxUF-eQwk229j-Bvl9yvrfb3-myMGWAWTC_KUsipyPpUicLawGgy0qLUug4cc5JbTLtIu0Er3gWZ4VQmTUQQ0WRqjK1mTRIfAAhYE0kIoPkb-3jbu_L19ai40zhVM6FxfMMAI5aelQi0mReZwt1Dxn75j1IjDS6vg5tPr7Zz1PdMIixzNOusejvULrEx_-UdH2k3LtH7gaIS7fnNrlOVqr6PrnzB_HhA3LZ96d1KTw3NR2ZeoYNFr5j8j2FOyZQpcBFScEXBvPJT7Rx1NBRUw4cIGcapnv9-vFzB1IFEDP17kT9dB8KaJwOm3MvAkmZ2WQMkZpinar5hvkHfIAHSeGfKBdeZdacFfAXAwv2oJ6NKB5KuKCvtocUErCY9eXrh-T4RrT7iKzWTV09JrQSqsAiq5aQQ6ZVAZFBybS0ACAxzdYdErfqyG0gWMc5H8N8QQ3tVZiDCnOvwjzqkDeLb8ZzepFr395otZyHpWaSLx2jQ962ml8-_r-0J9dLe05udftHh_nhfu_gKbnNveHh1tMGWZ2ezapnAMamxWaweEpOb9rJfgNitD2S
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwELVQKyE4oFJALLTFBw4gsJo4ju30tiqs2gIVh12pt8h2YrTSbrJqs6p66z_0Z_gevqQzTrJbEEXiFsWOfZjn-I3H84aQtyLOvIqUYph2CQ6Kk8xGsK4s58BenVaJw_OOb6fyaCJOztKzO1n84bZ7H5JscxpQpalq9heF318lvgXZFwb7DQsSZAyc9k2BQgmA6Akf9oiKM4VVMVeI4xmWol8jOhFp0sa5uriDjEPyHDgmGpee7tJs_j7n71vZmp_-EVINO9VoizzpKCYdtph4Sh6U1TZ5fEd48Bn5OQ63ZSm0m4rOTbXEBIeQsXhA4Y3ppErgoaCAxWlbeYnWnho6r4upB-ZKu-pav65vDoGqwzBNgDMN1XUosGE6qy_DECiKzC4WsFNSjBPVP5D_wwd4kRPmxHGhK3Pm3MIsBn6Y02o5p3gp4Iq-G84oOEAxG8v3z8lk9Hl8eMS6Gg7MweJuWBJ5HUmfemmdA_dHlloUQseJ915qk2kfaS94ybM4s0JlzgBDETZVReoyaXjygmxUdVW-JLQUymKQU0vw4dLSwp9ZybRwQODQzdUDEvfmyF0ncI51Nmb5Spo5mDAHE-bBhHk0IB9W3yxaeY9_9t7prZx3S_0i5-CjyOCHDcjH3vLr5vtHe_V_3d-Qh98_jfKvx6dfXpNHPOAQT4J2yEZzvix3gRs1di_A_xYlOv63
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+clean+manufacturing%3A+an+analysis+and+validation+of+a+modified+Johnson%E2%80%93Cook+material+model+for+low+and+high-speed+orthogonal+machining+of+low-carbon+aluminum+alloy+%28Al+6061-T6%29&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Akram%2C+Sohail&rft.au=Jaffery%2C+Syed+Husain+Imran&rft.au=Anwar%2C+Zahid&rft.au=Khan%2C+Mushtaq&rft.date=2023-11-01&rft.pub=Springer+London&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=129&rft.issue=5-6&rft.spage=2523&rft.epage=2536&rft_id=info:doi/10.1007%2Fs00170-023-12367-0&rft.externalDocID=10_1007_s00170_023_12367_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon