Different synaptic connections evoke different firing patterns in neurons subject to an electromagnetic field
The electrical activity of neurons depends on the physiological conditions in the nervous system. An electromagnetic field, for example, can significantly affect the dynamics of individual neural cells, and it also affects their collective dynamics. It is therefore of interest to study the neuronal...
Saved in:
Published in | Nonlinear dynamics Vol. 100; no. 2; pp. 1809 - 1824 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.04.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0924-090X 1573-269X |
DOI | 10.1007/s11071-020-05576-9 |
Cover
Abstract | The electrical activity of neurons depends on the physiological conditions in the nervous system. An electromagnetic field, for example, can significantly affect the dynamics of individual neural cells, and it also affects their collective dynamics. It is therefore of interest to study the neuronal dynamics under such an influence in various setups. We thus study the firing patterns in two coupled neurons by considering three different types of synapses, namely electrical, chemical, and electrochemical. We use the Hindmarsh–Rose mathematical model as the basis of neuronal dynamics, and we also introduce an electromagnetic field effect. We conduct extensive calculations of the firing patterns, and we determine the bifurcation diagrams for constant and periodic external currents. The results show that the different synaptic connections evoke different firing patterns and that in general electrochemical synapses can show richer variety of dynamical behavior than electrical or chemical synapses. |
---|---|
AbstractList | The electrical activity of neurons depends on the physiological conditions in the nervous system. An electromagnetic field, for example, can significantly affect the dynamics of individual neural cells, and it also affects their collective dynamics. It is therefore of interest to study the neuronal dynamics under such an influence in various setups. We thus study the firing patterns in two coupled neurons by considering three different types of synapses, namely electrical, chemical, and electrochemical. We use the Hindmarsh–Rose mathematical model as the basis of neuronal dynamics, and we also introduce an electromagnetic field effect. We conduct extensive calculations of the firing patterns, and we determine the bifurcation diagrams for constant and periodic external currents. The results show that the different synaptic connections evoke different firing patterns and that in general electrochemical synapses can show richer variety of dynamical behavior than electrical or chemical synapses. |
Author | Nazarimehr, Fahimeh Zandi-Mehran, Nazanin Jafari, Sajad Perc, Matjaž Hashemi Golpayegani, Seyed Mohammad Reza |
Author_xml | – sequence: 1 givenname: Nazanin surname: Zandi-Mehran fullname: Zandi-Mehran, Nazanin organization: Biomedical Engineering Department, Amirkabir University of Technology – sequence: 2 givenname: Sajad surname: Jafari fullname: Jafari, Sajad email: sajadjafari83@gmail.com organization: Biomedical Engineering Department, Amirkabir University of Technology – sequence: 3 givenname: Seyed Mohammad Reza surname: Hashemi Golpayegani fullname: Hashemi Golpayegani, Seyed Mohammad Reza organization: Biomedical Engineering Department, Amirkabir University of Technology – sequence: 4 givenname: Fahimeh surname: Nazarimehr fullname: Nazarimehr, Fahimeh organization: Biomedical Engineering Department, Amirkabir University of Technology – sequence: 5 givenname: Matjaž surname: Perc fullname: Perc, Matjaž organization: Faculty of Natural Sciences and Mathematics, University of Maribor, Department of Medical Research, China Medical University Hospital, China Medical University, Complexity Science Hub Vienna |
BookMark | eNp9kE1PAyEQhompiW31D3gi8bw6QHdZjsbvxMSLJt4IpYOhtrACNem_d9caTTz0NJB5n4F5JmQUYkBCThmcMwB5kRkDySrgUEFdy6ZSB2TMaikq3qjXERmD4rMKFLwekUnOSwAQHNoxWV975zBhKDRvg-mKt9TGENAWH0Om-BnfkS5-Q84nH95oZ0rB1Pd9oAE3aYjmzXzZY7REagLFVX9OcW3eAg5DncfV4pgcOrPKePJTp-Tl9ub56r56fLp7uLp8rKxgqlR8rhqHC2jr2cLNDLcG2xrZXKCUnCsxN6yvBmAmauaGO3eKSWOkURZaK6bkbDe3S_Fjg7noZdyk0D-puVANKNko1qfaXcqmmHNCp60vZti7JONXmoEe5OqdXN3L1d9ytepR_g_tkl-btN0PiR2Uu0Eipr9f7aG-AIYYkOM |
CitedBy_id | crossref_primary_10_1016_j_physa_2022_128242 crossref_primary_10_1016_j_physrep_2020_10_003 crossref_primary_10_3390_mi14122233 crossref_primary_10_1007_s11431_023_2441_5 crossref_primary_10_1063_5_0136195 crossref_primary_10_1007_s11071_021_06855_9 crossref_primary_10_1631_FITEE_2100563 crossref_primary_10_1016_j_chaos_2021_110761 crossref_primary_10_1007_s12043_023_02530_3 crossref_primary_10_1186_s12868_022_00768_y crossref_primary_10_1016_j_physleta_2024_129789 crossref_primary_10_1016_j_chaos_2023_113230 crossref_primary_10_1063_5_0045840 crossref_primary_10_1140_epje_s10189_023_00319_1 crossref_primary_10_1016_j_aeue_2022_154361 crossref_primary_10_1016_j_physa_2021_126627 crossref_primary_10_1007_s11571_024_10145_6 crossref_primary_10_1016_j_amc_2020_125427 crossref_primary_10_1140_epjs_s11734_022_00631_5 crossref_primary_10_1016_j_physleta_2023_129302 crossref_primary_10_1016_j_chaos_2020_110249 crossref_primary_10_1016_j_chaos_2023_113522 crossref_primary_10_1142_S0129183124501079 crossref_primary_10_1007_s11571_023_10044_2 crossref_primary_10_1016_j_neucom_2020_10_006 crossref_primary_10_1007_s11571_022_09908_w crossref_primary_10_1140_epjs_s11734_025_01532_z crossref_primary_10_1142_S021797922150291X crossref_primary_10_1007_s10827_022_00842_8 crossref_primary_10_1088_1402_4896_acdcce crossref_primary_10_1631_jzus_A2100323 crossref_primary_10_1007_s11071_022_07813_9 crossref_primary_10_1016_j_aeue_2023_155069 crossref_primary_10_1142_S0217979224504320 crossref_primary_10_1155_2022_2970459 crossref_primary_10_1007_s11431_020_1730_0 crossref_primary_10_1007_s11071_023_08844_6 crossref_primary_10_1016_j_chaos_2024_115701 crossref_primary_10_1063_5_0035595 crossref_primary_10_1016_j_physa_2023_129120 crossref_primary_10_1140_epjs_s11734_021_00341_4 |
Cites_doi | 10.1103/PhysRevE.55.R2108 10.1523/JNEUROSCI.20-05-01964.2000 10.1007/s11481-012-9352-5 10.1007/s11431-015-5961-6 10.1016/j.cnsns.2019.01.004 10.1016/S0074-7696(08)61887-2 10.2108/zsj.13.69 10.1016/S0167-2789(98)80014-6 10.1113/jphysiol.1952.sp004764 10.1007/s004220000198 10.1038/35022674 10.1152/jn.1985.53.6.1345 10.1038/296162a0 10.1631/jzus.A1900273 10.1016/j.tins.2012.11.001 10.1016/j.neucom.2016.05.004 10.1007/s11071-016-2773-6 10.1007/978-3-642-58552-4_8 10.1016/S0896-6273(00)00159-8 10.1109/JRPROC.1962.288235 10.1007/s11071-018-4261-7 10.1016/S0375-9601(99)00816-6 10.1038/81444 10.1007/b98841 10.1007/s11071-018-4385-9 10.1162/neco.1996.8.8.1567 10.1109/TNN.2003.820440 10.1016/0167-2789(93)90286-A 10.1063/1.2818153 10.3389/fncom.2017.00105 10.1002/cne.21974 10.1142/S0217979216502519 10.1038/sj.jid.5700770 10.1007/11427391_47 10.1016/S0079-6123(08)60993-0 10.1038/nrn3708 10.1073/pnas.93.9.4235 10.1016/S0166-2236(96)10070-9 10.1038/scientificamerican0111-58 10.1142/9789812703231_0001 10.1007/s11431-018-9268-2 10.1007/s11571-017-9472-y 10.1002/andp.18461430103 10.1109/TNN.2004.832719 10.1515/revneuro-2014-0037 10.1016/j.cnsns.2012.02.005 10.1088/1009-1963/14/1/016 10.1103/PhysRevLett.81.5692 |
ContentType | Journal Article |
Copyright | Springer Nature B.V. 2020 Springer Nature B.V. 2020. |
Copyright_xml | – notice: Springer Nature B.V. 2020 – notice: Springer Nature B.V. 2020. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
DOI | 10.1007/s11071-020-05576-9 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection (subscription) ProQuest Central UK/Ireland ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection (ProQuest) ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
DatabaseTitleList | Engineering Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1573-269X |
EndPage | 1824 |
ExternalDocumentID | 10_1007_s11071_020_05576_9 |
GrantInformation_xml | – fundername: Javna Agencija za Raziskovalno Dejavnost RS (SI) grantid: J4-9302; J1-9112 – fundername: Iran Science Elites Federation grantid: M-97171 – fundername: Javna Agencija za Raziskovalno Dejavnost RS (SI) grantid: P1-0403 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9T PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR _50 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO DWQXO PKEHL PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c319t-2b96fed0854df4a2cae85e1b3e772293ba1722a004351f93ba2f917aa7a9c08c3 |
IEDL.DBID | 8FG |
ISSN | 0924-090X |
IngestDate | Fri Jul 25 10:58:22 EDT 2025 Wed Oct 01 02:34:45 EDT 2025 Thu Apr 24 23:07:26 EDT 2025 Fri Feb 21 02:32:46 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Electromagnetic field Coupling Hindmarsh–Rose model Electrical coupling Chemical coupling Mixed coupling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-2b96fed0854df4a2cae85e1b3e772293ba1722a004351f93ba2f917aa7a9c08c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2396097691 |
PQPubID | 2043746 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2396097691 crossref_citationtrail_10_1007_s11071_020_05576_9 crossref_primary_10_1007_s11071_020_05576_9 springer_journals_10_1007_s11071_020_05576_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200400 2020-04-00 20200401 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 4 year: 2020 text: 20200400 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems |
PublicationTitle | Nonlinear dynamics |
PublicationTitleAbbrev | Nonlinear Dyn |
PublicationYear | 2020 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | FitzHughRMathematical models of threshold phenomena in the nerve membraneBull. Math. Biol.1955174257 Lodish, H., Berk, A., Zipursky, S.L., et al.: Molecular cell biology, 4th edn. W. H. Freeman, New York (2000). Available from: https://www.ncbi.nlm.nih.gov/books/NBK21475 NeumannFEGeneral laws of induced electric stringsAnn. Phys.1846143131 AbarbanelHDHuertaRRabinovichMIRulkovNFRowatPFSelverstonAISynchronized action of synaptically coupled chaotic model neuronsNeural Comput.1996881567 PeredaAEElectrical synapses and their functional interactions with chemical synapsesNat. Rev. Neurosci.2014154250 Levi-Montalcini, R.: The nerve growth factor: its role in growth, differentiation and function of the sympathetic adrenergic neuron. In: Corner, M.A., Swaab, D.F. (eds.) Progress in Brain Research, vol. 45, pp. 235–258. Elsevier (1976). https://doi.org/10.1016/S0079-6123(08)60993-0 VaronaPTorresJJAbarbanelHDRabinovichMIElsonRCDynamics of two electrically coupled chaotic neurons: experimental observations and model analysisBiol. Cybernet.200184291 MeşeGRichardGWhiteTWGap junctions: basic structure and functionJ. Investig. Dermatol.2007127112516 JaliliMCollective behavior of interacting locally synchronized oscillations in neuronal networksCommun. Nonlinear Sci. Numer. Simul.20121710392229164461317.92010 Sotelo, C., Korn, H.: Morphological correlates of electrical and other interactions through low-resistance pathways between neurons of the vertebrate central nervous system. In: Bourne, G.H., Danielli, J.F., Jeon, K.W. (eds.) International Review of Cytology, vol. 55, pp. 67–107. Academic Press (1978). https://doi.org/10.1016/S0074-7696(08)61887-2 MaJYangZqYangLjTangJA physical view of computational neurodynamicsJ. Zhejiang Univ. Sci. A2019209639 Lindsay, K., Ogden, J., Halliday, D., Rosenberg, J.: An introduction to the principles of neuronal modelling. In: Modern techniques in neuroscience research (Springer), pp. 213–306 (1999) MostaghimiSNazarimehrFJafariSMaJChemical and electrical synapse-modulated dynamical properties of coupled neurons under magnetic flowAppl. Math. Comput.20193484238832611428.92022 HindmarshJRoseRA model of the nerve impulse using two first-order differential equationsNature19822965853162 MaJWuFWangCSynchronization behaviors of coupled neurons under electromagnetic radiationInt. J. Mod. Phys. B201731216502513599028 LvMMaJMultiple modes of electrical activities in a new neuron model under electromagnetic radiationNeurocomputing2016205375 SchmitzFKönigstorferASüdhofTCRIBEYE, a component of synaptic ribbons: a protein’s journey through evolution provides insight into synaptic ribbon functionNeuron2000283857 LvMWangCRenGMaJSongXModel of electrical activity in a neuron under magnetic flow effectNonlinear Dyn.20168531479 IzhikevichEMTransIEEEWhich model to use for cortical spiking neurons?Neural Netw.20041551063 WuYXuJJinWWangJLiaoXYiZSynchronous behaviors of two coupled neuronsAdvances in Neural Networks – ISNN 20052005Berlin, HeidelbergSpringer30230710.1007/11427391_47 MatthewsGVesicle fiesta at the synapseNature20004066798835 ShuaiJWDurandDMPhase synchronization in two coupled chaotic neuronsPhys. Lett. A1999264428917343820949.37015 BelousovABFontesJDNeuronal gap junctions: making and breaking connections during development and injuryTrends Neurosci.2013364227 LismanJEBursts as a unit of neural information: making unreliable synapses reliableTrends Neurosci.199720138 InnocentiGMorelliAGenesioRTorciniADynamical phases of the Hindmarsh-Rose neuronal model: studies of the transition from bursting to spiking chaosChaos200717404312823800431163.37336 IzhikevichEMTransEEESimple model of spiking neuronsNeural Netw.20031461569 HikosakaRTakahashiMTakahataMVariability and invariability in the structure of an identified nonspiking interneuron of crayfish as revealed by three-dimensional morphometryZool. Sci.199613169 RostamiZJafariSPercMSlavinecMElimination of spiral waves in excitable media by magnetic inductionNonlinear Dyn.2018941679 TangKWangZShiXElectrical activity in a time-delay four-variable neuron model under electromagnetic inductionFront. Comput. Neurosci.201711105 RashJEDillmanRKBilhartzBLDuffyHSWhalenLRYasumuraTMixed synapses discovered and mapped throughout mammalian spinal cordProc. Natl. Acad. Sci.19969394235 ParasteshFAzarnoushHJafariSHatefBPercMRepnikRSynchronizability of two neurons with switching in the couplingAppl. Math. Comput.201935021739017601428.37096 ShefchykSJordanLExcitatory and inhibitory postsynaptic potentials in alpha-motoneurons produced during fictive locomotion by stimulation of the mesencephalic locomotor regionJ. Neurophysiol.19855361345 MaJMiLZhouPXuYHayatTPhase synchronization between two neurons induced by coupling of electromagnetic fieldAppl. Math. Comput.201730732136327421411.92049 BaoBLiuZXuJSteady periodic memristor oscillator with transient chaotic behavioursElectron. Lett.2010463237 BazhenovMHuertaRRabinovichMSejnowskiTCooperative behavior of a chain of synaptically coupled chaotic neuronsPhysica D19981163–43920917.92004 KeenerJPSneydJMathematical Physiology1998BerlinSpringer0913.92009 BaoBHuABaoHXuQChenMWuHThree-dimensional memristive Hindmarsh-Rose neuron model with hidden coexisting asymmetric behaviorsComplexity20182018111 MaJTangJA review for dynamics of collective behaviors of network of neuronsSci. China Technol. Sci.201558122038 ZhaoYSunXLiuYKurthsJPhase synchronization dynamics of coupled neurons with coupling phase in the electromagnetic fieldNonlinear Dyn.20189331315 OvsepianSVVesselkinNPWiring prior to firing: the evolutionary rise of electrical and chemical modes of synaptic transmissionRev. Neurosci.2014256821 ReichDSMechlerFPurpuraKPVictorJDInterspike intervals, receptive fields, and information encoding in primary visual cortexJ. Neurosci.20002051964 HodgkinALHuxleyAFA quantitative description of membrane current and its application to conduction and excitation in nerveJ. Physiol.19521174500 ZimmerC100 trillion connectionsSci. Am.2011304158 RostamiZJafariSDefects formation and spiral waves in a network of neurons in presence of electromagnetic inductionCognit. Neurodyn.2018122235 LvMMaJYaoYAlzahraniFSynchronization and wave propagation in neuronal network under field couplingSci. China Technol. Sci.2019623448 KochCSegevIThe role of single neurons in information processingNat. Neurosci.2000311s1171 HindmarshJLRoseRA model of neuronal bursting using three coupled first order differential equationsProc. R. Soc. Lond.1984221122287 ElsonRCSelverstonAIHuertaRRulkovNFRabinovichMIAbarbanelHDSynchronous behavior of two coupled biological neuronsPhys. Rev. Lett.199881255692 XiaSQi-ShaoLFiring patterns and complete synchronization of coupled Hindmarsh–Rose neuronsChin. Phys.200514177 EugeninEABasilioDSáezJCOrellanaJARaineCSBukauskasFBennettMVBermanJWThe role of gap junction channels during physiologic and pathologic conditions of the human central nervous systemJ. Neuroimmune Pharmacol.201273499 NagumoJArimotoSYoshizawaSAn active pulse transmission line simulating nerve axonProc. IRE196250102061 EtéméASTabiCBMohamadouAFiring and synchronization modes in neural network under magnetic stimulationCommun. Nonlinear Sci. Numer. Simul.2019724323901826 Hindmarsh, J., Cornelius, P.: The development of the Hindmarsh–Rose model for bursting. In: Coombes, S., Bressloff, P.C. (eds.) Bursting: The Genesis of Rhythm in the Nervous System, pp. 3–18. World Scientific (2005). https://doi.org/10.1142/9789812703231_0001 WangXJGenesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddlePhysica D1993621–426312074260783.58053 XuYJiaYKirundaJBShenJGeMLuLPeiQDynamic behaviors in coupled neuron system with the excitatory and inhibitory autapse under electromagnetic inductionComplexity20182018113 HuertaRRabinovichMIAbarbanelHDBazhenovMSpike-train bifurcation scaling in two coupled chaotic neuronsPhys. Rev. E1997553R2108 AzevedoFACarvalhoLRGrinbergLTFarfelJMFerrettiRELeiteREFilhoWJLentRHerculano-HouzelSEqual numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brainJ. Comput. Neurol.20095135532 JP Keener (5576_CR7) 1998 Y Zhao (5576_CR30) 2018; 93 FE Neumann (5576_CR41) 1846; 143 Z Rostami (5576_CR32) 2018; 12 F Parastesh (5576_CR50) 2019; 350 M Lv (5576_CR37) 2016; 85 S Mostaghimi (5576_CR26) 2019; 348 S Shefchyk (5576_CR9) 1985; 53 JE Rash (5576_CR12) 1996; 93 SV Ovsepian (5576_CR6) 2014; 25 AE Pereda (5576_CR14) 2014; 15 JW Shuai (5576_CR46) 1999; 264 P Varona (5576_CR48) 2001; 84 M Jalili (5576_CR56) 2012; 17 JE Lisman (5576_CR3) 1997; 20 C Koch (5576_CR2) 2000; 3 5576_CR1 J Ma (5576_CR29) 2017; 31 M Bazhenov (5576_CR53) 1998; 116 EM Izhikevich (5576_CR19) 2004; 15 B Bao (5576_CR24) 2018; 2018 J Ma (5576_CR42) 2019; 20 G Matthews (5576_CR5) 2000; 406 Z Rostami (5576_CR43) 2018; 94 J Ma (5576_CR38) 2015; 58 K Tang (5576_CR25) 2017; 11 FA Azevedo (5576_CR27) 2009; 513 M Lv (5576_CR23) 2016; 205 R Huerta (5576_CR52) 1997; 55 JL Hindmarsh (5576_CR20) 1984; 221 5576_CR54 5576_CR13 S Xia (5576_CR45) 2005; 14 5576_CR15 EM Izhikevich (5576_CR55) 2003; 14 XJ Wang (5576_CR36) 1993; 62 EA Eugenin (5576_CR11) 2012; 7 DS Reich (5576_CR44) 2000; 20 AS Etémé (5576_CR39) 2019; 72 G Innocenti (5576_CR21) 2007; 17 HD Abarbanel (5576_CR49) 1996; 8 R Hikosaka (5576_CR4) 1996; 13 AB Belousov (5576_CR10) 2013; 36 Y Xu (5576_CR31) 2018; 2018 AL Hodgkin (5576_CR16) 1952; 117 J Nagumo (5576_CR17) 1962; 50 J Ma (5576_CR34) 2017; 307 G Meşe (5576_CR51) 2007; 127 B Bao (5576_CR40) 2010; 46 R FitzHugh (5576_CR18) 1955; 17 5576_CR22 RC Elson (5576_CR47) 1998; 81 F Schmitz (5576_CR8) 2000; 28 J Hindmarsh (5576_CR35) 1982; 296 M Lv (5576_CR33) 2019; 62 C Zimmer (5576_CR28) 2011; 304 Y Wu (5576_CR57) 2005 |
References_xml | – reference: HodgkinALHuxleyAFA quantitative description of membrane current and its application to conduction and excitation in nerveJ. Physiol.19521174500 – reference: JaliliMCollective behavior of interacting locally synchronized oscillations in neuronal networksCommun. Nonlinear Sci. Numer. Simul.20121710392229164461317.92010 – reference: MatthewsGVesicle fiesta at the synapseNature20004066798835 – reference: ZimmerC100 trillion connectionsSci. Am.2011304158 – reference: ParasteshFAzarnoushHJafariSHatefBPercMRepnikRSynchronizability of two neurons with switching in the couplingAppl. Math. Comput.201935021739017601428.37096 – reference: Hindmarsh, J., Cornelius, P.: The development of the Hindmarsh–Rose model for bursting. In: Coombes, S., Bressloff, P.C. (eds.) Bursting: The Genesis of Rhythm in the Nervous System, pp. 3–18. World Scientific (2005). https://doi.org/10.1142/9789812703231_0001 – reference: ElsonRCSelverstonAIHuertaRRulkovNFRabinovichMIAbarbanelHDSynchronous behavior of two coupled biological neuronsPhys. Rev. Lett.199881255692 – reference: ReichDSMechlerFPurpuraKPVictorJDInterspike intervals, receptive fields, and information encoding in primary visual cortexJ. Neurosci.20002051964 – reference: FitzHughRMathematical models of threshold phenomena in the nerve membraneBull. Math. Biol.1955174257 – reference: BelousovABFontesJDNeuronal gap junctions: making and breaking connections during development and injuryTrends Neurosci.2013364227 – reference: BazhenovMHuertaRRabinovichMSejnowskiTCooperative behavior of a chain of synaptically coupled chaotic neuronsPhysica D19981163–43920917.92004 – reference: IzhikevichEMTransEEESimple model of spiking neuronsNeural Netw.20031461569 – reference: MaJYangZqYangLjTangJA physical view of computational neurodynamicsJ. Zhejiang Univ. Sci. A2019209639 – reference: MostaghimiSNazarimehrFJafariSMaJChemical and electrical synapse-modulated dynamical properties of coupled neurons under magnetic flowAppl. Math. Comput.20193484238832611428.92022 – reference: ShefchykSJordanLExcitatory and inhibitory postsynaptic potentials in alpha-motoneurons produced during fictive locomotion by stimulation of the mesencephalic locomotor regionJ. Neurophysiol.19855361345 – reference: KochCSegevIThe role of single neurons in information processingNat. Neurosci.2000311s1171 – reference: HindmarshJRoseRA model of the nerve impulse using two first-order differential equationsNature19822965853162 – reference: TangKWangZShiXElectrical activity in a time-delay four-variable neuron model under electromagnetic inductionFront. Comput. Neurosci.201711105 – reference: RostamiZJafariSPercMSlavinecMElimination of spiral waves in excitable media by magnetic inductionNonlinear Dyn.2018941679 – reference: VaronaPTorresJJAbarbanelHDRabinovichMIElsonRCDynamics of two electrically coupled chaotic neurons: experimental observations and model analysisBiol. Cybernet.200184291 – reference: MaJWuFWangCSynchronization behaviors of coupled neurons under electromagnetic radiationInt. J. Mod. Phys. B201731216502513599028 – reference: XuYJiaYKirundaJBShenJGeMLuLPeiQDynamic behaviors in coupled neuron system with the excitatory and inhibitory autapse under electromagnetic inductionComplexity20182018113 – reference: LvMMaJYaoYAlzahraniFSynchronization and wave propagation in neuronal network under field couplingSci. China Technol. Sci.2019623448 – reference: ShuaiJWDurandDMPhase synchronization in two coupled chaotic neuronsPhys. Lett. A1999264428917343820949.37015 – reference: MeşeGRichardGWhiteTWGap junctions: basic structure and functionJ. Investig. Dermatol.2007127112516 – reference: WuYXuJJinWWangJLiaoXYiZSynchronous behaviors of two coupled neuronsAdvances in Neural Networks – ISNN 20052005Berlin, HeidelbergSpringer30230710.1007/11427391_47 – reference: NagumoJArimotoSYoshizawaSAn active pulse transmission line simulating nerve axonProc. IRE196250102061 – reference: LvMMaJMultiple modes of electrical activities in a new neuron model under electromagnetic radiationNeurocomputing2016205375 – reference: MaJMiLZhouPXuYHayatTPhase synchronization between two neurons induced by coupling of electromagnetic fieldAppl. Math. Comput.201730732136327421411.92049 – reference: HuertaRRabinovichMIAbarbanelHDBazhenovMSpike-train bifurcation scaling in two coupled chaotic neuronsPhys. Rev. E1997553R2108 – reference: SchmitzFKönigstorferASüdhofTCRIBEYE, a component of synaptic ribbons: a protein’s journey through evolution provides insight into synaptic ribbon functionNeuron2000283857 – reference: InnocentiGMorelliAGenesioRTorciniADynamical phases of the Hindmarsh-Rose neuronal model: studies of the transition from bursting to spiking chaosChaos200717404312823800431163.37336 – reference: KeenerJPSneydJMathematical Physiology1998BerlinSpringer0913.92009 – reference: RashJEDillmanRKBilhartzBLDuffyHSWhalenLRYasumuraTMixed synapses discovered and mapped throughout mammalian spinal cordProc. Natl. Acad. Sci.19969394235 – reference: NeumannFEGeneral laws of induced electric stringsAnn. Phys.1846143131 – reference: MaJTangJA review for dynamics of collective behaviors of network of neuronsSci. China Technol. Sci.201558122038 – reference: BaoBLiuZXuJSteady periodic memristor oscillator with transient chaotic behavioursElectron. Lett.2010463237 – reference: HikosakaRTakahashiMTakahataMVariability and invariability in the structure of an identified nonspiking interneuron of crayfish as revealed by three-dimensional morphometryZool. Sci.199613169 – reference: EugeninEABasilioDSáezJCOrellanaJARaineCSBukauskasFBennettMVBermanJWThe role of gap junction channels during physiologic and pathologic conditions of the human central nervous systemJ. Neuroimmune Pharmacol.201273499 – reference: EtéméASTabiCBMohamadouAFiring and synchronization modes in neural network under magnetic stimulationCommun. Nonlinear Sci. Numer. Simul.2019724323901826 – reference: LismanJEBursts as a unit of neural information: making unreliable synapses reliableTrends Neurosci.199720138 – reference: AbarbanelHDHuertaRRabinovichMIRulkovNFRowatPFSelverstonAISynchronized action of synaptically coupled chaotic model neuronsNeural Comput.1996881567 – reference: Sotelo, C., Korn, H.: Morphological correlates of electrical and other interactions through low-resistance pathways between neurons of the vertebrate central nervous system. In: Bourne, G.H., Danielli, J.F., Jeon, K.W. (eds.) International Review of Cytology, vol. 55, pp. 67–107. Academic Press (1978). https://doi.org/10.1016/S0074-7696(08)61887-2 – reference: AzevedoFACarvalhoLRGrinbergLTFarfelJMFerrettiRELeiteREFilhoWJLentRHerculano-HouzelSEqual numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brainJ. Comput. Neurol.20095135532 – reference: IzhikevichEMTransIEEEWhich model to use for cortical spiking neurons?Neural Netw.20041551063 – reference: OvsepianSVVesselkinNPWiring prior to firing: the evolutionary rise of electrical and chemical modes of synaptic transmissionRev. Neurosci.2014256821 – reference: Levi-Montalcini, R.: The nerve growth factor: its role in growth, differentiation and function of the sympathetic adrenergic neuron. In: Corner, M.A., Swaab, D.F. (eds.) Progress in Brain Research, vol. 45, pp. 235–258. Elsevier (1976). https://doi.org/10.1016/S0079-6123(08)60993-0 – reference: XiaSQi-ShaoLFiring patterns and complete synchronization of coupled Hindmarsh–Rose neuronsChin. Phys.200514177 – reference: RostamiZJafariSDefects formation and spiral waves in a network of neurons in presence of electromagnetic inductionCognit. Neurodyn.2018122235 – reference: BaoBHuABaoHXuQChenMWuHThree-dimensional memristive Hindmarsh-Rose neuron model with hidden coexisting asymmetric behaviorsComplexity20182018111 – reference: Lindsay, K., Ogden, J., Halliday, D., Rosenberg, J.: An introduction to the principles of neuronal modelling. In: Modern techniques in neuroscience research (Springer), pp. 213–306 (1999) – reference: LvMWangCRenGMaJSongXModel of electrical activity in a neuron under magnetic flow effectNonlinear Dyn.20168531479 – reference: HindmarshJLRoseRA model of neuronal bursting using three coupled first order differential equationsProc. R. Soc. Lond.1984221122287 – reference: Lodish, H., Berk, A., Zipursky, S.L., et al.: Molecular cell biology, 4th edn. W. H. Freeman, New York (2000). Available from: https://www.ncbi.nlm.nih.gov/books/NBK21475/ – reference: PeredaAEElectrical synapses and their functional interactions with chemical synapsesNat. Rev. Neurosci.2014154250 – reference: ZhaoYSunXLiuYKurthsJPhase synchronization dynamics of coupled neurons with coupling phase in the electromagnetic fieldNonlinear Dyn.20189331315 – reference: WangXJGenesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddlePhysica D1993621–426312074260783.58053 – volume: 55 start-page: R2108 issue: 3 year: 1997 ident: 5576_CR52 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.55.R2108 – volume: 221 start-page: 87 issue: 1222 year: 1984 ident: 5576_CR20 publication-title: Proc. R. Soc. Lond. – volume: 20 start-page: 1964 issue: 5 year: 2000 ident: 5576_CR44 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.20-05-01964.2000 – volume: 7 start-page: 499 issue: 3 year: 2012 ident: 5576_CR11 publication-title: J. Neuroimmune Pharmacol. doi: 10.1007/s11481-012-9352-5 – volume: 58 start-page: 2038 issue: 12 year: 2015 ident: 5576_CR38 publication-title: Sci. China Technol. Sci. doi: 10.1007/s11431-015-5961-6 – volume: 72 start-page: 432 year: 2019 ident: 5576_CR39 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2019.01.004 – ident: 5576_CR13 doi: 10.1016/S0074-7696(08)61887-2 – volume: 13 start-page: 69 issue: 1 year: 1996 ident: 5576_CR4 publication-title: Zool. Sci. doi: 10.2108/zsj.13.69 – volume: 116 start-page: 392 issue: 3–4 year: 1998 ident: 5576_CR53 publication-title: Physica D doi: 10.1016/S0167-2789(98)80014-6 – volume: 117 start-page: 500 issue: 4 year: 1952 ident: 5576_CR16 publication-title: J. Physiol. doi: 10.1113/jphysiol.1952.sp004764 – volume: 17 start-page: 257 issue: 4 year: 1955 ident: 5576_CR18 publication-title: Bull. Math. Biol. – volume: 84 start-page: 91 issue: 2 year: 2001 ident: 5576_CR48 publication-title: Biol. Cybernet. doi: 10.1007/s004220000198 – volume: 307 start-page: 321 year: 2017 ident: 5576_CR34 publication-title: Appl. Math. Comput. – volume: 406 start-page: 835 issue: 6798 year: 2000 ident: 5576_CR5 publication-title: Nature doi: 10.1038/35022674 – volume: 53 start-page: 1345 issue: 6 year: 1985 ident: 5576_CR9 publication-title: J. Neurophysiol. doi: 10.1152/jn.1985.53.6.1345 – volume: 296 start-page: 162 issue: 5853 year: 1982 ident: 5576_CR35 publication-title: Nature doi: 10.1038/296162a0 – volume: 20 start-page: 639 issue: 9 year: 2019 ident: 5576_CR42 publication-title: J. Zhejiang Univ. Sci. A doi: 10.1631/jzus.A1900273 – volume: 36 start-page: 227 issue: 4 year: 2013 ident: 5576_CR10 publication-title: Trends Neurosci. doi: 10.1016/j.tins.2012.11.001 – volume: 205 start-page: 375 year: 2016 ident: 5576_CR23 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.05.004 – volume: 85 start-page: 1479 issue: 3 year: 2016 ident: 5576_CR37 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-016-2773-6 – ident: 5576_CR15 doi: 10.1007/978-3-642-58552-4_8 – volume: 28 start-page: 857 issue: 3 year: 2000 ident: 5576_CR8 publication-title: Neuron doi: 10.1016/S0896-6273(00)00159-8 – volume: 50 start-page: 2061 issue: 10 year: 1962 ident: 5576_CR17 publication-title: Proc. IRE doi: 10.1109/JRPROC.1962.288235 – volume: 93 start-page: 1315 issue: 3 year: 2018 ident: 5576_CR30 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-018-4261-7 – volume: 264 start-page: 289 issue: 4 year: 1999 ident: 5576_CR46 publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(99)00816-6 – volume: 3 start-page: 1171 issue: 11s year: 2000 ident: 5576_CR2 publication-title: Nat. Neurosci. doi: 10.1038/81444 – volume-title: Mathematical Physiology year: 1998 ident: 5576_CR7 doi: 10.1007/b98841 – volume: 94 start-page: 679 issue: 1 year: 2018 ident: 5576_CR43 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-018-4385-9 – ident: 5576_CR54 – volume: 2018 start-page: 1 year: 2018 ident: 5576_CR24 publication-title: Complexity – volume: 8 start-page: 1567 issue: 8 year: 1996 ident: 5576_CR49 publication-title: Neural Comput. doi: 10.1162/neco.1996.8.8.1567 – volume: 14 start-page: 1569 issue: 6 year: 2003 ident: 5576_CR55 publication-title: Neural Netw. doi: 10.1109/TNN.2003.820440 – volume: 2018 start-page: 1 year: 2018 ident: 5576_CR31 publication-title: Complexity – volume: 62 start-page: 263 issue: 1–4 year: 1993 ident: 5576_CR36 publication-title: Physica D doi: 10.1016/0167-2789(93)90286-A – volume: 17 start-page: 043128 issue: 4 year: 2007 ident: 5576_CR21 publication-title: Chaos doi: 10.1063/1.2818153 – volume: 11 start-page: 105 year: 2017 ident: 5576_CR25 publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2017.00105 – volume: 513 start-page: 532 issue: 5 year: 2009 ident: 5576_CR27 publication-title: J. Comput. Neurol. doi: 10.1002/cne.21974 – volume: 31 start-page: 1650251 issue: 2 year: 2017 ident: 5576_CR29 publication-title: Int. J. Mod. Phys. B doi: 10.1142/S0217979216502519 – volume: 127 start-page: 2516 issue: 11 year: 2007 ident: 5576_CR51 publication-title: J. Investig. Dermatol. doi: 10.1038/sj.jid.5700770 – volume: 46 start-page: 237 issue: 3 year: 2010 ident: 5576_CR40 publication-title: Electron. Lett. – start-page: 302 volume-title: Advances in Neural Networks – ISNN 2005 year: 2005 ident: 5576_CR57 doi: 10.1007/11427391_47 – ident: 5576_CR1 doi: 10.1016/S0079-6123(08)60993-0 – volume: 15 start-page: 250 issue: 4 year: 2014 ident: 5576_CR14 publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3708 – volume: 93 start-page: 4235 issue: 9 year: 1996 ident: 5576_CR12 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.93.9.4235 – volume: 20 start-page: 38 issue: 1 year: 1997 ident: 5576_CR3 publication-title: Trends Neurosci. doi: 10.1016/S0166-2236(96)10070-9 – volume: 304 start-page: 58 issue: 1 year: 2011 ident: 5576_CR28 publication-title: Sci. Am. doi: 10.1038/scientificamerican0111-58 – ident: 5576_CR22 doi: 10.1142/9789812703231_0001 – volume: 62 start-page: 448 issue: 3 year: 2019 ident: 5576_CR33 publication-title: Sci. China Technol. Sci. doi: 10.1007/s11431-018-9268-2 – volume: 12 start-page: 235 issue: 2 year: 2018 ident: 5576_CR32 publication-title: Cognit. Neurodyn. doi: 10.1007/s11571-017-9472-y – volume: 143 start-page: 31 issue: 1 year: 1846 ident: 5576_CR41 publication-title: Ann. Phys. doi: 10.1002/andp.18461430103 – volume: 15 start-page: 1063 issue: 5 year: 2004 ident: 5576_CR19 publication-title: Neural Netw. doi: 10.1109/TNN.2004.832719 – volume: 25 start-page: 821 issue: 6 year: 2014 ident: 5576_CR6 publication-title: Rev. Neurosci. doi: 10.1515/revneuro-2014-0037 – volume: 348 start-page: 42 year: 2019 ident: 5576_CR26 publication-title: Appl. Math. Comput. – volume: 350 start-page: 217 year: 2019 ident: 5576_CR50 publication-title: Appl. Math. Comput. – volume: 17 start-page: 3922 issue: 10 year: 2012 ident: 5576_CR56 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2012.02.005 – volume: 14 start-page: 77 issue: 1 year: 2005 ident: 5576_CR45 publication-title: Chin. Phys. doi: 10.1088/1009-1963/14/1/016 – volume: 81 start-page: 5692 issue: 25 year: 1998 ident: 5576_CR47 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.5692 |
SSID | ssj0003208 |
Score | 2.4630563 |
Snippet | The electrical activity of neurons depends on the physiological conditions in the nervous system. An electromagnetic field, for example, can significantly... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1809 |
SubjectTerms | Automotive Engineering Bifurcations Classical Mechanics Control Dynamical Systems Dynamics Electromagnetic fields Electromagnetism Engineering Mechanical Engineering Nervous system Neurons Original Paper Synapses Vibration |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAG1EoyAMbpGocJ21GxFMgmKhUpshPVEHTiqRI8Os5u04LCJDYktiOEvtsf-e7-w7gsIuPpQhVEMVtEzCuJE4pIYLUdCRjiC9iZ4q5vUuueuy6H_d9UFhRebtXJkm3Us-D3VBTQdWXWuMtouQgXYR6bBWUGtRPLh9uzmcrcERdJro26hb2HKLvg2V-fsvXDWmOMr8ZRt1-c7EKvepLp24mT61JKVry_RuJ439_ZQ1WPAAlJ1OJWYcFnW_AqgejxE_1YgOWPzEVbsLwzCdSKUnxlnNcZySR1kfGhUUURL-OnjRRs0pmYNuRsWPvxPJBThxzJl4WE2HPfkg5IjwnPg3PkD_mNpySOI-6LehdnN-fXgU-U0MgcQqXARVpYrRC-MaUYZxKrruxDkWkEbwjoBAccRLl1uwYh8beU4N6Iucdnsp2V0bbUMtHud4BouIu1W2qIqYNQ-VIpCoxieIxEzKRImpAWA1XJj2Nuc2m8ZzNCZht72bYu5nr3SxtwNGszXhK4vFn7WYlBZmf0EVGI0vN10nSsAHH1aDOi39_2-7_qu_BEnVyYX2DmlArXyZ6H2FPKQ68lH8AA3f5IA priority: 102 providerName: Springer Nature |
Title | Different synaptic connections evoke different firing patterns in neurons subject to an electromagnetic field |
URI | https://link.springer.com/article/10.1007/s11071-020-05576-9 https://www.proquest.com/docview/2396097691 |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-269X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: AFBBN dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-269X dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-269X dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-269X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-269X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLaAXeDAY4AYL-XADSrWNO3WExqwMYGYEGLSOFV5IgR0gxYk_j1Olm2ABKe2eR3q2PlsxzbAQRObpQhVEMV1EzCuJLKUEEFqGpIxxBexc8Vc95Jun10O4oE3uBX-WuVEJjpBrYbS2siPaWRzozWSNDwZvQa2apT1rvoSGvNQCSnuJBsp3rmYSuKIuop0ddQxrD1i4INmxqFzqPegIk2tKxgxd5D-PJhmaPOXg9SdO51VWPaAkbTGFF6DOZ1XYcWDR-JZs6jC0rfMguvwcu4Ln5Sk-Mw5ygVJpL3T4sIYCqI_hk-aqOkg82jnkZHLton9jzlxmS7xtXgX1lZDyiHhOfFlc174Q27DH4m7AbcB_U777qwb-MoKgUSWKwMq0sRohXCLKcM4lVw3Yx2KSCPYRgAgOOIayq2bMA6N_aYG9TrOGzyV9aaMNmEhH-Z6C4iKm1TXqYqYNgyVGZGqxCSKx0zIRIqoBuHkt2bSpx231S-es1nCZEuKDEmROVJkaQ0Op3NG46Qb_47enVAr8wxYZLPtUoOjCQVn3X-vtv3_ajuwSN2msXd3dmGhfHvXewhLSrHv9t4-VFoX91dtfJ62eze32NqnrS_94ONp |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LU9RAEO5COKgHQdRyFXEOetKUm5lJNjlYFAUsizxOULW3OE-LArKrCVr8KX-j3bOTXbUKbtySzGQO0z39mO7-GuBdgZ-NTm0isr5PpLIGj5TWSekHRkq0L7IQijk-yUdn8ss4Gy_B764WhtIqO5kYBLWdGLoj_8QFYaMN8jLdmn5PqGsURVe7Fhoztjh0N7_QZWs-H-wifd9zPtw73RklsatAYpDd2oTrMvfOoqkhrZeKG-WKzKVaODQ0UflphTqdKwqRZamnd-7Rp1FqoErTL4zAdR_AihRCEFZ_MdyfS37BQwe8Pvo0dP8xjkU6s1I99LPQcecUekYbPyn_VYQL6_a_gGzQc8M1eBINVLY946insOTqdViNxiqLoqBZh8d_IRk-g6vd2GilZc1NrVAOGWYohyaUTTTM_ZxcOGbnk_w5_cemAd0Tx89rFpA18bG51nQ3xNoJUzWLbXqu1Leayi1ZyLh7Dmf3sucvYLme1O4lMJsV3PW5FdJ5ic6TLm3uc6syqU1utOhB2m1rZSLMOXXbuKwWAM1EigpJUQVSVGUPPsz_mc5APu6cvdFRq4oHvqkW7NmDjx0FF8O3r_bq7tXewsPR6fFRdXRwcvgaHvHAQJQ3tAHL7Y9r9wZNolZvBj5k8PW-Gf8PGxQcRw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4SAgOvBGDATlwg2prmnbrcQKm8RQHJu1W5YkmWDfRgsS_x8myDRAgcWubx6GOk8-x_RnguImfpQhVEMV1EzCuJKqUEEFqGpIxxBexc8Xc3iWdLrvqxb1PWfwu2n3ikhznNFiWprysjZSpzRLf0GpBM5haRy4i5iCdh0WGZ7U1v7q0Nd2LI-pq0tXRyrA3Ej2fNvPzHF-Pphne_OYidSdPex1WPWQkrbGMN2BO55uw5uEj8cpZbMLKJ27BLRic-9InJSnec447gyTSRrW4RIaC6LfhkyZq2sn07Tgycnyb2N7PieO6xMfiVdjbGlIOCc-JL5wz4I-5TYAkLgZuG7rti4ezTuBrKwQSla4MqEgToxUCLqYM41Ry3Yx1KCKNcBshgOCIbCi3jsI4NPadGrTsOG_wVNabMtqBhXyY610gKm5SXacqYtowNGdEqhKTKB4zIRMpogqEk9-aSU88butfPGczymQrigxFkTlRZGkFTqZjRmPajT97VyfSyrwKFhmNLJleI0nDCpxOJDhr_n22vf91P4Kl-_N2dnN5d70Py9StJxvYU4WF8uVVHyBmKcWhW5YfzV3jWQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Different+synaptic+connections+evoke+different+firing+patterns+in+neurons+subject+to+an+electromagnetic+field&rft.jtitle=Nonlinear+dynamics&rft.au=Zandi-Mehran+Nazanin&rft.au=Jafari+Sajad&rft.au=Hashemi%C2%A0Golpayegani+Seyed+Mohammad+Reza&rft.au=Nazarimehr+Fahimeh&rft.date=2020-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=100&rft.issue=2&rft.spage=1809&rft.epage=1824&rft_id=info:doi/10.1007%2Fs11071-020-05576-9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon |