Toward clean manufacturing: an analysis and validation of a modified Johnson–Cook material model for low and high-speed orthogonal machining of low-carbon aluminum alloy (Al 6061-T6)
In this research, sustainable machining of the aluminum alloy (Al 6061-T6) is considered. Aluminum is a durable and infinitely recyclable material as well as light in density, causing no environmental effects in comparison with other materials including steel or plastic. Currently, due to a lack of...
Saved in:
| Published in | International journal of advanced manufacturing technology Vol. 129; no. 5-6; pp. 2523 - 2536 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.11.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0268-3768 1433-3015 |
| DOI | 10.1007/s00170-023-12367-0 |
Cover
| Abstract | In this research, sustainable machining of the aluminum alloy (Al 6061-T6) is considered. Aluminum is a durable and infinitely recyclable material as well as light in density, causing no environmental effects in comparison with other materials including steel or plastic. Currently, due to a lack of understanding and inefficient application of modern sustainable manufacturing tools and technologies, around 20% of the investment made in metal cutting tools was reported to have been wasted. The constitutive law describing the thermo-mechanical behavior of workpiece material significantly affects the success of any finite element modeling (FEM). Different values of Johnson–Cook (JC) material constants determined through different methods are found in the literature which consequently affects the predicted results. Current research used an inverse methodology to determine the JC material constants and compare them with published literature. The proposed JC material model was then verified through orthogonal machining of Al 6061-T6 alloy at different machining conditions. Cutting forces at high-speed machining were found to decrease remarkably due to adiabatic heating conditions and short contact time between the workpiece and tool material. The JC material constants determined through the current approach produced better predictions of the cutting forces at high-speed machining conditions suitable for sustainable manufacturing. |
|---|---|
| AbstractList | In this research, sustainable machining of the aluminum alloy (Al 6061-T6) is considered. Aluminum is a durable and infinitely recyclable material as well as light in density, causing no environmental effects in comparison with other materials including steel or plastic. Currently, due to a lack of understanding and inefficient application of modern sustainable manufacturing tools and technologies, around 20% of the investment made in metal cutting tools was reported to have been wasted. The constitutive law describing the thermo-mechanical behavior of workpiece material significantly affects the success of any finite element modeling (FEM). Different values of Johnson–Cook (JC) material constants determined through different methods are found in the literature which consequently affects the predicted results. Current research used an inverse methodology to determine the JC material constants and compare them with published literature. The proposed JC material model was then verified through orthogonal machining of Al 6061-T6 alloy at different machining conditions. Cutting forces at high-speed machining were found to decrease remarkably due to adiabatic heating conditions and short contact time between the workpiece and tool material. The JC material constants determined through the current approach produced better predictions of the cutting forces at high-speed machining conditions suitable for sustainable manufacturing. |
| Author | Khan, Mushtaq Khan, Muhammad Ali Anwar, Zahid Jaffery, Syed Husain Imran Akram, Sohail |
| Author_xml | – sequence: 1 givenname: Sohail surname: Akram fullname: Akram, Sohail organization: School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST) – sequence: 2 givenname: Syed Husain Imran surname: Jaffery fullname: Jaffery, Syed Husain Imran organization: School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST) – sequence: 3 givenname: Zahid surname: Anwar fullname: Anwar, Zahid organization: Department of Computer Science, North Dakota State University – sequence: 4 givenname: Mushtaq surname: Khan fullname: Khan, Mushtaq organization: Mechanical Engineering Department, Prince Mohammad Bin Fahd University – sequence: 5 givenname: Muhammad Ali orcidid: 0000-0003-0716-2304 surname: Khan fullname: Khan, Muhammad Ali email: mak.ceme@ceme.nust.edu.pk organization: School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Department of Mechanical Engineering (CEME), National University of Sciences and Technology (NUST) |
| BookMark | eNp9kU1uFDEQhS2USEwSLsDKEhtYGPzT7Xazi0bhT5HYDOtWjduednDbg92daHa5A5fhPJwE9wwSEousqlT63quy3wU6CzEYhF4y-pZR2rzLlLKGEsoFYVzIhtBnaMUqIYigrD5DK8qlIqKR6jm6yPmu4JJJtUK_NvEBUo-1NxDwCGG2oKc5ubB7j8sEAvhDdrk0Pb4H73qYXAw4Wgx4jL2zzvT4SxxCjuH34891jN-LzWSSA78AxmMbE_bx4WgxuN1A8t4UUUzTEHcxLBzowYWyc_EtKNGQtmUL-Hl0YR5L4-MBv772WFLJyEa-uULnFnw2L_7WS_Ttw81m_Yncfv34eX19S7Rg7VSebxWVtrZyqzVnjTSq6ivFhLVWKmiVpcpW3PCWtduqaTWwllbbuulr3Urg4hK9OvnuU_wxmzx1d3FO5ejccaW4pLVkolD8ROkUc07GdvvkRkiHjtFuSag7JdSVhLpjQh0tIvWfSLvp-L1TAuefloqTNO-XqEz6d9UTqj_Vqang |
| CitedBy_id | crossref_primary_10_1016_j_jmrt_2025_03_070 |
| Cites_doi | 10.1016/j.procir.2018.08.198 10.1016/j.matpr.2023.02.371 10.1504/IJMMM.2008.020907 10.1016/j.procir.2015.03.052 10.1115/1.3663007 10.1115/IMECE2014-37170 10.1177/16878140187977 10.17973/MMSJ.2008_10_20081006 10.1016/j.proeng.2011.04.573 10.1115/MSEC2011-50076 10.1243/09544054JEM1462 10.1016/j.jmatprotec.2008.03.020 10.1115/1.2118767 10.3390/met12081395 10.1016/S0890-6955(02)00046-9 10.1016/j.jmatprotec.2004.04.162 10.1016/j.jestch.2023.101357 10.4028/www.scientific.net/AMR.223.152 10.1007/s00170-014-6583-z 10.1016/S0924-0136(03)00462-X 10.1016/j.jallcom.2017.06.251 10.1115/1.3664594 10.1016/j.ijmachtools.2006.03.004 10.1007/S00170-021-08640-9 10.7763/IJMMM.2015.V3.160 10.1016/j.cirp.2013.05.006 10.1007/s00170-010-2940-8 10.3390/met9040473 10.1177/0954405411407137 10.1080/10940349708945638 10.1016/0890-6955(95)00016-X 10.1007/s00170-018-2508-6 10.3390/met7060197 10.1007/s00170-018-1588-7 10.1016/j.ijmachtools.2009.02.008 10.1080/10426910701323631 10.1016/j.jallcom.2014.12.230 10.1016/j.jmatprotec.2012.09.010 10.1016/S0734-743X(97)00015-8 10.1007/s00170-004-2242-0 10.1016/S0921-5093(01)01416-2 10.1016/j.simpat.2015.03.011 10.1088/1757-899X/114/1/012005 10.3390/ma7031603 10.1016/j.ijmecsci.2017.01.020 10.1016/j.jclepro.2013.10.048 10.1007/s00170-009-2117-5 10.1177/0954405414564409 10.1016/j.msea.2020.139612 10.1016/j.jmatprotec.2004.01.046 10.5897/IJPS10.600 10.1007/s00170-022-09196-y 10.1016/j.mechmat.2014.07.005 10.1016/0013-7944(85)90052-9 10.1007/978-1-84996-432-6_55 10.1016/j.wear.2004.11.004 10.1115/1.1596571 10.1177/1687814015595739 10.1080/10940340008945698 10.1016/j.jmatprotec.2007.05.007 10.1016/j.msea.2021.141565 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
| DOI | 10.1007/s00170-023-12367-0 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection |
| DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
| DatabaseTitleList | Engineering Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1433-3015 |
| EndPage | 2536 |
| ExternalDocumentID | 10_1007_s00170_023_12367_0 |
| GroupedDBID | -5B -5G -BR -EM -XW -XX -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAS LLZTM M4Y M7S MA- ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8V Z8W Z8Z Z92 ZMTXR ZY4 _50 ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO DWQXO PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-30f806f5f6bcc2176e84d4813fff68a98f08f42e2919b479ca1904b57d5c96a23 |
| IEDL.DBID | U2A |
| ISSN | 0268-3768 |
| IngestDate | Fri Jul 25 11:06:10 EDT 2025 Wed Oct 01 02:42:43 EDT 2025 Thu Apr 24 23:01:53 EDT 2025 Fri Feb 21 02:42:29 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5-6 |
| Keywords | Finite element modeling Orthogonal machining Inverse methodology algorithm Johnson–Cook material model |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-30f806f5f6bcc2176e84d4813fff68a98f08f42e2919b479ca1904b57d5c96a23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0716-2304 |
| PQID | 2882605613 |
| PQPubID | 2044010 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2882605613 crossref_primary_10_1007_s00170_023_12367_0 crossref_citationtrail_10_1007_s00170_023_12367_0 springer_journals_10_1007_s00170_023_12367_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20231100 2023-11-00 20231101 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 20231100 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | International journal of advanced manufacturing technology |
| PublicationTitleAbbrev | Int J Adv Manuf Technol |
| PublicationYear | 2023 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Arrazola PJ, Meslin F, Hamann JC, Le Maître L (2002) F.E.M. Abaqus/Explicit 6.1. Abaqus Users’ Conference, Newport-R.I.-EEUU, p 2730 Daoud M, Chatelain J-F, Bouzid H (2014) On the effect of Johnson Cook material constants to simulate Al2024-T3 machining using finite element modeling. In: Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition. Volume 2A: Advanced Manufacturing. Montreal, Quebec, Canada. November 14–20. https://doi.org/10.1115/IMECE2014-37170 PriyadarshiniAPalSKSamantarayAKInfluence of the Johnson Cook material model parameters and friction models on simulation of orthogonal cutting processJ Mach Form Technol201241/259 OzelTZerenEDetermination of work material flow stress and friction for FEA of machining using orthogonal cutting testsJ Mater Process Technol20041531019102510.1016/j.jmatprotec.2004.04.162 Kalpakjian S, Schmid SR (2014) Manufacturing engineering and technology. Pearson, Upper Saddle River WarsiSSJafferySHIAhmadRKhanMAghaMHAliLDevelopment and analysis of energy consumption map for high-speed machining of Al 6061–T6 alloyInt J Adv Manuf Technol2018961–49110210.1007/s00170-018-1588-7 Schwer LE (2009) Aluminum plate perforation : a comparative case study using Lagrange with erosion , multi-material ALE , and smooth particle hydrodynamics. In: 7th Eur LS-DYNA Conf 28 Schwer Engineering & Consulting Services, Windsor WahabMANodaN-ABordasSPZhuWXuanHNVanegas-UsecheLVAdvances in finite element analysis for computational mechanics 2015Adv Mech Eng20157716878140155957310.1177/1687814015595739 DaoudMChatelainJFBouzidAEffect of rake angle-based Johnson-Cook material constants on the prediction of residual stresses and temperatures induced during Al2024-T3 machining processInt J Mech Sci2017122March 201639240410.1016/j.ijmecsci.2017.01.020 BagciE3-D numerical analysis of orthogonal cutting process via mesh-free method.pdfInt J Phys Sci2011661267128210.5897/IJPS10.600 Jia Z, Guan B, Zang Y, Wang Y, Mu L (2021) Modified Johnson-Cook model of aluminum alloy 6016-T6 sheets at low dynamic strain rates. Mater Sci Eng: A Elsevier, A 820:141565 Salguero J et al (2022) Research on conventional and high-speed machining cutting force of 7075-T6 aluminum alloy based on finite element modeling and simulation. 12:1395 Oxley PLB (1989) The mechanics of machining: an analytical approach to assesing machinability. Ellis Horwood, Ltd Xiong Y, Wang W, Jiang R, Lin K (2017) A study on cutting force of machining In Situ TiB2 particle-reinforced 7050Al alloy matrix composites. Metals 7(6):197 OkushimaKHitomiKAn analysis of the mechanism of orthogonal cutting and its application to discontinuous chip formationJ Eng Ind196183454555510.1115/1.3664594 AgmellMAhadiAStahlJEA fully coupled thermomechanical two-dimensional simulation model for orthogonal cutting: formulation and simulationProc Inst Mech Eng Part B J Eng Manuf2011225101735174510.1177/0954405411407137 RahmatiBSarhanAADSayutiMMorphology of surface generated by end milling AL6061-T6 using molybdenum disul fi de ( MoS 2) nanolubrication in end milling machiningJ Clean Prod20146668569110.1016/j.jclepro.2013.10.048 DaoudMJomaaWChatelainJFBouzidAA machining-based methodology to identify material constitutive law for finite element simulationInt J Adv Manuf Technol2015779–122019203310.1007/s00170-014-6583-z UmbrelloDFinite element simulation of conventional and high speed machining of Ti6Al4V alloyJ Mater Process Technol20081961–3798710.1016/j.jmatprotec.2007.05.007 StevensonRStudy on the correlation of workpiece mechanical properties from compression and cutting testsMach Sci Technol199711677910.1080/10940349708945638 AkramSJafferySHIKhanMFahadMMubasharAAliLNumerical and experimental investigation of Johnson-Cook material models for aluminum (AL 6061–t6) alloy using orthogonal machining approachAdv Mech Eng201810911410.1177/16878140187977 Childs T (2000) Metal machining: theory and applications. Butterworth-Heinemann, Oxford JomaaWSongmeneVBocherPSurface finish and residual stresses induced by orthogonal dry machining of AA7075-T651Materials201471603162410.3390/ma7031603mdpi.com Zouhar J, Piska M (2008) Modelling the orthogonal machining process using cutting tools with different geometry. MM Sci J 2008(03):49–52 ZhaoYSunJLiJYanYWangPA comparative study on Johnson-Cook and modified Johnson-Cook constitutive material model to predict the dynamic behavior laser additive manufacturing FeCr alloyJ Alloys Compd201772317918710.1016/j.jallcom.2017.06.251 Shaw MC (2005) Metal cutting principles (2nd ed.). Oxford University Press, Oxford AkramSJafferySHIKhanMMubasharAAliLA numerical investigation of effects of cutting velocity and feed rate on residual stresses in aluminum alloy Al-6061Int J Mater Mech Manuf201531263010.7763/IJMMM.2015.V3.160 XieLJSchmidtJSchmidtCBiesingerF2D FEM estimate of tool wear in turning operationWear2005258101479149010.1016/j.wear.2004.11.004 MovahhedyMRGadalaMSAltintasYSimulation of chip formation in orthogonal metal cutting process: an ale finite element approachMach Sci Technol200041154210.1080/10940340008945698University of British Columbia ShiJLiuCROn predicting chip morphology and phase transformation in hard machiningInt J Adv Manuf Technol2006277–864565410.1007/s00170-004-2242-0 LeeSHSaitoYSakaiTUtsunomiyaHMicrostructures and mechanical properties of 6061 aluminum alloy processed by accumulative roll-bondingMater Sci Eng A20023251–222823510.1016/S0921-5093(01)01416-2 KhanMAJafferySHIBaqaiAAKhanMComparative analysis of tool wear progression of dry and cryogenic turning of titanium alloy Ti-6Al-4V under low, moderate and high tool wear conditionsInt J Adv Manuf Technol20221211–21269128710.1007/s00170-022-09196-y XieJQBayoumiAEZbibHMA study on shear banding in chip formation of orthogonal machiningInt J Mach Tools Manuf199636783584710.1016/0890-6955(95)00016-X AkbarFMativengaPTSheikhMAAn experimental and coupled thermo-mechanical finite element study of heat partition effects in machiningInt J Adv Manuf Technol2010465–849150710.1007/s00170-009-2117-5 RuleWKA numerical scheme for extracting strength model coefficients from Taylor test dataInt J Impact Eng199719979781010.1016/S0734-743X(97)00015-8 Miller SJ (2006) The method of least squares. Department of Mathematics and Statistics Williams College, Williamstown KhanMAJafferySHIKhanMAssessment of sustainability of machining Ti-6Al-4V under cryogenic condition using energy map approachEng Sci Technol an Int J20234110135710.1016/j.jestch.2023.101357 OjalNCherukuriHPSchmitzTLDevlugtKTJaycoxAWA combined experimental and numerical approach that eliminates the non-uniqueness associated with the Johnson-Cook parameters obtained using inverse methodsInt J Adv Manuf Technol20221203–42373238410.1007/S00170-021-08640-9 JafferySHIKhanMAliLMativengaPTStatistical analysis of process parameters in micromachining of Ti-6Al-4V alloyProc Inst Mech Eng Part B J Eng Manuf201623061017103410.1177/0954405414564409 AgmellMAhadiAStåhlJEA numerical and experimental investigation of the deformation zones and the corresponding cutting forces in orthogonal cuttingAdv Mater Res201122315216110.4028/www.scientific.net/AMR.223.152 JafferySIDriverNMativengaPTAnalysis of process parameters in the micromachining of Ti-6Al-4V alloyProc 36th Int MATADOR Conf20102010-January23924210.1007/978-1-84996-432-6_55 JafferySIMativengaPTStudy of the use of wear maps for assessing machining performanceProc Inst Mech Eng Part B J Eng Manuf200922391097110510.1243/09544054JEM1462 SunSBrandtMDarguschMSCharacteristics of cutting forces and chip formation in machining of titanium alloysInt J Mach Tools Manuf200949756156810.1016/j.ijmachtools.2009.02.008 LiBWangXHuYLiCAnalytical prediction of cutting forces in orthogonal cutting using unequal division shear-zone modelInt J Adv Manuf Technol201154543144310.1007/s00170-010-2940-8 Agmell, M, Ahadi A, Stahl JE (2014) Identification of plasticity constants from orthogonal cutting and inverse analysis. Mech Mater 77:43–51 PotdarYKZehnderATMeasurements and simulations of temperature and deformation fields in transient metal cuttingJ Manuf Sci Eng2003125464510.1115/1.1596571 TounsiNVincentiJOthoAElbestawiMAFrom the basic mechanics of orthogonal metal cutting toward the identification of the constitutive equationInt J Mach Tools Manuf200242121373138310.1016/S0890-6955(02)00046-9 Bourne KA, Kapoor SG, DeVor RE (2011) Study of the mechanics of the micro-groove cutting process. In: Proceedings of the ASME 2011 International Manufacturing Science and Engineering Conference. ASME 2011 International Manufacturing Science and Engineering Conference, Volume 2. Corvallis, Oregon, USA. June 13–17. ASME, pp 339–348 SooSLAspinwallDKDewesRC3D FE modelling of the cutting of Inconel 718J Mater Process Technol20041501–211612310.1016/j.jmatprotec.2004.01.046 Eisseler R, Drewle K, Grötzinger K, Mohring HC (2018) Using an inverse cutting simulation-based method to determine the johnson-cook material constants of heat-treated steel. Procedia CIRP Elsevier 77:26–29 ArrazolaPJÖzelTNumerical modelling of 3D hard turning using arbitrary Lagrangian Eulerian finite element methodMech Eng20083323824910.1504/IJMMM.2008.020907 UlutanDLazogluIDincCThree-dimensional temperature predictions in machining processes using finite difference methodJ Mater Process Technol200920921111112110.1016/j.jmatprotec.2008.03.020 ManesAPeroniLScapinMGiglioMAnalysis of strain rate behavior of an Al 6061 T6 alloyProcedia Eng2011103477348210.1016/j.proeng.2011.04.573 Chen Y (2013) Prediction of subsurface damage during machining nickel-based superalloys. Clemson University, USA [PhD Thesis] ÖzelTKarpatYIdentification of constitutive material model parameters for high-strain rate metal cutting conditions using evolutionary computational algorithmsMater Manuf Process200722565966710.1080/10426910701323631Taylor Fr JohnsonGRCookWAFracture characteristic of three metals subjected to various strains, strain rates, temperatures and pressuresEng Fract Mech1985211314810.1016/0013-7944(8 R Stevenson (12367_CR27) 1997; 1 SHI Jaffery (12367_CR48) 2016; 230 SH Lee (12367_CR44) 2002; 325 CR Dandekar (12367_CR55) 2013; 213 I Maňková (12367_CR60) 2011; 14 M Agmell (12367_CR64) 2011; 223 12367_CR49 B Li (12367_CR71) 2011; 54 S Sun (12367_CR47) 2009; 49 12367_CR6 12367_CR3 12367_CR4 12367_CR58 T Özel (12367_CR18) 2006; 128 D Kececioglu (12367_CR25) 1960; 82 Y Zhang (12367_CR77) 2015; 31 MA Khan (12367_CR12) 2022; 121 M Daoud (12367_CR31) 2017; 122 GR Johnson (12367_CR52) 1983; 21 S Akram (12367_CR57) 2015; 3 12367_CR7 N Tounsi (12367_CR30) 2002; 42 M Agmell (12367_CR39) 2011; 225 12367_CR50 12367_CR1 SI Jaffery (12367_CR8) 2009; 223 K Okushima (12367_CR26) 1961; 83 B Wang (12367_CR78) 2015; 55 T Özel (12367_CR33) 2007; 22 12367_CR19 12367_CR24 12367_CR68 12367_CR23 H Wu (12367_CR76) 2015; 629 MA Khan (12367_CR9) 2023; 41 PJ Arrazola (12367_CR67) 2008; 3 A Priyadarshini (12367_CR61) 2012; 4 12367_CR22 12367_CR21 MA Wahab (12367_CR15) 2015; 7 J Shi (12367_CR56) 2006; 27 D Ulutan (12367_CR17) 2009; 209 12367_CR62 MR Movahhedy (12367_CR65) 2000; 4 M Storchak (12367_CR37) 2019 WK Rule (12367_CR28) 1997; 19 LJ Xie (12367_CR66) 2005; 258 YK Potdar (12367_CR51) 2003; 125 SI Jaffery (12367_CR5) 2010; 2010-January JQ Xie (12367_CR74) 1996; 36 MNA Nasr (12367_CR16) 2007; 47 12367_CR29 N Ojal (12367_CR35) 2022; 120 12367_CR79 12367_CR34 12367_CR36 S Akram (12367_CR54) 2016; 2016 T Ozel (12367_CR69) 2004; 153 GR Johnson (12367_CR53) 1985; 21 D Umbrello (12367_CR73) 2008; 196 12367_CR32 M Daoud (12367_CR14) 2015; 77 SS Warsi (12367_CR46) 2018; 96 12367_CR70 12367_CR72 E Bagci (12367_CR38) 2011; 6 F Akbar (12367_CR63) 2010; 46 PJ Arrazola (12367_CR11) 2013; 62 B Rahmati (12367_CR45) 2014; 66 A Manes (12367_CR20) 2011; 10 YB Guo (12367_CR2) 2003; 142 12367_CR42 SL Soo (12367_CR13) 2004; 150 12367_CR41 S Akram (12367_CR43) 2018; 10 Y Zhao (12367_CR75) 2017; 723 12367_CR40 W Jomaa (12367_CR10) 2014; 7 K Saptaji (12367_CR59) 2016; 114 |
| References_xml | – reference: ÖzelTZerenEA methodology to determine work material flow stress and tool-chip interfacial friction properties by using analysis of machiningJ Manuf Sci Eng2006128111912910.1115/1.2118767 – reference: PotdarYKZehnderATMeasurements and simulations of temperature and deformation fields in transient metal cuttingJ Manuf Sci Eng2003125464510.1115/1.1596571 – reference: WarsiSSJafferySHIAhmadRKhanMAghaMHAliLDevelopment and analysis of energy consumption map for high-speed machining of Al 6061–T6 alloyInt J Adv Manuf Technol2018961–49110210.1007/s00170-018-1588-7 – reference: Schwer LE (2009) Aluminum plate perforation : a comparative case study using Lagrange with erosion , multi-material ALE , and smooth particle hydrodynamics. In: 7th Eur LS-DYNA Conf 28 Schwer Engineering & Consulting Services, Windsor – reference: Kalpakjian S, Schmid SR (2014) Manufacturing engineering and technology. Pearson, Upper Saddle River – reference: TounsiNVincentiJOthoAElbestawiMAFrom the basic mechanics of orthogonal metal cutting toward the identification of the constitutive equationInt J Mach Tools Manuf200242121373138310.1016/S0890-6955(02)00046-9 – reference: DaoudMChatelainJFBouzidAEffect of rake angle-based Johnson-Cook material constants on the prediction of residual stresses and temperatures induced during Al2024-T3 machining processInt J Mech Sci2017122March 201639240410.1016/j.ijmecsci.2017.01.020 – reference: WangBLiuZSimulation modelling practice and theory shear localization sensitivity analysis for Johnson – Cook constitutive parameters on serrated chips in high speed machining of Ti6Al4VSimul Model Pract Theory201555637610.1016/j.simpat.2015.03.011 – reference: ArrazolaPJÖzelTUmbrelloDDaviesMJawahirISRecent advances in modelling of metal machining processesCIRP Ann Technol201362269571810.1016/j.cirp.2013.05.006 – reference: JomaaWSongmeneVBocherPSurface finish and residual stresses induced by orthogonal dry machining of AA7075-T651Materials201471603162410.3390/ma7031603mdpi.com – reference: Jia Z, Guan B, Zang Y, Wang Y, Mu L (2021) Modified Johnson-Cook model of aluminum alloy 6016-T6 sheets at low dynamic strain rates. Mater Sci Eng: A Elsevier, A 820:141565 – reference: JafferySIMativengaPTStudy of the use of wear maps for assessing machining performanceProc Inst Mech Eng Part B J Eng Manuf200922391097110510.1243/09544054JEM1462 – reference: Salguero J et al (2022) Research on conventional and high-speed machining cutting force of 7075-T6 aluminum alloy based on finite element modeling and simulation. 12:1395 – reference: Naik P, Naik A (2015) Determination of flow stress constants by Oxley‘s theory. Int J Latest Tech Eng Manag App Sci (IJLTEMAS) IV(X):110–116 – reference: Xiong Y, Wang W, Jiang R, Lin K (2017) A study on cutting force of machining In Situ TiB2 particle-reinforced 7050Al alloy matrix composites. Metals 7(6):197 – reference: WuHToSSerrated chip formation and their adiabatic analysis by using the constitutive model of titanium alloy in high speed cuttingJ Alloys Compd201562936837310.1016/j.jallcom.2014.12.230 – reference: StevensonRStudy on the correlation of workpiece mechanical properties from compression and cutting testsMach Sci Technol199711677910.1080/10940349708945638 – reference: Bourne KA, Kapoor SG, DeVor RE (2011) Study of the mechanics of the micro-groove cutting process. In: Proceedings of the ASME 2011 International Manufacturing Science and Engineering Conference. ASME 2011 International Manufacturing Science and Engineering Conference, Volume 2. Corvallis, Oregon, USA. June 13–17. ASME, pp 339–348 – reference: Hibbitt, Karlsson, Sorensen (2001) ABAQUS/explicit: user’s manual, vol 1. Karlsson & Sorenson Incorporated Publishing, Hibbitt – reference: Philip A, Chakraborty K (2023) The Johnson Cook model for the machinability study. Mater Today: Proc Elsevier, Part 1:357–362 – reference: Eisseler R, Drewle K, Grötzinger K, Mohring HC (2018) Using an inverse cutting simulation-based method to determine the johnson-cook material constants of heat-treated steel. Procedia CIRP Elsevier 77:26–29 – reference: XieJQBayoumiAEZbibHMA study on shear banding in chip formation of orthogonal machiningInt J Mach Tools Manuf199636783584710.1016/0890-6955(95)00016-X – reference: SooSLAspinwallDKDewesRC3D FE modelling of the cutting of Inconel 718J Mater Process Technol20041501–211612310.1016/j.jmatprotec.2004.01.046 – reference: SaptajiKSubbiahSFinite element study of the effect of substrate properties in micro-cutting thin workpiece materialsIOP Conf Ser: Mater Sci Eng201611411200510.1088/1757-899X/114/1/012005 – reference: JohnsonGRCookWAFracture characteristic of three metals subjected to various strains, strain rates, temperatures and pressuresEng Fract Mech1985211314810.1016/0013-7944(85)90052-9 – reference: BagciE3-D numerical analysis of orthogonal cutting process via mesh-free method.pdfInt J Phys Sci2011661267128210.5897/IJPS10.600 – reference: OjalNCherukuriHPSchmitzTLDevlugtKTJaycoxAWA combined experimental and numerical approach that eliminates the non-uniqueness associated with the Johnson-Cook parameters obtained using inverse methodsInt J Adv Manuf Technol20221203–42373238410.1007/S00170-021-08640-9 – reference: Chen Y (2013) Prediction of subsurface damage during machining nickel-based superalloys. Clemson University, USA [PhD Thesis] – reference: AkramSJafferySHIKhanMFahadMMubasharAAliLNumerical and experimental investigation of Johnson-Cook material models for aluminum (AL 6061–t6) alloy using orthogonal machining approachAdv Mech Eng201810911410.1177/16878140187977 – reference: RuleWKA numerical scheme for extracting strength model coefficients from Taylor test dataInt J Impact Eng199719979781010.1016/S0734-743X(97)00015-8 – reference: Abdi H (2007) The method of least squares. The University of Texas at Dallas, Encycl Meas Stat, Thousand Oaks – reference: KhanMAJafferySHIBaqaiAAKhanMComparative analysis of tool wear progression of dry and cryogenic turning of titanium alloy Ti-6Al-4V under low, moderate and high tool wear conditionsInt J Adv Manuf Technol20221211–21269128710.1007/s00170-022-09196-y – reference: LiBWangXHuYLiCAnalytical prediction of cutting forces in orthogonal cutting using unequal division shear-zone modelInt J Adv Manuf Technol201154543144310.1007/s00170-010-2940-8 – reference: ArrazolaPJÖzelTNumerical modelling of 3D hard turning using arbitrary Lagrangian Eulerian finite element methodMech Eng20083323824910.1504/IJMMM.2008.020907 – reference: AkbarFMativengaPTSheikhMAAn experimental and coupled thermo-mechanical finite element study of heat partition effects in machiningInt J Adv Manuf Technol2010465–849150710.1007/s00170-009-2117-5 – reference: Oxley PLB (1989) The mechanics of machining: an analytical approach to assesing machinability. Ellis Horwood, Ltd – reference: JafferySHIKhanMAliLMativengaPTStatistical analysis of process parameters in micromachining of Ti-6Al-4V alloyProc Inst Mech Eng Part B J Eng Manuf201623061017103410.1177/0954405414564409 – reference: MaňkováIKovacPKundrakJBeňoJFinite element analysis of hardened steel cuttingJ Prod Eng201114710 – reference: Shaw MC (2005) Metal cutting principles (2nd ed.). Oxford University Press, Oxford – reference: WahabMANodaN-ABordasSPZhuWXuanHNVanegas-UsecheLVAdvances in finite element analysis for computational mechanics 2015Adv Mech Eng20157716878140155957310.1177/1687814015595739 – reference: ManesAPeroniLScapinMGiglioMAnalysis of strain rate behavior of an Al 6061 T6 alloyProcedia Eng2011103477348210.1016/j.proeng.2011.04.573 – reference: JohnsonGRCookWHA constitutive model and data for metals subjected to large strains, high strain rates and high temperaturesProc 7th Int Symp Ballistics1983211541547 – reference: UmbrelloDFinite element simulation of conventional and high speed machining of Ti6Al4V alloyJ Mater Process Technol20081961–3798710.1016/j.jmatprotec.2007.05.007 – reference: Miller SJ (2006) The method of least squares. Department of Mathematics and Statistics Williams College, Williamstown – reference: Zouhar J, Piska M (2008) Modelling the orthogonal machining process using cutting tools with different geometry. MM Sci J 2008(03):49–52 – reference: OkushimaKHitomiKAn analysis of the mechanism of orthogonal cutting and its application to discontinuous chip formationJ Eng Ind196183454555510.1115/1.3664594 – reference: AgmellMAhadiAStahlJEA fully coupled thermomechanical two-dimensional simulation model for orthogonal cutting: formulation and simulationProc Inst Mech Eng Part B J Eng Manuf2011225101735174510.1177/0954405411407137 – reference: SunSBrandtMDarguschMSCharacteristics of cutting forces and chip formation in machining of titanium alloysInt J Mach Tools Manuf200949756156810.1016/j.ijmachtools.2009.02.008 – reference: Arrazola PJ, Meslin F, Hamann JC, Le Maître L (2002) F.E.M. Abaqus/Explicit 6.1. Abaqus Users’ Conference, Newport-R.I.-EEUU, p 2730 – reference: Ning J, Nguyen V, Huang Y, …, H K (2018) “Inverse determination of Johnson–Cook model constants of ultra-fine-grained titanium based on chip formation model and iterative gradient search,” Int J Adv Manuf Technol Springer 99(5–8):1131–1140. https://doi.org/10.1007/s00170-018-2508-6 – reference: DandekarCRShinYCMulti-scale modeling to predict sub-surface damage applied to laser-assisted machining of a particulate reinforced metal matrix compositeJ Mater Process Technol201321315316010.1016/j.jmatprotec.2012.09.010 – reference: Panov V (2006) Modelling of behaviour of metals at high strain rates. University of Cranfield, [PhD Thesis] – reference: Lesuer DR, Kay GJ, LeBlanc MM (2001) Modeling large-strain, high-rate deformation in metals. Third Bienn. Tri-Laboratory Eng. Conf. Model. Simul 3–5, Nov 3-5, California – reference: XieLJSchmidtJSchmidtCBiesingerF2D FEM estimate of tool wear in turning operationWear2005258101479149010.1016/j.wear.2004.11.004 – reference: UlutanDLazogluIDincCThree-dimensional temperature predictions in machining processes using finite difference methodJ Mater Process Technol200920921111112110.1016/j.jmatprotec.2008.03.020 – reference: JafferySIDriverNMativengaPTAnalysis of process parameters in the micromachining of Ti-6Al-4V alloyProc 36th Int MATADOR Conf20102010-January23924210.1007/978-1-84996-432-6_55 – reference: Niu L, Cao M, Liang Z, Han B, Zhang Q (2020) A modified Johnson-Cook model considering strain softening of A356 alloy. Elsevier, vol 789, p 139612 – reference: DaoudMJomaaWChatelainJFBouzidAA machining-based methodology to identify material constitutive law for finite element simulationInt J Adv Manuf Technol2015779–122019203310.1007/s00170-014-6583-z – reference: KececiogluDShear-zone size, compressive stress, and shear strain in metal-cutting and their effects on mean shear-flow stressJ Eng Ind1960821798610.1115/1.3663007 – reference: LeeSHSaitoYSakaiTUtsunomiyaHMicrostructures and mechanical properties of 6061 aluminum alloy processed by accumulative roll-bondingMater Sci Eng A20023251–222823510.1016/S0921-5093(01)01416-2 – reference: MovahhedyMRGadalaMSAltintasYSimulation of chip formation in orthogonal metal cutting process: an ale finite element approachMach Sci Technol200041154210.1080/10940340008945698University of British Columbia – reference: Agmell, M, Ahadi A, Stahl JE (2014) Identification of plasticity constants from orthogonal cutting and inverse analysis. Mech Mater 77:43–51 – reference: ZhangYOuteiroJCMabroukiTOn the selection of Johnson-Cook constitutive model parameters for Ti-6Al-4V using three types of numerical models of orthogonal cuttingProcedia CIRP20153111211710.1016/j.procir.2015.03.052 – reference: KhanMAJafferySHIKhanMAssessment of sustainability of machining Ti-6Al-4V under cryogenic condition using energy map approachEng Sci Technol an Int J20234110135710.1016/j.jestch.2023.101357 – reference: NasrMNANgEGElbestawiMAModelling the effects of tool-edge radius on residual stresses when orthogonal cutting AISI 316LInt J Mach Tools Manuf200747240141110.1016/j.ijmachtools.2006.03.004 – reference: GuoYBAn integral method to determine the mechanical behavior of materials in metal cuttingJ Mater Process Technol200314217281443914910.1016/S0924-0136(03)00462-X – reference: StorchakMRuppPMöhringHSTDetermination of Johnson-Cook constitutive parameters for cutting simulationsMetals201910.3390/met9040473mdpi.com – reference: AgmellMAhadiAStåhlJEA numerical and experimental investigation of the deformation zones and the corresponding cutting forces in orthogonal cuttingAdv Mater Res201122315216110.4028/www.scientific.net/AMR.223.152 – reference: Childs T (2000) Metal machining: theory and applications. Butterworth-Heinemann, Oxford – reference: Daoud M, Chatelain J-F, Bouzid H (2014) On the effect of Johnson Cook material constants to simulate Al2024-T3 machining using finite element modeling. In: Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition. Volume 2A: Advanced Manufacturing. Montreal, Quebec, Canada. November 14–20. https://doi.org/10.1115/IMECE2014-37170 – reference: AkramSJafferySHIKhanMMubasharAAliLA numerical investigation of effects of cutting velocity and feed rate on residual stresses in aluminum alloy Al-6061Int J Mater Mech Manuf201531263010.7763/IJMMM.2015.V3.160 – reference: AkramSImranHKhanMMubasharAWarsiSRiazUA numerical investigation and experimental validation on chip morphology of aluminum alloy 6061 during orthogonal machiningMoratuwa Eng Res Conf (MERCon)20162016331336 – reference: RahmatiBSarhanAADSayutiMMorphology of surface generated by end milling AL6061-T6 using molybdenum disul fi de ( MoS 2) nanolubrication in end milling machiningJ Clean Prod20146668569110.1016/j.jclepro.2013.10.048 – reference: OzelTZerenEDetermination of work material flow stress and friction for FEA of machining using orthogonal cutting testsJ Mater Process Technol20041531019102510.1016/j.jmatprotec.2004.04.162 – reference: ZhaoYSunJLiJYanYWangPA comparative study on Johnson-Cook and modified Johnson-Cook constitutive material model to predict the dynamic behavior laser additive manufacturing FeCr alloyJ Alloys Compd201772317918710.1016/j.jallcom.2017.06.251 – reference: ShiJLiuCROn predicting chip morphology and phase transformation in hard machiningInt J Adv Manuf Technol2006277–864565410.1007/s00170-004-2242-0 – reference: ÖzelTKarpatYIdentification of constitutive material model parameters for high-strain rate metal cutting conditions using evolutionary computational algorithmsMater Manuf Process200722565966710.1080/10426910701323631Taylor Fr – reference: Groover M (2010) Fundamentals of modern manufacturing: materials, processes, and systems (4th edn). John Wiley & Sons Inc., New York – reference: PriyadarshiniAPalSKSamantarayAKInfluence of the Johnson Cook material model parameters and friction models on simulation of orthogonal cutting processJ Mach Form Technol201241/259 – ident: 12367_CR34 doi: 10.1016/j.procir.2018.08.198 – ident: 12367_CR24 doi: 10.1016/j.matpr.2023.02.371 – volume: 3 start-page: 238 issue: 3 year: 2008 ident: 12367_CR67 publication-title: Mech Eng doi: 10.1504/IJMMM.2008.020907 – volume: 21 start-page: 541 issue: 1 year: 1983 ident: 12367_CR52 publication-title: Proc 7th Int Symp Ballistics – volume: 31 start-page: 112 year: 2015 ident: 12367_CR77 publication-title: Procedia CIRP doi: 10.1016/j.procir.2015.03.052 – volume: 4 start-page: 59 issue: 1/2 year: 2012 ident: 12367_CR61 publication-title: J Mach Form Technol – volume: 82 start-page: 79 issue: 1 year: 1960 ident: 12367_CR25 publication-title: J Eng Ind doi: 10.1115/1.3663007 – ident: 12367_CR19 doi: 10.1115/IMECE2014-37170 – ident: 12367_CR29 – volume: 10 start-page: 1 issue: 9 year: 2018 ident: 12367_CR43 publication-title: Adv Mech Eng doi: 10.1177/16878140187977 – ident: 12367_CR40 doi: 10.17973/MMSJ.2008_10_20081006 – ident: 12367_CR72 – volume: 10 start-page: 3477 year: 2011 ident: 12367_CR20 publication-title: Procedia Eng doi: 10.1016/j.proeng.2011.04.573 – ident: 12367_CR62 doi: 10.1115/MSEC2011-50076 – ident: 12367_CR7 – volume: 223 start-page: 1097 issue: 9 year: 2009 ident: 12367_CR8 publication-title: Proc Inst Mech Eng Part B J Eng Manuf doi: 10.1243/09544054JEM1462 – volume: 209 start-page: 1111 issue: 2 year: 2009 ident: 12367_CR17 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2008.03.020 – volume: 128 start-page: 119 issue: 1 year: 2006 ident: 12367_CR18 publication-title: J Manuf Sci Eng doi: 10.1115/1.2118767 – ident: 12367_CR3 – ident: 12367_CR23 doi: 10.3390/met12081395 – volume: 42 start-page: 1373 issue: 12 year: 2002 ident: 12367_CR30 publication-title: Int J Mach Tools Manuf doi: 10.1016/S0890-6955(02)00046-9 – volume: 2016 start-page: 331 year: 2016 ident: 12367_CR54 publication-title: Moratuwa Eng Res Conf (MERCon) – volume: 153 start-page: 1019 year: 2004 ident: 12367_CR69 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2004.04.162 – volume: 41 start-page: 101357 year: 2023 ident: 12367_CR9 publication-title: Eng Sci Technol an Int J doi: 10.1016/j.jestch.2023.101357 – volume: 223 start-page: 152 year: 2011 ident: 12367_CR64 publication-title: Adv Mater Res doi: 10.4028/www.scientific.net/AMR.223.152 – volume: 77 start-page: 2019 issue: 9–12 year: 2015 ident: 12367_CR14 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-014-6583-z – ident: 12367_CR58 – ident: 12367_CR68 – volume: 142 start-page: 72 issue: 1 year: 2003 ident: 12367_CR2 publication-title: J Mater Process Technol doi: 10.1016/S0924-0136(03)00462-X – volume: 723 start-page: 179 year: 2017 ident: 12367_CR75 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2017.06.251 – volume: 83 start-page: 545 issue: 4 year: 1961 ident: 12367_CR26 publication-title: J Eng Ind doi: 10.1115/1.3664594 – volume: 47 start-page: 401 issue: 2 year: 2007 ident: 12367_CR16 publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2006.03.004 – ident: 12367_CR50 – volume: 120 start-page: 2373 issue: 3–4 year: 2022 ident: 12367_CR35 publication-title: Int J Adv Manuf Technol doi: 10.1007/S00170-021-08640-9 – volume: 3 start-page: 26 issue: 1 year: 2015 ident: 12367_CR57 publication-title: Int J Mater Mech Manuf doi: 10.7763/IJMMM.2015.V3.160 – volume: 62 start-page: 695 issue: 2 year: 2013 ident: 12367_CR11 publication-title: CIRP Ann Technol doi: 10.1016/j.cirp.2013.05.006 – volume: 54 start-page: 431 issue: 5 year: 2011 ident: 12367_CR71 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-010-2940-8 – ident: 12367_CR79 – ident: 12367_CR6 – year: 2019 ident: 12367_CR37 publication-title: Metals doi: 10.3390/met9040473 – volume: 225 start-page: 1735 issue: 10 year: 2011 ident: 12367_CR39 publication-title: Proc Inst Mech Eng Part B J Eng Manuf doi: 10.1177/0954405411407137 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 12367_CR27 publication-title: Mach Sci Technol doi: 10.1080/10940349708945638 – volume: 36 start-page: 835 issue: 7 year: 1996 ident: 12367_CR74 publication-title: Int J Mach Tools Manuf doi: 10.1016/0890-6955(95)00016-X – ident: 12367_CR36 doi: 10.1007/s00170-018-2508-6 – ident: 12367_CR70 doi: 10.3390/met7060197 – volume: 96 start-page: 91 issue: 1–4 year: 2018 ident: 12367_CR46 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-018-1588-7 – volume: 49 start-page: 561 issue: 7 year: 2009 ident: 12367_CR47 publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2009.02.008 – volume: 22 start-page: 659 issue: 5 year: 2007 ident: 12367_CR33 publication-title: Mater Manuf Process doi: 10.1080/10426910701323631 – ident: 12367_CR42 – volume: 629 start-page: 368 year: 2015 ident: 12367_CR76 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2014.12.230 – volume: 213 start-page: 153 year: 2013 ident: 12367_CR55 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2012.09.010 – volume: 19 start-page: 797 issue: 9 year: 1997 ident: 12367_CR28 publication-title: Int J Impact Eng doi: 10.1016/S0734-743X(97)00015-8 – volume: 27 start-page: 645 issue: 7–8 year: 2006 ident: 12367_CR56 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-004-2242-0 – volume: 325 start-page: 228 issue: 1–2 year: 2002 ident: 12367_CR44 publication-title: Mater Sci Eng A doi: 10.1016/S0921-5093(01)01416-2 – volume: 55 start-page: 63 year: 2015 ident: 12367_CR78 publication-title: Simul Model Pract Theory doi: 10.1016/j.simpat.2015.03.011 – volume: 114 start-page: 12005 issue: 1 year: 2016 ident: 12367_CR59 publication-title: IOP Conf Ser: Mater Sci Eng doi: 10.1088/1757-899X/114/1/012005 – volume: 7 start-page: 1603 year: 2014 ident: 12367_CR10 publication-title: Materials doi: 10.3390/ma7031603 – volume: 14 start-page: 7 year: 2011 ident: 12367_CR60 publication-title: J Prod Eng – volume: 122 start-page: 392 issue: March 2016 year: 2017 ident: 12367_CR31 publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2017.01.020 – ident: 12367_CR1 – volume: 66 start-page: 685 year: 2014 ident: 12367_CR45 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2013.10.048 – volume: 46 start-page: 491 issue: 5–8 year: 2010 ident: 12367_CR63 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-009-2117-5 – volume: 230 start-page: 1017 issue: 6 year: 2016 ident: 12367_CR48 publication-title: Proc Inst Mech Eng Part B J Eng Manuf doi: 10.1177/0954405414564409 – ident: 12367_CR41 – ident: 12367_CR22 doi: 10.1016/j.msea.2020.139612 – volume: 150 start-page: 116 issue: 1–2 year: 2004 ident: 12367_CR13 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2004.01.046 – volume: 6 start-page: 1267 issue: 6 year: 2011 ident: 12367_CR38 publication-title: Int J Phys Sci doi: 10.5897/IJPS10.600 – volume: 121 start-page: 1269 issue: 1–2 year: 2022 ident: 12367_CR12 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-022-09196-y – ident: 12367_CR32 doi: 10.1016/j.mechmat.2014.07.005 – volume: 21 start-page: 31 issue: 1 year: 1985 ident: 12367_CR53 publication-title: Eng Fract Mech doi: 10.1016/0013-7944(85)90052-9 – volume: 2010-January start-page: 239 year: 2010 ident: 12367_CR5 publication-title: Proc 36th Int MATADOR Conf doi: 10.1007/978-1-84996-432-6_55 – volume: 258 start-page: 1479 issue: 10 year: 2005 ident: 12367_CR66 publication-title: Wear doi: 10.1016/j.wear.2004.11.004 – volume: 125 start-page: 645 issue: 4 year: 2003 ident: 12367_CR51 publication-title: J Manuf Sci Eng doi: 10.1115/1.1596571 – volume: 7 start-page: 168781401559573 issue: 7 year: 2015 ident: 12367_CR15 publication-title: Adv Mech Eng doi: 10.1177/1687814015595739 – ident: 12367_CR49 – volume: 4 start-page: 15 issue: 1 year: 2000 ident: 12367_CR65 publication-title: Mach Sci Technol doi: 10.1080/10940340008945698 – ident: 12367_CR4 – volume: 196 start-page: 79 issue: 1–3 year: 2008 ident: 12367_CR73 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2007.05.007 – ident: 12367_CR21 doi: 10.1016/j.msea.2021.141565 |
| SSID | ssj0016168 ssib034539549 ssib019759004 ssib029851711 |
| Score | 2.3979442 |
| Snippet | In this research, sustainable machining of the aluminum alloy (Al 6061-T6) is considered. Aluminum is a durable and infinitely recyclable material as well as... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2523 |
| SubjectTerms | Aluminum alloys Aluminum base alloys CAE) and Design Computer-Aided Engineering (CAD Cutting force Cutting parameters Cutting speed Cutting tools Engineering Environmental effects Finite element method High speed machining Industrial and Production Engineering Manufacturing Mathematical models Mechanical Engineering Mechanical properties Media Management Metal cutting Original Article Sustainable development Thermomechanical properties Workpieces |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NihQxEC7W2YsexF8cXSUHD4oGu9PpJC2IrMsui-AgMgt7a5J0RwZmusfdGcSb7-DL-Dw-iVWZ9IwK7q3pn-pDVZKvUqnvA3gq8yroTGtObZeYoHjFXYbjygmB6NUbXXja7_gwUadn8v15eb4Hk6EXho5VDnNinKib3tMe-SuBUFBFuPt2-YWTahRVVwcJDZukFZo3kWLsGuwLYsYawf6748nHT0OE5ZUmlcxtBIqKpOl3EV7IstjUvVIdQuWxmQ4TFUND0aS2m9h8F6lnOK55PNKg8ezvpW2HV_8pscaV6-QW3EyQkx1uYuQ27LXdHbjxBxHhXfg5jadnGT63HVvYbk0ND7GD8TXDOzZRl-BFwzA2ZxslJtYHZtmib2YBkSxLalu_vv84QuiOZlYxvFlU22GIjtm8_xpNEEkyv1ziysmobtR_pnwAP6CDnfhPsouvcm8vHP7F4gQ669YLRocEvrFnh3OGCVHOp-r5PTg7OZ4enfKk6cA9DvYVL7JgMhXKoJz3mA6p1shGmrwIIShjKxMyE6RoRZVXTurKW0Qs0pW6KX2lrCjuw6jru_YBsFZqR0VPozCnK1uHM7VWZeMR0FHaa8aQD-6ofSI8J92Neb2lao4urNGFdXRhnY3hxfab5Ybu48q3DwYv12noX9a7QB3Dy8Hzu8f_t_bwamuP4LqIwUbbPwcwWl2s28cIiFbuSYry3xOTAVI priority: 102 providerName: ProQuest |
| Title | Toward clean manufacturing: an analysis and validation of a modified Johnson–Cook material model for low and high-speed orthogonal machining of low-carbon aluminum alloy (Al 6061-T6) |
| URI | https://link.springer.com/article/10.1007/s00170-023-12367-0 https://www.proquest.com/docview/2882605613 |
| Volume | 129 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3015 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: ABDBF dateStart: 20030501 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3015 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: ADMLS dateStart: 19850901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3015 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3015 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3015 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3015 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3015 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NjtMwELZg9wIHxPIjCkvlAwcQWEocx3a4tat2VyAqhFppOUW2E6NKbbLatkLceAdehufhSZhxnXYXLUicHCX-OcyM_U3G8w0hL0RaeJUoxTDtEhwUJ5lNwK4s54BenVaZw_8dHybybCbenefnMSls1d1270KSYafeJbsFqhcGZwwLtGMMHPXDHOm8QItnfNBpUVoorIS50zJeYPn5vRZnIs-2sa0Ya5BpSJgDZ0SjuemYWnPzmtePrz0m_SOMGk6n8X1yL8JKOtjqwRG5VTcPyN0rZIMPyc9puCFL4btp6NI0G0xqCFmKbym8MZGeBB4qCvo331Zboq2nhi7bau4BrdJYUevX9x8nAM9hmnVQYRoq6lBAwHTRfg1TIBEyW13A6UgxNtR-QcwPA_DyJqyJ80JX5sylhVUMbJLzZrOkeBHgG305WFBwelI2la8ekdl4ND05Y7FuA3Ng0GuWJV4n0udeWufA5ZG1FpXQaea9l9oU2ifaC17zIi2sUIUzgEqEzVWVu0Ianj0mB03b1E8IrYWyGNjUEvy2vLawGyuZVw5AG7q2ukfSThyli6TmWFtjUe7omIMISxBhGURYJj3yejfmYkvp8c_ex52Uy2jeq5KDXyKD79UjbzrJ7z__fban_9f9GbnDg_LhL59jcrC-3NTPAQStbZ_c1uPTPjkcjIfDCbann9-PoB2OJh8_9YNF_AYazf0f |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaq9gAcEOVHLJTiA0ggsEgcx3aQKlRKqy1tVwhtpd5Sx4nRSrvJ0t1V1RvvwMv01IfhSZjxOruARG-9RfmZHGbG843H8w0hL0ScORUpxbDtEhIUK1kRgV8VnAN6tVolFvc7jnqyeyw-n6QnK-Sq7YXBY5XtmugX6rKxuEf-jgMUlB7ufhh_Zzg1Cqur7QgNE0YrlFueYiw0dhxUF-eQwk229j-Bvl9yvrfb3-myMGWAWTC_KUsipyPpUicLawGgy0qLUug4cc5JbTLtIu0Er3gWZ4VQmTUQQ0WRqjK1mTRIfAAhYE0kIoPkb-3jbu_L19ai40zhVM6FxfMMAI5aelQi0mReZwt1Dxn75j1IjDS6vg5tPr7Zz1PdMIixzNOusejvULrEx_-UdH2k3LtH7gaIS7fnNrlOVqr6PrnzB_HhA3LZ96d1KTw3NR2ZeoYNFr5j8j2FOyZQpcBFScEXBvPJT7Rx1NBRUw4cIGcapnv9-vFzB1IFEDP17kT9dB8KaJwOm3MvAkmZ2WQMkZpinar5hvkHfIAHSeGfKBdeZdacFfAXAwv2oJ6NKB5KuKCvtocUErCY9eXrh-T4RrT7iKzWTV09JrQSqsAiq5aQQ6ZVAZFBybS0ACAxzdYdErfqyG0gWMc5H8N8QQ3tVZiDCnOvwjzqkDeLb8ZzepFr395otZyHpWaSLx2jQ962ml8-_r-0J9dLe05udftHh_nhfu_gKbnNveHh1tMGWZ2ezapnAMamxWaweEpOb9rJfgNitD2S |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwELVQKyE4oFJALLTFBw4gsJo4ju30tiqs2gIVh12pt8h2YrTSbrJqs6p66z_0Z_gevqQzTrJbEEXiFsWOfZjn-I3H84aQtyLOvIqUYph2CQ6Kk8xGsK4s58BenVaJw_OOb6fyaCJOztKzO1n84bZ7H5JscxpQpalq9heF318lvgXZFwb7DQsSZAyc9k2BQgmA6Akf9oiKM4VVMVeI4xmWol8jOhFp0sa5uriDjEPyHDgmGpee7tJs_j7n71vZmp_-EVINO9VoizzpKCYdtph4Sh6U1TZ5fEd48Bn5OQ63ZSm0m4rOTbXEBIeQsXhA4Y3ppErgoaCAxWlbeYnWnho6r4upB-ZKu-pav65vDoGqwzBNgDMN1XUosGE6qy_DECiKzC4WsFNSjBPVP5D_wwd4kRPmxHGhK3Pm3MIsBn6Y02o5p3gp4Iq-G84oOEAxG8v3z8lk9Hl8eMS6Gg7MweJuWBJ5HUmfemmdA_dHlloUQseJ915qk2kfaS94ybM4s0JlzgBDETZVReoyaXjygmxUdVW-JLQUymKQU0vw4dLSwp9ZybRwQODQzdUDEvfmyF0ncI51Nmb5Spo5mDAHE-bBhHk0IB9W3yxaeY9_9t7prZx3S_0i5-CjyOCHDcjH3vLr5vtHe_V_3d-Qh98_jfKvx6dfXpNHPOAQT4J2yEZzvix3gRs1di_A_xYlOv63 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+clean+manufacturing%3A+an+analysis+and+validation+of+a+modified+Johnson%E2%80%93Cook+material+model+for+low+and+high-speed+orthogonal+machining+of+low-carbon+aluminum+alloy+%28Al+6061-T6%29&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Akram%2C+Sohail&rft.au=Jaffery%2C+Syed+Husain+Imran&rft.au=Anwar%2C+Zahid&rft.au=Khan%2C+Mushtaq&rft.date=2023-11-01&rft.pub=Springer+London&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=129&rft.issue=5-6&rft.spage=2523&rft.epage=2536&rft_id=info:doi/10.1007%2Fs00170-023-12367-0&rft.externalDocID=10_1007_s00170_023_12367_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon |