A topology optimization method for hyperelastic porous structures subject to large deformation
Porous infill, rather than the solids, can provide high stiffness-to-weight ratio, energy absorption, thermal insulation, and many other outstanding properties. However, porous structure design to date have been majorly performed with topology optimization under small deformation assumption. The eff...
Saved in:
Published in | International journal of mechanics and materials in design Vol. 18; no. 2; pp. 289 - 308 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.06.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1569-1713 1573-8841 |
DOI | 10.1007/s10999-021-09576-4 |
Cover
Abstract | Porous infill, rather than the solids, can provide high stiffness-to-weight ratio, energy absorption, thermal insulation, and many other outstanding properties. However, porous structure design to date have been majorly performed with topology optimization under small deformation assumption. The effect of porosity control under large deformation is not explored yet. Hence, this paper exploits the topological design method of porous infill structures under large deformational configuration. Specifically, the neo-Hookean hyperelasticity model is adopted to simulate the large structural deformation, and the adjoint sensitivity analysis is performed accordingly with the governing equation and constraint. The maximum local volume fractions before and after deformation are concurrently constrained and especially for the latter, the representative volume points (RVPs) are modeled and tracked for evaluating the local volume fractions subject to the distorted mesh configuration. The local volume constraints are then aggregated with the P-norm method for a global expression. Iterative corrections are made to the P-norm function to rigorously restrict the upper bound of the maximum local volume. Finally, several benchmark cases are investigated, which validate the effectiveness of the proposed method. |
---|---|
AbstractList | Porous infill, rather than the solids, can provide high stiffness-to-weight ratio, energy absorption, thermal insulation, and many other outstanding properties. However, porous structure design to date have been majorly performed with topology optimization under small deformation assumption. The effect of porosity control under large deformation is not explored yet. Hence, this paper exploits the topological design method of porous infill structures under large deformational configuration. Specifically, the neo-Hookean hyperelasticity model is adopted to simulate the large structural deformation, and the adjoint sensitivity analysis is performed accordingly with the governing equation and constraint. The maximum local volume fractions before and after deformation are concurrently constrained and especially for the latter, the representative volume points (RVPs) are modeled and tracked for evaluating the local volume fractions subject to the distorted mesh configuration. The local volume constraints are then aggregated with the P-norm method for a global expression. Iterative corrections are made to the P-norm function to rigorously restrict the upper bound of the maximum local volume. Finally, several benchmark cases are investigated, which validate the effectiveness of the proposed method. |
Author | Liu, Jikai Ma, Yongsheng Huang, Jiaqi Xu, Shuzhi |
Author_xml | – sequence: 1 givenname: Jiaqi surname: Huang fullname: Huang, Jiaqi organization: Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering, Shandong University – sequence: 2 givenname: Shuzhi surname: Xu fullname: Xu, Shuzhi organization: Department of Mechanical Engineering, University of Alberta – sequence: 3 givenname: Yongsheng surname: Ma fullname: Ma, Yongsheng organization: Department of Mechanical Engineering, University of Alberta – sequence: 4 givenname: Jikai surname: Liu fullname: Liu, Jikai email: jikai_liu@sdu.edu.cn organization: Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering, Shandong University, Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University |
BookMark | eNp9kD1rwzAQhkVJoUnaP9BJ0FmtJFuWNIbQLwh0yVwhy3LiYFuuJA_pr68SFwodMt0H97x39y7ArHe9BeCe4EeCMX8KBEspEaYEYcl4gfIrMCeMZ0iInMxOeSER4SS7AYsQDhhnmAgxB58rGN3gWrc7QjfEpmu-dWxcDzsb966CtfNwfxyst60OsTFwcN6NAYboRxNHb1M6lgdrYtKBrfY7CyubqO4scwuua90Ge_cbl2D78rxdv6HNx-v7erVBJiMyIlpWgjFtKslp6tCcCVPyrK5zfGqVFc-lKDm1VPJal0WZUcEF00IyI1O1BA-T7ODd12hDVAc3-j5tVLQoWEGJSB8vgZimjHcheFsr08TzmdHrplUEq5OZajJTJTPV2UyVJ5T-QwffdNofL0PZBIU03O-s_7vqAvUDGYKLGA |
CitedBy_id | crossref_primary_10_1016_j_amf_2025_200193 crossref_primary_10_1016_j_ijmecsci_2024_109732 crossref_primary_10_3390_aerospace10121025 crossref_primary_10_32604_cmes_2023_029876 crossref_primary_10_1088_1742_6596_2804_1_012001 crossref_primary_10_3390_math10111863 crossref_primary_10_1007_s00158_023_03552_6 crossref_primary_10_3390_mi13060852 crossref_primary_10_1007_s00170_023_11259_7 crossref_primary_10_1016_j_cma_2022_114962 crossref_primary_10_1016_j_finel_2024_104281 crossref_primary_10_3390_mi13010100 crossref_primary_10_1007_s11433_024_2576_7 crossref_primary_10_1038_s42256_023_00762_x |
Cites_doi | 10.1016/j.commatsci.2011.01.030 10.1016/j.cma.2014.10.014 10.1155/2017/4679746 10.1016/j.jcp.2017.09.040 10.1007/s10999-021-09558-6 10.1016/j.cma.2020.113453 10.1002/nme.5122 10.1007/s00158-018-2159-0 10.1016/j.compstruc.2007.05.025 10.1016/j.jmps.2014.05.003 10.1109/TVCG.2017.2655523 10.1016/j.jmps.2018.01.013 10.1007/s00158-019-02275-x 10.1007/s00158-019-02484-4 10.1007/s10999-014-9257-y 10.1007/s00158-018-1994-3 10.1007/s00158-020-02654-9 10.1016/j.compstruct.2021.113729 10.1093/jcde/qwab051 10.1016/J.MECHMAT.2013.09.018 10.1016/j.eml.2020.101126 10.1016/j.cma.2014.12.023 10.1007/s00158-020-02525-3 10.1007/s00158-010-0602-y 10.1007/s00466-015-1255-x 10.1016/j.cma.2014.03.021 10.1016/j.compstruc.2018.01.008 10.1007/s00158-020-02816-9 10.1016/j.ijplas.2020.102684 10.1016/S0022-5096(99)00034-4 10.1016/j.cma.2014.10.007 10.1016/j.cma.2017.08.018 10.1002/nme.783 10.1016/j.ijsolstr.2006.03.001 10.1007/s00158-020-02539-x 10.1007/s001580050089 10.1016/j.cma.2020.112924 10.1016/j.matdes.2020.108775 10.1007/s00158-012-0766-8 10.1007/s00158-014-1145-4 10.1016/0045-7825(88)90086-2 10.1016/j.cma.2020.113354 10.1002/nme.1620240207 10.1007/978-1-4419-1746-1 10.1007/s00158-012-0819-z 10.1007/s00158-021-02881-8 10.1016/j.addma.2020.101698 10.1016/j.ijsolstr.2004.09.005 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2021 The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021 – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10999-021-09576-4 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-8841 |
EndPage | 308 |
ExternalDocumentID | 10_1007_s10999_021_09576_4 |
GrantInformation_xml | – fundername: natural science foundation of jiangsu province grantid: BK20190198 funderid: http://dx.doi.org/10.13039/501100004608 – fundername: shandong research institute of industrial technology – fundername: natural science foundation of shandong province grantid: ZR2020QE165 funderid: http://dx.doi.org/10.13039/501100007129 – fundername: state key laboratory of engine reliability grantid: skler-202001 – fundername: qilu young scholar award |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0VY 1N0 203 29J 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NPVJJ NQJWS NU0 O93 O9J OAM P2P P9P PF0 PT4 QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7R Z7S Z7Z Z85 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
ID | FETCH-LOGICAL-c319t-2bd855acd972c312458cb73ff40d972bd7498b72e297fab6b328785a895c96b3 |
IEDL.DBID | AGYKE |
ISSN | 1569-1713 |
IngestDate | Wed Sep 17 23:58:29 EDT 2025 Wed Oct 01 05:12:39 EDT 2025 Thu Apr 24 22:59:46 EDT 2025 Fri Feb 21 02:45:32 EST 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Keywords | Topology optimization Porous infill Hyperelastic material Nonlinear analysis SIMP |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-2bd855acd972c312458cb73ff40d972bd7498b72e297fab6b328785a895c96b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2665621800 |
PQPubID | 2043816 |
PageCount | 20 |
ParticipantIDs | proquest_journals_2665621800 crossref_citationtrail_10_1007_s10999_021_09576_4 crossref_primary_10_1007_s10999_021_09576_4 springer_journals_10_1007_s10999_021_09576_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | International journal of mechanics and materials in design |
PublicationTitleAbbrev | Int J Mech Mater Des |
PublicationYear | 2022 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Wang, Sigmund, Jensen (CR37) 2014; 69 Liu, Xing, Yang, Luo (CR23) 2017; 2017 Behrou, Ghanem, Macnider, Verma, Alvey, Hong, Emery, Kim, Boechler (CR2) 2021; 266 Zhang, Xing, Liu, Luo, Kang (CR49) 2021; 42 Liu, Gaynor, Chen, Kang, Suresh, Takezawa, Li, Kato, Tang, Wang, Cheng, Liang, To, Albert.C. (CR24) 2018; 57 Kim (CR19) 2015 Wang, Lazarov, Sigmund, Jensen (CR36) 2014; 276 Wang, Sigmund (CR34) 2020; 61 Yan, Guo, Cheng (CR44) 2016; 57 van Dijk, Langelaar, van Keulen (CR32) 2014; 50 Huang, Xie, Jia, Li, Zhou (CR17) 2012; 46 Bruns, Tortorelli (CR5) 2003; 57 Schmidt, Pedersen, Gout (CR29) 2019; 60 Zhang, Zhao, Du, Chen, Yao (CR47) 2020 Bendsøe, Kikuchi (CR4) 1988; 71 Huang, Radman, Xie (CR16) 2011; 50 Kim, Yun (CR20) 2020; 128 Sigmund (CR30) 2000; 48 Chen, Wang, Wang, Zhang (CR7) 2017; 351 Xu, Liu, Huang, Zou, Ma (CR42) 2021; 37 Wu, Aage, Westermann, Sigmund (CR40) 2018; 24 Buhl, Pedersen, Sigmund (CR6) 2000; 19 Huang, Zhou, Sun, Li, Xie (CR18) 2015; 283 Guest, Prévost (CR12) 2006; 43 Yang, Liu, Zhang, Li (CR45) 2018; 198 Zhang, Liu, Yuan, Xu, Zou, Li, Ma (CR48) 2021; 8 Dou (CR10) 2020; 62 Das, Sutradhar (CR8) 2020; 193 Xu, Liu, Zou, Li, Ma (CR43) 2021; 373 Andreassen, Lazarov, Sigmund (CR1) 2014 De Leon, Gonçalves, de Souza (CR9) 2020 Belytschko, Liu, Moran, Elkhodary (CR3) 2014 Svanberg (CR31) 1987; 24 Yoon, Kim (CR46) 2005; 42 Liu, Cao, Zhang, Jiang, Lu (CR25) 2021 Wang, Lazarov, Sigmund (CR35) 2011; 43 Luo, Wang, Kang (CR27) 2015; 286 Fritzen, Xia, Leuschner, Breitkopf (CR11) 2016; 106 Ha, Cho (CR14) 2008; 86 Han, Xu, Liu (CR15) 2021 Zheng, Yang, Long (CR50) 2015; 11 Guo, Zhao, Zhang, Yan, Sun (CR13) 2015; 283 Li, Gao, Li, Tong (CR22) 2020; 372 Wu, Clausen, Sigmund (CR39) 2017; 326 Long, Wang, Liu (CR26) 2019; 59 Ortigosa, Ruiz, Gil, Donoso, Bellido (CR28) 2020; 364 Klarbring, Strömberg (CR21) 2013; 47 Wang (CR33) 2018; 114 Wriggers (CR38) 2008 Wu, Sigmund, Groen (CR41) 2021; 63 S-H Ha (9576_CR14) 2008; 86 DM De Leon (9576_CR9) 2020 L Liu (9576_CR23) 2017; 2017 S Dou (9576_CR10) 2020; 62 F Wang (9576_CR33) 2018; 114 X Zhang (9576_CR49) 2021; 42 Y Han (9576_CR15) 2021 A Klarbring (9576_CR21) 2013; 47 F Wang (9576_CR34) 2020; 61 S Xu (9576_CR43) 2021; 373 O Sigmund (9576_CR30) 2000; 48 X Huang (9576_CR17) 2012; 46 Z Zhang (9576_CR47) 2020 S Das (9576_CR8) 2020; 193 NP van Dijk (9576_CR32) 2014; 50 E Andreassen (9576_CR1) 2014 Y Luo (9576_CR27) 2015; 286 F Chen (9576_CR7) 2017; 351 J Zheng (9576_CR50) 2015; 11 F Fritzen (9576_CR11) 2016; 106 K Svanberg (9576_CR31) 1987; 24 F Wang (9576_CR35) 2011; 43 M-P Schmidt (9576_CR29) 2019; 60 R Ortigosa (9576_CR28) 2020; 364 S Kim (9576_CR20) 2020; 128 S Xu (9576_CR42) 2021; 37 X Huang (9576_CR16) 2011; 50 N-H Kim (9576_CR19) 2015 J Yan (9576_CR44) 2016; 57 MP Bendsøe (9576_CR4) 1988; 71 J Wu (9576_CR40) 2018; 24 D Yang (9576_CR45) 2018; 198 GH Yoon (9576_CR46) 2005; 42 TE Bruns (9576_CR5) 2003; 57 J Liu (9576_CR24) 2018; 57 J Wu (9576_CR39) 2017; 326 C Zhang (9576_CR48) 2021; 8 X Guo (9576_CR13) 2015; 283 X Huang (9576_CR18) 2015; 283 JK Guest (9576_CR12) 2006; 43 P Wriggers (9576_CR38) 2008 H Li (9576_CR22) 2020; 372 T Belytschko (9576_CR3) 2014 K Long (9576_CR26) 2019; 59 T Buhl (9576_CR6) 2000; 19 F Wang (9576_CR37) 2014; 69 R Behrou (9576_CR2) 2021; 266 J Wu (9576_CR41) 2021; 63 F Wang (9576_CR36) 2014; 276 B Liu (9576_CR25) 2021 |
References_xml | – volume: 50 start-page: 1861 year: 2011 end-page: 1870 ident: CR16 article-title: Topological design of microstructures of cellular materials for maximum bulk or shear modulus publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2011.01.030 – volume: 283 start-page: 994 year: 2015 end-page: 1009 ident: CR13 article-title: Multi-scale robust design and optimization considering load uncertainties publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2014.10.014 – volume: 2017 start-page: 1 year: 2017 end-page: 11 ident: CR23 article-title: Design of large-displacement compliant mechanisms by topology optimization incorporating modified additive hyperelasticity technique publication-title: Math. Probl. Eng. doi: 10.1155/2017/4679746 – volume: 351 start-page: 437 year: 2017 end-page: 454 ident: CR7 article-title: Topology optimization of hyperelastic structures using a level set method publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.09.040 – year: 2021 ident: CR25 article-title: A design method of Voronoi porous structures with graded relative elasticity distribution for functionally gradient porous materials publication-title: Int J Mech Mater Des. doi: 10.1007/s10999-021-09558-6 – volume: 373 year: 2021 ident: CR43 article-title: Stress constrained multi-material topology optimization with the ordered SIMP method publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113453 – volume: 106 start-page: 430 year: 2016 end-page: 453 ident: CR11 article-title: Topology optimization of multiscale elastoviscoplastic structures publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.5122 – volume: 59 start-page: 1747 year: 2019 end-page: 1759 ident: CR26 article-title: Stress-constrained topology optimization of continuum structures subjected to harmonic force excitation using sequential quadratic programming publication-title: Struct. Multidisc. Optim. doi: 10.1007/s00158-018-2159-0 – year: 2014 ident: CR3 publication-title: Nonlinear finite elements for continua and structures – volume: 86 start-page: 1447 year: 2008 end-page: 1455 ident: CR14 article-title: Level set based topological shape optimization of geometrically nonlinear structures using unstructured mesh publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2007.05.025 – volume: 69 start-page: 156 year: 2014 end-page: 174 ident: CR37 article-title: Design of materials with prescribed nonlinear properties publication-title: J. Mech. Phys. Sol. doi: 10.1016/j.jmps.2014.05.003 – volume: 24 start-page: 1127 year: 2018 end-page: 1140 ident: CR40 article-title: Infill optimization for additive manufacturing—approaching bone-like porous structures publication-title: IEEE Trans. Visual. Comput. Graphics. doi: 10.1109/TVCG.2017.2655523 – volume: 114 start-page: 303 year: 2018 end-page: 318 ident: CR33 article-title: Systematic design of 3D auxetic lattice materials with programmable Poisson’s ratio for finite strains publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2018.01.013 – volume: 60 start-page: 1437 year: 2019 end-page: 1453 ident: CR29 article-title: On structural topology optimization using graded porosity control publication-title: Struct. Multidisc. Optim. doi: 10.1007/s00158-019-02275-x – year: 2008 ident: CR38 publication-title: Nonlinear finite element methods – year: 2020 ident: CR9 article-title: Stress-based topology optimization of compliant mechanisms design using geometrical and material nonlinearities publication-title: Struct Multidisc Optim. doi: 10.1007/s00158-019-02484-4 – volume: 11 start-page: 231 year: 2015 end-page: 241 ident: CR50 article-title: Topology optimization with geometrically non-linear based on the element free Galerkin method publication-title: Int. J. Mech. Mater. Des. doi: 10.1007/s10999-014-9257-y – volume: 57 start-page: 2457 year: 2018 end-page: 2483 ident: CR24 article-title: Current and future trends in topology optimization for additive manufacturing publication-title: Struct. Multidisc. Optim. doi: 10.1007/s00158-018-1994-3 – year: 2020 ident: CR47 article-title: Topology optimization of hyperelastic structures using a modified evolutionary topology optimization method publication-title: Struct. Multidisc. Optim. doi: 10.1007/s00158-020-02654-9 – volume: 266 year: 2021 ident: CR2 article-title: Topology optimization of nonlinear periodically microstructured materials for tailored homogenized constitutive properties publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2021.113729 – volume: 8 start-page: 1367 year: 2021 end-page: 1390 ident: CR48 article-title: A novel lattice structure topology optimization method with extreme anisotropic lattice properties publication-title: J. Comput. Des. Eng. doi: 10.1093/jcde/qwab051 – year: 2014 ident: CR1 article-title: Design of manufacturable 3D extremal elastic microstructure publication-title: Mech. Mater. doi: 10.1016/J.MECHMAT.2013.09.018 – volume: 42 year: 2021 ident: CR49 article-title: Realization of full and directional band gap design by non-gradient topology optimization in acoustic metamaterials publication-title: Extreme. Mech. Lett. doi: 10.1016/j.eml.2020.101126 – volume: 286 start-page: 422 year: 2015 end-page: 441 ident: CR27 article-title: Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2014.12.023 – volume: 61 start-page: 2629 year: 2020 end-page: 2639 ident: CR34 article-title: Numerical investigation of stiffness and buckling response of simple and optimized infill structures publication-title: Struct. Multidisc. Optim. doi: 10.1007/s00158-020-02525-3 – volume: 43 start-page: 767 year: 2011 end-page: 784 ident: CR35 article-title: On projection methods, convergence and robust formulations in topology optimization publication-title: Struct. Multidisc. Optim. doi: 10.1007/s00158-010-0602-y – volume: 57 start-page: 437 year: 2016 end-page: 446 ident: CR44 article-title: Multi-scale concurrent material and structural design under mechanical and thermal loads publication-title: Comput Mech. doi: 10.1007/s00466-015-1255-x – volume: 276 start-page: 453 year: 2014 end-page: 472 ident: CR36 article-title: Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems publication-title: Comput. Method. Appl. Mech. Eng. doi: 10.1016/j.cma.2014.03.021 – volume: 198 start-page: 23 year: 2018 end-page: 39 ident: CR45 article-title: Stress-constrained topology optimization based on maximum stress measures publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2018.01.008 – year: 2021 ident: CR15 article-title: An efficient 137-line MATLAB code for geometrically nonlinear topology optimization using bi-directional evolutionary structural optimization method publication-title: Struct Multidisc Optim. doi: 10.1007/s00158-020-02816-9 – volume: 128 year: 2020 ident: CR20 article-title: Microstructure topology optimization by targeting prescribed nonlinear stress-strain relationships publication-title: Int. J. Plast doi: 10.1016/j.ijplas.2020.102684 – volume: 48 start-page: 397 year: 2000 end-page: 428 ident: CR30 article-title: A new class of extremal composites publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(99)00034-4 – volume: 283 start-page: 503 year: 2015 end-page: 516 ident: CR18 article-title: Topology optimization for microstructures of viscoelastic composite materials publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2014.10.007 – volume: 326 start-page: 358 year: 2017 end-page: 375 ident: CR39 article-title: Minimum compliance topology optimization of shell–infill composites for additive manufacturing publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2017.08.018 – volume: 57 start-page: 1413 year: 2003 end-page: 1430 ident: CR5 article-title: An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms publication-title: Int. J. Numer. Meth. Engng. doi: 10.1002/nme.783 – volume: 43 start-page: 7028 year: 2006 end-page: 7047 ident: CR12 article-title: Optimizing multifunctional materials: Design of microstructures for maximized stiffness and fluid permeability publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2006.03.001 – volume: 62 start-page: 835 year: 2020 end-page: 850 ident: CR10 article-title: A projection approach for topology optimization of porous structures through implicit local volume control publication-title: Struct Multidisc Optim. doi: 10.1007/s00158-020-02539-x – volume: 19 start-page: 93 year: 2000 end-page: 104 ident: CR6 article-title: Stiffness design of geometrically nonlinear structures using topology optimization publication-title: Struct Multidisc Optim. doi: 10.1007/s001580050089 – volume: 364 start-page: 112924 year: 2020 ident: CR28 article-title: A stabilisation approach for topology optimisation of hyperelastic structures with the SIMP method publication-title: Comput. Method. Appl. Mech. Eng. doi: 10.1016/j.cma.2020.112924 – volume: 193 year: 2020 ident: CR8 article-title: Multi-physics topology optimization of functionally graded controllable porous structures: Application to heat dissipating problems publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.108775 – volume: 46 start-page: 385 year: 2012 end-page: 398 ident: CR17 article-title: Evolutionary topology optimization of periodic composites for extremal magnetic permeability and electrical permittivity publication-title: Struct Multidisc Optim. doi: 10.1007/s00158-012-0766-8 – volume: 50 start-page: 537 year: 2014 end-page: 560 ident: CR32 article-title: Element deformation scaling for robust geometrically nonlinear analyses in topology optimization publication-title: Struct Multidisc Optim. doi: 10.1007/s00158-014-1145-4 – volume: 71 start-page: 197 year: 1988 end-page: 224 ident: CR4 article-title: Generating optimal topologies in structural design using a homogenization method publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(88)90086-2 – volume: 372 start-page: 113354 year: 2020 ident: CR22 article-title: Spatial-varying multi-phase infill design using density-based topology optimization publication-title: Comput. Method. Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113354 – volume: 24 start-page: 359 year: 1987 end-page: 373 ident: CR31 article-title: The method of moving asymptotes—a new method for structural optimization publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.1620240207 – year: 2015 ident: CR19 publication-title: Introduction to nonlinear finite element analysis doi: 10.1007/978-1-4419-1746-1 – volume: 47 start-page: 37 year: 2013 end-page: 48 ident: CR21 article-title: Topology optimization of hyperelastic bodies including non-zero prescribed displacements publication-title: Struct Multidisc Optim. doi: 10.1007/s00158-012-0819-z – volume: 63 start-page: 1455 year: 2021 end-page: 1480 ident: CR41 article-title: Topology optimization of multi-scale structures: a review publication-title: Struct. Multidisc. Optim. doi: 10.1007/s00158-021-02881-8 – volume: 37 year: 2021 ident: CR42 article-title: Multi-scale topology optimization with shell and interface layers for additive manufacturing publication-title: Addit. Manuf. doi: 10.1016/j.addma.2020.101698 – volume: 42 start-page: 1983 year: 2005 end-page: 2009 ident: CR46 article-title: Element connectivity parameterization for topology optimization of geometrically nonlinear structures publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2004.09.005 – volume-title: Nonlinear finite element methods year: 2008 ident: 9576_CR38 – volume: 19 start-page: 93 year: 2000 ident: 9576_CR6 publication-title: Struct Multidisc Optim. doi: 10.1007/s001580050089 – volume: 57 start-page: 1413 year: 2003 ident: 9576_CR5 publication-title: Int. J. Numer. Meth. Engng. doi: 10.1002/nme.783 – volume: 128 year: 2020 ident: 9576_CR20 publication-title: Int. J. Plast doi: 10.1016/j.ijplas.2020.102684 – volume: 42 start-page: 1983 year: 2005 ident: 9576_CR46 publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2004.09.005 – volume: 193 year: 2020 ident: 9576_CR8 publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.108775 – volume: 283 start-page: 503 year: 2015 ident: 9576_CR18 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2014.10.007 – year: 2014 ident: 9576_CR1 publication-title: Mech. Mater. doi: 10.1016/J.MECHMAT.2013.09.018 – year: 2020 ident: 9576_CR47 publication-title: Struct. Multidisc. Optim. doi: 10.1007/s00158-020-02654-9 – volume: 364 start-page: 112924 year: 2020 ident: 9576_CR28 publication-title: Comput. Method. Appl. Mech. Eng. doi: 10.1016/j.cma.2020.112924 – volume-title: Nonlinear finite elements for continua and structures year: 2014 ident: 9576_CR3 – volume: 46 start-page: 385 year: 2012 ident: 9576_CR17 publication-title: Struct Multidisc Optim. doi: 10.1007/s00158-012-0766-8 – volume: 24 start-page: 1127 year: 2018 ident: 9576_CR40 publication-title: IEEE Trans. Visual. Comput. Graphics. doi: 10.1109/TVCG.2017.2655523 – volume: 373 year: 2021 ident: 9576_CR43 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113453 – volume: 59 start-page: 1747 year: 2019 ident: 9576_CR26 publication-title: Struct. Multidisc. Optim. doi: 10.1007/s00158-018-2159-0 – year: 2021 ident: 9576_CR25 publication-title: Int J Mech Mater Des. doi: 10.1007/s10999-021-09558-6 – volume: 286 start-page: 422 year: 2015 ident: 9576_CR27 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2014.12.023 – volume: 69 start-page: 156 year: 2014 ident: 9576_CR37 publication-title: J. Mech. Phys. Sol. doi: 10.1016/j.jmps.2014.05.003 – volume: 351 start-page: 437 year: 2017 ident: 9576_CR7 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.09.040 – volume: 71 start-page: 197 year: 1988 ident: 9576_CR4 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(88)90086-2 – year: 2021 ident: 9576_CR15 publication-title: Struct Multidisc Optim. doi: 10.1007/s00158-020-02816-9 – volume: 43 start-page: 767 year: 2011 ident: 9576_CR35 publication-title: Struct. Multidisc. Optim. doi: 10.1007/s00158-010-0602-y – volume: 61 start-page: 2629 year: 2020 ident: 9576_CR34 publication-title: Struct. Multidisc. Optim. doi: 10.1007/s00158-020-02525-3 – volume: 114 start-page: 303 year: 2018 ident: 9576_CR33 publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2018.01.013 – volume: 283 start-page: 994 year: 2015 ident: 9576_CR13 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2014.10.014 – year: 2020 ident: 9576_CR9 publication-title: Struct Multidisc Optim. doi: 10.1007/s00158-019-02484-4 – volume: 62 start-page: 835 year: 2020 ident: 9576_CR10 publication-title: Struct Multidisc Optim. doi: 10.1007/s00158-020-02539-x – volume: 57 start-page: 2457 year: 2018 ident: 9576_CR24 publication-title: Struct. Multidisc. Optim. doi: 10.1007/s00158-018-1994-3 – volume: 48 start-page: 397 year: 2000 ident: 9576_CR30 publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(99)00034-4 – volume: 60 start-page: 1437 year: 2019 ident: 9576_CR29 publication-title: Struct. Multidisc. Optim. doi: 10.1007/s00158-019-02275-x – volume: 11 start-page: 231 year: 2015 ident: 9576_CR50 publication-title: Int. J. Mech. Mater. Des. doi: 10.1007/s10999-014-9257-y – volume: 50 start-page: 1861 year: 2011 ident: 9576_CR16 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2011.01.030 – volume: 50 start-page: 537 year: 2014 ident: 9576_CR32 publication-title: Struct Multidisc Optim. doi: 10.1007/s00158-014-1145-4 – volume: 43 start-page: 7028 year: 2006 ident: 9576_CR12 publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2006.03.001 – volume: 24 start-page: 359 year: 1987 ident: 9576_CR31 publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.1620240207 – volume: 37 year: 2021 ident: 9576_CR42 publication-title: Addit. Manuf. doi: 10.1016/j.addma.2020.101698 – volume: 326 start-page: 358 year: 2017 ident: 9576_CR39 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2017.08.018 – volume: 276 start-page: 453 year: 2014 ident: 9576_CR36 publication-title: Comput. Method. Appl. Mech. Eng. doi: 10.1016/j.cma.2014.03.021 – volume: 8 start-page: 1367 year: 2021 ident: 9576_CR48 publication-title: J. Comput. Des. Eng. doi: 10.1093/jcde/qwab051 – volume: 86 start-page: 1447 year: 2008 ident: 9576_CR14 publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2007.05.025 – volume: 57 start-page: 437 year: 2016 ident: 9576_CR44 publication-title: Comput Mech. doi: 10.1007/s00466-015-1255-x – volume-title: Introduction to nonlinear finite element analysis year: 2015 ident: 9576_CR19 doi: 10.1007/978-1-4419-1746-1 – volume: 47 start-page: 37 year: 2013 ident: 9576_CR21 publication-title: Struct Multidisc Optim. doi: 10.1007/s00158-012-0819-z – volume: 63 start-page: 1455 year: 2021 ident: 9576_CR41 publication-title: Struct. Multidisc. Optim. doi: 10.1007/s00158-021-02881-8 – volume: 42 year: 2021 ident: 9576_CR49 publication-title: Extreme. Mech. Lett. doi: 10.1016/j.eml.2020.101126 – volume: 2017 start-page: 1 year: 2017 ident: 9576_CR23 publication-title: Math. Probl. Eng. doi: 10.1155/2017/4679746 – volume: 266 year: 2021 ident: 9576_CR2 publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2021.113729 – volume: 198 start-page: 23 year: 2018 ident: 9576_CR45 publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2018.01.008 – volume: 106 start-page: 430 year: 2016 ident: 9576_CR11 publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.5122 – volume: 372 start-page: 113354 year: 2020 ident: 9576_CR22 publication-title: Comput. Method. Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113354 |
SSID | ssj0030188 |
Score | 2.3405406 |
Snippet | Porous infill, rather than the solids, can provide high stiffness-to-weight ratio, energy absorption, thermal insulation, and many other outstanding... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 289 |
SubjectTerms | Characterization and Evaluation of Materials Classical Mechanics Configurations Constraints Deformation effects Energy absorption Engineering Engineering Design Finite element method Iterative methods Sensitivity analysis Solid Mechanics Stiffness Thermal insulation Topology optimization Upper bounds |
Title | A topology optimization method for hyperelastic porous structures subject to large deformation |
URI | https://link.springer.com/article/10.1007/s10999-021-09576-4 https://www.proquest.com/docview/2665621800 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-8841 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0030188 issn: 1569-1713 databaseCode: AFBBN dateStart: 20040301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-8841 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0030188 issn: 1569-1713 databaseCode: AGYKE dateStart: 20040101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-8841 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0030188 issn: 1569-1713 databaseCode: U2A dateStart: 20040301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH4RuOjB30YUSQ_etGR03dYeFwMSjZ4gwYvL2o6YiGCycdC_3tf9ACRq4nFd97L1de332n7fA7j0pRJSGY8KaZduEuNTibM2xZmXMx0HiSMs3_nh0R-M-N3YG5eksLQ67V5tSeYj9RrZLWfMMwx_JaJkymvQ8GyAUodGePt036tGYOyzeb5JDE0k7WIUVpJlfrbyfUJaocyNjdF8vunvwah60-KYyWtnkamO_twQcfzvp-zDbglASVj0mAPYSmaHsLMmS3gEzyHJitwJH2SOQ8pbydUkRbppgjiXvGD8ankwVuaZIIafL1JSaNEuMIAn6ULZBR60Q6b2rDkxyZImeQzDfm94M6BlHgaq8QfNKFNGeF6sjQwYljDuCa0CdzLhji1SJuBSqIAlTAaTWPnKxTBMeLGQnpZ4dQL12XyWnAJRMbdKpAnixIAbF604jtW_ih2DSF-7TehWvoh0qVFuU2VMo5W6sm26CJsuypsu4k24Wj7zXih0_Fm7Vbk4Kv_WNEKQgjCwi9i5CdeVx1a3f7d29r_q57DNLHsiX8RpQR29klwgpslUu-zCbaiNWPgFqbTsyg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BOwADb0ShgAc2SJWHk9hjhQqFPqZWKgtRnLhCorRISQb49ZwTpy0VIHWM45wSn2N_Z_v7DuDa44JxEbsG42rpRsaewXHWNnDmpXYU-tJkiu_c63vtIX0auSNNCkvK0-7llmQ-Ui-R3XLGvI3hL0eUbNBNqFKLMVqBavPhudMqR2Dss3m-SQxNuGFhFKbJMr9b-TkhLVDmysZoPt_c78GwfNPimMlbI0tFI_paEXFc91P2YVcDUNIseswBbMjpIewsyRIewUuTpEXuhE8ywyHlXXM1SZFumiDOJa8YvyoejJJ5JojhZ1lCCi3aDAN4kmRCLfCgHTJRZ81JLOc0yWMY3LcGd21D52EwIvxBU8MWMXPdMIq5b2OJTV0WCd8Zj6mpikTsU86Eb0ub--NQeMLBMIy5IeNuxPHqBCrT2VSeAhEhVUqkEnGiT2MHrZim0r8KzRiRfuTUwCp9EURao1ylypgEC3Vl1XQBNl2QN11Aa3Azf-ajUOj4t3a9dHGg_9YkQJCCMNBC7FyD29Jji9t_Wztbr_oVbLUHvW7Qfex3zmHbVkyKfEGnDhX0kLxAfJOKS92dvwFiju7S |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRAMiKcoFPDABlZTx0nssQKq8qoYWqkTVhy7YihppaYD_55zHm1BgMSYxLnBZ_u-s_19B3AZSi2kNgEV0m3dWBNSiVGbYuTlLIkj6wnHd37uhd0BfxgGwxUWf37bvTqSLDgNTqUpzZpTM2quEN9y9jzDVFgiYqZ8HTY4xmqXfg1Yu1qLcfTmlScxSZG0hflYSZv52cbX0LTEm9-OSPPI09mFnRIyknbh4z1Ys-k-bK8ICR7Aa5tkRbWDDzLBReC9ZFeSokA0QWRK3jDjdMwVJ8xMEHVjyk8K9dg5ptxkNtduSwbtkLG7HU6MXRAbD6HfuevfdGlZOYEmOKUyyrQRQRAnRkYM3zAeiERH_mjEPfdKm4hLoSNmmYxGsQ61j4mTCGIhg0Ti0xHU0klqj4HomDvtUIvILuLGRyue5xSrYs8gNk_8OrSqPlNJqSruiluM1VIP2fWzwn5WeT8rXoerxT_TQlPjz9aNyhWqnF8zhbACgVsL0W4driv3LD__bu3kf80vYPPltqOe7nuPp7DFHPUh34FpQA0dZM8QkGT6PB9zn8My1gg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+topology+optimization+method+for+hyperelastic+porous+structures+subject+to+large+deformation&rft.jtitle=International+journal+of+mechanics+and+materials+in+design&rft.au=Huang%2C+Jiaqi&rft.au=Xu%2C+Shuzhi&rft.au=Ma%2C+Yongsheng&rft.au=Liu%2C+Jikai&rft.date=2022-06-01&rft.pub=Springer+Netherlands&rft.issn=1569-1713&rft.eissn=1573-8841&rft.volume=18&rft.issue=2&rft.spage=289&rft.epage=308&rft_id=info:doi/10.1007%2Fs10999-021-09576-4&rft.externalDocID=10_1007_s10999_021_09576_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-1713&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-1713&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-1713&client=summon |