Different synaptic connections evoke different firing patterns in neurons subject to an electromagnetic field

The electrical activity of neurons depends on the physiological conditions in the nervous system. An electromagnetic field, for example, can significantly affect the dynamics of individual neural cells, and it also affects their collective dynamics. It is therefore of interest to study the neuronal...

Full description

Saved in:
Bibliographic Details
Published inNonlinear dynamics Vol. 100; no. 2; pp. 1809 - 1824
Main Authors Zandi-Mehran, Nazanin, Jafari, Sajad, Hashemi Golpayegani, Seyed Mohammad Reza, Nazarimehr, Fahimeh, Perc, Matjaž
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.04.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0924-090X
1573-269X
DOI10.1007/s11071-020-05576-9

Cover

Abstract The electrical activity of neurons depends on the physiological conditions in the nervous system. An electromagnetic field, for example, can significantly affect the dynamics of individual neural cells, and it also affects their collective dynamics. It is therefore of interest to study the neuronal dynamics under such an influence in various setups. We thus study the firing patterns in two coupled neurons by considering three different types of synapses, namely electrical, chemical, and electrochemical. We use the Hindmarsh–Rose mathematical model as the basis of neuronal dynamics, and we also introduce an electromagnetic field effect. We conduct extensive calculations of the firing patterns, and we determine the bifurcation diagrams for constant and periodic external currents. The results show that the different synaptic connections evoke different firing patterns and that in general electrochemical synapses can show richer variety of dynamical behavior than electrical or chemical synapses.
AbstractList The electrical activity of neurons depends on the physiological conditions in the nervous system. An electromagnetic field, for example, can significantly affect the dynamics of individual neural cells, and it also affects their collective dynamics. It is therefore of interest to study the neuronal dynamics under such an influence in various setups. We thus study the firing patterns in two coupled neurons by considering three different types of synapses, namely electrical, chemical, and electrochemical. We use the Hindmarsh–Rose mathematical model as the basis of neuronal dynamics, and we also introduce an electromagnetic field effect. We conduct extensive calculations of the firing patterns, and we determine the bifurcation diagrams for constant and periodic external currents. The results show that the different synaptic connections evoke different firing patterns and that in general electrochemical synapses can show richer variety of dynamical behavior than electrical or chemical synapses.
Author Nazarimehr, Fahimeh
Zandi-Mehran, Nazanin
Jafari, Sajad
Perc, Matjaž
Hashemi Golpayegani, Seyed Mohammad Reza
Author_xml – sequence: 1
  givenname: Nazanin
  surname: Zandi-Mehran
  fullname: Zandi-Mehran, Nazanin
  organization: Biomedical Engineering Department, Amirkabir University of Technology
– sequence: 2
  givenname: Sajad
  surname: Jafari
  fullname: Jafari, Sajad
  email: sajadjafari83@gmail.com
  organization: Biomedical Engineering Department, Amirkabir University of Technology
– sequence: 3
  givenname: Seyed Mohammad Reza
  surname: Hashemi Golpayegani
  fullname: Hashemi Golpayegani, Seyed Mohammad Reza
  organization: Biomedical Engineering Department, Amirkabir University of Technology
– sequence: 4
  givenname: Fahimeh
  surname: Nazarimehr
  fullname: Nazarimehr, Fahimeh
  organization: Biomedical Engineering Department, Amirkabir University of Technology
– sequence: 5
  givenname: Matjaž
  surname: Perc
  fullname: Perc, Matjaž
  organization: Faculty of Natural Sciences and Mathematics, University of Maribor, Department of Medical Research, China Medical University Hospital, China Medical University, Complexity Science Hub Vienna
BookMark eNp9kE1PAyEQhompiW31D3gi8bw6QHdZjsbvxMSLJt4IpYOhtrACNem_d9caTTz0NJB5n4F5JmQUYkBCThmcMwB5kRkDySrgUEFdy6ZSB2TMaikq3qjXERmD4rMKFLwekUnOSwAQHNoxWV975zBhKDRvg-mKt9TGENAWH0Om-BnfkS5-Q84nH95oZ0rB1Pd9oAE3aYjmzXzZY7REagLFVX9OcW3eAg5DncfV4pgcOrPKePJTp-Tl9ub56r56fLp7uLp8rKxgqlR8rhqHC2jr2cLNDLcG2xrZXKCUnCsxN6yvBmAmauaGO3eKSWOkURZaK6bkbDe3S_Fjg7noZdyk0D-puVANKNko1qfaXcqmmHNCp60vZti7JONXmoEe5OqdXN3L1d9ytepR_g_tkl-btN0PiR2Uu0Eipr9f7aG-AIYYkOM
CitedBy_id crossref_primary_10_1016_j_physa_2022_128242
crossref_primary_10_1016_j_physrep_2020_10_003
crossref_primary_10_3390_mi14122233
crossref_primary_10_1007_s11431_023_2441_5
crossref_primary_10_1063_5_0136195
crossref_primary_10_1007_s11071_021_06855_9
crossref_primary_10_1631_FITEE_2100563
crossref_primary_10_1016_j_chaos_2021_110761
crossref_primary_10_1007_s12043_023_02530_3
crossref_primary_10_1186_s12868_022_00768_y
crossref_primary_10_1016_j_physleta_2024_129789
crossref_primary_10_1016_j_chaos_2023_113230
crossref_primary_10_1063_5_0045840
crossref_primary_10_1140_epje_s10189_023_00319_1
crossref_primary_10_1016_j_aeue_2022_154361
crossref_primary_10_1016_j_physa_2021_126627
crossref_primary_10_1007_s11571_024_10145_6
crossref_primary_10_1016_j_amc_2020_125427
crossref_primary_10_1140_epjs_s11734_022_00631_5
crossref_primary_10_1016_j_physleta_2023_129302
crossref_primary_10_1016_j_chaos_2020_110249
crossref_primary_10_1016_j_chaos_2023_113522
crossref_primary_10_1142_S0129183124501079
crossref_primary_10_1007_s11571_023_10044_2
crossref_primary_10_1016_j_neucom_2020_10_006
crossref_primary_10_1007_s11571_022_09908_w
crossref_primary_10_1140_epjs_s11734_025_01532_z
crossref_primary_10_1142_S021797922150291X
crossref_primary_10_1007_s10827_022_00842_8
crossref_primary_10_1088_1402_4896_acdcce
crossref_primary_10_1631_jzus_A2100323
crossref_primary_10_1007_s11071_022_07813_9
crossref_primary_10_1016_j_aeue_2023_155069
crossref_primary_10_1142_S0217979224504320
crossref_primary_10_1155_2022_2970459
crossref_primary_10_1007_s11431_020_1730_0
crossref_primary_10_1007_s11071_023_08844_6
crossref_primary_10_1016_j_chaos_2024_115701
crossref_primary_10_1063_5_0035595
crossref_primary_10_1016_j_physa_2023_129120
crossref_primary_10_1140_epjs_s11734_021_00341_4
Cites_doi 10.1103/PhysRevE.55.R2108
10.1523/JNEUROSCI.20-05-01964.2000
10.1007/s11481-012-9352-5
10.1007/s11431-015-5961-6
10.1016/j.cnsns.2019.01.004
10.1016/S0074-7696(08)61887-2
10.2108/zsj.13.69
10.1016/S0167-2789(98)80014-6
10.1113/jphysiol.1952.sp004764
10.1007/s004220000198
10.1038/35022674
10.1152/jn.1985.53.6.1345
10.1038/296162a0
10.1631/jzus.A1900273
10.1016/j.tins.2012.11.001
10.1016/j.neucom.2016.05.004
10.1007/s11071-016-2773-6
10.1007/978-3-642-58552-4_8
10.1016/S0896-6273(00)00159-8
10.1109/JRPROC.1962.288235
10.1007/s11071-018-4261-7
10.1016/S0375-9601(99)00816-6
10.1038/81444
10.1007/b98841
10.1007/s11071-018-4385-9
10.1162/neco.1996.8.8.1567
10.1109/TNN.2003.820440
10.1016/0167-2789(93)90286-A
10.1063/1.2818153
10.3389/fncom.2017.00105
10.1002/cne.21974
10.1142/S0217979216502519
10.1038/sj.jid.5700770
10.1007/11427391_47
10.1016/S0079-6123(08)60993-0
10.1038/nrn3708
10.1073/pnas.93.9.4235
10.1016/S0166-2236(96)10070-9
10.1038/scientificamerican0111-58
10.1142/9789812703231_0001
10.1007/s11431-018-9268-2
10.1007/s11571-017-9472-y
10.1002/andp.18461430103
10.1109/TNN.2004.832719
10.1515/revneuro-2014-0037
10.1016/j.cnsns.2012.02.005
10.1088/1009-1963/14/1/016
10.1103/PhysRevLett.81.5692
ContentType Journal Article
Copyright Springer Nature B.V. 2020
Springer Nature B.V. 2020.
Copyright_xml – notice: Springer Nature B.V. 2020
– notice: Springer Nature B.V. 2020.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.1007/s11071-020-05576-9
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection (subscription)
ProQuest Central UK/Ireland
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (ProQuest)
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList Engineering Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-269X
EndPage 1824
ExternalDocumentID 10_1007_s11071_020_05576_9
GrantInformation_xml – fundername: Javna Agencija za Raziskovalno Dejavnost RS (SI)
  grantid: J4-9302; J1-9112
– fundername: Iran Science Elites Federation
  grantid: M-97171
– fundername: Javna Agencija za Raziskovalno Dejavnost RS (SI)
  grantid: P1-0403
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-2b96fed0854df4a2cae85e1b3e772293ba1722a004351f93ba2f917aa7a9c08c3
IEDL.DBID 8FG
ISSN 0924-090X
IngestDate Fri Jul 25 10:58:22 EDT 2025
Wed Oct 01 02:34:45 EDT 2025
Thu Apr 24 23:07:26 EDT 2025
Fri Feb 21 02:32:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Electromagnetic field
Coupling
Hindmarsh–Rose model
Electrical coupling
Chemical coupling
Mixed coupling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-2b96fed0854df4a2cae85e1b3e772293ba1722a004351f93ba2f917aa7a9c08c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2396097691
PQPubID 2043746
PageCount 16
ParticipantIDs proquest_journals_2396097691
crossref_citationtrail_10_1007_s11071_020_05576_9
crossref_primary_10_1007_s11071_020_05576_9
springer_journals_10_1007_s11071_020_05576_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200400
2020-04-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 4
  year: 2020
  text: 20200400
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems
PublicationTitle Nonlinear dynamics
PublicationTitleAbbrev Nonlinear Dyn
PublicationYear 2020
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References FitzHughRMathematical models of threshold phenomena in the nerve membraneBull. Math. Biol.1955174257
Lodish, H., Berk, A., Zipursky, S.L., et al.: Molecular cell biology, 4th edn. W. H. Freeman, New York (2000). Available from: https://www.ncbi.nlm.nih.gov/books/NBK21475
NeumannFEGeneral laws of induced electric stringsAnn. Phys.1846143131
AbarbanelHDHuertaRRabinovichMIRulkovNFRowatPFSelverstonAISynchronized action of synaptically coupled chaotic model neuronsNeural Comput.1996881567
PeredaAEElectrical synapses and their functional interactions with chemical synapsesNat. Rev. Neurosci.2014154250
Levi-Montalcini, R.: The nerve growth factor: its role in growth, differentiation and function of the sympathetic adrenergic neuron. In: Corner, M.A., Swaab, D.F. (eds.) Progress in Brain Research, vol. 45, pp. 235–258. Elsevier (1976). https://doi.org/10.1016/S0079-6123(08)60993-0
VaronaPTorresJJAbarbanelHDRabinovichMIElsonRCDynamics of two electrically coupled chaotic neurons: experimental observations and model analysisBiol. Cybernet.200184291
MeşeGRichardGWhiteTWGap junctions: basic structure and functionJ. Investig. Dermatol.2007127112516
JaliliMCollective behavior of interacting locally synchronized oscillations in neuronal networksCommun. Nonlinear Sci. Numer. Simul.20121710392229164461317.92010
Sotelo, C., Korn, H.: Morphological correlates of electrical and other interactions through low-resistance pathways between neurons of the vertebrate central nervous system. In: Bourne, G.H., Danielli, J.F., Jeon, K.W. (eds.) International Review of Cytology, vol. 55, pp. 67–107. Academic Press (1978). https://doi.org/10.1016/S0074-7696(08)61887-2
MaJYangZqYangLjTangJA physical view of computational neurodynamicsJ. Zhejiang Univ. Sci. A2019209639
Lindsay, K., Ogden, J., Halliday, D., Rosenberg, J.: An introduction to the principles of neuronal modelling. In: Modern techniques in neuroscience research (Springer), pp. 213–306 (1999)
MostaghimiSNazarimehrFJafariSMaJChemical and electrical synapse-modulated dynamical properties of coupled neurons under magnetic flowAppl. Math. Comput.20193484238832611428.92022
HindmarshJRoseRA model of the nerve impulse using two first-order differential equationsNature19822965853162
MaJWuFWangCSynchronization behaviors of coupled neurons under electromagnetic radiationInt. J. Mod. Phys. B201731216502513599028
LvMMaJMultiple modes of electrical activities in a new neuron model under electromagnetic radiationNeurocomputing2016205375
SchmitzFKönigstorferASüdhofTCRIBEYE, a component of synaptic ribbons: a protein’s journey through evolution provides insight into synaptic ribbon functionNeuron2000283857
LvMWangCRenGMaJSongXModel of electrical activity in a neuron under magnetic flow effectNonlinear Dyn.20168531479
IzhikevichEMTransIEEEWhich model to use for cortical spiking neurons?Neural Netw.20041551063
WuYXuJJinWWangJLiaoXYiZSynchronous behaviors of two coupled neuronsAdvances in Neural Networks – ISNN 20052005Berlin, HeidelbergSpringer30230710.1007/11427391_47
MatthewsGVesicle fiesta at the synapseNature20004066798835
ShuaiJWDurandDMPhase synchronization in two coupled chaotic neuronsPhys. Lett. A1999264428917343820949.37015
BelousovABFontesJDNeuronal gap junctions: making and breaking connections during development and injuryTrends Neurosci.2013364227
LismanJEBursts as a unit of neural information: making unreliable synapses reliableTrends Neurosci.199720138
InnocentiGMorelliAGenesioRTorciniADynamical phases of the Hindmarsh-Rose neuronal model: studies of the transition from bursting to spiking chaosChaos200717404312823800431163.37336
IzhikevichEMTransEEESimple model of spiking neuronsNeural Netw.20031461569
HikosakaRTakahashiMTakahataMVariability and invariability in the structure of an identified nonspiking interneuron of crayfish as revealed by three-dimensional morphometryZool. Sci.199613169
RostamiZJafariSPercMSlavinecMElimination of spiral waves in excitable media by magnetic inductionNonlinear Dyn.2018941679
TangKWangZShiXElectrical activity in a time-delay four-variable neuron model under electromagnetic inductionFront. Comput. Neurosci.201711105
RashJEDillmanRKBilhartzBLDuffyHSWhalenLRYasumuraTMixed synapses discovered and mapped throughout mammalian spinal cordProc. Natl. Acad. Sci.19969394235
ParasteshFAzarnoushHJafariSHatefBPercMRepnikRSynchronizability of two neurons with switching in the couplingAppl. Math. Comput.201935021739017601428.37096
ShefchykSJordanLExcitatory and inhibitory postsynaptic potentials in alpha-motoneurons produced during fictive locomotion by stimulation of the mesencephalic locomotor regionJ. Neurophysiol.19855361345
MaJMiLZhouPXuYHayatTPhase synchronization between two neurons induced by coupling of electromagnetic fieldAppl. Math. Comput.201730732136327421411.92049
BaoBLiuZXuJSteady periodic memristor oscillator with transient chaotic behavioursElectron. Lett.2010463237
BazhenovMHuertaRRabinovichMSejnowskiTCooperative behavior of a chain of synaptically coupled chaotic neuronsPhysica D19981163–43920917.92004
KeenerJPSneydJMathematical Physiology1998BerlinSpringer0913.92009
BaoBHuABaoHXuQChenMWuHThree-dimensional memristive Hindmarsh-Rose neuron model with hidden coexisting asymmetric behaviorsComplexity20182018111
MaJTangJA review for dynamics of collective behaviors of network of neuronsSci. China Technol. Sci.201558122038
ZhaoYSunXLiuYKurthsJPhase synchronization dynamics of coupled neurons with coupling phase in the electromagnetic fieldNonlinear Dyn.20189331315
OvsepianSVVesselkinNPWiring prior to firing: the evolutionary rise of electrical and chemical modes of synaptic transmissionRev. Neurosci.2014256821
ReichDSMechlerFPurpuraKPVictorJDInterspike intervals, receptive fields, and information encoding in primary visual cortexJ. Neurosci.20002051964
HodgkinALHuxleyAFA quantitative description of membrane current and its application to conduction and excitation in nerveJ. Physiol.19521174500
ZimmerC100 trillion connectionsSci. Am.2011304158
RostamiZJafariSDefects formation and spiral waves in a network of neurons in presence of electromagnetic inductionCognit. Neurodyn.2018122235
LvMMaJYaoYAlzahraniFSynchronization and wave propagation in neuronal network under field couplingSci. China Technol. Sci.2019623448
KochCSegevIThe role of single neurons in information processingNat. Neurosci.2000311s1171
HindmarshJLRoseRA model of neuronal bursting using three coupled first order differential equationsProc. R. Soc. Lond.1984221122287
ElsonRCSelverstonAIHuertaRRulkovNFRabinovichMIAbarbanelHDSynchronous behavior of two coupled biological neuronsPhys. Rev. Lett.199881255692
XiaSQi-ShaoLFiring patterns and complete synchronization of coupled Hindmarsh–Rose neuronsChin. Phys.200514177
EugeninEABasilioDSáezJCOrellanaJARaineCSBukauskasFBennettMVBermanJWThe role of gap junction channels during physiologic and pathologic conditions of the human central nervous systemJ. Neuroimmune Pharmacol.201273499
NagumoJArimotoSYoshizawaSAn active pulse transmission line simulating nerve axonProc. IRE196250102061
EtéméASTabiCBMohamadouAFiring and synchronization modes in neural network under magnetic stimulationCommun. Nonlinear Sci. Numer. Simul.2019724323901826
Hindmarsh, J., Cornelius, P.: The development of the Hindmarsh–Rose model for bursting. In: Coombes, S., Bressloff, P.C. (eds.) Bursting: The Genesis of Rhythm in the Nervous System, pp. 3–18. World Scientific (2005). https://doi.org/10.1142/9789812703231_0001
WangXJGenesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddlePhysica D1993621–426312074260783.58053
XuYJiaYKirundaJBShenJGeMLuLPeiQDynamic behaviors in coupled neuron system with the excitatory and inhibitory autapse under electromagnetic inductionComplexity20182018113
HuertaRRabinovichMIAbarbanelHDBazhenovMSpike-train bifurcation scaling in two coupled chaotic neuronsPhys. Rev. E1997553R2108
AzevedoFACarvalhoLRGrinbergLTFarfelJMFerrettiRELeiteREFilhoWJLentRHerculano-HouzelSEqual numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brainJ. Comput. Neurol.20095135532
JP Keener (5576_CR7) 1998
Y Zhao (5576_CR30) 2018; 93
FE Neumann (5576_CR41) 1846; 143
Z Rostami (5576_CR32) 2018; 12
F Parastesh (5576_CR50) 2019; 350
M Lv (5576_CR37) 2016; 85
S Mostaghimi (5576_CR26) 2019; 348
S Shefchyk (5576_CR9) 1985; 53
JE Rash (5576_CR12) 1996; 93
SV Ovsepian (5576_CR6) 2014; 25
AE Pereda (5576_CR14) 2014; 15
JW Shuai (5576_CR46) 1999; 264
P Varona (5576_CR48) 2001; 84
M Jalili (5576_CR56) 2012; 17
JE Lisman (5576_CR3) 1997; 20
C Koch (5576_CR2) 2000; 3
5576_CR1
J Ma (5576_CR29) 2017; 31
M Bazhenov (5576_CR53) 1998; 116
EM Izhikevich (5576_CR19) 2004; 15
B Bao (5576_CR24) 2018; 2018
J Ma (5576_CR42) 2019; 20
G Matthews (5576_CR5) 2000; 406
Z Rostami (5576_CR43) 2018; 94
J Ma (5576_CR38) 2015; 58
K Tang (5576_CR25) 2017; 11
FA Azevedo (5576_CR27) 2009; 513
M Lv (5576_CR23) 2016; 205
R Huerta (5576_CR52) 1997; 55
JL Hindmarsh (5576_CR20) 1984; 221
5576_CR54
5576_CR13
S Xia (5576_CR45) 2005; 14
5576_CR15
EM Izhikevich (5576_CR55) 2003; 14
XJ Wang (5576_CR36) 1993; 62
EA Eugenin (5576_CR11) 2012; 7
DS Reich (5576_CR44) 2000; 20
AS Etémé (5576_CR39) 2019; 72
G Innocenti (5576_CR21) 2007; 17
HD Abarbanel (5576_CR49) 1996; 8
R Hikosaka (5576_CR4) 1996; 13
AB Belousov (5576_CR10) 2013; 36
Y Xu (5576_CR31) 2018; 2018
AL Hodgkin (5576_CR16) 1952; 117
J Nagumo (5576_CR17) 1962; 50
J Ma (5576_CR34) 2017; 307
G Meşe (5576_CR51) 2007; 127
B Bao (5576_CR40) 2010; 46
R FitzHugh (5576_CR18) 1955; 17
5576_CR22
RC Elson (5576_CR47) 1998; 81
F Schmitz (5576_CR8) 2000; 28
J Hindmarsh (5576_CR35) 1982; 296
M Lv (5576_CR33) 2019; 62
C Zimmer (5576_CR28) 2011; 304
Y Wu (5576_CR57) 2005
References_xml – reference: HodgkinALHuxleyAFA quantitative description of membrane current and its application to conduction and excitation in nerveJ. Physiol.19521174500
– reference: JaliliMCollective behavior of interacting locally synchronized oscillations in neuronal networksCommun. Nonlinear Sci. Numer. Simul.20121710392229164461317.92010
– reference: MatthewsGVesicle fiesta at the synapseNature20004066798835
– reference: ZimmerC100 trillion connectionsSci. Am.2011304158
– reference: ParasteshFAzarnoushHJafariSHatefBPercMRepnikRSynchronizability of two neurons with switching in the couplingAppl. Math. Comput.201935021739017601428.37096
– reference: Hindmarsh, J., Cornelius, P.: The development of the Hindmarsh–Rose model for bursting. In: Coombes, S., Bressloff, P.C. (eds.) Bursting: The Genesis of Rhythm in the Nervous System, pp. 3–18. World Scientific (2005). https://doi.org/10.1142/9789812703231_0001
– reference: ElsonRCSelverstonAIHuertaRRulkovNFRabinovichMIAbarbanelHDSynchronous behavior of two coupled biological neuronsPhys. Rev. Lett.199881255692
– reference: ReichDSMechlerFPurpuraKPVictorJDInterspike intervals, receptive fields, and information encoding in primary visual cortexJ. Neurosci.20002051964
– reference: FitzHughRMathematical models of threshold phenomena in the nerve membraneBull. Math. Biol.1955174257
– reference: BelousovABFontesJDNeuronal gap junctions: making and breaking connections during development and injuryTrends Neurosci.2013364227
– reference: BazhenovMHuertaRRabinovichMSejnowskiTCooperative behavior of a chain of synaptically coupled chaotic neuronsPhysica D19981163–43920917.92004
– reference: IzhikevichEMTransEEESimple model of spiking neuronsNeural Netw.20031461569
– reference: MaJYangZqYangLjTangJA physical view of computational neurodynamicsJ. Zhejiang Univ. Sci. A2019209639
– reference: MostaghimiSNazarimehrFJafariSMaJChemical and electrical synapse-modulated dynamical properties of coupled neurons under magnetic flowAppl. Math. Comput.20193484238832611428.92022
– reference: ShefchykSJordanLExcitatory and inhibitory postsynaptic potentials in alpha-motoneurons produced during fictive locomotion by stimulation of the mesencephalic locomotor regionJ. Neurophysiol.19855361345
– reference: KochCSegevIThe role of single neurons in information processingNat. Neurosci.2000311s1171
– reference: HindmarshJRoseRA model of the nerve impulse using two first-order differential equationsNature19822965853162
– reference: TangKWangZShiXElectrical activity in a time-delay four-variable neuron model under electromagnetic inductionFront. Comput. Neurosci.201711105
– reference: RostamiZJafariSPercMSlavinecMElimination of spiral waves in excitable media by magnetic inductionNonlinear Dyn.2018941679
– reference: VaronaPTorresJJAbarbanelHDRabinovichMIElsonRCDynamics of two electrically coupled chaotic neurons: experimental observations and model analysisBiol. Cybernet.200184291
– reference: MaJWuFWangCSynchronization behaviors of coupled neurons under electromagnetic radiationInt. J. Mod. Phys. B201731216502513599028
– reference: XuYJiaYKirundaJBShenJGeMLuLPeiQDynamic behaviors in coupled neuron system with the excitatory and inhibitory autapse under electromagnetic inductionComplexity20182018113
– reference: LvMMaJYaoYAlzahraniFSynchronization and wave propagation in neuronal network under field couplingSci. China Technol. Sci.2019623448
– reference: ShuaiJWDurandDMPhase synchronization in two coupled chaotic neuronsPhys. Lett. A1999264428917343820949.37015
– reference: MeşeGRichardGWhiteTWGap junctions: basic structure and functionJ. Investig. Dermatol.2007127112516
– reference: WuYXuJJinWWangJLiaoXYiZSynchronous behaviors of two coupled neuronsAdvances in Neural Networks – ISNN 20052005Berlin, HeidelbergSpringer30230710.1007/11427391_47
– reference: NagumoJArimotoSYoshizawaSAn active pulse transmission line simulating nerve axonProc. IRE196250102061
– reference: LvMMaJMultiple modes of electrical activities in a new neuron model under electromagnetic radiationNeurocomputing2016205375
– reference: MaJMiLZhouPXuYHayatTPhase synchronization between two neurons induced by coupling of electromagnetic fieldAppl. Math. Comput.201730732136327421411.92049
– reference: HuertaRRabinovichMIAbarbanelHDBazhenovMSpike-train bifurcation scaling in two coupled chaotic neuronsPhys. Rev. E1997553R2108
– reference: SchmitzFKönigstorferASüdhofTCRIBEYE, a component of synaptic ribbons: a protein’s journey through evolution provides insight into synaptic ribbon functionNeuron2000283857
– reference: InnocentiGMorelliAGenesioRTorciniADynamical phases of the Hindmarsh-Rose neuronal model: studies of the transition from bursting to spiking chaosChaos200717404312823800431163.37336
– reference: KeenerJPSneydJMathematical Physiology1998BerlinSpringer0913.92009
– reference: RashJEDillmanRKBilhartzBLDuffyHSWhalenLRYasumuraTMixed synapses discovered and mapped throughout mammalian spinal cordProc. Natl. Acad. Sci.19969394235
– reference: NeumannFEGeneral laws of induced electric stringsAnn. Phys.1846143131
– reference: MaJTangJA review for dynamics of collective behaviors of network of neuronsSci. China Technol. Sci.201558122038
– reference: BaoBLiuZXuJSteady periodic memristor oscillator with transient chaotic behavioursElectron. Lett.2010463237
– reference: HikosakaRTakahashiMTakahataMVariability and invariability in the structure of an identified nonspiking interneuron of crayfish as revealed by three-dimensional morphometryZool. Sci.199613169
– reference: EugeninEABasilioDSáezJCOrellanaJARaineCSBukauskasFBennettMVBermanJWThe role of gap junction channels during physiologic and pathologic conditions of the human central nervous systemJ. Neuroimmune Pharmacol.201273499
– reference: EtéméASTabiCBMohamadouAFiring and synchronization modes in neural network under magnetic stimulationCommun. Nonlinear Sci. Numer. Simul.2019724323901826
– reference: LismanJEBursts as a unit of neural information: making unreliable synapses reliableTrends Neurosci.199720138
– reference: AbarbanelHDHuertaRRabinovichMIRulkovNFRowatPFSelverstonAISynchronized action of synaptically coupled chaotic model neuronsNeural Comput.1996881567
– reference: Sotelo, C., Korn, H.: Morphological correlates of electrical and other interactions through low-resistance pathways between neurons of the vertebrate central nervous system. In: Bourne, G.H., Danielli, J.F., Jeon, K.W. (eds.) International Review of Cytology, vol. 55, pp. 67–107. Academic Press (1978). https://doi.org/10.1016/S0074-7696(08)61887-2
– reference: AzevedoFACarvalhoLRGrinbergLTFarfelJMFerrettiRELeiteREFilhoWJLentRHerculano-HouzelSEqual numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brainJ. Comput. Neurol.20095135532
– reference: IzhikevichEMTransIEEEWhich model to use for cortical spiking neurons?Neural Netw.20041551063
– reference: OvsepianSVVesselkinNPWiring prior to firing: the evolutionary rise of electrical and chemical modes of synaptic transmissionRev. Neurosci.2014256821
– reference: Levi-Montalcini, R.: The nerve growth factor: its role in growth, differentiation and function of the sympathetic adrenergic neuron. In: Corner, M.A., Swaab, D.F. (eds.) Progress in Brain Research, vol. 45, pp. 235–258. Elsevier (1976). https://doi.org/10.1016/S0079-6123(08)60993-0
– reference: XiaSQi-ShaoLFiring patterns and complete synchronization of coupled Hindmarsh–Rose neuronsChin. Phys.200514177
– reference: RostamiZJafariSDefects formation and spiral waves in a network of neurons in presence of electromagnetic inductionCognit. Neurodyn.2018122235
– reference: BaoBHuABaoHXuQChenMWuHThree-dimensional memristive Hindmarsh-Rose neuron model with hidden coexisting asymmetric behaviorsComplexity20182018111
– reference: Lindsay, K., Ogden, J., Halliday, D., Rosenberg, J.: An introduction to the principles of neuronal modelling. In: Modern techniques in neuroscience research (Springer), pp. 213–306 (1999)
– reference: LvMWangCRenGMaJSongXModel of electrical activity in a neuron under magnetic flow effectNonlinear Dyn.20168531479
– reference: HindmarshJLRoseRA model of neuronal bursting using three coupled first order differential equationsProc. R. Soc. Lond.1984221122287
– reference: Lodish, H., Berk, A., Zipursky, S.L., et al.: Molecular cell biology, 4th edn. W. H. Freeman, New York (2000). Available from: https://www.ncbi.nlm.nih.gov/books/NBK21475/
– reference: PeredaAEElectrical synapses and their functional interactions with chemical synapsesNat. Rev. Neurosci.2014154250
– reference: ZhaoYSunXLiuYKurthsJPhase synchronization dynamics of coupled neurons with coupling phase in the electromagnetic fieldNonlinear Dyn.20189331315
– reference: WangXJGenesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddlePhysica D1993621–426312074260783.58053
– volume: 55
  start-page: R2108
  issue: 3
  year: 1997
  ident: 5576_CR52
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.55.R2108
– volume: 221
  start-page: 87
  issue: 1222
  year: 1984
  ident: 5576_CR20
  publication-title: Proc. R. Soc. Lond.
– volume: 20
  start-page: 1964
  issue: 5
  year: 2000
  ident: 5576_CR44
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.20-05-01964.2000
– volume: 7
  start-page: 499
  issue: 3
  year: 2012
  ident: 5576_CR11
  publication-title: J. Neuroimmune Pharmacol.
  doi: 10.1007/s11481-012-9352-5
– volume: 58
  start-page: 2038
  issue: 12
  year: 2015
  ident: 5576_CR38
  publication-title: Sci. China Technol. Sci.
  doi: 10.1007/s11431-015-5961-6
– volume: 72
  start-page: 432
  year: 2019
  ident: 5576_CR39
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2019.01.004
– ident: 5576_CR13
  doi: 10.1016/S0074-7696(08)61887-2
– volume: 13
  start-page: 69
  issue: 1
  year: 1996
  ident: 5576_CR4
  publication-title: Zool. Sci.
  doi: 10.2108/zsj.13.69
– volume: 116
  start-page: 392
  issue: 3–4
  year: 1998
  ident: 5576_CR53
  publication-title: Physica D
  doi: 10.1016/S0167-2789(98)80014-6
– volume: 117
  start-page: 500
  issue: 4
  year: 1952
  ident: 5576_CR16
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1952.sp004764
– volume: 17
  start-page: 257
  issue: 4
  year: 1955
  ident: 5576_CR18
  publication-title: Bull. Math. Biol.
– volume: 84
  start-page: 91
  issue: 2
  year: 2001
  ident: 5576_CR48
  publication-title: Biol. Cybernet.
  doi: 10.1007/s004220000198
– volume: 307
  start-page: 321
  year: 2017
  ident: 5576_CR34
  publication-title: Appl. Math. Comput.
– volume: 406
  start-page: 835
  issue: 6798
  year: 2000
  ident: 5576_CR5
  publication-title: Nature
  doi: 10.1038/35022674
– volume: 53
  start-page: 1345
  issue: 6
  year: 1985
  ident: 5576_CR9
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1985.53.6.1345
– volume: 296
  start-page: 162
  issue: 5853
  year: 1982
  ident: 5576_CR35
  publication-title: Nature
  doi: 10.1038/296162a0
– volume: 20
  start-page: 639
  issue: 9
  year: 2019
  ident: 5576_CR42
  publication-title: J. Zhejiang Univ. Sci. A
  doi: 10.1631/jzus.A1900273
– volume: 36
  start-page: 227
  issue: 4
  year: 2013
  ident: 5576_CR10
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2012.11.001
– volume: 205
  start-page: 375
  year: 2016
  ident: 5576_CR23
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.05.004
– volume: 85
  start-page: 1479
  issue: 3
  year: 2016
  ident: 5576_CR37
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-016-2773-6
– ident: 5576_CR15
  doi: 10.1007/978-3-642-58552-4_8
– volume: 28
  start-page: 857
  issue: 3
  year: 2000
  ident: 5576_CR8
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)00159-8
– volume: 50
  start-page: 2061
  issue: 10
  year: 1962
  ident: 5576_CR17
  publication-title: Proc. IRE
  doi: 10.1109/JRPROC.1962.288235
– volume: 93
  start-page: 1315
  issue: 3
  year: 2018
  ident: 5576_CR30
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-018-4261-7
– volume: 264
  start-page: 289
  issue: 4
  year: 1999
  ident: 5576_CR46
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(99)00816-6
– volume: 3
  start-page: 1171
  issue: 11s
  year: 2000
  ident: 5576_CR2
  publication-title: Nat. Neurosci.
  doi: 10.1038/81444
– volume-title: Mathematical Physiology
  year: 1998
  ident: 5576_CR7
  doi: 10.1007/b98841
– volume: 94
  start-page: 679
  issue: 1
  year: 2018
  ident: 5576_CR43
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-018-4385-9
– ident: 5576_CR54
– volume: 2018
  start-page: 1
  year: 2018
  ident: 5576_CR24
  publication-title: Complexity
– volume: 8
  start-page: 1567
  issue: 8
  year: 1996
  ident: 5576_CR49
  publication-title: Neural Comput.
  doi: 10.1162/neco.1996.8.8.1567
– volume: 14
  start-page: 1569
  issue: 6
  year: 2003
  ident: 5576_CR55
  publication-title: Neural Netw.
  doi: 10.1109/TNN.2003.820440
– volume: 2018
  start-page: 1
  year: 2018
  ident: 5576_CR31
  publication-title: Complexity
– volume: 62
  start-page: 263
  issue: 1–4
  year: 1993
  ident: 5576_CR36
  publication-title: Physica D
  doi: 10.1016/0167-2789(93)90286-A
– volume: 17
  start-page: 043128
  issue: 4
  year: 2007
  ident: 5576_CR21
  publication-title: Chaos
  doi: 10.1063/1.2818153
– volume: 11
  start-page: 105
  year: 2017
  ident: 5576_CR25
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2017.00105
– volume: 513
  start-page: 532
  issue: 5
  year: 2009
  ident: 5576_CR27
  publication-title: J. Comput. Neurol.
  doi: 10.1002/cne.21974
– volume: 31
  start-page: 1650251
  issue: 2
  year: 2017
  ident: 5576_CR29
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979216502519
– volume: 127
  start-page: 2516
  issue: 11
  year: 2007
  ident: 5576_CR51
  publication-title: J. Investig. Dermatol.
  doi: 10.1038/sj.jid.5700770
– volume: 46
  start-page: 237
  issue: 3
  year: 2010
  ident: 5576_CR40
  publication-title: Electron. Lett.
– start-page: 302
  volume-title: Advances in Neural Networks – ISNN 2005
  year: 2005
  ident: 5576_CR57
  doi: 10.1007/11427391_47
– ident: 5576_CR1
  doi: 10.1016/S0079-6123(08)60993-0
– volume: 15
  start-page: 250
  issue: 4
  year: 2014
  ident: 5576_CR14
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3708
– volume: 93
  start-page: 4235
  issue: 9
  year: 1996
  ident: 5576_CR12
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.93.9.4235
– volume: 20
  start-page: 38
  issue: 1
  year: 1997
  ident: 5576_CR3
  publication-title: Trends Neurosci.
  doi: 10.1016/S0166-2236(96)10070-9
– volume: 304
  start-page: 58
  issue: 1
  year: 2011
  ident: 5576_CR28
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0111-58
– ident: 5576_CR22
  doi: 10.1142/9789812703231_0001
– volume: 62
  start-page: 448
  issue: 3
  year: 2019
  ident: 5576_CR33
  publication-title: Sci. China Technol. Sci.
  doi: 10.1007/s11431-018-9268-2
– volume: 12
  start-page: 235
  issue: 2
  year: 2018
  ident: 5576_CR32
  publication-title: Cognit. Neurodyn.
  doi: 10.1007/s11571-017-9472-y
– volume: 143
  start-page: 31
  issue: 1
  year: 1846
  ident: 5576_CR41
  publication-title: Ann. Phys.
  doi: 10.1002/andp.18461430103
– volume: 15
  start-page: 1063
  issue: 5
  year: 2004
  ident: 5576_CR19
  publication-title: Neural Netw.
  doi: 10.1109/TNN.2004.832719
– volume: 25
  start-page: 821
  issue: 6
  year: 2014
  ident: 5576_CR6
  publication-title: Rev. Neurosci.
  doi: 10.1515/revneuro-2014-0037
– volume: 348
  start-page: 42
  year: 2019
  ident: 5576_CR26
  publication-title: Appl. Math. Comput.
– volume: 350
  start-page: 217
  year: 2019
  ident: 5576_CR50
  publication-title: Appl. Math. Comput.
– volume: 17
  start-page: 3922
  issue: 10
  year: 2012
  ident: 5576_CR56
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2012.02.005
– volume: 14
  start-page: 77
  issue: 1
  year: 2005
  ident: 5576_CR45
  publication-title: Chin. Phys.
  doi: 10.1088/1009-1963/14/1/016
– volume: 81
  start-page: 5692
  issue: 25
  year: 1998
  ident: 5576_CR47
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.5692
SSID ssj0003208
Score 2.4630563
Snippet The electrical activity of neurons depends on the physiological conditions in the nervous system. An electromagnetic field, for example, can significantly...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1809
SubjectTerms Automotive Engineering
Bifurcations
Classical Mechanics
Control
Dynamical Systems
Dynamics
Electromagnetic fields
Electromagnetism
Engineering
Mechanical Engineering
Nervous system
Neurons
Original Paper
Synapses
Vibration
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAG1EoyAMbpGocJ21GxFMgmKhUpshPVEHTiqRI8Os5u04LCJDYktiOEvtsf-e7-w7gsIuPpQhVEMVtEzCuJE4pIYLUdCRjiC9iZ4q5vUuueuy6H_d9UFhRebtXJkm3Us-D3VBTQdWXWuMtouQgXYR6bBWUGtRPLh9uzmcrcERdJro26hb2HKLvg2V-fsvXDWmOMr8ZRt1-c7EKvepLp24mT61JKVry_RuJ439_ZQ1WPAAlJ1OJWYcFnW_AqgejxE_1YgOWPzEVbsLwzCdSKUnxlnNcZySR1kfGhUUURL-OnjRRs0pmYNuRsWPvxPJBThxzJl4WE2HPfkg5IjwnPg3PkD_mNpySOI-6LehdnN-fXgU-U0MgcQqXARVpYrRC-MaUYZxKrruxDkWkEbwjoBAccRLl1uwYh8beU4N6Iucdnsp2V0bbUMtHud4BouIu1W2qIqYNQ-VIpCoxieIxEzKRImpAWA1XJj2Nuc2m8ZzNCZht72bYu5nr3SxtwNGszXhK4vFn7WYlBZmf0EVGI0vN10nSsAHH1aDOi39_2-7_qu_BEnVyYX2DmlArXyZ6H2FPKQ68lH8AA3f5IA
  priority: 102
  providerName: Springer Nature
Title Different synaptic connections evoke different firing patterns in neurons subject to an electromagnetic field
URI https://link.springer.com/article/10.1007/s11071-020-05576-9
https://www.proquest.com/docview/2396097691
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-269X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: AFBBN
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-269X
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLaAXeDAY4AYL-XADSrWNO3WExqwMYGYEGLSOFV5IgR0gxYk_j1Olm2ABKe2eR3q2PlsxzbAQRObpQhVEMV1EzCuJLKUEEFqGpIxxBexc8Vc95Jun10O4oE3uBX-WuVEJjpBrYbS2siPaWRzozWSNDwZvQa2apT1rvoSGvNQCSnuJBsp3rmYSuKIuop0ddQxrD1i4INmxqFzqPegIk2tKxgxd5D-PJhmaPOXg9SdO51VWPaAkbTGFF6DOZ1XYcWDR-JZs6jC0rfMguvwcu4Ln5Sk-Mw5ygVJpL3T4sIYCqI_hk-aqOkg82jnkZHLton9jzlxmS7xtXgX1lZDyiHhOfFlc174Q27DH4m7AbcB_U777qwb-MoKgUSWKwMq0sRohXCLKcM4lVw3Yx2KSCPYRgAgOOIayq2bMA6N_aYG9TrOGzyV9aaMNmEhH-Z6C4iKm1TXqYqYNgyVGZGqxCSKx0zIRIqoBuHkt2bSpx231S-es1nCZEuKDEmROVJkaQ0Op3NG46Qb_47enVAr8wxYZLPtUoOjCQVn3X-vtv3_ajuwSN2msXd3dmGhfHvXewhLSrHv9t4-VFoX91dtfJ62eze32NqnrS_94ONp
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LU9RAEO5COKgHQdRyFXEOetKUm5lJNjlYFAUsizxOULW3OE-LArKrCVr8KX-j3bOTXbUKbtySzGQO0z39mO7-GuBdgZ-NTm0isr5PpLIGj5TWSekHRkq0L7IQijk-yUdn8ss4Gy_B764WhtIqO5kYBLWdGLoj_8QFYaMN8jLdmn5PqGsURVe7Fhoztjh0N7_QZWs-H-wifd9zPtw73RklsatAYpDd2oTrMvfOoqkhrZeKG-WKzKVaODQ0UflphTqdKwqRZamnd-7Rp1FqoErTL4zAdR_AihRCEFZ_MdyfS37BQwe8Pvo0dP8xjkU6s1I99LPQcecUekYbPyn_VYQL6_a_gGzQc8M1eBINVLY946insOTqdViNxiqLoqBZh8d_IRk-g6vd2GilZc1NrVAOGWYohyaUTTTM_ZxcOGbnk_w5_cemAd0Tx89rFpA18bG51nQ3xNoJUzWLbXqu1Leayi1ZyLh7Dmf3sucvYLme1O4lMJsV3PW5FdJ5ic6TLm3uc6syqU1utOhB2m1rZSLMOXXbuKwWAM1EigpJUQVSVGUPPsz_mc5APu6cvdFRq4oHvqkW7NmDjx0FF8O3r_bq7tXewsPR6fFRdXRwcvgaHvHAQJQ3tAHL7Y9r9wZNolZvBj5k8PW-Gf8PGxQcRw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4SAgOvBGDATlwg2prmnbrcQKm8RQHJu1W5YkmWDfRgsS_x8myDRAgcWubx6GOk8-x_RnguImfpQhVEMV1EzCuJKqUEEFqGpIxxBexc8Xc3iWdLrvqxb1PWfwu2n3ikhznNFiWprysjZSpzRLf0GpBM5haRy4i5iCdh0WGZ7U1v7q0Nd2LI-pq0tXRyrA3Ej2fNvPzHF-Pphne_OYidSdPex1WPWQkrbGMN2BO55uw5uEj8cpZbMLKJ27BLRic-9InJSnec447gyTSRrW4RIaC6LfhkyZq2sn07Tgycnyb2N7PieO6xMfiVdjbGlIOCc-JL5wz4I-5TYAkLgZuG7rti4ezTuBrKwQSla4MqEgToxUCLqYM41Ry3Yx1KCKNcBshgOCIbCi3jsI4NPadGrTsOG_wVNabMtqBhXyY610gKm5SXacqYtowNGdEqhKTKB4zIRMpogqEk9-aSU88butfPGczymQrigxFkTlRZGkFTqZjRmPajT97VyfSyrwKFhmNLJleI0nDCpxOJDhr_n22vf91P4Kl-_N2dnN5d70Py9StJxvYU4WF8uVVHyBmKcWhW5YfzV3jWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Different+synaptic+connections+evoke+different+firing+patterns+in+neurons+subject+to+an+electromagnetic+field&rft.jtitle=Nonlinear+dynamics&rft.au=Zandi-Mehran+Nazanin&rft.au=Jafari+Sajad&rft.au=Hashemi%C2%A0Golpayegani+Seyed+Mohammad+Reza&rft.au=Nazarimehr+Fahimeh&rft.date=2020-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=100&rft.issue=2&rft.spage=1809&rft.epage=1824&rft_id=info:doi/10.1007%2Fs11071-020-05576-9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon