Gene Selection for Microarray Cancer Classification based on Manta Rays Foraging Optimization and Support Vector Machines

In DNA microarray applications, many techniques are proposed for cancer classification in order to detect normal and cancerous humans or classify different types of cancers. Gene selection is usually required as a preliminary step for a cancer classification problem. This step aims to select the mos...

Full description

Saved in:
Bibliographic Details
Published inArabian journal for science and engineering (2011) Vol. 47; no. 2; pp. 2555 - 2572
Main Authors Houssein, Essam H., Hassan, Hager N., Al-Sayed, Mustafa M., Nabil, Emad
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2193-567X
1319-8025
2191-4281
DOI10.1007/s13369-021-06102-8

Cover

Abstract In DNA microarray applications, many techniques are proposed for cancer classification in order to detect normal and cancerous humans or classify different types of cancers. Gene selection is usually required as a preliminary step for a cancer classification problem. This step aims to select the most informative genes among a great number of genes, which represent an important issue. Although many studies have been proposed to address this issue, they lack getting the most informative and fewest number of genes with the highest accuracy and little effort from the high dimensionality of microarray datasets. Manta ray foraging optimization(MRFO) algorithm is a new meta-heuristic algorithm that mimics the nature of manta ray fishes in food foraging. MRFO has achieved promising results in other fields, such as solar generating units. Due to the high accuracy results of the support vector machines (SVM), it is the most commonly used classification algorithm in cancer studies, especially with microarray data. For exploiting the pros of both algorithms (i.e., MRFO and SVM), in this paper, a hybrid algorithm is proposed to select the most predictive and informative genes for cancer classification. A binary microarray dataset, which includes colon and leukemia1, and a multi-class microarray dataset that includes SRBCT, lymphoma, and leukemia2, are used to evaluate the accuracy of the proposed technique. Like other optimization techniques, MRFO suffers from some problems related to the high dimensionality and complexity of the microarray data. For solving such problems as well as improving the performance, the minimum redundancy maximum relevance (mRMR) method is used as a preprocessing stage. The proposed technique has been evaluated compared to the most common cancer classification algorithms. The experimental results show that our proposed technique achieves the highest accuracy with the fewest number of informative genes and little effort.
AbstractList In DNA microarray applications, many techniques are proposed for cancer classification in order to detect normal and cancerous humans or classify different types of cancers. Gene selection is usually required as a preliminary step for a cancer classification problem. This step aims to select the most informative genes among a great number of genes, which represent an important issue. Although many studies have been proposed to address this issue, they lack getting the most informative and fewest number of genes with the highest accuracy and little effort from the high dimensionality of microarray datasets. Manta ray foraging optimization(MRFO) algorithm is a new meta-heuristic algorithm that mimics the nature of manta ray fishes in food foraging. MRFO has achieved promising results in other fields, such as solar generating units. Due to the high accuracy results of the support vector machines (SVM), it is the most commonly used classification algorithm in cancer studies, especially with microarray data. For exploiting the pros of both algorithms (i.e., MRFO and SVM), in this paper, a hybrid algorithm is proposed to select the most predictive and informative genes for cancer classification. A binary microarray dataset, which includes colon and leukemia1, and a multi-class microarray dataset that includes SRBCT, lymphoma, and leukemia2, are used to evaluate the accuracy of the proposed technique. Like other optimization techniques, MRFO suffers from some problems related to the high dimensionality and complexity of the microarray data. For solving such problems as well as improving the performance, the minimum redundancy maximum relevance (mRMR) method is used as a preprocessing stage. The proposed technique has been evaluated compared to the most common cancer classification algorithms. The experimental results show that our proposed technique achieves the highest accuracy with the fewest number of informative genes and little effort.
Author Al-Sayed, Mustafa M.
Nabil, Emad
Houssein, Essam H.
Hassan, Hager N.
Author_xml – sequence: 1
  givenname: Essam H.
  surname: Houssein
  fullname: Houssein, Essam H.
  organization: Faculty of Computers and Information, Minia University
– sequence: 2
  givenname: Hager N.
  orcidid: 0000-0002-6933-6413
  surname: Hassan
  fullname: Hassan, Hager N.
  organization: Faculty of Computers and Information, Minia University
– sequence: 3
  givenname: Mustafa M.
  surname: Al-Sayed
  fullname: Al-Sayed, Mustafa M.
  email: mustafa.al-sayed@mu.edu.eg, mostafamcs@gmail.com
  organization: Faculty of Computers and Information, Minia University
– sequence: 4
  givenname: Emad
  surname: Nabil
  fullname: Nabil, Emad
  organization: Faculty of Computers and Artificial Intelligence, Cairo University, Faculty of Computer Science and Information Systems, Islamic University of Madinah
BookMark eNp9kElLBDEQhYMouP4BTwHPramk16MMbqAIbngL1enKGBnTbdJzGH-9mWlB8CAUVB3eV6_q7bNt33ti7BjEKQhRnUVQqmwyISETJQiZ1VtsT0IDWS5r2N7MKivK6nWXHcXoWpHXqikA1B5bXZEn_kgLMqPrPbd94HfOhB5DwBWfoTcU-GyBibPO4EbUYqSOp-EO_Yj8AVeRX_YB587P-f0wug_3NSnRd_xxOQx9GPlLslhvR_PmPMVDtmNxEenopx-w58uLp9l1dnt_dTM7v82MgmbMlBACADBvKkWQl3VJVkhbQEtFKiOsrI1tVJ4r23Y2b6iwqiuhFVVDWHXqgJ1Me4fQfy4pjvq9XwafLLUslZBVLkWdVHJSpddjDGT1ENwHhpUGodcp6yllnVLWm5T1Gqr_QMaNm8fHgG7xP6omNCYfP6fwe9U_1DdeHZRr
CitedBy_id crossref_primary_10_1080_21681163_2024_2373996
crossref_primary_10_1155_2022_1056490
crossref_primary_10_31857_S000523102307005X
crossref_primary_10_1007_s12652_025_04953_9
crossref_primary_10_1080_21681163_2023_2219772
crossref_primary_10_3389_fgene_2025_1528810
crossref_primary_10_1007_s42235_024_00481_y
crossref_primary_10_1134_S0005117923070093
crossref_primary_10_1016_j_eswa_2022_119015
crossref_primary_10_1016_j_eswa_2022_118946
crossref_primary_10_1016_j_aej_2022_12_027
crossref_primary_10_1007_s00521_024_09965_8
crossref_primary_10_1080_21681163_2023_2213783
Cites_doi 10.1016/j.advengsoft.2016.01.008
10.1109/AICCSA.2009.5069306
10.1109/ICSMB.2010.5735343
10.1016/j.artmed.2008.04.004
10.1007/978-81-322-1038-2_41
10.1007/0-306-47815-3_9
10.1016/j.engappai.2014.03.007
10.1016/j.patrec.2012.05.019
10.1016/j.compbiolchem.2015.03.001
10.1016/j.patcog.2012.07.028
10.1371/journal.pone.0011900
10.1023/A:1012487302797
10.1038/ng765
10.1109/TNB.2005.853657
10.1016/j.future.2019.02.028
10.1109/AQTR.2010.5520794
10.1016/j.engappai.2019.103300
10.1155/2012/320698
10.1016/j.solener.2020.06.108
10.1016/j.eswa.2011.09.073
10.1016/j.engappai.2019.103249
10.1016/j.engappai.2012.12.009
10.1038/89044
10.1016/j.artmed.2004.01.007
10.1016/j.neucom.2004.07.007
10.1016/j.patcog.2011.12.008
10.1109/CEC.2007.4424483
10.1016/j.jbi.2009.08.010
10.1007/11892755_59
10.1016/j.biosystems.2006.07.002
10.1109/TPAMI.2005.159
10.1016/j.patcog.2009.06.009
10.1016/j.neucom.2008.04.005
10.1109/ISIC.2012.6449755
10.1155/2015/604910
10.1186/1471-2105-7-3
10.4137/CIN.S2655
10.1016/j.compbiolchem.2010.08.003
10.1093/bioinformatics/btm344
10.1016/j.procs.2018.10.358
10.1007/0-306-47815-3_1
10.1109/TCBB.2012.33
10.1016/j.advengsoft.2013.12.007
10.1186/s12920-018-0447-6
10.1016/S0014-5793(03)01275-4
10.1002/er.5244
10.1109/ICNN.1995.488968
10.1016/j.proeng.2012.06.005
10.18178/ijmlc.2016.6.3.596
10.1007/11816102_49
10.1016/j.asoc.2009.11.010
10.1126/science.286.5439.531
10.1016/j.biosystems.2006.12.003
10.1007/978-981-4585-18-7_44
10.1007/BF00175354
10.1007/978-3-540-71783-6_5
10.1142/S0219720005001004
10.1021/acsomega.7b01079
10.1016/j.neucom.2020.04.013
10.1109/TCBB.2014.2328334
10.1016/S1672-6529(13)60219-X
10.1007/11732242_4
10.1109/TNB.2014.2312132
10.1007/s10489-017-1056-3
10.1016/j.engappai.2012.01.017
10.1016/j.enconman.2020.113048
10.1073/pnas.96.12.6745
10.1109/CIBCB.2019.8791236
10.1023/B:AMAI.0000018580.96245.c6
10.1109/TCBB.2008.46
10.1016/j.patrec.2005.12.018
10.1016/S1672-0229(08)60050-9
10.4310/SII.2009.v2.n2.a5
10.1016/j.talanta.2006.07.047
10.1109/TC.1977.1674939
10.1038/35000501
ContentType Journal Article
Copyright King Fahd University of Petroleum & Minerals 2021
King Fahd University of Petroleum & Minerals 2021.
Copyright_xml – notice: King Fahd University of Petroleum & Minerals 2021
– notice: King Fahd University of Petroleum & Minerals 2021.
DBID AAYXX
CITATION
DOI 10.1007/s13369-021-06102-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-4281
EndPage 2572
ExternalDocumentID 10_1007_s13369_021_06102_8
GroupedDBID -EM
0R~
203
2KG
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AASML
AATNV
AATVU
AAUYE
AAYTO
AAYZH
ABAKF
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACHSB
ACMDZ
ACMLO
ACOKC
ACPIV
ACUHS
ACZOJ
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AGAYW
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
AOCGG
AXYYD
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESX
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GQ6
GQ7
H13
HG6
I-F
IKXTQ
IWAJR
J-C
JBSCW
JZLTJ
L8X
LLZTM
M4Y
MK~
NPVJJ
NQJWS
NU0
O9J
PT4
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
TUS
UOJIU
UTJUX
UZXMN
VFIZW
Z5O
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z88
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
06D
0VY
23M
29~
2KM
30V
408
5GY
96X
AAJKR
AARTL
AAYIU
AAYQN
AAZMS
ABTHY
ACGFS
ACKNC
ADHHG
ADHIR
AEGNC
AEJHL
AENEX
AEPYU
AETCA
AFWTZ
AFZKB
AGDGC
AGWZB
AGYKE
AHYZX
AIIXL
AMKLP
AMYQR
ANMIH
AYJHY
ESBYG
FFXSO
FRRFC
FYJPI
GGRSB
GJIRD
GX1
HMJXF
HRMNR
HZ~
I0C
IXD
J9A
KOV
O93
OVT
P9P
R9I
RLLFE
S27
S3B
SEG
SHX
T13
U2A
UG4
VC2
W48
WK8
~A9
ID FETCH-LOGICAL-c319t-3000111a4973e14686ef02f51be5be5c0f28cf93443fbdf49e5f3d61b079ea7d3
ISSN 2193-567X
1319-8025
IngestDate Mon Jun 30 09:02:30 EDT 2025
Wed Oct 01 02:18:37 EDT 2025
Thu Apr 24 23:06:41 EDT 2025
Fri Feb 21 02:47:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Support vector machines
Feature selection
Minimum Redundancy Maximum Relevance
Gene selection
Microarray
Gene expression
Cancer classification
Manta Ray Foraging Optimization algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c319t-3000111a4973e14686ef02f51be5be5c0f28cf93443fbdf49e5f3d61b079ea7d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6933-6413
PQID 2630274208
PQPubID 2044268
PageCount 18
ParticipantIDs proquest_journals_2630274208
crossref_primary_10_1007_s13369_021_06102_8
crossref_citationtrail_10_1007_s13369_021_06102_8
springer_journals_10_1007_s13369_021_06102_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Arabian journal for science and engineering (2011)
PublicationTitleAbbrev Arab J Sci Eng
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Duan, K.-B.; Rajapakse, J.C.; Nguyen, M.N.: One-versus-one and one-versus-all multiclass svm-rfe for gene selection in cancer classification. In: European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, Springer, pp. 47–56 (2007)
PengHLongFDingCFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancyIEEE Trans. Pattern Anal. Mach. intell.200527812261238
InzaISierraBBlancoRLarrañagaPGene selection by sequential search wrapper approaches in microarray cancer class predictionJ. Intell. Fuzzy Syst.200212125331054.92033
AbdiMJGivekiDAutomatic detection of erythemato-squamous diseases using PSO-SVM based on association rulesEng. Appl. Artif. Intell.2013261603608
LazarCTaminauJMeganckSSteenhoffDColettaAMolterCde SchaetzenVDuqueRBersiniHNoweAA survey on filter techniques for feature selection in gene expression microarray analysisIEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB)20129411061119
ZhaoWWangGWangHChenHDongHZhaoZA novel framework for gene selectionInt. J. Adv. Comput. Technol.201133184191
MirjaliliSLewisAThe whale optimization algorithmAdv. Eng. softw.2016955167
LeungYHungYA multiple-filter-multiple-wrapper approach to gene selection and microarray data classificationIEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB)201071108117
TabakhiSMoradiPAkhlaghianFAn unsupervised feature selection algorithm based on ant colony optimizationEng. Appl. Artif. Intell.201432112123
HuangH-LLeeC-CHoS-YSelecting a minimal number of relevant genes from microarray data to design accurate tissue classifiersBiosystems20079017886
LiuHLiuLZhangHEnsemble gene selection by grouping for microarray data classificationJ. Biomed. Inf.20104318187
Alshamlan, H.M.; Badr, G.H.; Alohali, Y.: A study of cancer microarray gene expression profile: objectives and approaches. In: Proceedings of the World Congress on Engineering, Vol. 2, pp. 1–6 (2013)
MaulikUChakrabortyDFuzzy preference based feature selection and semisupervised svm for cancer classificationIEEE Trans. Nanobiosci.2014132152160
Karaboga, D.: An idea based on honey bee swarm for numerical optimization, Tech. rep., Technical report-tr06, Erciyes university, engineering faculty, computer (2005).
Díaz-UriarteRDe AndresSAGene selection and classification of microarray data using random forestBMC Bioinf.2006713
Guo, S.-B.; Lyu, M.R.; Lok, T.-M.: Gene selection based on mutual information for the classification of multi-class cancer. In: International Conference on Intelligent Computing, Springer, pp. 454–463 (2006)
Alshamlan, H.; Badr, G;, Alohali, Y.: mrmr-abc: a hybrid gene selection algorithm for cancer classification using microarray gene expression profiling. Biomed. Res. Int. (2015)
DuanK-BRajapakseJCWangHAzuajeFMultiple SVM-RFE for gene selection in cancer classification with expression dataIEEE trans. Nanobiosci.200543228234
YuLLiuHEfficient feature selection via analysis of relevance and redundancyJ. Mach. Learn. Res.20045Oct1205122422480151222.68340
El-HameedMAElkholyMMEl-FerganyAAThree-diode model for characterization of industrial solar generating units using manta-rays foraging optimizer: Analysis and validationsEnergy Convers. Manage.2020219113048
AlshamlanHMBadrGHAlohaliYAAbc-svm: artificial bee colony and svm method for microarray gene selection and multi class cancer classificationInt. J. Mach. Learn. Comput.201663184
AlshamlanHMBadrGHAlohaliYAGenetic bee colony (gbc) algorithm: a new gene selection method for microarray cancer classificationComput. Biol. Chem.2015564960
LaiCReindersMJWesselsLRandom subspace method for multivariate feature selectionPattern Recognit. Lett.2006271010671076
AlonUBarkaiNNottermanDAGishKYbarraSMackDLevineAJBroad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arraysProc. Nat. Acad. Sci.1999961267456750
Ghosh, K.K.; Guha, R.; Bera, S.K.; Kumar, N.; Sarkar, R.: S-shaped versus v-shaped transfer functions for binary manta ray foraging optimization in feature selection problem.
Yang, C.-S.; Chuang, L.-Y.; Ke, C.-H.; Yang, C.-H.: A hybrid feature selection method for microarray classification., IAENG Int. J. Comput. Sci. 35(3)
He, X.; Cai, D.; Niyogi, P.: Laplacian score for feature selection. In: Advances in neural information processing systems, pp. 507–514. (2006)
BertoniAFolgieriRValentiniGBio-molecular cancer prediction with random subspace ensembles of support vector machinesNeurocomputing200563535539
GhazaviSNLiaoTWMedical data mining by fuzzy modeling with selected featuresArtif. Intell. Med.2008433195206
Ghorai, S.; Mukherjee, A.; Sengupta, S.; Dutta, P.K.: Multicategory cancer classification from gene expression data by multiclass NPPC ensemble. In: 2010 International Conference on Systems in Medicine and Biology, IEEE, (2010), pp. 41–48
Ghoneimy, M.; Nabil, E.; Badr, A.; El-Khamisy, S.F.: Bioscience research.
Alshamlan, H.; Badr, G.; Alohali, Y.: A comparative study of cancer classification methods using microarray gene expression profile. In: Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013), Springer, pp. 389–398 (2014)
Dubitzky, W.; Granzow, M.; Downes, C.S.; Berrar, D.: Introduction to microarray data analysis. In: A Practical Approach to Microarray Data Analysis. Springer, pp. 1–46. (2003)
LeeC-PLeuYA novel hybrid feature selection method for microarray data analysisAppl. Soft Comput.2011111208213
HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: algorithm and applicationsFuture Generat. Comput. Syst.201997849872
Srivastava, A.; Chakrabarti, S.; Das, S.; Ghosh, S.; Jayaraman, V.K.: Hybrid firefly based simultaneous gene selection and cancer classification using support vector machines and random forests. In: Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012), Springer, pp. 485–494 (2013)
SahuBMishraDA novel feature selection algorithm using particle swarm optimization for cancer microarray dataProcedia Eng.2012382731
CaiRHaoZYangXWenWAn efficient gene selection algorithm based on mutual informationNeurocomputing2009724–6991999
AlshamlanHMBadrGHAlohaliYAThe performance of bio-inspired evolutionary gene selection methods for cancer classification using microarray dataset, International Journal of BioscienceBiochem. Bioinf.201443166
RaileanuLEStoffelKTheoretical comparison between the gini index and information gain criteriaAnn. Math. Artif. Intell.2004411779320500691048.68096
WhitleyDA genetic algorithm tutorialStat. Comput.1994426585
NarendraPMFukunagaKA branch and bound algorithm for feature subset selectionIEEE Trans. Comput.197799179220363.68059
LiYWangGChenHShiLQinLAn ant colony optimization based dimension reduction method for high-dimensional datasetsJ. Bionic Eng.2013102231241
Chen, M.-S.; Ho, T.-Y.; Huang, D.-Y.: Online transductive support vector machines for classification. In: 2012 International Conference on Information Security and Intelligent Control, IEEE, pp. 258–261 (2012)
Wang, X.; Gotoh, O.: Microarray-based cancer prediction using soft computing approach, Cancer informatics 7 CIN–S2655. (2009)
DingCPengHMinimum redundancy feature selection from microarray gene expression dataJ. Bioinf. Comput. Biol.2005302185205
El Akadi, A.; Amine, A.; El Ouardighi, A.; Aboutajdine, D.: A new gene selection approach based on minimum redundancy-maximum relevance (MRMR) and genetic algorithm (GA). In: 2009 IEEE/ACS International Conference on Computer Systems and Applications, IEEE, pp. 69–75 (2009)
Benso, A.; Di Carlo, S.; Politano, G.; Savino, A.: Gpu acceleration for statistical gene classification. In: 2010 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), Vol. 2, IEEE, pp. 1–6. (2010)
HuangTWangPYeZ-QXuHHeZFengK-YHuLCuiWWangKDongXPrediction of deleterious non-synonymous SNPS based on protein interaction network and hybrid propertiesPLoS ONE201057e11900
MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv. Eng. softw.2014694661
RaniRRRamyachitraDMicroarray cancer gene feature selection using spider monkey optimization algorithm and cancer classification using SVMProcedia Comput. Sci.2018143108116
LiXZhaoHWeighted random subspace method for high dimensional data classificationStatistics and its Interface20092215325160661245.62077
GuyonIWestonJBarnhillSVapnikVGene selection for cancer classification using support vector machinesMach. Learn.2002461–33894220998.68111
AlanniRHouJAzzawiHXiangYA novel gene selection algorithm for cancer classification using microarray datasetsBMC Med. Genomics201912110
Abdi, M.J.; Hosseini, S.M.; Rezghi, M.: A novel weighted support vector machine based on particle swarm optimization for gene selection and tumor classification. Comput. Math. Methods Med. (2012)
GolubTRSlonimDKTamayoPHuardCGaasenbeekMMesirovJPCollerHLohMLDowningJRCaligiuriMAMolecular classification of cancer: class discovery and class prediction by gene expression monitoringScience19992865439531537
Mukherjee, S.: Classifying microarray data using support vector machines. In: A practical Approach to Microarray Data Analysis. Springer, pp. 166–185 (2003)
PengSXuQLingXBPengXDuWChenLMolecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machinesFEBS Lett.20035552358362
WatadaJArunavaRJingruLBoWShumingWA dual recurrent neural network-based hybrid approach for solving convex quadratic bi-level programming problemNeurocomputing2020407136154
Yu, L.; Liu, H.: Feature selection for high-dimensional data: A fast correlation-based filter solution. In: Proceedings of the 20th International Conference on Machine Learning (ICML-03), 2003, pp. 856–863
FathyARezkHYousriDA robust global MPPT to mitigate partial shading of triple-junction solar cell-based system using manta ray foraging optimization algorithmSolar Energy2020207305316
FerreiraAJFigueiredoMAEfficient feature selection filters for high-dimensional dataPat
AJ Ferreira (6102_CR40) 2012; 45
6102_CR5
6102_CR6
LE Raileanu (6102_CR33) 2004; 41
6102_CR4
R Rodríguez-Peérez (6102_CR81) 2017; 2
6102_CR1
6102_CR2
C-P Lee (6102_CR63) 2011; 11
6102_CR60
L Zhang (6102_CR61) 2018; 48
6102_CR21
6102_CR22
6102_CR66
A Fathy (6102_CR73) 2020; 207
T Huang (6102_CR80) 2010; 5
R Alanni (6102_CR7) 2019; 12
HM Alshamlan (6102_CR8) 2014; 4
SA Armstrong (6102_CR26) 2002; 30
H-L Huang (6102_CR85) 2007; 90
W Zhao (6102_CR62) 2011; 3
MM Kabir (6102_CR49) 2012; 39
HM Alshamlan (6102_CR67) 2015; 56
PM Narendra (6102_CR9) 1977; 9
B Liao (6102_CR30) 2014; 11
HM Alshamlan (6102_CR55) 2016; 6
SI Selem (6102_CR75) 2020; 44
IA Gheyas (6102_CR44) 2010; 43
Y Saeys (6102_CR45) 2007; 23
6102_CR51
Q Shen (6102_CR83) 2007; 71
6102_CR54
K-B Duan (6102_CR70) 2005; 4
C Ding (6102_CR34) 2005; 3
6102_CR56
6102_CR13
6102_CR14
6102_CR58
6102_CR15
B Sahu (6102_CR46) 2012; 38
RR Rani (6102_CR57) 2018; 143
G Wang (6102_CR69) 2013; 46
C Lazar (6102_CR28) 2012; 9
U Alon (6102_CR23) 1999; 96
I Inza (6102_CR52) 2002; 12
A Bertoni (6102_CR35) 2005; 63
I Inza (6102_CR53) 2004; 31
AJ Ferreira (6102_CR41) 2012; 33
L Yu (6102_CR43) 2004; 5
6102_CR82
J Watada (6102_CR10) 2020; 407
C Yun (6102_CR79) 2011; 27
6102_CR42
6102_CR87
AA Heidari (6102_CR16) 2019; 97
E Martinez (6102_CR47) 2010; 34
AA Alizadeh (6102_CR25) 2000; 403
C Lai (6102_CR36) 2006; 27
H Liu (6102_CR77) 2010; 43
S Peng (6102_CR88) 2003; 555
A Zibakhsh (6102_CR65) 2013; 26
R Cai (6102_CR32) 2009; 72
MA El-Hameed (6102_CR74) 2020; 219
TR Golub (6102_CR3) 1999; 286
I Guyon (6102_CR12) 2002; 46
S Mirjalili (6102_CR20) 2016; 95
SN Ghazavi (6102_CR39) 2008; 43
6102_CR71
W Zhao (6102_CR11) 2020; 87
6102_CR72
S Mirjalili (6102_CR18) 2014; 69
R Díaz-Uriarte (6102_CR68) 2006; 7
6102_CR31
6102_CR76
H-L Huang (6102_CR86) 2007; 90
J Khan (6102_CR24) 2001; 7
X Li (6102_CR37) 2009; 2
U Maulik (6102_CR59) 2014; 13
6102_CR78
Y Li (6102_CR48) 2013; 10
MJ Abdi (6102_CR84) 2013; 26
6102_CR38
V Hayyolalam (6102_CR17) 2020; 87
S Tabakhi (6102_CR29) 2014; 32
Y Leung (6102_CR64) 2010; 7
H Peng (6102_CR27) 2005; 27
H Yu (6102_CR50) 2009; 7
D Whitley (6102_CR19) 1994; 4
References_xml – reference: Abdi, M.J.; Hosseini, S.M.; Rezghi, M.: A novel weighted support vector machine based on particle swarm optimization for gene selection and tumor classification. Comput. Math. Methods Med. (2012)
– reference: Huerta, E.B.; Duval, B.; Hao, J.-K.: A hybrid GA/SVM approach for gene selection and classification of microarray data. In: Workshops on Applications of Evolutionary Computation, Springer, pp. 34–44(2006)
– reference: Haindl, M.; Somol, P.; Ververidis, D.; Kotropoulos, C.: Feature selection based on mutual correlation. In: Iberoamerican Congress on Pattern Recognition, Springer, pp. 569–577 (2006)
– reference: Wang, X.; Gotoh, O.: Microarray-based cancer prediction using soft computing approach, Cancer informatics 7 CIN–S2655. (2009)
– reference: MaulikUChakrabortyDFuzzy preference based feature selection and semisupervised svm for cancer classificationIEEE Trans. Nanobiosci.2014132152160
– reference: SelemSIHasanienHMEl-FerganyAAParameters extraction of PEMFC’s model using manta rays foraging optimizerInt. J. Energy Res.202044646294640
– reference: RaniRRRamyachitraDMicroarray cancer gene feature selection using spider monkey optimization algorithm and cancer classification using SVMProcedia Comput. Sci.2018143108116
– reference: ZhaoWZhangZWangLManta ray foraging optimization: an effective bio-inspired optimizer for engineering applicationsEng. Appl. Artif. Intell.202087103300103300
– reference: ZibakhshAAbadehMSGene selection for cancer tumor detection using a novel memetic algorithm with a multi-view fitness functionEng. Appl. Artif. Intell.201326412741281
– reference: AbdiMJGivekiDAutomatic detection of erythemato-squamous diseases using PSO-SVM based on association rulesEng. Appl. Artif. Intell.2013261603608
– reference: Alshamlan, H.M.; Badr, G.H.; Alohali, Y.: A study of cancer microarray gene expression profile: objectives and approaches. In: Proceedings of the World Congress on Engineering, Vol. 2, pp. 1–6 (2013)
– reference: Ghorai, S.; Mukherjee, A.; Sengupta, S.; Dutta, P.K.: Multicategory cancer classification from gene expression data by multiclass NPPC ensemble. In: 2010 International Conference on Systems in Medicine and Biology, IEEE, (2010), pp. 41–48
– reference: Duan, K.-B.; Rajapakse, J.C.; Nguyen, M.N.: One-versus-one and one-versus-all multiclass svm-rfe for gene selection in cancer classification. In: European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, Springer, pp. 47–56 (2007)
– reference: AlshamlanHMBadrGHAlohaliYAGenetic bee colony (gbc) algorithm: a new gene selection method for microarray cancer classificationComput. Biol. Chem.2015564960
– reference: GuyonIWestonJBarnhillSVapnikVGene selection for cancer classification using support vector machinesMach. Learn.2002461–33894220998.68111
– reference: MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv. Eng. softw.2014694661
– reference: LiuHLiuLZhangHEnsemble gene selection by grouping for microarray data classificationJ. Biomed. Inf.20104318187
– reference: Chen, M.-S.; Ho, T.-Y.; Huang, D.-Y.: Online transductive support vector machines for classification. In: 2012 International Conference on Information Security and Intelligent Control, IEEE, pp. 258–261 (2012)
– reference: HuangH-LLeeC-CHoS-YSelecting a minimal number of relevant genes from microarray data to design accurate tissue classifiersBiosystems20079017886
– reference: PengSXuQLingXBPengXDuWChenLMolecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machinesFEBS Lett.20035552358362
– reference: InzaILarrañagaPBlancoRCerrolazaAJFilter versus wrapper gene selection approaches in DNA microarray domainsArtif. Intell. Med.200431291103
– reference: ZhaoWWangGWangHChenHDongHZhaoZA novel framework for gene selectionInt. J. Adv. Comput. Technol.201133184191
– reference: Alshamlan, H.; Badr, G;, Alohali, Y.: mrmr-abc: a hybrid gene selection algorithm for cancer classification using microarray gene expression profiling. Biomed. Res. Int. (2015)
– reference: Rodríguez-PeérezRVogtMBajorathJSupport vector machine classification and regression prioritize different structural features for binary compound activity and potency value predictionACS Omega201721063716379
– reference: YuLLiuHEfficient feature selection via analysis of relevance and redundancyJ. Mach. Learn. Res.20045Oct1205122422480151222.68340
– reference: AlonUBarkaiNNottermanDAGishKYbarraSMackDLevineAJBroad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arraysProc. Nat. Acad. Sci.1999961267456750
– reference: LiXZhaoHWeighted random subspace method for high dimensional data classificationStatistics and its Interface20092215325160661245.62077
– reference: LeungYHungYA multiple-filter-multiple-wrapper approach to gene selection and microarray data classificationIEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB)201071108117
– reference: KhanJWeiJSRingnerMSaalLHLadanyiMWestermannFBertholdFSchwabMAntonescuCRPetersonCClassification and diagnostic prediction of cancers using gene expression profiling and artificial neural networksNature Med.200176673679
– reference: HuangH-LChangF-LEsvm: Evolutionary support vector machine for automatic feature selection and classification of microarray dataBiosystems20079025165282302128
– reference: GhazaviSNLiaoTWMedical data mining by fuzzy modeling with selected featuresArtif. Intell. Med.2008433195206
– reference: InzaISierraBBlancoRLarrañagaPGene selection by sequential search wrapper approaches in microarray cancer class predictionJ. Intell. Fuzzy Syst.200212125331054.92033
– reference: HayyolalamVKazemAAPBlack widow optimization algorithm: a novel meta-heuristic approach for solving engineering optimization problemsEng. Appl. Artif. Intell.202087103249
– reference: Yu, L.; Liu, H.: Feature selection for high-dimensional data: A fast correlation-based filter solution. In: Proceedings of the 20th International Conference on Machine Learning (ICML-03), 2003, pp. 856–863
– reference: MirjaliliSLewisAThe whale optimization algorithmAdv. Eng. softw.2016955167
– reference: He, X.; Cai, D.; Niyogi, P.: Laplacian score for feature selection. In: Advances in neural information processing systems, pp. 507–514. (2006)
– reference: GheyasIASmithLSFeature subset selection in large dimensionality domainsPattern recognition20104315131192.68574
– reference: FerreiraAJFigueiredoMAEfficient feature selection filters for high-dimensional dataPattern Recognit. Lett.2012331317941804
– reference: AlshamlanHMBadrGHAlohaliYAAbc-svm: artificial bee colony and svm method for microarray gene selection and multi class cancer classificationInt. J. Mach. Learn. Comput.201663184
– reference: Dubitzky, W.; Granzow, M.; Downes, C.S.; Berrar, D.: Introduction to microarray data analysis. In: A Practical Approach to Microarray Data Analysis. Springer, pp. 1–46. (2003)
– reference: Díaz-UriarteRDe AndresSAGene selection and classification of microarray data using random forestBMC Bioinf.2006713
– reference: YunCOhBYangJNangJFeature subset selection based on bio-inspired algorithmsJ. Inf. Sci. Eng.2011275166716862856842
– reference: Karaboga, D.: An idea based on honey bee swarm for numerical optimization, Tech. rep., Technical report-tr06, Erciyes university, engineering faculty, computer (2005).
– reference: LiYWangGChenHShiLQinLAn ant colony optimization based dimension reduction method for high-dimensional datasetsJ. Bionic Eng.2013102231241
– reference: YuHGuGLiuHShenJZhaoJA modified ant colony optimization algorithm for tumor marker gene selectionGenomics Proteomics Bioinf.200974200208
– reference: ArmstrongSAStauntonJESilvermanLBPietersRden BoerMLMindenMDSallanSELanderESGolubTRKorsmeyerSJMll translocations specify a distinct gene expression profile that distinguishes a unique leukemiaNature Genetics20023014147
– reference: PengHLongFDingCFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancyIEEE Trans. Pattern Anal. Mach. intell.200527812261238
– reference: DingCPengHMinimum redundancy feature selection from microarray gene expression dataJ. Bioinf. Comput. Biol.2005302185205
– reference: Almugren, N.; Alshamlan, H.: Ff-svm: New firefly-based gene selection algorithm for microarray cancer classification. In: 2019 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), IEEE, pp. 1–6 (2019)
– reference: LaiCReindersMJWesselsLRandom subspace method for multivariate feature selectionPattern Recognit. Lett.2006271010671076
– reference: AlizadehAAEisenMBDavisREMaCLossosISRosenwaldABoldrickJCSabetHTranTYuXDistinct types of diffuse large b-cell lymphoma identified by gene expression profilingNature20004036769503511
– reference: ZhangLZhouWWangBZhangZLiFApplying 1-norm svm with squared loss to gene selection for cancer classificationAppl. Intell.201848718781890
– reference: FathyARezkHYousriDA robust global MPPT to mitigate partial shading of triple-junction solar cell-based system using manta ray foraging optimization algorithmSolar Energy2020207305316
– reference: Yang, C.-S.; Chuang, L.-Y.; Ke, C.-H.; Yang, C.-H.: A hybrid feature selection method for microarray classification., IAENG Int. J. Comput. Sci. 35(3)
– reference: AlshamlanHMBadrGHAlohaliYAThe performance of bio-inspired evolutionary gene selection methods for cancer classification using microarray dataset, International Journal of BioscienceBiochem. Bioinf.201443166
– reference: RaileanuLEStoffelKTheoretical comparison between the gini index and information gain criteriaAnn. Math. Artif. Intell.2004411779320500691048.68096
– reference: Srivastava, A.; Chakrabarti, S.; Das, S.; Ghosh, S.; Jayaraman, V.K.: Hybrid firefly based simultaneous gene selection and cancer classification using support vector machines and random forests. In: Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012), Springer, pp. 485–494 (2013)
– reference: ShenQShiW-MKongWYeB-XA combination of modified particle swarm optimization algorithm and support vector machine for gene selection and tumor classificationTalanta200771416791683
– reference: WhitleyDA genetic algorithm tutorialStat. Comput.1994426585
– reference: TabakhiSMoradiPAkhlaghianFAn unsupervised feature selection algorithm based on ant colony optimizationEng. Appl. Artif. Intell.201432112123
– reference: SaeysYInzaILarrañagaPA review of feature selection techniques in bioinformaticsBioinformatics2007231925072517
– reference: HuangTWangPYeZ-QXuHHeZFengK-YHuLCuiWWangKDongXPrediction of deleterious non-synonymous SNPS based on protein interaction network and hybrid propertiesPLoS ONE201057e11900
– reference: DuanK-BRajapakseJCWangHAzuajeFMultiple SVM-RFE for gene selection in cancer classification with expression dataIEEE trans. Nanobiosci.200543228234
– reference: FerreiraAJFigueiredoMAAn unsupervised approach to feature discretization and selectionPattern Recognit.201245930483060
– reference: Alba, E.; Garcia-Nieto, J.; Jourdan, L.; Talbi, E.-G.: Gene selection in cancer classification using PSO, SVM and GA, SVM hybrid algorithms. In: IEEE Congress on Evolutionary Computation. IEEE 2007, 284–290 (2007)
– reference: NarendraPMFukunagaKA branch and bound algorithm for feature subset selectionIEEE Trans. Comput.197799179220363.68059
– reference: GolubTRSlonimDKTamayoPHuardCGaasenbeekMMesirovJPCollerHLohMLDowningJRCaligiuriMAMolecular classification of cancer: class discovery and class prediction by gene expression monitoringScience19992865439531537
– reference: LazarCTaminauJMeganckSSteenhoffDColettaAMolterCde SchaetzenVDuqueRBersiniHNoweAA survey on filter techniques for feature selection in gene expression microarray analysisIEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB)20129411061119
– reference: WatadaJArunavaRJingruLBoWShumingWA dual recurrent neural network-based hybrid approach for solving convex quadratic bi-level programming problemNeurocomputing2020407136154
– reference: Ghoneimy, M.; Nabil, E.; Badr, A.; El-Khamisy, S.F.: Bioscience research.
– reference: LeeC-PLeuYA novel hybrid feature selection method for microarray data analysisAppl. Soft Comput.2011111208213
– reference: El Akadi, A.; Amine, A.; El Ouardighi, A.; Aboutajdine, D.: A new gene selection approach based on minimum redundancy-maximum relevance (MRMR) and genetic algorithm (GA). In: 2009 IEEE/ACS International Conference on Computer Systems and Applications, IEEE, pp. 69–75 (2009)
– reference: AlanniRHouJAzzawiHXiangYA novel gene selection algorithm for cancer classification using microarray datasetsBMC Med. Genomics201912110
– reference: MartinezEAlvarezMMTrevinoVCompact cancer biomarkers discovery using a swarm intelligence feature selection algorithmComput. Biol. Chem.2010344244250
– reference: SahuBMishraDA novel feature selection algorithm using particle swarm optimization for cancer microarray dataProcedia Eng.2012382731
– reference: Ghosh, K.K.; Guha, R.; Bera, S.K.; Kumar, N.; Sarkar, R.: S-shaped versus v-shaped transfer functions for binary manta ray foraging optimization in feature selection problem.
– reference: KabirMMShahjahanMMuraseKA new hybrid ant colony optimization algorithm for feature selectionExpert Syst. Appl.201239337473763
– reference: LiaoBJiangYLiangWZhuWCaiLCaoZGene selection using locality sensitive laplacian scoreIEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB)201411611461156
– reference: Mukherjee, S.: Classifying microarray data using support vector machines. In: A practical Approach to Microarray Data Analysis. Springer, pp. 166–185 (2003)
– reference: BertoniAFolgieriRValentiniGBio-molecular cancer prediction with random subspace ensembles of support vector machinesNeurocomputing200563535539
– reference: Alshamlan, H.; Badr, G.; Alohali, Y.: A comparative study of cancer classification methods using microarray gene expression profile. In: Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013), Springer, pp. 389–398 (2014)
– reference: WangGSongQXuBZhouYSelecting feature subset for high dimensional data via the propositional foil rulesPattern Recognit.2013461199214
– reference: El-HameedMAElkholyMMEl-FerganyAAThree-diode model for characterization of industrial solar generating units using manta-rays foraging optimizer: Analysis and validationsEnergy Convers. Manage.2020219113048
– reference: Kennedy, J.; Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks, Vol. 4, IEEE, pp. 1942–1948 (1995)
– reference: HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: algorithm and applicationsFuture Generat. Comput. Syst.201997849872
– reference: Benso, A.; Di Carlo, S.; Politano, G.; Savino, A.: Gpu acceleration for statistical gene classification. In: 2010 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), Vol. 2, IEEE, pp. 1–6. (2010)
– reference: CaiRHaoZYangXWenWAn efficient gene selection algorithm based on mutual informationNeurocomputing2009724–6991999
– reference: Guo, S.-B.; Lyu, M.R.; Lok, T.-M.: Gene selection based on mutual information for the classification of multi-class cancer. In: International Conference on Intelligent Computing, Springer, pp. 454–463 (2006)
– volume: 95
  start-page: 51
  year: 2016
  ident: 6102_CR20
  publication-title: Adv. Eng. softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: 6102_CR76
  doi: 10.1109/AICCSA.2009.5069306
– ident: 6102_CR5
  doi: 10.1109/ICSMB.2010.5735343
– volume: 43
  start-page: 195
  issue: 3
  year: 2008
  ident: 6102_CR39
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2008.04.004
– ident: 6102_CR51
  doi: 10.1007/978-81-322-1038-2_41
– ident: 6102_CR14
  doi: 10.1007/0-306-47815-3_9
– volume: 32
  start-page: 112
  year: 2014
  ident: 6102_CR29
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2014.03.007
– volume: 33
  start-page: 1794
  issue: 13
  year: 2012
  ident: 6102_CR41
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2012.05.019
– volume: 56
  start-page: 49
  year: 2015
  ident: 6102_CR67
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2015.03.001
– ident: 6102_CR31
– ident: 6102_CR54
– volume: 46
  start-page: 199
  issue: 1
  year: 2013
  ident: 6102_CR69
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.07.028
– volume: 5
  start-page: e11900
  issue: 7
  year: 2010
  ident: 6102_CR80
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0011900
– volume: 46
  start-page: 389
  issue: 1–3
  year: 2002
  ident: 6102_CR12
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012487302797
– volume: 30
  start-page: 41
  issue: 1
  year: 2002
  ident: 6102_CR26
  publication-title: Nature Genetics
  doi: 10.1038/ng765
– ident: 6102_CR87
– volume: 4
  start-page: 166
  issue: 3
  year: 2014
  ident: 6102_CR8
  publication-title: Biochem. Bioinf.
– volume: 4
  start-page: 228
  issue: 3
  year: 2005
  ident: 6102_CR70
  publication-title: IEEE trans. Nanobiosci.
  doi: 10.1109/TNB.2005.853657
– volume: 97
  start-page: 849
  year: 2019
  ident: 6102_CR16
  publication-title: Future Generat. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– ident: 6102_CR2
  doi: 10.1109/AQTR.2010.5520794
– volume: 87
  start-page: 103300103300
  year: 2020
  ident: 6102_CR11
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.103300
– ident: 6102_CR22
– ident: 6102_CR78
  doi: 10.1155/2012/320698
– volume: 207
  start-page: 305
  year: 2020
  ident: 6102_CR73
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2020.06.108
– volume: 39
  start-page: 3747
  issue: 3
  year: 2012
  ident: 6102_CR49
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.09.073
– volume: 87
  start-page: 103249
  year: 2020
  ident: 6102_CR17
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.103249
– volume: 26
  start-page: 1274
  issue: 4
  year: 2013
  ident: 6102_CR65
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2012.12.009
– volume: 7
  start-page: 673
  issue: 6
  year: 2001
  ident: 6102_CR24
  publication-title: Nature Med.
  doi: 10.1038/89044
– volume: 31
  start-page: 91
  issue: 2
  year: 2004
  ident: 6102_CR53
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2004.01.007
– volume: 63
  start-page: 535
  year: 2005
  ident: 6102_CR35
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2004.07.007
– ident: 6102_CR72
– ident: 6102_CR4
– volume: 45
  start-page: 3048
  issue: 9
  year: 2012
  ident: 6102_CR40
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2011.12.008
– ident: 6102_CR56
  doi: 10.1109/CEC.2007.4424483
– volume: 43
  start-page: 81
  issue: 1
  year: 2010
  ident: 6102_CR77
  publication-title: J. Biomed. Inf.
  doi: 10.1016/j.jbi.2009.08.010
– ident: 6102_CR38
  doi: 10.1007/11892755_59
– volume: 90
  start-page: 78
  issue: 1
  year: 2007
  ident: 6102_CR86
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2006.07.002
– volume: 27
  start-page: 1226
  issue: 8
  year: 2005
  ident: 6102_CR27
  publication-title: IEEE Trans. Pattern Anal. Mach. intell.
  doi: 10.1109/TPAMI.2005.159
– volume: 43
  start-page: 5
  issue: 1
  year: 2010
  ident: 6102_CR44
  publication-title: Pattern recognition
  doi: 10.1016/j.patcog.2009.06.009
– volume: 5
  start-page: 1205
  issue: Oct
  year: 2004
  ident: 6102_CR43
  publication-title: J. Mach. Learn. Res.
– volume: 72
  start-page: 991
  issue: 4–6
  year: 2009
  ident: 6102_CR32
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.04.005
– ident: 6102_CR60
  doi: 10.1109/ISIC.2012.6449755
– ident: 6102_CR66
  doi: 10.1155/2015/604910
– volume: 7
  start-page: 3
  issue: 1
  year: 2006
  ident: 6102_CR68
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-7-3
– ident: 6102_CR82
  doi: 10.4137/CIN.S2655
– volume: 34
  start-page: 244
  issue: 4
  year: 2010
  ident: 6102_CR47
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2010.08.003
– volume: 23
  start-page: 2507
  issue: 19
  year: 2007
  ident: 6102_CR45
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm344
– volume: 143
  start-page: 108
  year: 2018
  ident: 6102_CR57
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.10.358
– volume: 12
  start-page: 25
  issue: 1
  year: 2002
  ident: 6102_CR52
  publication-title: J. Intell. Fuzzy Syst.
– ident: 6102_CR1
  doi: 10.1007/0-306-47815-3_1
– volume: 9
  start-page: 1106
  issue: 4
  year: 2012
  ident: 6102_CR28
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB)
  doi: 10.1109/TCBB.2012.33
– volume: 69
  start-page: 46
  year: 2014
  ident: 6102_CR18
  publication-title: Adv. Eng. softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 12
  start-page: 10
  issue: 1
  year: 2019
  ident: 6102_CR7
  publication-title: BMC Med. Genomics
  doi: 10.1186/s12920-018-0447-6
– volume: 555
  start-page: 358
  issue: 2
  year: 2003
  ident: 6102_CR88
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(03)01275-4
– volume: 44
  start-page: 4629
  issue: 6
  year: 2020
  ident: 6102_CR75
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.5244
– ident: 6102_CR21
  doi: 10.1109/ICNN.1995.488968
– volume: 38
  start-page: 27
  year: 2012
  ident: 6102_CR46
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2012.06.005
– volume: 6
  start-page: 184
  issue: 3
  year: 2016
  ident: 6102_CR55
  publication-title: Int. J. Mach. Learn. Comput.
  doi: 10.18178/ijmlc.2016.6.3.596
– ident: 6102_CR6
  doi: 10.1007/11816102_49
– volume: 11
  start-page: 208
  issue: 1
  year: 2011
  ident: 6102_CR63
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.11.010
– volume: 286
  start-page: 531
  issue: 5439
  year: 1999
  ident: 6102_CR3
  publication-title: Science
  doi: 10.1126/science.286.5439.531
– volume: 90
  start-page: 516
  issue: 2
  year: 2007
  ident: 6102_CR85
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2006.12.003
– ident: 6102_CR15
  doi: 10.1007/978-981-4585-18-7_44
– volume: 4
  start-page: 65
  issue: 2
  year: 1994
  ident: 6102_CR19
  publication-title: Stat. Comput.
  doi: 10.1007/BF00175354
– ident: 6102_CR71
  doi: 10.1007/978-3-540-71783-6_5
– volume: 3
  start-page: 185
  issue: 02
  year: 2005
  ident: 6102_CR34
  publication-title: J. Bioinf. Comput. Biol.
  doi: 10.1142/S0219720005001004
– volume: 2
  start-page: 6371
  issue: 10
  year: 2017
  ident: 6102_CR81
  publication-title: ACS Omega
  doi: 10.1021/acsomega.7b01079
– volume: 407
  start-page: 136
  year: 2020
  ident: 6102_CR10
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.04.013
– volume: 11
  start-page: 1146
  issue: 6
  year: 2014
  ident: 6102_CR30
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB)
  doi: 10.1109/TCBB.2014.2328334
– volume: 10
  start-page: 231
  issue: 2
  year: 2013
  ident: 6102_CR48
  publication-title: J. Bionic Eng.
  doi: 10.1016/S1672-6529(13)60219-X
– ident: 6102_CR13
  doi: 10.1007/11732242_4
– volume: 13
  start-page: 152
  issue: 2
  year: 2014
  ident: 6102_CR59
  publication-title: IEEE Trans. Nanobiosci.
  doi: 10.1109/TNB.2014.2312132
– volume: 48
  start-page: 1878
  issue: 7
  year: 2018
  ident: 6102_CR61
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-017-1056-3
– volume: 26
  start-page: 603
  issue: 1
  year: 2013
  ident: 6102_CR84
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2012.01.017
– volume: 219
  start-page: 113048
  year: 2020
  ident: 6102_CR74
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2020.113048
– volume: 96
  start-page: 6745
  issue: 12
  year: 1999
  ident: 6102_CR23
  publication-title: Proc. Nat. Acad. Sci.
  doi: 10.1073/pnas.96.12.6745
– ident: 6102_CR58
  doi: 10.1109/CIBCB.2019.8791236
– volume: 41
  start-page: 77
  issue: 1
  year: 2004
  ident: 6102_CR33
  publication-title: Ann. Math. Artif. Intell.
  doi: 10.1023/B:AMAI.0000018580.96245.c6
– volume: 3
  start-page: 184
  issue: 3
  year: 2011
  ident: 6102_CR62
  publication-title: Int. J. Adv. Comput. Technol.
– volume: 7
  start-page: 108
  issue: 1
  year: 2010
  ident: 6102_CR64
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB)
  doi: 10.1109/TCBB.2008.46
– volume: 27
  start-page: 1067
  issue: 10
  year: 2006
  ident: 6102_CR36
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.12.018
– volume: 7
  start-page: 200
  issue: 4
  year: 2009
  ident: 6102_CR50
  publication-title: Genomics Proteomics Bioinf.
  doi: 10.1016/S1672-0229(08)60050-9
– volume: 27
  start-page: 1667
  issue: 5
  year: 2011
  ident: 6102_CR79
  publication-title: J. Inf. Sci. Eng.
– volume: 2
  start-page: 153
  issue: 2
  year: 2009
  ident: 6102_CR37
  publication-title: Statistics and its Interface
  doi: 10.4310/SII.2009.v2.n2.a5
– volume: 71
  start-page: 1679
  issue: 4
  year: 2007
  ident: 6102_CR83
  publication-title: Talanta
  doi: 10.1016/j.talanta.2006.07.047
– volume: 9
  start-page: 917
  year: 1977
  ident: 6102_CR9
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.1977.1674939
– volume: 403
  start-page: 503
  issue: 6769
  year: 2000
  ident: 6102_CR25
  publication-title: Nature
  doi: 10.1038/35000501
– ident: 6102_CR42
SSID ssib048395113
ssj0001916267
ssj0061873
Score 2.2969081
Snippet In DNA microarray applications, many techniques are proposed for cancer classification in order to detect normal and cancerous humans or classify different...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2555
SubjectTerms Accuracy
Algorithms
Cancer
Classification
Colon
Datasets
DNA chips
Engineering
Genes
Heuristic methods
Humanities and Social Sciences
multidisciplinary
Optimization
Optimization techniques
Redundancy
Research Article-Computer Engineering and Computer Science
Science
Support vector machines
Title Gene Selection for Microarray Cancer Classification based on Manta Rays Foraging Optimization and Support Vector Machines
URI https://link.springer.com/article/10.1007/s13369-021-06102-8
https://www.proquest.com/docview/2630274208
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2191-4281
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0001916267
  issn: 2193-567X
  databaseCode: ABDBF
  dateStart: 20041001
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2191-4281
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061873
  issn: 2193-567X
  databaseCode: GX1
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2191-4281
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001916267
  issn: 2193-567X
  databaseCode: AFBBN
  dateStart: 20110101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2191-4281
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061873
  issn: 2193-567X
  databaseCode: AGYKE
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 2191-4281
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061873
  issn: 2193-567X
  databaseCode: U2A
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67gIHxKcYG5MP3EKmJI7T5NjBSoXUIcGGeouc2BaHtpuS9lD-Xf6RvWc7H51WxJCqKLJdK8n7-X3Y74OQD4EoQO3mwmdFmvhxqLWfyrj0RalSETElC3MUM7tMptfx1zmfDwZ_el5Lm3VxVv5-MK7kf6gKbUBXjJJ9BGXbSaEB7oG-cAUKw_WfaIw5o2G1L1TZegzO0MFOVJWApY4ErWzZS3QIsqRGsSXxiGAG31R438W29iaAA1Os6BswkKWLzLROnZtbVNC9n2ZzH8sU_UI_-b5KO64E5i1vc1DgUzTBQjiF6jIeojqLqkBv-2F6s6lrV3Dzoq7F0puedVwRGkzPVJjg5LZnvPB_iK3dp51hCJgW3qztvcSswWbCpZD9bQ2wiIMdF5FmW9Pbl_ULGCQwW-bzZDS3sqxpA5s4smVgGg5vc3o6JEd9ds1tjmAn-oF9RQ-KlcCFWTOWZD46tYAWhJKkE6Kta2OXBhoH5zA4N4Pz9IAcRiB6giE5HJ9_Pp80bC8GHRXUXtZtDYLKHpnax-0bunAvG_R5_yl2VarOTrp3tG80pqvn5JkzdejY4vYFGajVS_K0lwDzFdkigmmLYArYoR2CqUUw3UUwNQimcGMQTBHBtEEw7SOYAvyoQzC1CKYNgl-T68nF1aep74qB-CVIibXPjPUSijgbMYXxgonSQaR5WCgOvzLQUVrqjMUx04XUcaa4ZjIJi2CUKTGS7A0Zrm5W6i2hMgUriJeF5DA8C2IRSs51kMpQgUEeJkckbL5nXrpM-ViwZZHvJ-4R8dr_3No8MX8dfdKQKXers86jhBnHiQC6Pzak67r3z_buccOPyZNuwZ2Q4braqPegWa-LU4fMU3LwZR7eAQr-yIM
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+Selection+for+Microarray+Cancer+Classification+based+on+Manta+Rays+Foraging+Optimization+and+Support+Vector+Machines&rft.jtitle=Arabian+journal+for+science+and+engineering+%282011%29&rft.au=Houssein%2C+Essam+H.&rft.au=Hassan%2C+Hager+N.&rft.au=Al-Sayed%2C+Mustafa+M.&rft.au=Nabil%2C+Emad&rft.date=2022-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=2193-567X&rft.eissn=2191-4281&rft.volume=47&rft.issue=2&rft.spage=2555&rft.epage=2572&rft_id=info:doi/10.1007%2Fs13369-021-06102-8&rft.externalDocID=10_1007_s13369_021_06102_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon