A topology optimization method for hyperelastic porous structures subject to large deformation

Porous infill, rather than the solids, can provide high stiffness-to-weight ratio, energy absorption, thermal insulation, and many other outstanding properties. However, porous structure design to date have been majorly performed with topology optimization under small deformation assumption. The eff...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of mechanics and materials in design Vol. 18; no. 2; pp. 289 - 308
Main Authors Huang, Jiaqi, Xu, Shuzhi, Ma, Yongsheng, Liu, Jikai
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.06.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1569-1713
1573-8841
DOI10.1007/s10999-021-09576-4

Cover

Abstract Porous infill, rather than the solids, can provide high stiffness-to-weight ratio, energy absorption, thermal insulation, and many other outstanding properties. However, porous structure design to date have been majorly performed with topology optimization under small deformation assumption. The effect of porosity control under large deformation is not explored yet. Hence, this paper exploits the topological design method of porous infill structures under large deformational configuration. Specifically, the neo-Hookean hyperelasticity model is adopted to simulate the large structural deformation, and the adjoint sensitivity analysis is performed accordingly with the governing equation and constraint. The maximum local volume fractions before and after deformation are concurrently constrained and especially for the latter, the representative volume points (RVPs) are modeled and tracked for evaluating the local volume fractions subject to the distorted mesh configuration. The local volume constraints are then aggregated with the P-norm method for a global expression. Iterative corrections are made to the P-norm function to rigorously restrict the upper bound of the maximum local volume. Finally, several benchmark cases are investigated, which validate the effectiveness of the proposed method.
AbstractList Porous infill, rather than the solids, can provide high stiffness-to-weight ratio, energy absorption, thermal insulation, and many other outstanding properties. However, porous structure design to date have been majorly performed with topology optimization under small deformation assumption. The effect of porosity control under large deformation is not explored yet. Hence, this paper exploits the topological design method of porous infill structures under large deformational configuration. Specifically, the neo-Hookean hyperelasticity model is adopted to simulate the large structural deformation, and the adjoint sensitivity analysis is performed accordingly with the governing equation and constraint. The maximum local volume fractions before and after deformation are concurrently constrained and especially for the latter, the representative volume points (RVPs) are modeled and tracked for evaluating the local volume fractions subject to the distorted mesh configuration. The local volume constraints are then aggregated with the P-norm method for a global expression. Iterative corrections are made to the P-norm function to rigorously restrict the upper bound of the maximum local volume. Finally, several benchmark cases are investigated, which validate the effectiveness of the proposed method.
Author Liu, Jikai
Ma, Yongsheng
Huang, Jiaqi
Xu, Shuzhi
Author_xml – sequence: 1
  givenname: Jiaqi
  surname: Huang
  fullname: Huang, Jiaqi
  organization: Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering, Shandong University
– sequence: 2
  givenname: Shuzhi
  surname: Xu
  fullname: Xu, Shuzhi
  organization: Department of Mechanical Engineering, University of Alberta
– sequence: 3
  givenname: Yongsheng
  surname: Ma
  fullname: Ma, Yongsheng
  organization: Department of Mechanical Engineering, University of Alberta
– sequence: 4
  givenname: Jikai
  surname: Liu
  fullname: Liu, Jikai
  email: jikai_liu@sdu.edu.cn
  organization: Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering, Shandong University, Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University
BookMark eNp9kD1rwzAQhkVJoUnaP9BJ0FmtJFuWNIbQLwh0yVwhy3LiYFuuJA_pr68SFwodMt0H97x39y7ArHe9BeCe4EeCMX8KBEspEaYEYcl4gfIrMCeMZ0iInMxOeSER4SS7AYsQDhhnmAgxB58rGN3gWrc7QjfEpmu-dWxcDzsb966CtfNwfxyst60OsTFwcN6NAYboRxNHb1M6lgdrYtKBrfY7CyubqO4scwuua90Ge_cbl2D78rxdv6HNx-v7erVBJiMyIlpWgjFtKslp6tCcCVPyrK5zfGqVFc-lKDm1VPJal0WZUcEF00IyI1O1BA-T7ODd12hDVAc3-j5tVLQoWEGJSB8vgZimjHcheFsr08TzmdHrplUEq5OZajJTJTPV2UyVJ5T-QwffdNofL0PZBIU03O-s_7vqAvUDGYKLGA
CitedBy_id crossref_primary_10_1016_j_amf_2025_200193
crossref_primary_10_1016_j_ijmecsci_2024_109732
crossref_primary_10_3390_aerospace10121025
crossref_primary_10_32604_cmes_2023_029876
crossref_primary_10_1088_1742_6596_2804_1_012001
crossref_primary_10_3390_math10111863
crossref_primary_10_1007_s00158_023_03552_6
crossref_primary_10_3390_mi13060852
crossref_primary_10_1007_s00170_023_11259_7
crossref_primary_10_1016_j_cma_2022_114962
crossref_primary_10_1016_j_finel_2024_104281
crossref_primary_10_3390_mi13010100
crossref_primary_10_1007_s11433_024_2576_7
crossref_primary_10_1038_s42256_023_00762_x
Cites_doi 10.1016/j.commatsci.2011.01.030
10.1016/j.cma.2014.10.014
10.1155/2017/4679746
10.1016/j.jcp.2017.09.040
10.1007/s10999-021-09558-6
10.1016/j.cma.2020.113453
10.1002/nme.5122
10.1007/s00158-018-2159-0
10.1016/j.compstruc.2007.05.025
10.1016/j.jmps.2014.05.003
10.1109/TVCG.2017.2655523
10.1016/j.jmps.2018.01.013
10.1007/s00158-019-02275-x
10.1007/s00158-019-02484-4
10.1007/s10999-014-9257-y
10.1007/s00158-018-1994-3
10.1007/s00158-020-02654-9
10.1016/j.compstruct.2021.113729
10.1093/jcde/qwab051
10.1016/J.MECHMAT.2013.09.018
10.1016/j.eml.2020.101126
10.1016/j.cma.2014.12.023
10.1007/s00158-020-02525-3
10.1007/s00158-010-0602-y
10.1007/s00466-015-1255-x
10.1016/j.cma.2014.03.021
10.1016/j.compstruc.2018.01.008
10.1007/s00158-020-02816-9
10.1016/j.ijplas.2020.102684
10.1016/S0022-5096(99)00034-4
10.1016/j.cma.2014.10.007
10.1016/j.cma.2017.08.018
10.1002/nme.783
10.1016/j.ijsolstr.2006.03.001
10.1007/s00158-020-02539-x
10.1007/s001580050089
10.1016/j.cma.2020.112924
10.1016/j.matdes.2020.108775
10.1007/s00158-012-0766-8
10.1007/s00158-014-1145-4
10.1016/0045-7825(88)90086-2
10.1016/j.cma.2020.113354
10.1002/nme.1620240207
10.1007/978-1-4419-1746-1
10.1007/s00158-012-0819-z
10.1007/s00158-021-02881-8
10.1016/j.addma.2020.101698
10.1016/j.ijsolstr.2004.09.005
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2021
The Author(s), under exclusive licence to Springer Nature B.V. 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021.
DBID AAYXX
CITATION
DOI 10.1007/s10999-021-09576-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-8841
EndPage 308
ExternalDocumentID 10_1007_s10999_021_09576_4
GrantInformation_xml – fundername: natural science foundation of jiangsu province
  grantid: BK20190198
  funderid: http://dx.doi.org/10.13039/501100004608
– fundername: shandong research institute of industrial technology
– fundername: natural science foundation of shandong province
  grantid: ZR2020QE165
  funderid: http://dx.doi.org/10.13039/501100007129
– fundername: state key laboratory of engine reliability
  grantid: skler-202001
– fundername: qilu young scholar award
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P2P
P9P
PF0
PT4
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7R
Z7S
Z7Z
Z85
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c319t-2bd855acd972c312458cb73ff40d972bd7498b72e297fab6b328785a895c96b3
IEDL.DBID AGYKE
ISSN 1569-1713
IngestDate Wed Sep 17 23:58:29 EDT 2025
Wed Oct 01 05:12:39 EDT 2025
Thu Apr 24 22:59:46 EDT 2025
Fri Feb 21 02:45:32 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords Topology optimization
Porous infill
Hyperelastic material
Nonlinear analysis
SIMP
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-2bd855acd972c312458cb73ff40d972bd7498b72e297fab6b328785a895c96b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2665621800
PQPubID 2043816
PageCount 20
ParticipantIDs proquest_journals_2665621800
crossref_citationtrail_10_1007_s10999_021_09576_4
crossref_primary_10_1007_s10999_021_09576_4
springer_journals_10_1007_s10999_021_09576_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle International journal of mechanics and materials in design
PublicationTitleAbbrev Int J Mech Mater Des
PublicationYear 2022
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Wang, Sigmund, Jensen (CR37) 2014; 69
Liu, Xing, Yang, Luo (CR23) 2017; 2017
Behrou, Ghanem, Macnider, Verma, Alvey, Hong, Emery, Kim, Boechler (CR2) 2021; 266
Zhang, Xing, Liu, Luo, Kang (CR49) 2021; 42
Liu, Gaynor, Chen, Kang, Suresh, Takezawa, Li, Kato, Tang, Wang, Cheng, Liang, To, Albert.C. (CR24) 2018; 57
Kim (CR19) 2015
Wang, Lazarov, Sigmund, Jensen (CR36) 2014; 276
Wang, Sigmund (CR34) 2020; 61
Yan, Guo, Cheng (CR44) 2016; 57
van Dijk, Langelaar, van Keulen (CR32) 2014; 50
Huang, Xie, Jia, Li, Zhou (CR17) 2012; 46
Bruns, Tortorelli (CR5) 2003; 57
Schmidt, Pedersen, Gout (CR29) 2019; 60
Zhang, Zhao, Du, Chen, Yao (CR47) 2020
Bendsøe, Kikuchi (CR4) 1988; 71
Huang, Radman, Xie (CR16) 2011; 50
Kim, Yun (CR20) 2020; 128
Sigmund (CR30) 2000; 48
Chen, Wang, Wang, Zhang (CR7) 2017; 351
Xu, Liu, Huang, Zou, Ma (CR42) 2021; 37
Wu, Aage, Westermann, Sigmund (CR40) 2018; 24
Buhl, Pedersen, Sigmund (CR6) 2000; 19
Huang, Zhou, Sun, Li, Xie (CR18) 2015; 283
Guest, Prévost (CR12) 2006; 43
Yang, Liu, Zhang, Li (CR45) 2018; 198
Zhang, Liu, Yuan, Xu, Zou, Li, Ma (CR48) 2021; 8
Dou (CR10) 2020; 62
Das, Sutradhar (CR8) 2020; 193
Xu, Liu, Zou, Li, Ma (CR43) 2021; 373
Andreassen, Lazarov, Sigmund (CR1) 2014
De Leon, Gonçalves, de Souza (CR9) 2020
Belytschko, Liu, Moran, Elkhodary (CR3) 2014
Svanberg (CR31) 1987; 24
Yoon, Kim (CR46) 2005; 42
Liu, Cao, Zhang, Jiang, Lu (CR25) 2021
Wang, Lazarov, Sigmund (CR35) 2011; 43
Luo, Wang, Kang (CR27) 2015; 286
Fritzen, Xia, Leuschner, Breitkopf (CR11) 2016; 106
Ha, Cho (CR14) 2008; 86
Han, Xu, Liu (CR15) 2021
Zheng, Yang, Long (CR50) 2015; 11
Guo, Zhao, Zhang, Yan, Sun (CR13) 2015; 283
Li, Gao, Li, Tong (CR22) 2020; 372
Wu, Clausen, Sigmund (CR39) 2017; 326
Long, Wang, Liu (CR26) 2019; 59
Ortigosa, Ruiz, Gil, Donoso, Bellido (CR28) 2020; 364
Klarbring, Strömberg (CR21) 2013; 47
Wang (CR33) 2018; 114
Wriggers (CR38) 2008
Wu, Sigmund, Groen (CR41) 2021; 63
S-H Ha (9576_CR14) 2008; 86
DM De Leon (9576_CR9) 2020
L Liu (9576_CR23) 2017; 2017
S Dou (9576_CR10) 2020; 62
F Wang (9576_CR33) 2018; 114
X Zhang (9576_CR49) 2021; 42
Y Han (9576_CR15) 2021
A Klarbring (9576_CR21) 2013; 47
F Wang (9576_CR34) 2020; 61
S Xu (9576_CR43) 2021; 373
O Sigmund (9576_CR30) 2000; 48
X Huang (9576_CR17) 2012; 46
Z Zhang (9576_CR47) 2020
S Das (9576_CR8) 2020; 193
NP van Dijk (9576_CR32) 2014; 50
E Andreassen (9576_CR1) 2014
Y Luo (9576_CR27) 2015; 286
F Chen (9576_CR7) 2017; 351
J Zheng (9576_CR50) 2015; 11
F Fritzen (9576_CR11) 2016; 106
K Svanberg (9576_CR31) 1987; 24
F Wang (9576_CR35) 2011; 43
M-P Schmidt (9576_CR29) 2019; 60
R Ortigosa (9576_CR28) 2020; 364
S Kim (9576_CR20) 2020; 128
S Xu (9576_CR42) 2021; 37
X Huang (9576_CR16) 2011; 50
N-H Kim (9576_CR19) 2015
J Yan (9576_CR44) 2016; 57
MP Bendsøe (9576_CR4) 1988; 71
J Wu (9576_CR40) 2018; 24
D Yang (9576_CR45) 2018; 198
GH Yoon (9576_CR46) 2005; 42
TE Bruns (9576_CR5) 2003; 57
J Liu (9576_CR24) 2018; 57
J Wu (9576_CR39) 2017; 326
C Zhang (9576_CR48) 2021; 8
X Guo (9576_CR13) 2015; 283
X Huang (9576_CR18) 2015; 283
JK Guest (9576_CR12) 2006; 43
P Wriggers (9576_CR38) 2008
H Li (9576_CR22) 2020; 372
T Belytschko (9576_CR3) 2014
K Long (9576_CR26) 2019; 59
T Buhl (9576_CR6) 2000; 19
F Wang (9576_CR37) 2014; 69
R Behrou (9576_CR2) 2021; 266
J Wu (9576_CR41) 2021; 63
F Wang (9576_CR36) 2014; 276
B Liu (9576_CR25) 2021
References_xml – volume: 50
  start-page: 1861
  year: 2011
  end-page: 1870
  ident: CR16
  article-title: Topological design of microstructures of cellular materials for maximum bulk or shear modulus
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2011.01.030
– volume: 283
  start-page: 994
  year: 2015
  end-page: 1009
  ident: CR13
  article-title: Multi-scale robust design and optimization considering load uncertainties
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2014.10.014
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 11
  ident: CR23
  article-title: Design of large-displacement compliant mechanisms by topology optimization incorporating modified additive hyperelasticity technique
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2017/4679746
– volume: 351
  start-page: 437
  year: 2017
  end-page: 454
  ident: CR7
  article-title: Topology optimization of hyperelastic structures using a level set method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.09.040
– year: 2021
  ident: CR25
  article-title: A design method of Voronoi porous structures with graded relative elasticity distribution for functionally gradient porous materials
  publication-title: Int J Mech Mater Des.
  doi: 10.1007/s10999-021-09558-6
– volume: 373
  year: 2021
  ident: CR43
  article-title: Stress constrained multi-material topology optimization with the ordered SIMP method
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113453
– volume: 106
  start-page: 430
  year: 2016
  end-page: 453
  ident: CR11
  article-title: Topology optimization of multiscale elastoviscoplastic structures
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.5122
– volume: 59
  start-page: 1747
  year: 2019
  end-page: 1759
  ident: CR26
  article-title: Stress-constrained topology optimization of continuum structures subjected to harmonic force excitation using sequential quadratic programming
  publication-title: Struct. Multidisc. Optim.
  doi: 10.1007/s00158-018-2159-0
– year: 2014
  ident: CR3
  publication-title: Nonlinear finite elements for continua and structures
– volume: 86
  start-page: 1447
  year: 2008
  end-page: 1455
  ident: CR14
  article-title: Level set based topological shape optimization of geometrically nonlinear structures using unstructured mesh
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2007.05.025
– volume: 69
  start-page: 156
  year: 2014
  end-page: 174
  ident: CR37
  article-title: Design of materials with prescribed nonlinear properties
  publication-title: J. Mech. Phys. Sol.
  doi: 10.1016/j.jmps.2014.05.003
– volume: 24
  start-page: 1127
  year: 2018
  end-page: 1140
  ident: CR40
  article-title: Infill optimization for additive manufacturing—approaching bone-like porous structures
  publication-title: IEEE Trans. Visual. Comput. Graphics.
  doi: 10.1109/TVCG.2017.2655523
– volume: 114
  start-page: 303
  year: 2018
  end-page: 318
  ident: CR33
  article-title: Systematic design of 3D auxetic lattice materials with programmable Poisson’s ratio for finite strains
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2018.01.013
– volume: 60
  start-page: 1437
  year: 2019
  end-page: 1453
  ident: CR29
  article-title: On structural topology optimization using graded porosity control
  publication-title: Struct. Multidisc. Optim.
  doi: 10.1007/s00158-019-02275-x
– year: 2008
  ident: CR38
  publication-title: Nonlinear finite element methods
– year: 2020
  ident: CR9
  article-title: Stress-based topology optimization of compliant mechanisms design using geometrical and material nonlinearities
  publication-title: Struct Multidisc Optim.
  doi: 10.1007/s00158-019-02484-4
– volume: 11
  start-page: 231
  year: 2015
  end-page: 241
  ident: CR50
  article-title: Topology optimization with geometrically non-linear based on the element free Galerkin method
  publication-title: Int. J. Mech. Mater. Des.
  doi: 10.1007/s10999-014-9257-y
– volume: 57
  start-page: 2457
  year: 2018
  end-page: 2483
  ident: CR24
  article-title: Current and future trends in topology optimization for additive manufacturing
  publication-title: Struct. Multidisc. Optim.
  doi: 10.1007/s00158-018-1994-3
– year: 2020
  ident: CR47
  article-title: Topology optimization of hyperelastic structures using a modified evolutionary topology optimization method
  publication-title: Struct. Multidisc. Optim.
  doi: 10.1007/s00158-020-02654-9
– volume: 266
  year: 2021
  ident: CR2
  article-title: Topology optimization of nonlinear periodically microstructured materials for tailored homogenized constitutive properties
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2021.113729
– volume: 8
  start-page: 1367
  year: 2021
  end-page: 1390
  ident: CR48
  article-title: A novel lattice structure topology optimization method with extreme anisotropic lattice properties
  publication-title: J. Comput. Des. Eng.
  doi: 10.1093/jcde/qwab051
– year: 2014
  ident: CR1
  article-title: Design of manufacturable 3D extremal elastic microstructure
  publication-title: Mech. Mater.
  doi: 10.1016/J.MECHMAT.2013.09.018
– volume: 42
  year: 2021
  ident: CR49
  article-title: Realization of full and directional band gap design by non-gradient topology optimization in acoustic metamaterials
  publication-title: Extreme. Mech. Lett.
  doi: 10.1016/j.eml.2020.101126
– volume: 286
  start-page: 422
  year: 2015
  end-page: 441
  ident: CR27
  article-title: Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2014.12.023
– volume: 61
  start-page: 2629
  year: 2020
  end-page: 2639
  ident: CR34
  article-title: Numerical investigation of stiffness and buckling response of simple and optimized infill structures
  publication-title: Struct. Multidisc. Optim.
  doi: 10.1007/s00158-020-02525-3
– volume: 43
  start-page: 767
  year: 2011
  end-page: 784
  ident: CR35
  article-title: On projection methods, convergence and robust formulations in topology optimization
  publication-title: Struct. Multidisc. Optim.
  doi: 10.1007/s00158-010-0602-y
– volume: 57
  start-page: 437
  year: 2016
  end-page: 446
  ident: CR44
  article-title: Multi-scale concurrent material and structural design under mechanical and thermal loads
  publication-title: Comput Mech.
  doi: 10.1007/s00466-015-1255-x
– volume: 276
  start-page: 453
  year: 2014
  end-page: 472
  ident: CR36
  article-title: Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems
  publication-title: Comput. Method. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2014.03.021
– volume: 198
  start-page: 23
  year: 2018
  end-page: 39
  ident: CR45
  article-title: Stress-constrained topology optimization based on maximum stress measures
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2018.01.008
– year: 2021
  ident: CR15
  article-title: An efficient 137-line MATLAB code for geometrically nonlinear topology optimization using bi-directional evolutionary structural optimization method
  publication-title: Struct Multidisc Optim.
  doi: 10.1007/s00158-020-02816-9
– volume: 128
  year: 2020
  ident: CR20
  article-title: Microstructure topology optimization by targeting prescribed nonlinear stress-strain relationships
  publication-title: Int. J. Plast
  doi: 10.1016/j.ijplas.2020.102684
– volume: 48
  start-page: 397
  year: 2000
  end-page: 428
  ident: CR30
  article-title: A new class of extremal composites
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(99)00034-4
– volume: 283
  start-page: 503
  year: 2015
  end-page: 516
  ident: CR18
  article-title: Topology optimization for microstructures of viscoelastic composite materials
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2014.10.007
– volume: 326
  start-page: 358
  year: 2017
  end-page: 375
  ident: CR39
  article-title: Minimum compliance topology optimization of shell–infill composites for additive manufacturing
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2017.08.018
– volume: 57
  start-page: 1413
  year: 2003
  end-page: 1430
  ident: CR5
  article-title: An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms
  publication-title: Int. J. Numer. Meth. Engng.
  doi: 10.1002/nme.783
– volume: 43
  start-page: 7028
  year: 2006
  end-page: 7047
  ident: CR12
  article-title: Optimizing multifunctional materials: Design of microstructures for maximized stiffness and fluid permeability
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2006.03.001
– volume: 62
  start-page: 835
  year: 2020
  end-page: 850
  ident: CR10
  article-title: A projection approach for topology optimization of porous structures through implicit local volume control
  publication-title: Struct Multidisc Optim.
  doi: 10.1007/s00158-020-02539-x
– volume: 19
  start-page: 93
  year: 2000
  end-page: 104
  ident: CR6
  article-title: Stiffness design of geometrically nonlinear structures using topology optimization
  publication-title: Struct Multidisc Optim.
  doi: 10.1007/s001580050089
– volume: 364
  start-page: 112924
  year: 2020
  ident: CR28
  article-title: A stabilisation approach for topology optimisation of hyperelastic structures with the SIMP method
  publication-title: Comput. Method. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.112924
– volume: 193
  year: 2020
  ident: CR8
  article-title: Multi-physics topology optimization of functionally graded controllable porous structures: Application to heat dissipating problems
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.108775
– volume: 46
  start-page: 385
  year: 2012
  end-page: 398
  ident: CR17
  article-title: Evolutionary topology optimization of periodic composites for extremal magnetic permeability and electrical permittivity
  publication-title: Struct Multidisc Optim.
  doi: 10.1007/s00158-012-0766-8
– volume: 50
  start-page: 537
  year: 2014
  end-page: 560
  ident: CR32
  article-title: Element deformation scaling for robust geometrically nonlinear analyses in topology optimization
  publication-title: Struct Multidisc Optim.
  doi: 10.1007/s00158-014-1145-4
– volume: 71
  start-page: 197
  year: 1988
  end-page: 224
  ident: CR4
  article-title: Generating optimal topologies in structural design using a homogenization method
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(88)90086-2
– volume: 372
  start-page: 113354
  year: 2020
  ident: CR22
  article-title: Spatial-varying multi-phase infill design using density-based topology optimization
  publication-title: Comput. Method. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113354
– volume: 24
  start-page: 359
  year: 1987
  end-page: 373
  ident: CR31
  article-title: The method of moving asymptotes—a new method for structural optimization
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.1620240207
– year: 2015
  ident: CR19
  publication-title: Introduction to nonlinear finite element analysis
  doi: 10.1007/978-1-4419-1746-1
– volume: 47
  start-page: 37
  year: 2013
  end-page: 48
  ident: CR21
  article-title: Topology optimization of hyperelastic bodies including non-zero prescribed displacements
  publication-title: Struct Multidisc Optim.
  doi: 10.1007/s00158-012-0819-z
– volume: 63
  start-page: 1455
  year: 2021
  end-page: 1480
  ident: CR41
  article-title: Topology optimization of multi-scale structures: a review
  publication-title: Struct. Multidisc. Optim.
  doi: 10.1007/s00158-021-02881-8
– volume: 37
  year: 2021
  ident: CR42
  article-title: Multi-scale topology optimization with shell and interface layers for additive manufacturing
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2020.101698
– volume: 42
  start-page: 1983
  year: 2005
  end-page: 2009
  ident: CR46
  article-title: Element connectivity parameterization for topology optimization of geometrically nonlinear structures
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2004.09.005
– volume-title: Nonlinear finite element methods
  year: 2008
  ident: 9576_CR38
– volume: 19
  start-page: 93
  year: 2000
  ident: 9576_CR6
  publication-title: Struct Multidisc Optim.
  doi: 10.1007/s001580050089
– volume: 57
  start-page: 1413
  year: 2003
  ident: 9576_CR5
  publication-title: Int. J. Numer. Meth. Engng.
  doi: 10.1002/nme.783
– volume: 128
  year: 2020
  ident: 9576_CR20
  publication-title: Int. J. Plast
  doi: 10.1016/j.ijplas.2020.102684
– volume: 42
  start-page: 1983
  year: 2005
  ident: 9576_CR46
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2004.09.005
– volume: 193
  year: 2020
  ident: 9576_CR8
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.108775
– volume: 283
  start-page: 503
  year: 2015
  ident: 9576_CR18
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2014.10.007
– year: 2014
  ident: 9576_CR1
  publication-title: Mech. Mater.
  doi: 10.1016/J.MECHMAT.2013.09.018
– year: 2020
  ident: 9576_CR47
  publication-title: Struct. Multidisc. Optim.
  doi: 10.1007/s00158-020-02654-9
– volume: 364
  start-page: 112924
  year: 2020
  ident: 9576_CR28
  publication-title: Comput. Method. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.112924
– volume-title: Nonlinear finite elements for continua and structures
  year: 2014
  ident: 9576_CR3
– volume: 46
  start-page: 385
  year: 2012
  ident: 9576_CR17
  publication-title: Struct Multidisc Optim.
  doi: 10.1007/s00158-012-0766-8
– volume: 24
  start-page: 1127
  year: 2018
  ident: 9576_CR40
  publication-title: IEEE Trans. Visual. Comput. Graphics.
  doi: 10.1109/TVCG.2017.2655523
– volume: 373
  year: 2021
  ident: 9576_CR43
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113453
– volume: 59
  start-page: 1747
  year: 2019
  ident: 9576_CR26
  publication-title: Struct. Multidisc. Optim.
  doi: 10.1007/s00158-018-2159-0
– year: 2021
  ident: 9576_CR25
  publication-title: Int J Mech Mater Des.
  doi: 10.1007/s10999-021-09558-6
– volume: 286
  start-page: 422
  year: 2015
  ident: 9576_CR27
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2014.12.023
– volume: 69
  start-page: 156
  year: 2014
  ident: 9576_CR37
  publication-title: J. Mech. Phys. Sol.
  doi: 10.1016/j.jmps.2014.05.003
– volume: 351
  start-page: 437
  year: 2017
  ident: 9576_CR7
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.09.040
– volume: 71
  start-page: 197
  year: 1988
  ident: 9576_CR4
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(88)90086-2
– year: 2021
  ident: 9576_CR15
  publication-title: Struct Multidisc Optim.
  doi: 10.1007/s00158-020-02816-9
– volume: 43
  start-page: 767
  year: 2011
  ident: 9576_CR35
  publication-title: Struct. Multidisc. Optim.
  doi: 10.1007/s00158-010-0602-y
– volume: 61
  start-page: 2629
  year: 2020
  ident: 9576_CR34
  publication-title: Struct. Multidisc. Optim.
  doi: 10.1007/s00158-020-02525-3
– volume: 114
  start-page: 303
  year: 2018
  ident: 9576_CR33
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2018.01.013
– volume: 283
  start-page: 994
  year: 2015
  ident: 9576_CR13
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2014.10.014
– year: 2020
  ident: 9576_CR9
  publication-title: Struct Multidisc Optim.
  doi: 10.1007/s00158-019-02484-4
– volume: 62
  start-page: 835
  year: 2020
  ident: 9576_CR10
  publication-title: Struct Multidisc Optim.
  doi: 10.1007/s00158-020-02539-x
– volume: 57
  start-page: 2457
  year: 2018
  ident: 9576_CR24
  publication-title: Struct. Multidisc. Optim.
  doi: 10.1007/s00158-018-1994-3
– volume: 48
  start-page: 397
  year: 2000
  ident: 9576_CR30
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(99)00034-4
– volume: 60
  start-page: 1437
  year: 2019
  ident: 9576_CR29
  publication-title: Struct. Multidisc. Optim.
  doi: 10.1007/s00158-019-02275-x
– volume: 11
  start-page: 231
  year: 2015
  ident: 9576_CR50
  publication-title: Int. J. Mech. Mater. Des.
  doi: 10.1007/s10999-014-9257-y
– volume: 50
  start-page: 1861
  year: 2011
  ident: 9576_CR16
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2011.01.030
– volume: 50
  start-page: 537
  year: 2014
  ident: 9576_CR32
  publication-title: Struct Multidisc Optim.
  doi: 10.1007/s00158-014-1145-4
– volume: 43
  start-page: 7028
  year: 2006
  ident: 9576_CR12
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2006.03.001
– volume: 24
  start-page: 359
  year: 1987
  ident: 9576_CR31
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.1620240207
– volume: 37
  year: 2021
  ident: 9576_CR42
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2020.101698
– volume: 326
  start-page: 358
  year: 2017
  ident: 9576_CR39
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2017.08.018
– volume: 276
  start-page: 453
  year: 2014
  ident: 9576_CR36
  publication-title: Comput. Method. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2014.03.021
– volume: 8
  start-page: 1367
  year: 2021
  ident: 9576_CR48
  publication-title: J. Comput. Des. Eng.
  doi: 10.1093/jcde/qwab051
– volume: 86
  start-page: 1447
  year: 2008
  ident: 9576_CR14
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2007.05.025
– volume: 57
  start-page: 437
  year: 2016
  ident: 9576_CR44
  publication-title: Comput Mech.
  doi: 10.1007/s00466-015-1255-x
– volume-title: Introduction to nonlinear finite element analysis
  year: 2015
  ident: 9576_CR19
  doi: 10.1007/978-1-4419-1746-1
– volume: 47
  start-page: 37
  year: 2013
  ident: 9576_CR21
  publication-title: Struct Multidisc Optim.
  doi: 10.1007/s00158-012-0819-z
– volume: 63
  start-page: 1455
  year: 2021
  ident: 9576_CR41
  publication-title: Struct. Multidisc. Optim.
  doi: 10.1007/s00158-021-02881-8
– volume: 42
  year: 2021
  ident: 9576_CR49
  publication-title: Extreme. Mech. Lett.
  doi: 10.1016/j.eml.2020.101126
– volume: 2017
  start-page: 1
  year: 2017
  ident: 9576_CR23
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2017/4679746
– volume: 266
  year: 2021
  ident: 9576_CR2
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2021.113729
– volume: 198
  start-page: 23
  year: 2018
  ident: 9576_CR45
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2018.01.008
– volume: 106
  start-page: 430
  year: 2016
  ident: 9576_CR11
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.5122
– volume: 372
  start-page: 113354
  year: 2020
  ident: 9576_CR22
  publication-title: Comput. Method. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113354
SSID ssj0030188
Score 2.3405406
Snippet Porous infill, rather than the solids, can provide high stiffness-to-weight ratio, energy absorption, thermal insulation, and many other outstanding...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 289
SubjectTerms Characterization and Evaluation of Materials
Classical Mechanics
Configurations
Constraints
Deformation effects
Energy absorption
Engineering
Engineering Design
Finite element method
Iterative methods
Sensitivity analysis
Solid Mechanics
Stiffness
Thermal insulation
Topology optimization
Upper bounds
Title A topology optimization method for hyperelastic porous structures subject to large deformation
URI https://link.springer.com/article/10.1007/s10999-021-09576-4
https://www.proquest.com/docview/2665621800
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-8841
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0030188
  issn: 1569-1713
  databaseCode: AFBBN
  dateStart: 20040301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-8841
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0030188
  issn: 1569-1713
  databaseCode: AGYKE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-8841
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0030188
  issn: 1569-1713
  databaseCode: U2A
  dateStart: 20040301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH4RuOjB30YUSQ_etGR03dYeFwMSjZ4gwYvL2o6YiGCycdC_3tf9ACRq4nFd97L1de332n7fA7j0pRJSGY8KaZduEuNTibM2xZmXMx0HiSMs3_nh0R-M-N3YG5eksLQ67V5tSeYj9RrZLWfMMwx_JaJkymvQ8GyAUodGePt036tGYOyzeb5JDE0k7WIUVpJlfrbyfUJaocyNjdF8vunvwah60-KYyWtnkamO_twQcfzvp-zDbglASVj0mAPYSmaHsLMmS3gEzyHJitwJH2SOQ8pbydUkRbppgjiXvGD8ankwVuaZIIafL1JSaNEuMIAn6ULZBR60Q6b2rDkxyZImeQzDfm94M6BlHgaq8QfNKFNGeF6sjQwYljDuCa0CdzLhji1SJuBSqIAlTAaTWPnKxTBMeLGQnpZ4dQL12XyWnAJRMbdKpAnixIAbF604jtW_ih2DSF-7TehWvoh0qVFuU2VMo5W6sm26CJsuypsu4k24Wj7zXih0_Fm7Vbk4Kv_WNEKQgjCwi9i5CdeVx1a3f7d29r_q57DNLHsiX8RpQR29klwgpslUu-zCbaiNWPgFqbTsyg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BOwADb0ShgAc2SJWHk9hjhQqFPqZWKgtRnLhCorRISQb49ZwTpy0VIHWM45wSn2N_Z_v7DuDa44JxEbsG42rpRsaewXHWNnDmpXYU-tJkiu_c63vtIX0auSNNCkvK0-7llmQ-Ui-R3XLGvI3hL0eUbNBNqFKLMVqBavPhudMqR2Dss3m-SQxNuGFhFKbJMr9b-TkhLVDmysZoPt_c78GwfNPimMlbI0tFI_paEXFc91P2YVcDUNIseswBbMjpIewsyRIewUuTpEXuhE8ywyHlXXM1SZFumiDOJa8YvyoejJJ5JojhZ1lCCi3aDAN4kmRCLfCgHTJRZ81JLOc0yWMY3LcGd21D52EwIvxBU8MWMXPdMIq5b2OJTV0WCd8Zj6mpikTsU86Eb0ub--NQeMLBMIy5IeNuxPHqBCrT2VSeAhEhVUqkEnGiT2MHrZim0r8KzRiRfuTUwCp9EURao1ylypgEC3Vl1XQBNl2QN11Aa3Azf-ajUOj4t3a9dHGg_9YkQJCCMNBC7FyD29Jji9t_Wztbr_oVbLUHvW7Qfex3zmHbVkyKfEGnDhX0kLxAfJOKS92dvwFiju7S
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRAMiKcoFPDABlZTx0nssQKq8qoYWqkTVhy7YihppaYD_55zHm1BgMSYxLnBZ_u-s_19B3AZSi2kNgEV0m3dWBNSiVGbYuTlLIkj6wnHd37uhd0BfxgGwxUWf37bvTqSLDgNTqUpzZpTM2quEN9y9jzDVFgiYqZ8HTY4xmqXfg1Yu1qLcfTmlScxSZG0hflYSZv52cbX0LTEm9-OSPPI09mFnRIyknbh4z1Ys-k-bK8ICR7Aa5tkRbWDDzLBReC9ZFeSokA0QWRK3jDjdMwVJ8xMEHVjyk8K9dg5ptxkNtduSwbtkLG7HU6MXRAbD6HfuevfdGlZOYEmOKUyyrQRQRAnRkYM3zAeiERH_mjEPfdKm4hLoSNmmYxGsQ61j4mTCGIhg0Ti0xHU0klqj4HomDvtUIvILuLGRyue5xSrYs8gNk_8OrSqPlNJqSruiluM1VIP2fWzwn5WeT8rXoerxT_TQlPjz9aNyhWqnF8zhbACgVsL0W4driv3LD__bu3kf80vYPPltqOe7nuPp7DFHPUh34FpQA0dZM8QkGT6PB9zn8My1gg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+topology+optimization+method+for+hyperelastic+porous+structures+subject+to+large+deformation&rft.jtitle=International+journal+of+mechanics+and+materials+in+design&rft.au=Huang%2C+Jiaqi&rft.au=Xu%2C+Shuzhi&rft.au=Ma%2C+Yongsheng&rft.au=Liu%2C+Jikai&rft.date=2022-06-01&rft.pub=Springer+Netherlands&rft.issn=1569-1713&rft.eissn=1573-8841&rft.volume=18&rft.issue=2&rft.spage=289&rft.epage=308&rft_id=info:doi/10.1007%2Fs10999-021-09576-4&rft.externalDocID=10_1007_s10999_021_09576_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-1713&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-1713&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-1713&client=summon