Gene Selection for Microarray Cancer Classification based on Manta Rays Foraging Optimization and Support Vector Machines
In DNA microarray applications, many techniques are proposed for cancer classification in order to detect normal and cancerous humans or classify different types of cancers. Gene selection is usually required as a preliminary step for a cancer classification problem. This step aims to select the mos...
        Saved in:
      
    
          | Published in | Arabian journal for science and engineering (2011) Vol. 47; no. 2; pp. 2555 - 2572 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        01.02.2022
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2193-567X 1319-8025 2191-4281  | 
| DOI | 10.1007/s13369-021-06102-8 | 
Cover
| Abstract | In DNA microarray applications, many techniques are proposed for cancer classification in order to detect normal and cancerous humans or classify different types of cancers. Gene selection is usually required as a preliminary step for a cancer classification problem. This step aims to select the most informative genes among a great number of genes, which represent an important issue. Although many studies have been proposed to address this issue, they lack getting the most informative and fewest number of genes with the highest accuracy and little effort from the high dimensionality of microarray datasets. Manta ray foraging optimization(MRFO) algorithm is a new meta-heuristic algorithm that mimics the nature of manta ray fishes in food foraging. MRFO has achieved promising results in other fields, such as solar generating units. Due to the high accuracy results of the support vector machines (SVM), it is the most commonly used classification algorithm in cancer studies, especially with microarray data. For exploiting the pros of both algorithms (i.e., MRFO and SVM), in this paper, a hybrid algorithm is proposed to select the most predictive and informative genes for cancer classification. A binary microarray dataset, which includes colon and leukemia1, and a multi-class microarray dataset that includes SRBCT, lymphoma, and leukemia2, are used to evaluate the accuracy of the proposed technique. Like other optimization techniques, MRFO suffers from some problems related to the high dimensionality and complexity of the microarray data. For solving such problems as well as improving the performance, the minimum redundancy maximum relevance (mRMR) method is used as a preprocessing stage. The proposed technique has been evaluated compared to the most common cancer classification algorithms. The experimental results show that our proposed technique achieves the highest accuracy with the fewest number of informative genes and little effort. | 
    
|---|---|
| AbstractList | In DNA microarray applications, many techniques are proposed for cancer classification in order to detect normal and cancerous humans or classify different types of cancers. Gene selection is usually required as a preliminary step for a cancer classification problem. This step aims to select the most informative genes among a great number of genes, which represent an important issue. Although many studies have been proposed to address this issue, they lack getting the most informative and fewest number of genes with the highest accuracy and little effort from the high dimensionality of microarray datasets. Manta ray foraging optimization(MRFO) algorithm is a new meta-heuristic algorithm that mimics the nature of manta ray fishes in food foraging. MRFO has achieved promising results in other fields, such as solar generating units. Due to the high accuracy results of the support vector machines (SVM), it is the most commonly used classification algorithm in cancer studies, especially with microarray data. For exploiting the pros of both algorithms (i.e., MRFO and SVM), in this paper, a hybrid algorithm is proposed to select the most predictive and informative genes for cancer classification. A binary microarray dataset, which includes colon and leukemia1, and a multi-class microarray dataset that includes SRBCT, lymphoma, and leukemia2, are used to evaluate the accuracy of the proposed technique. Like other optimization techniques, MRFO suffers from some problems related to the high dimensionality and complexity of the microarray data. For solving such problems as well as improving the performance, the minimum redundancy maximum relevance (mRMR) method is used as a preprocessing stage. The proposed technique has been evaluated compared to the most common cancer classification algorithms. The experimental results show that our proposed technique achieves the highest accuracy with the fewest number of informative genes and little effort. | 
    
| Author | Al-Sayed, Mustafa M. Nabil, Emad Houssein, Essam H. Hassan, Hager N.  | 
    
| Author_xml | – sequence: 1 givenname: Essam H. surname: Houssein fullname: Houssein, Essam H. organization: Faculty of Computers and Information, Minia University – sequence: 2 givenname: Hager N. orcidid: 0000-0002-6933-6413 surname: Hassan fullname: Hassan, Hager N. organization: Faculty of Computers and Information, Minia University – sequence: 3 givenname: Mustafa M. surname: Al-Sayed fullname: Al-Sayed, Mustafa M. email: mustafa.al-sayed@mu.edu.eg, mostafamcs@gmail.com organization: Faculty of Computers and Information, Minia University – sequence: 4 givenname: Emad surname: Nabil fullname: Nabil, Emad organization: Faculty of Computers and Artificial Intelligence, Cairo University, Faculty of Computer Science and Information Systems, Islamic University of Madinah  | 
    
| BookMark | eNp9kElLBDEQhYMouP4BTwHPramk16MMbqAIbngL1enKGBnTbdJzGH-9mWlB8CAUVB3eV6_q7bNt33ti7BjEKQhRnUVQqmwyISETJQiZ1VtsT0IDWS5r2N7MKivK6nWXHcXoWpHXqikA1B5bXZEn_kgLMqPrPbd94HfOhB5DwBWfoTcU-GyBibPO4EbUYqSOp-EO_Yj8AVeRX_YB587P-f0wug_3NSnRd_xxOQx9GPlLslhvR_PmPMVDtmNxEenopx-w58uLp9l1dnt_dTM7v82MgmbMlBACADBvKkWQl3VJVkhbQEtFKiOsrI1tVJ4r23Y2b6iwqiuhFVVDWHXqgJ1Me4fQfy4pjvq9XwafLLUslZBVLkWdVHJSpddjDGT1ENwHhpUGodcp6yllnVLWm5T1Gqr_QMaNm8fHgG7xP6omNCYfP6fwe9U_1DdeHZRr | 
    
| CitedBy_id | crossref_primary_10_1080_21681163_2024_2373996 crossref_primary_10_1155_2022_1056490 crossref_primary_10_31857_S000523102307005X crossref_primary_10_1007_s12652_025_04953_9 crossref_primary_10_1080_21681163_2023_2219772 crossref_primary_10_3389_fgene_2025_1528810 crossref_primary_10_1007_s42235_024_00481_y crossref_primary_10_1134_S0005117923070093 crossref_primary_10_1016_j_eswa_2022_119015 crossref_primary_10_1016_j_eswa_2022_118946 crossref_primary_10_1016_j_aej_2022_12_027 crossref_primary_10_1007_s00521_024_09965_8 crossref_primary_10_1080_21681163_2023_2213783  | 
    
| Cites_doi | 10.1016/j.advengsoft.2016.01.008 10.1109/AICCSA.2009.5069306 10.1109/ICSMB.2010.5735343 10.1016/j.artmed.2008.04.004 10.1007/978-81-322-1038-2_41 10.1007/0-306-47815-3_9 10.1016/j.engappai.2014.03.007 10.1016/j.patrec.2012.05.019 10.1016/j.compbiolchem.2015.03.001 10.1016/j.patcog.2012.07.028 10.1371/journal.pone.0011900 10.1023/A:1012487302797 10.1038/ng765 10.1109/TNB.2005.853657 10.1016/j.future.2019.02.028 10.1109/AQTR.2010.5520794 10.1016/j.engappai.2019.103300 10.1155/2012/320698 10.1016/j.solener.2020.06.108 10.1016/j.eswa.2011.09.073 10.1016/j.engappai.2019.103249 10.1016/j.engappai.2012.12.009 10.1038/89044 10.1016/j.artmed.2004.01.007 10.1016/j.neucom.2004.07.007 10.1016/j.patcog.2011.12.008 10.1109/CEC.2007.4424483 10.1016/j.jbi.2009.08.010 10.1007/11892755_59 10.1016/j.biosystems.2006.07.002 10.1109/TPAMI.2005.159 10.1016/j.patcog.2009.06.009 10.1016/j.neucom.2008.04.005 10.1109/ISIC.2012.6449755 10.1155/2015/604910 10.1186/1471-2105-7-3 10.4137/CIN.S2655 10.1016/j.compbiolchem.2010.08.003 10.1093/bioinformatics/btm344 10.1016/j.procs.2018.10.358 10.1007/0-306-47815-3_1 10.1109/TCBB.2012.33 10.1016/j.advengsoft.2013.12.007 10.1186/s12920-018-0447-6 10.1016/S0014-5793(03)01275-4 10.1002/er.5244 10.1109/ICNN.1995.488968 10.1016/j.proeng.2012.06.005 10.18178/ijmlc.2016.6.3.596 10.1007/11816102_49 10.1016/j.asoc.2009.11.010 10.1126/science.286.5439.531 10.1016/j.biosystems.2006.12.003 10.1007/978-981-4585-18-7_44 10.1007/BF00175354 10.1007/978-3-540-71783-6_5 10.1142/S0219720005001004 10.1021/acsomega.7b01079 10.1016/j.neucom.2020.04.013 10.1109/TCBB.2014.2328334 10.1016/S1672-6529(13)60219-X 10.1007/11732242_4 10.1109/TNB.2014.2312132 10.1007/s10489-017-1056-3 10.1016/j.engappai.2012.01.017 10.1016/j.enconman.2020.113048 10.1073/pnas.96.12.6745 10.1109/CIBCB.2019.8791236 10.1023/B:AMAI.0000018580.96245.c6 10.1109/TCBB.2008.46 10.1016/j.patrec.2005.12.018 10.1016/S1672-0229(08)60050-9 10.4310/SII.2009.v2.n2.a5 10.1016/j.talanta.2006.07.047 10.1109/TC.1977.1674939 10.1038/35000501  | 
    
| ContentType | Journal Article | 
    
| Copyright | King Fahd University of Petroleum & Minerals 2021 King Fahd University of Petroleum & Minerals 2021.  | 
    
| Copyright_xml | – notice: King Fahd University of Petroleum & Minerals 2021 – notice: King Fahd University of Petroleum & Minerals 2021.  | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1007/s13369-021-06102-8 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2191-4281 | 
    
| EndPage | 2572 | 
    
| ExternalDocumentID | 10_1007_s13369_021_06102_8 | 
    
| GroupedDBID | -EM 0R~ 203 2KG 406 AAAVM AACDK AAHNG AAIAL AAJBT AANZL AARHV AASML AATNV AATVU AAUYE AAYTO AAYZH ABAKF ABDBF ABDZT ABECU ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACHSB ACMDZ ACMLO ACOKC ACPIV ACUHS ACZOJ ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AESKC AEVLU AEXYK AFBBN AFLOW AFQWF AGAYW AGJBK AGMZJ AGQEE AGQMX AGRTI AHAVH AHBYD AHSBF AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF AOCGG AXYYD BGNMA CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESX FERAY FIGPU FINBP FNLPD FSGXE GGCAI GQ6 GQ7 H13 HG6 I-F IKXTQ IWAJR J-C JBSCW JZLTJ L8X LLZTM M4Y MK~ NPVJJ NQJWS NU0 O9J PT4 ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG TUS UOJIU UTJUX UZXMN VFIZW Z5O Z7R Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z88 ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 06D 0VY 23M 29~ 2KM 30V 408 5GY 96X AAJKR AARTL AAYIU AAYQN AAZMS ABTHY ACGFS ACKNC ADHHG ADHIR AEGNC AEJHL AENEX AEPYU AETCA AFWTZ AFZKB AGDGC AGWZB AGYKE AHYZX AIIXL AMKLP AMYQR ANMIH AYJHY ESBYG FFXSO FRRFC FYJPI GGRSB GJIRD GX1 HMJXF HRMNR HZ~ I0C IXD J9A KOV O93 OVT P9P R9I RLLFE S27 S3B SEG SHX T13 U2A UG4 VC2 W48 WK8 ~A9  | 
    
| ID | FETCH-LOGICAL-c319t-3000111a4973e14686ef02f51be5be5c0f28cf93443fbdf49e5f3d61b079ea7d3 | 
    
| ISSN | 2193-567X 1319-8025  | 
    
| IngestDate | Mon Jun 30 09:02:30 EDT 2025 Wed Oct 01 02:18:37 EDT 2025 Thu Apr 24 23:06:41 EDT 2025 Fri Feb 21 02:47:20 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | Support vector machines Feature selection Minimum Redundancy Maximum Relevance Gene selection Microarray Gene expression Cancer classification Manta Ray Foraging Optimization algorithm  | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c319t-3000111a4973e14686ef02f51be5be5c0f28cf93443fbdf49e5f3d61b079ea7d3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-6933-6413 | 
    
| PQID | 2630274208 | 
    
| PQPubID | 2044268 | 
    
| PageCount | 18 | 
    
| ParticipantIDs | proquest_journals_2630274208 crossref_primary_10_1007_s13369_021_06102_8 crossref_citationtrail_10_1007_s13369_021_06102_8 springer_journals_10_1007_s13369_021_06102_8  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-02-01 | 
    
| PublicationDateYYYYMMDD | 2022-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg  | 
    
| PublicationTitle | Arabian journal for science and engineering (2011) | 
    
| PublicationTitleAbbrev | Arab J Sci Eng | 
    
| PublicationYear | 2022 | 
    
| Publisher | Springer Berlin Heidelberg Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V  | 
    
| References | Duan, K.-B.; Rajapakse, J.C.; Nguyen, M.N.: One-versus-one and one-versus-all multiclass svm-rfe for gene selection in cancer classification. In: European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, Springer, pp. 47–56 (2007) PengHLongFDingCFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancyIEEE Trans. Pattern Anal. Mach. intell.200527812261238 InzaISierraBBlancoRLarrañagaPGene selection by sequential search wrapper approaches in microarray cancer class predictionJ. Intell. Fuzzy Syst.200212125331054.92033 AbdiMJGivekiDAutomatic detection of erythemato-squamous diseases using PSO-SVM based on association rulesEng. Appl. Artif. Intell.2013261603608 LazarCTaminauJMeganckSSteenhoffDColettaAMolterCde SchaetzenVDuqueRBersiniHNoweAA survey on filter techniques for feature selection in gene expression microarray analysisIEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB)20129411061119 ZhaoWWangGWangHChenHDongHZhaoZA novel framework for gene selectionInt. J. Adv. Comput. Technol.201133184191 MirjaliliSLewisAThe whale optimization algorithmAdv. Eng. softw.2016955167 LeungYHungYA multiple-filter-multiple-wrapper approach to gene selection and microarray data classificationIEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB)201071108117 TabakhiSMoradiPAkhlaghianFAn unsupervised feature selection algorithm based on ant colony optimizationEng. Appl. Artif. Intell.201432112123 HuangH-LLeeC-CHoS-YSelecting a minimal number of relevant genes from microarray data to design accurate tissue classifiersBiosystems20079017886 LiuHLiuLZhangHEnsemble gene selection by grouping for microarray data classificationJ. Biomed. Inf.20104318187 Alshamlan, H.M.; Badr, G.H.; Alohali, Y.: A study of cancer microarray gene expression profile: objectives and approaches. In: Proceedings of the World Congress on Engineering, Vol. 2, pp. 1–6 (2013) MaulikUChakrabortyDFuzzy preference based feature selection and semisupervised svm for cancer classificationIEEE Trans. Nanobiosci.2014132152160 Karaboga, D.: An idea based on honey bee swarm for numerical optimization, Tech. rep., Technical report-tr06, Erciyes university, engineering faculty, computer (2005). Díaz-UriarteRDe AndresSAGene selection and classification of microarray data using random forestBMC Bioinf.2006713 Guo, S.-B.; Lyu, M.R.; Lok, T.-M.: Gene selection based on mutual information for the classification of multi-class cancer. In: International Conference on Intelligent Computing, Springer, pp. 454–463 (2006) Alshamlan, H.; Badr, G;, Alohali, Y.: mrmr-abc: a hybrid gene selection algorithm for cancer classification using microarray gene expression profiling. Biomed. Res. Int. (2015) DuanK-BRajapakseJCWangHAzuajeFMultiple SVM-RFE for gene selection in cancer classification with expression dataIEEE trans. Nanobiosci.200543228234 YuLLiuHEfficient feature selection via analysis of relevance and redundancyJ. Mach. Learn. Res.20045Oct1205122422480151222.68340 El-HameedMAElkholyMMEl-FerganyAAThree-diode model for characterization of industrial solar generating units using manta-rays foraging optimizer: Analysis and validationsEnergy Convers. Manage.2020219113048 AlshamlanHMBadrGHAlohaliYAAbc-svm: artificial bee colony and svm method for microarray gene selection and multi class cancer classificationInt. J. Mach. Learn. Comput.201663184 AlshamlanHMBadrGHAlohaliYAGenetic bee colony (gbc) algorithm: a new gene selection method for microarray cancer classificationComput. Biol. Chem.2015564960 LaiCReindersMJWesselsLRandom subspace method for multivariate feature selectionPattern Recognit. Lett.2006271010671076 AlonUBarkaiNNottermanDAGishKYbarraSMackDLevineAJBroad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arraysProc. Nat. Acad. Sci.1999961267456750 Ghosh, K.K.; Guha, R.; Bera, S.K.; Kumar, N.; Sarkar, R.: S-shaped versus v-shaped transfer functions for binary manta ray foraging optimization in feature selection problem. Yang, C.-S.; Chuang, L.-Y.; Ke, C.-H.; Yang, C.-H.: A hybrid feature selection method for microarray classification., IAENG Int. J. Comput. Sci. 35(3) He, X.; Cai, D.; Niyogi, P.: Laplacian score for feature selection. In: Advances in neural information processing systems, pp. 507–514. (2006) BertoniAFolgieriRValentiniGBio-molecular cancer prediction with random subspace ensembles of support vector machinesNeurocomputing200563535539 GhazaviSNLiaoTWMedical data mining by fuzzy modeling with selected featuresArtif. Intell. Med.2008433195206 Ghorai, S.; Mukherjee, A.; Sengupta, S.; Dutta, P.K.: Multicategory cancer classification from gene expression data by multiclass NPPC ensemble. In: 2010 International Conference on Systems in Medicine and Biology, IEEE, (2010), pp. 41–48 Ghoneimy, M.; Nabil, E.; Badr, A.; El-Khamisy, S.F.: Bioscience research. Alshamlan, H.; Badr, G.; Alohali, Y.: A comparative study of cancer classification methods using microarray gene expression profile. In: Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013), Springer, pp. 389–398 (2014) Dubitzky, W.; Granzow, M.; Downes, C.S.; Berrar, D.: Introduction to microarray data analysis. In: A Practical Approach to Microarray Data Analysis. Springer, pp. 1–46. (2003) LeeC-PLeuYA novel hybrid feature selection method for microarray data analysisAppl. Soft Comput.2011111208213 HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: algorithm and applicationsFuture Generat. Comput. Syst.201997849872 Srivastava, A.; Chakrabarti, S.; Das, S.; Ghosh, S.; Jayaraman, V.K.: Hybrid firefly based simultaneous gene selection and cancer classification using support vector machines and random forests. In: Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012), Springer, pp. 485–494 (2013) SahuBMishraDA novel feature selection algorithm using particle swarm optimization for cancer microarray dataProcedia Eng.2012382731 CaiRHaoZYangXWenWAn efficient gene selection algorithm based on mutual informationNeurocomputing2009724–6991999 AlshamlanHMBadrGHAlohaliYAThe performance of bio-inspired evolutionary gene selection methods for cancer classification using microarray dataset, International Journal of BioscienceBiochem. Bioinf.201443166 RaileanuLEStoffelKTheoretical comparison between the gini index and information gain criteriaAnn. Math. Artif. Intell.2004411779320500691048.68096 WhitleyDA genetic algorithm tutorialStat. Comput.1994426585 NarendraPMFukunagaKA branch and bound algorithm for feature subset selectionIEEE Trans. Comput.197799179220363.68059 LiYWangGChenHShiLQinLAn ant colony optimization based dimension reduction method for high-dimensional datasetsJ. Bionic Eng.2013102231241 Chen, M.-S.; Ho, T.-Y.; Huang, D.-Y.: Online transductive support vector machines for classification. In: 2012 International Conference on Information Security and Intelligent Control, IEEE, pp. 258–261 (2012) Wang, X.; Gotoh, O.: Microarray-based cancer prediction using soft computing approach, Cancer informatics 7 CIN–S2655. (2009) DingCPengHMinimum redundancy feature selection from microarray gene expression dataJ. Bioinf. Comput. Biol.2005302185205 El Akadi, A.; Amine, A.; El Ouardighi, A.; Aboutajdine, D.: A new gene selection approach based on minimum redundancy-maximum relevance (MRMR) and genetic algorithm (GA). In: 2009 IEEE/ACS International Conference on Computer Systems and Applications, IEEE, pp. 69–75 (2009) Benso, A.; Di Carlo, S.; Politano, G.; Savino, A.: Gpu acceleration for statistical gene classification. In: 2010 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), Vol. 2, IEEE, pp. 1–6. (2010) HuangTWangPYeZ-QXuHHeZFengK-YHuLCuiWWangKDongXPrediction of deleterious non-synonymous SNPS based on protein interaction network and hybrid propertiesPLoS ONE201057e11900 MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv. Eng. softw.2014694661 RaniRRRamyachitraDMicroarray cancer gene feature selection using spider monkey optimization algorithm and cancer classification using SVMProcedia Comput. Sci.2018143108116 LiXZhaoHWeighted random subspace method for high dimensional data classificationStatistics and its Interface20092215325160661245.62077 GuyonIWestonJBarnhillSVapnikVGene selection for cancer classification using support vector machinesMach. Learn.2002461–33894220998.68111 AlanniRHouJAzzawiHXiangYA novel gene selection algorithm for cancer classification using microarray datasetsBMC Med. Genomics201912110 Abdi, M.J.; Hosseini, S.M.; Rezghi, M.: A novel weighted support vector machine based on particle swarm optimization for gene selection and tumor classification. Comput. Math. Methods Med. (2012) GolubTRSlonimDKTamayoPHuardCGaasenbeekMMesirovJPCollerHLohMLDowningJRCaligiuriMAMolecular classification of cancer: class discovery and class prediction by gene expression monitoringScience19992865439531537 Mukherjee, S.: Classifying microarray data using support vector machines. In: A practical Approach to Microarray Data Analysis. Springer, pp. 166–185 (2003) PengSXuQLingXBPengXDuWChenLMolecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machinesFEBS Lett.20035552358362 WatadaJArunavaRJingruLBoWShumingWA dual recurrent neural network-based hybrid approach for solving convex quadratic bi-level programming problemNeurocomputing2020407136154 Yu, L.; Liu, H.: Feature selection for high-dimensional data: A fast correlation-based filter solution. In: Proceedings of the 20th International Conference on Machine Learning (ICML-03), 2003, pp. 856–863 FathyARezkHYousriDA robust global MPPT to mitigate partial shading of triple-junction solar cell-based system using manta ray foraging optimization algorithmSolar Energy2020207305316 FerreiraAJFigueiredoMAEfficient feature selection filters for high-dimensional dataPat AJ Ferreira (6102_CR40) 2012; 45 6102_CR5 6102_CR6 LE Raileanu (6102_CR33) 2004; 41 6102_CR4 R Rodríguez-Peérez (6102_CR81) 2017; 2 6102_CR1 6102_CR2 C-P Lee (6102_CR63) 2011; 11 6102_CR60 L Zhang (6102_CR61) 2018; 48 6102_CR21 6102_CR22 6102_CR66 A Fathy (6102_CR73) 2020; 207 T Huang (6102_CR80) 2010; 5 R Alanni (6102_CR7) 2019; 12 HM Alshamlan (6102_CR8) 2014; 4 SA Armstrong (6102_CR26) 2002; 30 H-L Huang (6102_CR85) 2007; 90 W Zhao (6102_CR62) 2011; 3 MM Kabir (6102_CR49) 2012; 39 HM Alshamlan (6102_CR67) 2015; 56 PM Narendra (6102_CR9) 1977; 9 B Liao (6102_CR30) 2014; 11 HM Alshamlan (6102_CR55) 2016; 6 SI Selem (6102_CR75) 2020; 44 IA Gheyas (6102_CR44) 2010; 43 Y Saeys (6102_CR45) 2007; 23 6102_CR51 Q Shen (6102_CR83) 2007; 71 6102_CR54 K-B Duan (6102_CR70) 2005; 4 C Ding (6102_CR34) 2005; 3 6102_CR56 6102_CR13 6102_CR14 6102_CR58 6102_CR15 B Sahu (6102_CR46) 2012; 38 RR Rani (6102_CR57) 2018; 143 G Wang (6102_CR69) 2013; 46 C Lazar (6102_CR28) 2012; 9 U Alon (6102_CR23) 1999; 96 I Inza (6102_CR52) 2002; 12 A Bertoni (6102_CR35) 2005; 63 I Inza (6102_CR53) 2004; 31 AJ Ferreira (6102_CR41) 2012; 33 L Yu (6102_CR43) 2004; 5 6102_CR82 J Watada (6102_CR10) 2020; 407 C Yun (6102_CR79) 2011; 27 6102_CR42 6102_CR87 AA Heidari (6102_CR16) 2019; 97 E Martinez (6102_CR47) 2010; 34 AA Alizadeh (6102_CR25) 2000; 403 C Lai (6102_CR36) 2006; 27 H Liu (6102_CR77) 2010; 43 S Peng (6102_CR88) 2003; 555 A Zibakhsh (6102_CR65) 2013; 26 R Cai (6102_CR32) 2009; 72 MA El-Hameed (6102_CR74) 2020; 219 TR Golub (6102_CR3) 1999; 286 I Guyon (6102_CR12) 2002; 46 S Mirjalili (6102_CR20) 2016; 95 SN Ghazavi (6102_CR39) 2008; 43 6102_CR71 W Zhao (6102_CR11) 2020; 87 6102_CR72 S Mirjalili (6102_CR18) 2014; 69 R Díaz-Uriarte (6102_CR68) 2006; 7 6102_CR31 6102_CR76 H-L Huang (6102_CR86) 2007; 90 J Khan (6102_CR24) 2001; 7 X Li (6102_CR37) 2009; 2 U Maulik (6102_CR59) 2014; 13 6102_CR78 Y Li (6102_CR48) 2013; 10 MJ Abdi (6102_CR84) 2013; 26 6102_CR38 V Hayyolalam (6102_CR17) 2020; 87 S Tabakhi (6102_CR29) 2014; 32 Y Leung (6102_CR64) 2010; 7 H Peng (6102_CR27) 2005; 27 H Yu (6102_CR50) 2009; 7 D Whitley (6102_CR19) 1994; 4  | 
    
| References_xml | – reference: Abdi, M.J.; Hosseini, S.M.; Rezghi, M.: A novel weighted support vector machine based on particle swarm optimization for gene selection and tumor classification. Comput. Math. Methods Med. (2012) – reference: Huerta, E.B.; Duval, B.; Hao, J.-K.: A hybrid GA/SVM approach for gene selection and classification of microarray data. In: Workshops on Applications of Evolutionary Computation, Springer, pp. 34–44(2006) – reference: Haindl, M.; Somol, P.; Ververidis, D.; Kotropoulos, C.: Feature selection based on mutual correlation. In: Iberoamerican Congress on Pattern Recognition, Springer, pp. 569–577 (2006) – reference: Wang, X.; Gotoh, O.: Microarray-based cancer prediction using soft computing approach, Cancer informatics 7 CIN–S2655. (2009) – reference: MaulikUChakrabortyDFuzzy preference based feature selection and semisupervised svm for cancer classificationIEEE Trans. Nanobiosci.2014132152160 – reference: SelemSIHasanienHMEl-FerganyAAParameters extraction of PEMFC’s model using manta rays foraging optimizerInt. J. Energy Res.202044646294640 – reference: RaniRRRamyachitraDMicroarray cancer gene feature selection using spider monkey optimization algorithm and cancer classification using SVMProcedia Comput. Sci.2018143108116 – reference: ZhaoWZhangZWangLManta ray foraging optimization: an effective bio-inspired optimizer for engineering applicationsEng. Appl. Artif. Intell.202087103300103300 – reference: ZibakhshAAbadehMSGene selection for cancer tumor detection using a novel memetic algorithm with a multi-view fitness functionEng. Appl. Artif. Intell.201326412741281 – reference: AbdiMJGivekiDAutomatic detection of erythemato-squamous diseases using PSO-SVM based on association rulesEng. Appl. Artif. Intell.2013261603608 – reference: Alshamlan, H.M.; Badr, G.H.; Alohali, Y.: A study of cancer microarray gene expression profile: objectives and approaches. In: Proceedings of the World Congress on Engineering, Vol. 2, pp. 1–6 (2013) – reference: Ghorai, S.; Mukherjee, A.; Sengupta, S.; Dutta, P.K.: Multicategory cancer classification from gene expression data by multiclass NPPC ensemble. In: 2010 International Conference on Systems in Medicine and Biology, IEEE, (2010), pp. 41–48 – reference: Duan, K.-B.; Rajapakse, J.C.; Nguyen, M.N.: One-versus-one and one-versus-all multiclass svm-rfe for gene selection in cancer classification. In: European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, Springer, pp. 47–56 (2007) – reference: AlshamlanHMBadrGHAlohaliYAGenetic bee colony (gbc) algorithm: a new gene selection method for microarray cancer classificationComput. Biol. Chem.2015564960 – reference: GuyonIWestonJBarnhillSVapnikVGene selection for cancer classification using support vector machinesMach. Learn.2002461–33894220998.68111 – reference: MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv. Eng. softw.2014694661 – reference: LiuHLiuLZhangHEnsemble gene selection by grouping for microarray data classificationJ. Biomed. Inf.20104318187 – reference: Chen, M.-S.; Ho, T.-Y.; Huang, D.-Y.: Online transductive support vector machines for classification. In: 2012 International Conference on Information Security and Intelligent Control, IEEE, pp. 258–261 (2012) – reference: HuangH-LLeeC-CHoS-YSelecting a minimal number of relevant genes from microarray data to design accurate tissue classifiersBiosystems20079017886 – reference: PengSXuQLingXBPengXDuWChenLMolecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machinesFEBS Lett.20035552358362 – reference: InzaILarrañagaPBlancoRCerrolazaAJFilter versus wrapper gene selection approaches in DNA microarray domainsArtif. Intell. Med.200431291103 – reference: ZhaoWWangGWangHChenHDongHZhaoZA novel framework for gene selectionInt. J. Adv. Comput. Technol.201133184191 – reference: Alshamlan, H.; Badr, G;, Alohali, Y.: mrmr-abc: a hybrid gene selection algorithm for cancer classification using microarray gene expression profiling. Biomed. Res. Int. (2015) – reference: Rodríguez-PeérezRVogtMBajorathJSupport vector machine classification and regression prioritize different structural features for binary compound activity and potency value predictionACS Omega201721063716379 – reference: YuLLiuHEfficient feature selection via analysis of relevance and redundancyJ. Mach. Learn. Res.20045Oct1205122422480151222.68340 – reference: AlonUBarkaiNNottermanDAGishKYbarraSMackDLevineAJBroad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arraysProc. Nat. Acad. Sci.1999961267456750 – reference: LiXZhaoHWeighted random subspace method for high dimensional data classificationStatistics and its Interface20092215325160661245.62077 – reference: LeungYHungYA multiple-filter-multiple-wrapper approach to gene selection and microarray data classificationIEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB)201071108117 – reference: KhanJWeiJSRingnerMSaalLHLadanyiMWestermannFBertholdFSchwabMAntonescuCRPetersonCClassification and diagnostic prediction of cancers using gene expression profiling and artificial neural networksNature Med.200176673679 – reference: HuangH-LChangF-LEsvm: Evolutionary support vector machine for automatic feature selection and classification of microarray dataBiosystems20079025165282302128 – reference: GhazaviSNLiaoTWMedical data mining by fuzzy modeling with selected featuresArtif. Intell. Med.2008433195206 – reference: InzaISierraBBlancoRLarrañagaPGene selection by sequential search wrapper approaches in microarray cancer class predictionJ. Intell. Fuzzy Syst.200212125331054.92033 – reference: HayyolalamVKazemAAPBlack widow optimization algorithm: a novel meta-heuristic approach for solving engineering optimization problemsEng. Appl. Artif. Intell.202087103249 – reference: Yu, L.; Liu, H.: Feature selection for high-dimensional data: A fast correlation-based filter solution. In: Proceedings of the 20th International Conference on Machine Learning (ICML-03), 2003, pp. 856–863 – reference: MirjaliliSLewisAThe whale optimization algorithmAdv. Eng. softw.2016955167 – reference: He, X.; Cai, D.; Niyogi, P.: Laplacian score for feature selection. In: Advances in neural information processing systems, pp. 507–514. (2006) – reference: GheyasIASmithLSFeature subset selection in large dimensionality domainsPattern recognition20104315131192.68574 – reference: FerreiraAJFigueiredoMAEfficient feature selection filters for high-dimensional dataPattern Recognit. Lett.2012331317941804 – reference: AlshamlanHMBadrGHAlohaliYAAbc-svm: artificial bee colony and svm method for microarray gene selection and multi class cancer classificationInt. J. Mach. Learn. Comput.201663184 – reference: Dubitzky, W.; Granzow, M.; Downes, C.S.; Berrar, D.: Introduction to microarray data analysis. In: A Practical Approach to Microarray Data Analysis. Springer, pp. 1–46. (2003) – reference: Díaz-UriarteRDe AndresSAGene selection and classification of microarray data using random forestBMC Bioinf.2006713 – reference: YunCOhBYangJNangJFeature subset selection based on bio-inspired algorithmsJ. Inf. Sci. Eng.2011275166716862856842 – reference: Karaboga, D.: An idea based on honey bee swarm for numerical optimization, Tech. rep., Technical report-tr06, Erciyes university, engineering faculty, computer (2005). – reference: LiYWangGChenHShiLQinLAn ant colony optimization based dimension reduction method for high-dimensional datasetsJ. Bionic Eng.2013102231241 – reference: YuHGuGLiuHShenJZhaoJA modified ant colony optimization algorithm for tumor marker gene selectionGenomics Proteomics Bioinf.200974200208 – reference: ArmstrongSAStauntonJESilvermanLBPietersRden BoerMLMindenMDSallanSELanderESGolubTRKorsmeyerSJMll translocations specify a distinct gene expression profile that distinguishes a unique leukemiaNature Genetics20023014147 – reference: PengHLongFDingCFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancyIEEE Trans. Pattern Anal. Mach. intell.200527812261238 – reference: DingCPengHMinimum redundancy feature selection from microarray gene expression dataJ. Bioinf. Comput. Biol.2005302185205 – reference: Almugren, N.; Alshamlan, H.: Ff-svm: New firefly-based gene selection algorithm for microarray cancer classification. In: 2019 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), IEEE, pp. 1–6 (2019) – reference: LaiCReindersMJWesselsLRandom subspace method for multivariate feature selectionPattern Recognit. Lett.2006271010671076 – reference: AlizadehAAEisenMBDavisREMaCLossosISRosenwaldABoldrickJCSabetHTranTYuXDistinct types of diffuse large b-cell lymphoma identified by gene expression profilingNature20004036769503511 – reference: ZhangLZhouWWangBZhangZLiFApplying 1-norm svm with squared loss to gene selection for cancer classificationAppl. Intell.201848718781890 – reference: FathyARezkHYousriDA robust global MPPT to mitigate partial shading of triple-junction solar cell-based system using manta ray foraging optimization algorithmSolar Energy2020207305316 – reference: Yang, C.-S.; Chuang, L.-Y.; Ke, C.-H.; Yang, C.-H.: A hybrid feature selection method for microarray classification., IAENG Int. J. Comput. Sci. 35(3) – reference: AlshamlanHMBadrGHAlohaliYAThe performance of bio-inspired evolutionary gene selection methods for cancer classification using microarray dataset, International Journal of BioscienceBiochem. Bioinf.201443166 – reference: RaileanuLEStoffelKTheoretical comparison between the gini index and information gain criteriaAnn. Math. Artif. Intell.2004411779320500691048.68096 – reference: Srivastava, A.; Chakrabarti, S.; Das, S.; Ghosh, S.; Jayaraman, V.K.: Hybrid firefly based simultaneous gene selection and cancer classification using support vector machines and random forests. In: Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012), Springer, pp. 485–494 (2013) – reference: ShenQShiW-MKongWYeB-XA combination of modified particle swarm optimization algorithm and support vector machine for gene selection and tumor classificationTalanta200771416791683 – reference: WhitleyDA genetic algorithm tutorialStat. Comput.1994426585 – reference: TabakhiSMoradiPAkhlaghianFAn unsupervised feature selection algorithm based on ant colony optimizationEng. Appl. Artif. Intell.201432112123 – reference: SaeysYInzaILarrañagaPA review of feature selection techniques in bioinformaticsBioinformatics2007231925072517 – reference: HuangTWangPYeZ-QXuHHeZFengK-YHuLCuiWWangKDongXPrediction of deleterious non-synonymous SNPS based on protein interaction network and hybrid propertiesPLoS ONE201057e11900 – reference: DuanK-BRajapakseJCWangHAzuajeFMultiple SVM-RFE for gene selection in cancer classification with expression dataIEEE trans. Nanobiosci.200543228234 – reference: FerreiraAJFigueiredoMAAn unsupervised approach to feature discretization and selectionPattern Recognit.201245930483060 – reference: Alba, E.; Garcia-Nieto, J.; Jourdan, L.; Talbi, E.-G.: Gene selection in cancer classification using PSO, SVM and GA, SVM hybrid algorithms. In: IEEE Congress on Evolutionary Computation. IEEE 2007, 284–290 (2007) – reference: NarendraPMFukunagaKA branch and bound algorithm for feature subset selectionIEEE Trans. Comput.197799179220363.68059 – reference: GolubTRSlonimDKTamayoPHuardCGaasenbeekMMesirovJPCollerHLohMLDowningJRCaligiuriMAMolecular classification of cancer: class discovery and class prediction by gene expression monitoringScience19992865439531537 – reference: LazarCTaminauJMeganckSSteenhoffDColettaAMolterCde SchaetzenVDuqueRBersiniHNoweAA survey on filter techniques for feature selection in gene expression microarray analysisIEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB)20129411061119 – reference: WatadaJArunavaRJingruLBoWShumingWA dual recurrent neural network-based hybrid approach for solving convex quadratic bi-level programming problemNeurocomputing2020407136154 – reference: Ghoneimy, M.; Nabil, E.; Badr, A.; El-Khamisy, S.F.: Bioscience research. – reference: LeeC-PLeuYA novel hybrid feature selection method for microarray data analysisAppl. Soft Comput.2011111208213 – reference: El Akadi, A.; Amine, A.; El Ouardighi, A.; Aboutajdine, D.: A new gene selection approach based on minimum redundancy-maximum relevance (MRMR) and genetic algorithm (GA). In: 2009 IEEE/ACS International Conference on Computer Systems and Applications, IEEE, pp. 69–75 (2009) – reference: AlanniRHouJAzzawiHXiangYA novel gene selection algorithm for cancer classification using microarray datasetsBMC Med. Genomics201912110 – reference: MartinezEAlvarezMMTrevinoVCompact cancer biomarkers discovery using a swarm intelligence feature selection algorithmComput. Biol. Chem.2010344244250 – reference: SahuBMishraDA novel feature selection algorithm using particle swarm optimization for cancer microarray dataProcedia Eng.2012382731 – reference: Ghosh, K.K.; Guha, R.; Bera, S.K.; Kumar, N.; Sarkar, R.: S-shaped versus v-shaped transfer functions for binary manta ray foraging optimization in feature selection problem. – reference: KabirMMShahjahanMMuraseKA new hybrid ant colony optimization algorithm for feature selectionExpert Syst. Appl.201239337473763 – reference: LiaoBJiangYLiangWZhuWCaiLCaoZGene selection using locality sensitive laplacian scoreIEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB)201411611461156 – reference: Mukherjee, S.: Classifying microarray data using support vector machines. In: A practical Approach to Microarray Data Analysis. Springer, pp. 166–185 (2003) – reference: BertoniAFolgieriRValentiniGBio-molecular cancer prediction with random subspace ensembles of support vector machinesNeurocomputing200563535539 – reference: Alshamlan, H.; Badr, G.; Alohali, Y.: A comparative study of cancer classification methods using microarray gene expression profile. In: Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013), Springer, pp. 389–398 (2014) – reference: WangGSongQXuBZhouYSelecting feature subset for high dimensional data via the propositional foil rulesPattern Recognit.2013461199214 – reference: El-HameedMAElkholyMMEl-FerganyAAThree-diode model for characterization of industrial solar generating units using manta-rays foraging optimizer: Analysis and validationsEnergy Convers. Manage.2020219113048 – reference: Kennedy, J.; Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks, Vol. 4, IEEE, pp. 1942–1948 (1995) – reference: HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: algorithm and applicationsFuture Generat. Comput. Syst.201997849872 – reference: Benso, A.; Di Carlo, S.; Politano, G.; Savino, A.: Gpu acceleration for statistical gene classification. In: 2010 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), Vol. 2, IEEE, pp. 1–6. (2010) – reference: CaiRHaoZYangXWenWAn efficient gene selection algorithm based on mutual informationNeurocomputing2009724–6991999 – reference: Guo, S.-B.; Lyu, M.R.; Lok, T.-M.: Gene selection based on mutual information for the classification of multi-class cancer. In: International Conference on Intelligent Computing, Springer, pp. 454–463 (2006) – volume: 95 start-page: 51 year: 2016 ident: 6102_CR20 publication-title: Adv. Eng. softw. doi: 10.1016/j.advengsoft.2016.01.008 – ident: 6102_CR76 doi: 10.1109/AICCSA.2009.5069306 – ident: 6102_CR5 doi: 10.1109/ICSMB.2010.5735343 – volume: 43 start-page: 195 issue: 3 year: 2008 ident: 6102_CR39 publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2008.04.004 – ident: 6102_CR51 doi: 10.1007/978-81-322-1038-2_41 – ident: 6102_CR14 doi: 10.1007/0-306-47815-3_9 – volume: 32 start-page: 112 year: 2014 ident: 6102_CR29 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2014.03.007 – volume: 33 start-page: 1794 issue: 13 year: 2012 ident: 6102_CR41 publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2012.05.019 – volume: 56 start-page: 49 year: 2015 ident: 6102_CR67 publication-title: Comput. Biol. Chem. doi: 10.1016/j.compbiolchem.2015.03.001 – ident: 6102_CR31 – ident: 6102_CR54 – volume: 46 start-page: 199 issue: 1 year: 2013 ident: 6102_CR69 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2012.07.028 – volume: 5 start-page: e11900 issue: 7 year: 2010 ident: 6102_CR80 publication-title: PLoS ONE doi: 10.1371/journal.pone.0011900 – volume: 46 start-page: 389 issue: 1–3 year: 2002 ident: 6102_CR12 publication-title: Mach. Learn. doi: 10.1023/A:1012487302797 – volume: 30 start-page: 41 issue: 1 year: 2002 ident: 6102_CR26 publication-title: Nature Genetics doi: 10.1038/ng765 – ident: 6102_CR87 – volume: 4 start-page: 166 issue: 3 year: 2014 ident: 6102_CR8 publication-title: Biochem. Bioinf. – volume: 4 start-page: 228 issue: 3 year: 2005 ident: 6102_CR70 publication-title: IEEE trans. Nanobiosci. doi: 10.1109/TNB.2005.853657 – volume: 97 start-page: 849 year: 2019 ident: 6102_CR16 publication-title: Future Generat. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – ident: 6102_CR2 doi: 10.1109/AQTR.2010.5520794 – volume: 87 start-page: 103300103300 year: 2020 ident: 6102_CR11 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.103300 – ident: 6102_CR22 – ident: 6102_CR78 doi: 10.1155/2012/320698 – volume: 207 start-page: 305 year: 2020 ident: 6102_CR73 publication-title: Solar Energy doi: 10.1016/j.solener.2020.06.108 – volume: 39 start-page: 3747 issue: 3 year: 2012 ident: 6102_CR49 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.09.073 – volume: 87 start-page: 103249 year: 2020 ident: 6102_CR17 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.103249 – volume: 26 start-page: 1274 issue: 4 year: 2013 ident: 6102_CR65 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2012.12.009 – volume: 7 start-page: 673 issue: 6 year: 2001 ident: 6102_CR24 publication-title: Nature Med. doi: 10.1038/89044 – volume: 31 start-page: 91 issue: 2 year: 2004 ident: 6102_CR53 publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2004.01.007 – volume: 63 start-page: 535 year: 2005 ident: 6102_CR35 publication-title: Neurocomputing doi: 10.1016/j.neucom.2004.07.007 – ident: 6102_CR72 – ident: 6102_CR4 – volume: 45 start-page: 3048 issue: 9 year: 2012 ident: 6102_CR40 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2011.12.008 – ident: 6102_CR56 doi: 10.1109/CEC.2007.4424483 – volume: 43 start-page: 81 issue: 1 year: 2010 ident: 6102_CR77 publication-title: J. Biomed. Inf. doi: 10.1016/j.jbi.2009.08.010 – ident: 6102_CR38 doi: 10.1007/11892755_59 – volume: 90 start-page: 78 issue: 1 year: 2007 ident: 6102_CR86 publication-title: Biosystems doi: 10.1016/j.biosystems.2006.07.002 – volume: 27 start-page: 1226 issue: 8 year: 2005 ident: 6102_CR27 publication-title: IEEE Trans. Pattern Anal. Mach. intell. doi: 10.1109/TPAMI.2005.159 – volume: 43 start-page: 5 issue: 1 year: 2010 ident: 6102_CR44 publication-title: Pattern recognition doi: 10.1016/j.patcog.2009.06.009 – volume: 5 start-page: 1205 issue: Oct year: 2004 ident: 6102_CR43 publication-title: J. Mach. Learn. Res. – volume: 72 start-page: 991 issue: 4–6 year: 2009 ident: 6102_CR32 publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.04.005 – ident: 6102_CR60 doi: 10.1109/ISIC.2012.6449755 – ident: 6102_CR66 doi: 10.1155/2015/604910 – volume: 7 start-page: 3 issue: 1 year: 2006 ident: 6102_CR68 publication-title: BMC Bioinf. doi: 10.1186/1471-2105-7-3 – ident: 6102_CR82 doi: 10.4137/CIN.S2655 – volume: 34 start-page: 244 issue: 4 year: 2010 ident: 6102_CR47 publication-title: Comput. Biol. Chem. doi: 10.1016/j.compbiolchem.2010.08.003 – volume: 23 start-page: 2507 issue: 19 year: 2007 ident: 6102_CR45 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm344 – volume: 143 start-page: 108 year: 2018 ident: 6102_CR57 publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.10.358 – volume: 12 start-page: 25 issue: 1 year: 2002 ident: 6102_CR52 publication-title: J. Intell. Fuzzy Syst. – ident: 6102_CR1 doi: 10.1007/0-306-47815-3_1 – volume: 9 start-page: 1106 issue: 4 year: 2012 ident: 6102_CR28 publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB) doi: 10.1109/TCBB.2012.33 – volume: 69 start-page: 46 year: 2014 ident: 6102_CR18 publication-title: Adv. Eng. softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 12 start-page: 10 issue: 1 year: 2019 ident: 6102_CR7 publication-title: BMC Med. Genomics doi: 10.1186/s12920-018-0447-6 – volume: 555 start-page: 358 issue: 2 year: 2003 ident: 6102_CR88 publication-title: FEBS Lett. doi: 10.1016/S0014-5793(03)01275-4 – volume: 44 start-page: 4629 issue: 6 year: 2020 ident: 6102_CR75 publication-title: Int. J. Energy Res. doi: 10.1002/er.5244 – ident: 6102_CR21 doi: 10.1109/ICNN.1995.488968 – volume: 38 start-page: 27 year: 2012 ident: 6102_CR46 publication-title: Procedia Eng. doi: 10.1016/j.proeng.2012.06.005 – volume: 6 start-page: 184 issue: 3 year: 2016 ident: 6102_CR55 publication-title: Int. J. Mach. Learn. Comput. doi: 10.18178/ijmlc.2016.6.3.596 – ident: 6102_CR6 doi: 10.1007/11816102_49 – volume: 11 start-page: 208 issue: 1 year: 2011 ident: 6102_CR63 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.11.010 – volume: 286 start-page: 531 issue: 5439 year: 1999 ident: 6102_CR3 publication-title: Science doi: 10.1126/science.286.5439.531 – volume: 90 start-page: 516 issue: 2 year: 2007 ident: 6102_CR85 publication-title: Biosystems doi: 10.1016/j.biosystems.2006.12.003 – ident: 6102_CR15 doi: 10.1007/978-981-4585-18-7_44 – volume: 4 start-page: 65 issue: 2 year: 1994 ident: 6102_CR19 publication-title: Stat. Comput. doi: 10.1007/BF00175354 – ident: 6102_CR71 doi: 10.1007/978-3-540-71783-6_5 – volume: 3 start-page: 185 issue: 02 year: 2005 ident: 6102_CR34 publication-title: J. Bioinf. Comput. Biol. doi: 10.1142/S0219720005001004 – volume: 2 start-page: 6371 issue: 10 year: 2017 ident: 6102_CR81 publication-title: ACS Omega doi: 10.1021/acsomega.7b01079 – volume: 407 start-page: 136 year: 2020 ident: 6102_CR10 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.04.013 – volume: 11 start-page: 1146 issue: 6 year: 2014 ident: 6102_CR30 publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB) doi: 10.1109/TCBB.2014.2328334 – volume: 10 start-page: 231 issue: 2 year: 2013 ident: 6102_CR48 publication-title: J. Bionic Eng. doi: 10.1016/S1672-6529(13)60219-X – ident: 6102_CR13 doi: 10.1007/11732242_4 – volume: 13 start-page: 152 issue: 2 year: 2014 ident: 6102_CR59 publication-title: IEEE Trans. Nanobiosci. doi: 10.1109/TNB.2014.2312132 – volume: 48 start-page: 1878 issue: 7 year: 2018 ident: 6102_CR61 publication-title: Appl. Intell. doi: 10.1007/s10489-017-1056-3 – volume: 26 start-page: 603 issue: 1 year: 2013 ident: 6102_CR84 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2012.01.017 – volume: 219 start-page: 113048 year: 2020 ident: 6102_CR74 publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.113048 – volume: 96 start-page: 6745 issue: 12 year: 1999 ident: 6102_CR23 publication-title: Proc. Nat. Acad. Sci. doi: 10.1073/pnas.96.12.6745 – ident: 6102_CR58 doi: 10.1109/CIBCB.2019.8791236 – volume: 41 start-page: 77 issue: 1 year: 2004 ident: 6102_CR33 publication-title: Ann. Math. Artif. Intell. doi: 10.1023/B:AMAI.0000018580.96245.c6 – volume: 3 start-page: 184 issue: 3 year: 2011 ident: 6102_CR62 publication-title: Int. J. Adv. Comput. Technol. – volume: 7 start-page: 108 issue: 1 year: 2010 ident: 6102_CR64 publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB) doi: 10.1109/TCBB.2008.46 – volume: 27 start-page: 1067 issue: 10 year: 2006 ident: 6102_CR36 publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2005.12.018 – volume: 7 start-page: 200 issue: 4 year: 2009 ident: 6102_CR50 publication-title: Genomics Proteomics Bioinf. doi: 10.1016/S1672-0229(08)60050-9 – volume: 27 start-page: 1667 issue: 5 year: 2011 ident: 6102_CR79 publication-title: J. Inf. Sci. Eng. – volume: 2 start-page: 153 issue: 2 year: 2009 ident: 6102_CR37 publication-title: Statistics and its Interface doi: 10.4310/SII.2009.v2.n2.a5 – volume: 71 start-page: 1679 issue: 4 year: 2007 ident: 6102_CR83 publication-title: Talanta doi: 10.1016/j.talanta.2006.07.047 – volume: 9 start-page: 917 year: 1977 ident: 6102_CR9 publication-title: IEEE Trans. Comput. doi: 10.1109/TC.1977.1674939 – volume: 403 start-page: 503 issue: 6769 year: 2000 ident: 6102_CR25 publication-title: Nature doi: 10.1038/35000501 – ident: 6102_CR42  | 
    
| SSID | ssib048395113 ssj0001916267 ssj0061873  | 
    
| Score | 2.2969081 | 
    
| Snippet | In DNA microarray applications, many techniques are proposed for cancer classification in order to detect normal and cancerous humans or classify different... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 2555 | 
    
| SubjectTerms | Accuracy Algorithms Cancer Classification Colon Datasets DNA chips Engineering Genes Heuristic methods Humanities and Social Sciences multidisciplinary Optimization Optimization techniques Redundancy Research Article-Computer Engineering and Computer Science Science Support vector machines  | 
    
| Title | Gene Selection for Microarray Cancer Classification based on Manta Rays Foraging Optimization and Support Vector Machines | 
    
| URI | https://link.springer.com/article/10.1007/s13369-021-06102-8 https://www.proquest.com/docview/2630274208  | 
    
| Volume | 47 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2191-4281 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0001916267 issn: 2193-567X databaseCode: ABDBF dateStart: 20041001 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2191-4281 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061873 issn: 2193-567X databaseCode: GX1 dateStart: 20020101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2191-4281 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001916267 issn: 2193-567X databaseCode: AFBBN dateStart: 20110101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2191-4281 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061873 issn: 2193-567X databaseCode: AGYKE dateStart: 20110101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 2191-4281 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061873 issn: 2193-567X databaseCode: U2A dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67gIHxKcYG5MP3EKmJI7T5NjBSoXUIcGGeouc2BaHtpuS9lD-Xf6RvWc7H51WxJCqKLJdK8n7-X3Y74OQD4EoQO3mwmdFmvhxqLWfyrj0RalSETElC3MUM7tMptfx1zmfDwZ_el5Lm3VxVv5-MK7kf6gKbUBXjJJ9BGXbSaEB7oG-cAUKw_WfaIw5o2G1L1TZegzO0MFOVJWApY4ErWzZS3QIsqRGsSXxiGAG31R438W29iaAA1Os6BswkKWLzLROnZtbVNC9n2ZzH8sU_UI_-b5KO64E5i1vc1DgUzTBQjiF6jIeojqLqkBv-2F6s6lrV3Dzoq7F0puedVwRGkzPVJjg5LZnvPB_iK3dp51hCJgW3qztvcSswWbCpZD9bQ2wiIMdF5FmW9Pbl_ULGCQwW-bzZDS3sqxpA5s4smVgGg5vc3o6JEd9ds1tjmAn-oF9RQ-KlcCFWTOWZD46tYAWhJKkE6Kta2OXBhoH5zA4N4Pz9IAcRiB6giE5HJ9_Pp80bC8GHRXUXtZtDYLKHpnax-0bunAvG_R5_yl2VarOTrp3tG80pqvn5JkzdejY4vYFGajVS_K0lwDzFdkigmmLYArYoR2CqUUw3UUwNQimcGMQTBHBtEEw7SOYAvyoQzC1CKYNgl-T68nF1aep74qB-CVIibXPjPUSijgbMYXxgonSQaR5WCgOvzLQUVrqjMUx04XUcaa4ZjIJi2CUKTGS7A0Zrm5W6i2hMgUriJeF5DA8C2IRSs51kMpQgUEeJkckbL5nXrpM-ViwZZHvJ-4R8dr_3No8MX8dfdKQKXers86jhBnHiQC6Pzak67r3z_buccOPyZNuwZ2Q4braqPegWa-LU4fMU3LwZR7eAQr-yIM | 
    
| linkProvider | EBSCOhost | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+Selection+for+Microarray+Cancer+Classification+based+on+Manta+Rays+Foraging+Optimization+and+Support+Vector+Machines&rft.jtitle=Arabian+journal+for+science+and+engineering+%282011%29&rft.au=Houssein%2C+Essam+H.&rft.au=Hassan%2C+Hager+N.&rft.au=Al-Sayed%2C+Mustafa+M.&rft.au=Nabil%2C+Emad&rft.date=2022-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=2193-567X&rft.eissn=2191-4281&rft.volume=47&rft.issue=2&rft.spage=2555&rft.epage=2572&rft_id=info:doi/10.1007%2Fs13369-021-06102-8&rft.externalDocID=10_1007_s13369_021_06102_8 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon |