A multi-objective vibrating particle system algorithm for data clustering
Clustering is an important data mining technique described as unsupervised learning. Till date, many single-objective clustering algorithms have been developed on the basis of swarm intelligence and evolutionary techniques. It is noticed that these clustering algorithms provide better solutions for...
Saved in:
| Published in | Pattern analysis and applications : PAA Vol. 25; no. 1; pp. 209 - 239 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.02.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1433-7541 1433-755X |
| DOI | 10.1007/s10044-021-01052-1 |
Cover
| Abstract | Clustering is an important data mining technique described as unsupervised learning. Till date, many single-objective clustering algorithms have been developed on the basis of swarm intelligence and evolutionary techniques. It is noticed that these clustering algorithms provide better solutions for clustering problems, but sometimes, these solutions seem to be biased and also not appropriate for the problem with geometrical shapes datasets. In turn, performance of the clustering algorithms can be degraded. One of the possible solutions is to adopt multi-objective approach instead of single objective. In multi-objective approach, more than one objective functions can be considered for solving the clustering problems and these functions are conflicted in nature. Further, in multi-objective approach, Pareto-optimal solutions can be generated for improving the clustering performance. Hence, this paper presents a multi-objective clustering algorithm based on vibrating particle system (VPS) for effective cluster analysis, called MOVPS. This work considers intra-cluster variance and connectedness as objective functions, and VPS algorithm is used for optimizing the aforementioned objectives to obtain good clustering results. The performance of MOVPS algorithm is tested over a set of benchmark datasets and validated by comparing clustering results with various multi-objective and single-objective clustering algorithms from the literature. The simulation results illustrate the effectiveness of the MOVPS algorithm based on
F
-measure, coverage, distribution, convergence, non-dominating vector generation and intra-cluster distance measures. The simulation results showed that the proposed MOVPS algorithm enhances the clustering results significantly in comparison with existing multi-objective and single-objective clustering algorithms. |
|---|---|
| AbstractList | Clustering is an important data mining technique described as unsupervised learning. Till date, many single-objective clustering algorithms have been developed on the basis of swarm intelligence and evolutionary techniques. It is noticed that these clustering algorithms provide better solutions for clustering problems, but sometimes, these solutions seem to be biased and also not appropriate for the problem with geometrical shapes datasets. In turn, performance of the clustering algorithms can be degraded. One of the possible solutions is to adopt multi-objective approach instead of single objective. In multi-objective approach, more than one objective functions can be considered for solving the clustering problems and these functions are conflicted in nature. Further, in multi-objective approach, Pareto-optimal solutions can be generated for improving the clustering performance. Hence, this paper presents a multi-objective clustering algorithm based on vibrating particle system (VPS) for effective cluster analysis, called MOVPS. This work considers intra-cluster variance and connectedness as objective functions, and VPS algorithm is used for optimizing the aforementioned objectives to obtain good clustering results. The performance of MOVPS algorithm is tested over a set of benchmark datasets and validated by comparing clustering results with various multi-objective and single-objective clustering algorithms from the literature. The simulation results illustrate the effectiveness of the MOVPS algorithm based on
F
-measure, coverage, distribution, convergence, non-dominating vector generation and intra-cluster distance measures. The simulation results showed that the proposed MOVPS algorithm enhances the clustering results significantly in comparison with existing multi-objective and single-objective clustering algorithms. Clustering is an important data mining technique described as unsupervised learning. Till date, many single-objective clustering algorithms have been developed on the basis of swarm intelligence and evolutionary techniques. It is noticed that these clustering algorithms provide better solutions for clustering problems, but sometimes, these solutions seem to be biased and also not appropriate for the problem with geometrical shapes datasets. In turn, performance of the clustering algorithms can be degraded. One of the possible solutions is to adopt multi-objective approach instead of single objective. In multi-objective approach, more than one objective functions can be considered for solving the clustering problems and these functions are conflicted in nature. Further, in multi-objective approach, Pareto-optimal solutions can be generated for improving the clustering performance. Hence, this paper presents a multi-objective clustering algorithm based on vibrating particle system (VPS) for effective cluster analysis, called MOVPS. This work considers intra-cluster variance and connectedness as objective functions, and VPS algorithm is used for optimizing the aforementioned objectives to obtain good clustering results. The performance of MOVPS algorithm is tested over a set of benchmark datasets and validated by comparing clustering results with various multi-objective and single-objective clustering algorithms from the literature. The simulation results illustrate the effectiveness of the MOVPS algorithm based on F-measure, coverage, distribution, convergence, non-dominating vector generation and intra-cluster distance measures. The simulation results showed that the proposed MOVPS algorithm enhances the clustering results significantly in comparison with existing multi-objective and single-objective clustering algorithms. |
| Author | Kaur, Arvinder Kumar, Yugal |
| Author_xml | – sequence: 1 givenname: Arvinder surname: Kaur fullname: Kaur, Arvinder organization: Department of Computer Science and Engineering, Jaypee University of Information Technology – sequence: 2 givenname: Yugal surname: Kumar fullname: Kumar, Yugal email: yugalkumar.14@gmail.com organization: Department of Computer Science and Engineering, Jaypee University of Information Technology |
| BookMark | eNp9kMtKAzEUhoNUsK2-gKuA62iuzcyyFC-FghsFdyGTZmrKzGRMMoW-vakjCi7cnBzI_-WcfDMw6XxnAbgm-JZgLO9irpwjTAnCBAuKyBmYEs4YkkK8TX56Ti7ALMY9xowxWkzBegnboUkO-WpvTXIHCw-uCjq5bgd7HZIzjYXxGJNtoW52Prj03sLaB7jVSUPTDPkq5PQlOK91E-3V9zkHrw_3L6sntHl-XK-WG2QYKROimgsjt5aUhpN6oSvJK1lzbhZFaQppyq2oBDOmrA0umKWm4JpKzGxxCtWCzcHN-G4f_MdgY1J7P4Quj1R0QQUtJcU0p4oxZYKPMdhaGZfyr3yXgnaNIlidxKlRnMri1Jc4RTJK_6B9cK0Ox_8hNkKxP8mw4Xerf6hPixaCwQ |
| CitedBy_id | crossref_primary_10_1007_s40314_024_03004_x crossref_primary_10_1016_j_swevo_2025_101847 crossref_primary_10_1109_TMM_2023_3266603 crossref_primary_10_1016_j_cherd_2024_06_029 crossref_primary_10_3390_electronics13071202 crossref_primary_10_1007_s42979_024_02883_5 crossref_primary_10_1007_s11227_023_05822_y crossref_primary_10_1007_s42979_024_03048_0 crossref_primary_10_1155_2022_9596210 |
| Cites_doi | 10.1007/s00158-003-0368-6 10.1007/s00707-016-1725-z 10.1109/CEC.2002.1007032 10.1016/j.ins.2018.03.047 10.1007/s00500-017-2590-y 10.1007/s10115-014-0805-4 10.1016/S0031-3203(99)00137-5 10.1007/s12293-010-0047-2 10.1057/jors.2010.180 10.1109/TSMCA.2007.909595 10.1016/j.swevo.2011.08.001 10.1016/j.asoc.2014.11.060 10.1109/TEVC.2015.2476359 10.1007/s00500-013-1086-7 10.1007/s10489-017-0951-y 10.1016/j.asoc.2020.106120 10.1109/TSMCC.2008.2007252 10.1007/978-1-4614-6940-7_15 10.1016/j.ins.2013.12.057 10.1016/j.asoc.2012.12.001 10.1007/s00521-016-2528-9 10.1109/TEVC.2004.826067 10.1016/j.asoc.2018.03.011 10.1007/s12065-020-00373-0 10.1109/CEC.1999.781913 10.1109/TEVC.2007.892759 10.1007/s10462-013-9400-4 10.1016/j.swevo.2018.04.009 10.1007/978-0-85729-652-8_1 10.1016/j.knosys.2019.105018 10.1109/ACCESS.2020.2992903 10.1016/0098-3004(84)90020-7 10.1109/TITS.2018.2890588 10.1007/s00521-015-2095-5 10.1007/978-3-642-27242-4_18 10.1007/s10489-015-0656-z 10.1016/j.patrec.2011.05.010 10.1016/j.eswa.2011.07.123 10.1016/j.ejor.2006.08.008 10.1109/ACCESS.2019.2924957 10.1007/s00500-017-2923-x 10.1007/s00500-019-04620-0 10.1007/s10489-018-1301-4 10.1016/j.asoc.2014.12.009 10.1109/ACCESS.2018.2860791 10.1007/s00521-016-2191-1 10.1016/j.knosys.2013.11.003 10.1016/j.eswa.2016.09.008 10.1016/j.asoc.2012.08.005 10.1016/j.engappai.2016.11.003 10.1016/j.asoc.2019.105971 10.1016/j.engappai.2019.103307 10.1016/j.eswa.2010.06.061 10.1109/TEVC.2017.2726341 10.1007/s10489-018-1238-7 10.1007/s12652-018-0941-x 10.1007/3-540-45356-3_82 10.1007/3-540-45356-3_83 10.1109/CEC.2000.870756 10.1016/j.ins.2018.03.025 10.1007/s11431-020-1587-y 10.1016/j.asoc.2017.06.059 10.1109/TCYB.2018.2817480 10.1007/978-3-642-12538-6_6 10.24138/jcomss.v9i3.146 10.1007/978-981-15-4451-4_51 10.1007/s12293-014-0147-5 10.1007/s13748-018-0157-5 10.1007/978-3-540-30217-9_84 10.1016/j.asoc.2019.02.043 10.1007/s00500-013-1128-1 10.1016/j.eswa.2016.02.009 10.1016/j.patcog.2009.07.004 10.1007/s00366-021-01345-3 10.1016/j.asoc.2010.11.007 10.1007/s00500-005-0043-5 10.1109/TEVC.2006.877146 10.1016/j.asoc.2016.04.026 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s10044-021-01052-1 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1433-755X |
| EndPage | 239 |
| ExternalDocumentID | 10_1007_s10044_021_01052_1 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 29O 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 |
| ID | FETCH-LOGICAL-c319t-2a45c7de19c41f6ab74b7f44c689c87c9d5b53cc9fc083e2c84a2703e8f44cf53 |
| IEDL.DBID | U2A |
| ISSN | 1433-7541 |
| IngestDate | Thu Sep 25 00:42:22 EDT 2025 Thu Apr 24 23:01:44 EDT 2025 Wed Oct 01 01:59:47 EDT 2025 Fri Feb 21 02:47:24 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Cluster analysis Multi-objective Pareto-optimal set Vibrating particle system |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-2a45c7de19c41f6ab74b7f44c689c87c9d5b53cc9fc083e2c84a2703e8f44cf53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2625297202 |
| PQPubID | 2043691 |
| PageCount | 31 |
| ParticipantIDs | proquest_journals_2625297202 crossref_citationtrail_10_1007_s10044_021_01052_1 crossref_primary_10_1007_s10044_021_01052_1 springer_journals_10_1007_s10044_021_01052_1 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Pattern analysis and applications : PAA |
| PublicationTitleAbbrev | Pattern Anal Applic |
| PublicationYear | 2022 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | ZhuSXuLGoodmanEDEvolutionary multi-objective automatic clustering enhanced with quality metrics and ensemble strategyKnowl-Based Syst2020188105018 CoelloCACLamontGBVan VeldhuizenDAEvolutionary algorithms for solving multi-objective problems2007New YorkSpringer791041142.90029 CuraTA particle swarm optimization approach to clusteringExpert Syst Appl201239115821588 Knowles J, Corne D (1999) The pareto archived evolution strategy: a new baseline algorithm for pareto multiobjective optimisation. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), vol 1. IEEE, pp 98–105 BeumeNNaujoksBEmmerichMSMS-EMOA: multiobjective selection based on dominated hypervolumeEur J Oper Res20071813165316691123.90064 Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, Berlin, pp 65–74 HanXQuanLXiongXAlmeterMXiangJLanYA novel data clustering algorithm based on modified gravitational search algorithmEng Appl Artif Intell20176117 JensiRJijiGWAn improved krill herd algorithm with global exploration capability for solving numerical function optimization problems and its application to data clusteringAppl Soft Comput201646230245 KavehAGhazaanMIVibrating particles system algorithm for truss optimization with multiple natural frequency constraintsActa Mech201722813073223597185 JiangHYiSLiJYangFHuXAnt clustering algorithm with K-harmonic means clusteringExpert Syst Appl2010371286798684 Kushwaha N, Pant M (2018) Fuzzy magnetic optimization clustering algorithm with its application to health care. J Ambient Intell Humaniz Comput 1–10 AntunesVSakataTCFaceliKde SoutoMCHybrid strategy for selecting compact set of clustering partitionsAppl Soft Comput202087105971 RashedABHamdanHSharefNMSulaimanMNYaakobRAbubakarMMulti-objective clustering algorithm using particle swarm optimization with crowding distance (MCPSO-CD)Int J Adv Intell Inf2020617281 SahaIMaulikUPlewczynskiDA new multi-objective technique for differential fuzzy clusteringAppl Soft Comput201111227652776 Zitzler E, Künzli S (2004) Indicator-based selection in multiobjective search. In: International conference on parallel problem solving from nature. Springer, Berlin, pp 832–842 AlokAKSahaSEkbalAA new semi-supervised clustering technique using multi-objective optimizationAppl Intell2015433633661 CaiJWeiHYangHZhaoXA novel clustering algorithm based on DPC and PSOIEEE Access202088820088214 AtteaBAAA fuzzy multi-objective particle swarm optimization for effective data clusteringMemet Comput20102305312 ZhouZZhuSKernel-based multiobjective clustering algorithm with automatic attribute weightingSoft Comput2018221136853709 ZangWWangZJiangDLiuXA kernel-based intuitionistic fuzzy C-means clustering using improved multi-objective immune algorithmIEEE Access201978456584579 Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength Pareto evolutionary algorithm. TIK-report, 103 KavehAGhazaanMIA new meta-heuristic algorithm: vibrating particles systemSci Iran Trans A Civ Eng2017242551 Garza-FabreMHandlJKnowlesJAn improved and more scalable evolutionary approach to multiobjective clusteringIEEE Trans Evol Comput2017224515535 SahaSSpandanaREkbalABandyopadhyaySSimultaneous feature selection and symmetry based clustering using multiobjective frameworkAppl Soft Comput201529479486 SunJZhangHZhouAZhangQZhangKA new learning-based adaptive multi-objective evolutionary algorithmSwarm Evol Comput201944304319 SahaSBandyopadhyaySA generalized automatic clustering algorithm in a multiobjective frameworkAppl Soft Comput201313189108 KotinisMImproving a multi-objective differential evolution optimizer using fuzzy adaptation and $$$$-medoids clusteringSoft Comput2014184757771 HeloulouIRadjefMSKechadiMTAutomatic multi-objective clustering based on game theoryExpert Syst Appl2017673248 PrakashJSinghPKKishorAIntegrating fitness predator optimizer with multi-objective PSO for dynamic partitional clusteringProg Artif Intell2019818399 Martínez-PeñalozaMGMezura-MontesECruz-RamírezNAcosta-MesaHGRíos-FigueroaHVImproved multi-objective clustering with automatic determination of the number of clustersNeural Comput Appl201728822552275 GunantaraNHendrantoroGMulti-objective cross-layer optimization for selection of cooperative path pairs in multihop wireless ad hoc networksJ Commun Softw Syst201393170177 FräntiPSieranojaSK-means properties on six clustering benchmark datasetsAppl Intell201848124743475907043407 CoelloCACPulidoGTLechugaMSHandling multiple objectives with particle swarm optimizationIEEE Trans Evol Comput200483256279 SahaIMaulikUIncremental learning based multiobjective fuzzy clustering for categorical dataInf Sci201426735573177304 De Weck OL (2004) Multiobjective optimization: history and promise. In: Invited Keynote Paper, GL2-2, the third China–Japan–Korea joint symposium on optimization of structural and mechanical systems, Kanazawa, Japan, vol 2, p 34 BouyerAHatamlouAAn efficient hybrid clustering method based on improved cuckoo optimization and modified particle swarm optimization algorithmsAppl Soft Comput201867172182 İnkayaTKayalıgilSÖzdemirelNEAnt colony optimization based clustering methodologyAppl Soft Comput201528301311 MaulikUBandyopadhyaySGenetic algorithm-based clustering techniquePattern Recogn200033914551465 LuoJJiaoLLozanoJAA sparse spectral clustering framework via multiobjective evolutionary algorithmIEEE Trans Evol Comput2015203418433 Corne DW, Knowles JD, Oates MJ (2000) The Pareto envelope-based selection algorithm for multiobjective optimization. In: International conference on parallel problem solving from nature. Springer, Berlin, pp 839–848 AbualigahLMKhaderATHanandehESGandomiAHA novel hybridization strategy for krill herd algorithm applied to clustering techniquesAppl Soft Comput201760423435 MarlerRTAroraJSSurvey of multi-objective optimization methods for engineeringStruct Multidiscip Optim200426636939520573771243.90199 DasSAbrahamAKonarAAutomatic clustering using an improved differential evolution algorithmIEEE Trans Syst Man Cybern-Part A: Syst Hum2007381218237 Rudolph G, Agapie A (2000) Convergence properties of some multi-objective evolutionary algorithms. In: Proceedings of the 2000 congress on evolutionary computation. CEC00 (Cat. No. 00TH8512), vol 2. IEEE, pp 1010–1016 Pang W, Wang KP, Zhou CG, Dong LJ (2004) Fuzzy discrete particle swarm optimization for solving traveling salesman problem. In: Fourth international conference on computer and information technology, 2004. CIT'04. IEEE, pp 796–800 DebKBurkeEKendallGMulti-objective optimizationSearch methodologies2014BostonSpringer403449 LiXWongKCEvolutionary multiobjective clustering and its applications to patient stratificationIEEE Trans Cybern201849516801693 Kumar Y, Kaur A (2021) Variants of bat algorithm for solving partitional clustering problems. Eng Comput 1–27 SahooGA two-step artificial bee colony algorithm for clusteringNeural Comput Appl2017283537551 AlmannaaMHElhenawyMRakhaHAA novel supervised clustering algorithm for transportation system applicationsIEEE Trans Intell Transp Syst2019211222232 KuoRJZulviaFEMulti-objective cluster analysis using a gradient evolution algorithmSoft Comput202024115 Coello CAC, Cortés NC (2002) An approach to solve multiobjective optimization problems based on an artificial immune system Shahsamandi EsfahaniPSaghaeiAA multi-objective approach to fuzzy clustering using ITLBO algorithmJ AI Data Min201752307317 PrakashJSinghPKGravitational search algorithm and K-means for simultaneous feature selection and data clustering: a multi-objective approachSoft Comput201923620832100 PrakashJSinghPKAn effective multiobjective approach for hard partitional clusteringMemet Comput20157293104 KumarYSinghPKA chaotic teaching learning based optimization algorithm for clustering problemsAppl Intell201949310361062 BezdekJCEhrlichRFullWFCM: the fuzzy c-means clustering algorithmComput Geosci1984102–3191203 HruschkaERCampelloRJFreitasAAA survey of evolutionary algorithms for clusteringIEEE Trans Syst Man Cybern Part C Appl Rev2009392133155 Satapathy SC, Naik A (2011) Data clustering based on teaching-learning-based optimization. In: International conference on swarm, evolutionary, and memetic computing. Springer, Berlin, pp 148–156 CaballeroRLagunaMMartíRMolinaJScatter tabu search for multiobjective clustering problemsJ Oper Res Soc2011621120342046 KavehAHoseini VaezSRHosseiniPEnhanced vibrating particles system algorithm for damage identification of truss structuresSci Iran201726246256 SinghHKumarYA neighborhood search based cat swarm optimization algorithm for clustering problemsEvol Intel2020134593609 PaulAKShillPCNew automatic fuzzy relational clustering algorithms using multi-objective NSGA-IIInf Sci20184481121333784478 Deb K, Thiele L, Laumanns M, Zitzler E (2002) Scalable multi-objective optimization test problems. In: Proceedings of the 2002 congress on evolutionary computation. CEC'02 (Cat. No. 02TH8600), vol 1. IEEE, pp 825–830 LiuCLiuJPengDWuCA general multiobjective clustering approach based on multiple distance measuresIEEE Access201864170641719 ChenLDuanHFanYWeiCMulti-objective clustering analysis via combinatorial pigeon inspired optimizationSci China Technol Sci202063112 WangRLaiSWuGXingLWangLIshibuchiHMulti-clustering via evolutionary multi-objective optimizationInf Sci201845012814037898861440.68244 ZhangQLiHMOEA/D: a multiobjective evolutionary algorithm based on decompositionIEEE Trans Evol Comput2007116712731 Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: International conference on parallel problem solving from nature. Springer, Berlin, pp 849–858 EhrgottMMulticriteria optimization2005BerlinSpringer1132.90001 DebKWangLNgADebKMulti-objective optimisation using evolutionary algorithms: an introductionMulti-objective evolutionary optimization for product design and manufacturing2011LondonSpringer334 PengPAddamOElzohbiMÖzyerSTElhajjAG B Jiang (1052_CR83) 2014; 18 AA Esmin (1052_CR21) 2015; 44 K Bijari (1052_CR79) 2018; 29 CAC Coello (1052_CR13) 2004; 8 R Jensi (1052_CR80) 2016; 46 Y Kumar (1052_CR84) 2019; 49 H Shen (1052_CR88) 2006; 10 S Saha (1052_CR48) 2015; 29 1052_CR17 MG Martínez-Peñaloza (1052_CR49) 2017; 28 H Singh (1052_CR78) 2020; 13 MH Almannaa (1052_CR62) 2019; 21 V Antunes (1052_CR31) 2020; 87 J Prakash (1052_CR59) 2019; 23 S Zhu (1052_CR30) 2020; 188 1052_CR10 1052_CR12 1052_CR15 T İnkaya (1052_CR14) 2015; 28 R Wang (1052_CR58) 2018; 450 H Jiang (1052_CR71) 2010; 37 J Sun (1052_CR63) 2019; 44 P Shahsamandi Esfahani (1052_CR55) 2017; 5 S Saha (1052_CR34) 2010; 43 W Kwedlo (1052_CR20) 2011; 32 I Saha (1052_CR52) 2014; 267 M Kotinis (1052_CR53) 2014; 18 T Cura (1052_CR69) 2012; 39 R Caballero (1052_CR45) 2011; 62 I Heloulou (1052_CR61) 2017; 67 G Sahoo (1052_CR70) 2017; 28 S Saha (1052_CR26) 2013; 13 I Saha (1052_CR38) 2011; 11 C Liu (1052_CR56) 2019; 78 R Liu (1052_CR50) 2015; 45 Q Zhang (1052_CR9) 2007; 11 BAA Attea (1052_CR33) 2010; 2 AB Rashed (1052_CR37) 2020; 6 P Fränti (1052_CR74) 2018; 48 1052_CR87 1052_CR89 G Armano (1052_CR54) 2016; 55 X Han (1052_CR24) 2017; 61 C Liu (1052_CR65) 2018; 6 U Maulik (1052_CR72) 2000; 33 1052_CR5 M Ehrgott (1052_CR19) 2005 RJ Kuo (1052_CR29) 2020; 24 D Yan (1052_CR46) 2020; 17 A Hatamlou (1052_CR82) 2017; 47 1052_CR8 1052_CR6 1052_CR73 1052_CR7 J Luo (1052_CR39) 2015; 20 A Bouyer (1052_CR85) 2018; 67 AK Alok (1052_CR51) 2015; 43 N Beume (1052_CR11) 2007; 181 CAC Coello (1052_CR4) 2007 W Zang (1052_CR64) 2019; 7 R Akbari (1052_CR16) 2012; 2 S Das (1052_CR76) 2007; 38 Z Zhou (1052_CR43) 2018; 22 1052_CR75 JC Bezdek (1052_CR86) 1984; 10 1052_CR77 LM Abualigah (1052_CR81) 2017; 60 L Chen (1052_CR47) 2020; 63 J Prakash (1052_CR35) 2015; 7 E Hancer (1052_CR36) 2020; 87 A Kaveh (1052_CR66) 2017; 26 RT Marler (1052_CR2) 2004; 26 P Peng (1052_CR44) 2014; 56 A Kaveh (1052_CR67) 2017; 228 AK Paul (1052_CR57) 2018; 448 N Gunantara (1052_CR18) 2013; 9 M Garza-Fabre (1052_CR42) 2017; 22 J Handl (1052_CR25) 2007; 11 X Li (1052_CR60) 2018; 49 J Cai (1052_CR68) 2020; 8 K Deb (1052_CR27) 2011 ER Hruschka (1052_CR22) 2009; 39 R Liu (1052_CR32) 2020; 89 K Deb (1052_CR3) 2014 1052_CR23 A Kaveh (1052_CR28) 2017; 24 M Badami (1052_CR41) 2013; 13 1052_CR1 J Prakash (1052_CR40) 2019; 8 |
| References_xml | – reference: PengPAddamOElzohbiMÖzyerSTElhajjAGaoSReporting and analyzing alternative clustering solutions by employing multi-objective genetic algorithm and conducting experiments on cancer dataKnowl-Based Syst201456108122 – reference: Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: International conference on parallel problem solving from nature. Springer, Berlin, pp 849–858 – reference: HancerEA new multi-objective differential evolution approach for simultaneous clustering and feature selectionEng Appl Artif Intell202087103307 – reference: Zitzler E, Künzli S (2004) Indicator-based selection in multiobjective search. In: International conference on parallel problem solving from nature. Springer, Berlin, pp 832–842 – reference: JensiRJijiGWAn improved krill herd algorithm with global exploration capability for solving numerical function optimization problems and its application to data clusteringAppl Soft Comput201646230245 – reference: EsminAACoelhoRAMatwinSA review on particle swarm optimization algorithm and its variants to clustering high-dimensional dataArtif Intell Rev20154412345 – reference: Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, Berlin, pp 65–74 – reference: Deb K, Thiele L, Laumanns M, Zitzler E (2002) Scalable multi-objective optimization test problems. In: Proceedings of the 2002 congress on evolutionary computation. CEC'02 (Cat. No. 02TH8600), vol 1. IEEE, pp 825–830 – reference: Shahsamandi EsfahaniPSaghaeiAA multi-objective approach to fuzzy clustering using ITLBO algorithmJ AI Data Min201752307317 – reference: SahooGA two-step artificial bee colony algorithm for clusteringNeural Comput Appl2017283537551 – reference: ChenLDuanHFanYWeiCMulti-objective clustering analysis via combinatorial pigeon inspired optimizationSci China Technol Sci202063112 – reference: LiXWongKCEvolutionary multiobjective clustering and its applications to patient stratificationIEEE Trans Cybern201849516801693 – reference: Rudolph G, Agapie A (2000) Convergence properties of some multi-objective evolutionary algorithms. In: Proceedings of the 2000 congress on evolutionary computation. CEC00 (Cat. No. 00TH8512), vol 2. IEEE, pp 1010–1016 – reference: RashedABHamdanHSharefNMSulaimanMNYaakobRAbubakarMMulti-objective clustering algorithm using particle swarm optimization with crowding distance (MCPSO-CD)Int J Adv Intell Inf2020617281 – reference: CuraTA particle swarm optimization approach to clusteringExpert Syst Appl201239115821588 – reference: Coello CAC, Cortés NC (2002) An approach to solve multiobjective optimization problems based on an artificial immune system – reference: KavehAGhazaanMIA new meta-heuristic algorithm: vibrating particles systemSci Iran Trans A Civ Eng2017242551 – reference: LiuRRenRLiuJLiuJA clustering and dimensionality reduction based evolutionary algorithm for large-scale multi-objective problemsAppl Soft Comput202089106120 – reference: HeloulouIRadjefMSKechadiMTAutomatic multi-objective clustering based on game theoryExpert Syst Appl2017673248 – reference: ZhuSXuLGoodmanEDEvolutionary multi-objective automatic clustering enhanced with quality metrics and ensemble strategyKnowl-Based Syst2020188105018 – reference: HandlJKnowlesJAn evolutionary approach to multiobjective clusteringIEEE Trans Evol Comput20071115676 – reference: De Weck OL (2004) Multiobjective optimization: history and promise. In: Invited Keynote Paper, GL2-2, the third China–Japan–Korea joint symposium on optimization of structural and mechanical systems, Kanazawa, Japan, vol 2, p 34 – reference: Corne DW, Knowles JD, Oates MJ (2000) The Pareto envelope-based selection algorithm for multiobjective optimization. In: International conference on parallel problem solving from nature. Springer, Berlin, pp 839–848 – reference: DasSAbrahamAKonarAAutomatic clustering using an improved differential evolution algorithmIEEE Trans Syst Man Cybern-Part A: Syst Hum2007381218237 – reference: AntunesVSakataTCFaceliKde SoutoMCHybrid strategy for selecting compact set of clustering partitionsAppl Soft Comput202087105971 – reference: CaballeroRLagunaMMartíRMolinaJScatter tabu search for multiobjective clustering problemsJ Oper Res Soc2011621120342046 – reference: BouyerAHatamlouAAn efficient hybrid clustering method based on improved cuckoo optimization and modified particle swarm optimization algorithmsAppl Soft Comput201867172182 – reference: SahaIMaulikUPlewczynskiDA new multi-objective technique for differential fuzzy clusteringAppl Soft Comput201111227652776 – reference: HruschkaERCampelloRJFreitasAAA survey of evolutionary algorithms for clusteringIEEE Trans Syst Man Cybern Part C Appl Rev2009392133155 – reference: Knowles J, Corne D (1999) The pareto archived evolution strategy: a new baseline algorithm for pareto multiobjective optimisation. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), vol 1. IEEE, pp 98–105 – reference: JiangHYiSLiJYangFHuXAnt clustering algorithm with K-harmonic means clusteringExpert Syst Appl2010371286798684 – reference: Kumar Y, Kaur A (2021) Variants of bat algorithm for solving partitional clustering problems. Eng Comput 1–27 – reference: AtteaBAAA fuzzy multi-objective particle swarm optimization for effective data clusteringMemet Comput20102305312 – reference: Kushwaha N, Pant M (2018) Fuzzy magnetic optimization clustering algorithm with its application to health care. J Ambient Intell Humaniz Comput 1–10 – reference: BadamiMHamzehAHashemiSAn enriched game-theoretic framework for multi-objective clusteringAppl Soft Comput201313418531868 – reference: YanDCaoHYuYWangYYuXSingle-objective/multiobjective cat swarm optimization clustering analysis for data partitionIEEE Trans Autom Sci Eng20201716331646 – reference: KavehAGhazaanMIVibrating particles system algorithm for truss optimization with multiple natural frequency constraintsActa Mech201722813073223597185 – reference: HanXQuanLXiongXAlmeterMXiangJLanYA novel data clustering algorithm based on modified gravitational search algorithmEng Appl Artif Intell20176117 – reference: CaiJWeiHYangHZhaoXA novel clustering algorithm based on DPC and PSOIEEE Access202088820088214 – reference: LiuCLiYZhaoQLiuCReference vector-based multi-objective clustering for high-dimensional dataAppl Soft Comput201978614629 – reference: JiangBWangNCooperative bare-bone particle swarm optimization for data clusteringSoft Comput201418610791091 – reference: PrakashJSinghPKKishorAIntegrating fitness predator optimizer with multi-objective PSO for dynamic partitional clusteringProg Artif Intell2019818399 – reference: SunJZhangHZhouAZhangQZhangKA new learning-based adaptive multi-objective evolutionary algorithmSwarm Evol Comput201944304319 – reference: BijariKZareHVeisiHBobarshadHMemory-enriched big bang–big crunch optimization algorithm for data clusteringNeural Comput Appl2018296111121 – reference: Garza-FabreMHandlJKnowlesJAn improved and more scalable evolutionary approach to multiobjective clusteringIEEE Trans Evol Comput2017224515535 – reference: GunantaraNHendrantoroGMulti-objective cross-layer optimization for selection of cooperative path pairs in multihop wireless ad hoc networksJ Commun Softw Syst201393170177 – reference: AlmannaaMHElhenawyMRakhaHAA novel supervised clustering algorithm for transportation system applicationsIEEE Trans Intell Transp Syst2019211222232 – reference: İnkayaTKayalıgilSÖzdemirelNEAnt colony optimization based clustering methodologyAppl Soft Comput201528301311 – reference: DebKBurkeEKendallGMulti-objective optimizationSearch methodologies2014BostonSpringer403449 – reference: ShenHYangJWangSLiuXAttribute weighted mercer kernel based fuzzy clustering algorithm for general non-spherical datasetsSoft Comput2006101110611073 – reference: Satapathy SC, Naik A (2011) Data clustering based on teaching-learning-based optimization. In: International conference on swarm, evolutionary, and memetic computing. Springer, Berlin, pp 148–156 – reference: KuoRJZulviaFEMulti-objective cluster analysis using a gradient evolution algorithmSoft Comput202024115 – reference: AlokAKSahaSEkbalAA new semi-supervised clustering technique using multi-objective optimizationAppl Intell2015433633661 – reference: FräntiPSieranojaSK-means properties on six clustering benchmark datasetsAppl Intell201848124743475907043407 – reference: SahaSSpandanaREkbalABandyopadhyaySSimultaneous feature selection and symmetry based clustering using multiobjective frameworkAppl Soft Comput201529479486 – reference: HatamlouAA hybrid bio-inspired algorithm and its applicationAppl Intell201747410591067 – reference: ArmanoGFarmaniMRMultiobjective clustering analysis using particle swarm optimizationExpert Syst Appl201655184193 – reference: SahaSBandyopadhyaySA symmetry based multiobjective clustering technique for automatic evolution of clustersPattern Recogn20104337387511187.68499 – reference: Singh H, Kumar Y (2019) Hybrid big bang-big crunch algorithm for cluster analysis. In: International conference on futuristic trends in networks and computing technologies. Springer, Singapore, pp 648–661 – reference: LiuRZhangLLiBMaYJiaoLSynergy of two mutations based immune multi-objective automatic fuzzy clustering algorithmKnowl Inf Syst2015451133157 – reference: KumarYSinghPKA chaotic teaching learning based optimization algorithm for clustering problemsAppl Intell201949310361062 – reference: Pang W, Wang KP, Zhou CG, Dong LJ (2004) Fuzzy discrete particle swarm optimization for solving traveling salesman problem. In: Fourth international conference on computer and information technology, 2004. CIT'04. IEEE, pp 796–800 – reference: WangRLaiSWuGXingLWangLIshibuchiHMulti-clustering via evolutionary multi-objective optimizationInf Sci201845012814037898861440.68244 – reference: MaulikUBandyopadhyaySGenetic algorithm-based clustering techniquePattern Recogn200033914551465 – reference: KwedloWA clustering method combining differential evolution with the K-means algorithmPattern Recogn Lett2011321216131621 – reference: LuoJJiaoLLozanoJAA sparse spectral clustering framework via multiobjective evolutionary algorithmIEEE Trans Evol Comput2015203418433 – reference: BezdekJCEhrlichRFullWFCM: the fuzzy c-means clustering algorithmComput Geosci1984102–3191203 – reference: CoelloCACLamontGBVan VeldhuizenDAEvolutionary algorithms for solving multi-objective problems2007New YorkSpringer791041142.90029 – reference: PrakashJSinghPKAn effective multiobjective approach for hard partitional clusteringMemet Comput20157293104 – reference: DebKWangLNgADebKMulti-objective optimisation using evolutionary algorithms: an introductionMulti-objective evolutionary optimization for product design and manufacturing2011LondonSpringer334 – reference: SahaSBandyopadhyaySA generalized automatic clustering algorithm in a multiobjective frameworkAppl Soft Comput201313189108 – reference: SinghHKumarYA neighborhood search based cat swarm optimization algorithm for clustering problemsEvol Intel2020134593609 – reference: PrakashJSinghPKGravitational search algorithm and K-means for simultaneous feature selection and data clustering: a multi-objective approachSoft Comput201923620832100 – reference: EhrgottMMulticriteria optimization2005BerlinSpringer1132.90001 – reference: ZangWWangZJiangDLiuXA kernel-based intuitionistic fuzzy C-means clustering using improved multi-objective immune algorithmIEEE Access201978456584579 – reference: KavehAHoseini VaezSRHosseiniPEnhanced vibrating particles system algorithm for damage identification of truss structuresSci Iran201726246256 – reference: ZhouZZhuSKernel-based multiobjective clustering algorithm with automatic attribute weightingSoft Comput2018221136853709 – reference: BeumeNNaujoksBEmmerichMSMS-EMOA: multiobjective selection based on dominated hypervolumeEur J Oper Res20071813165316691123.90064 – reference: PaulAKShillPCNew automatic fuzzy relational clustering algorithms using multi-objective NSGA-IIInf Sci20184481121333784478 – reference: LiuCLiuJPengDWuCA general multiobjective clustering approach based on multiple distance measuresIEEE Access201864170641719 – reference: SahaIMaulikUIncremental learning based multiobjective fuzzy clustering for categorical dataInf Sci201426735573177304 – reference: Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength Pareto evolutionary algorithm. TIK-report, 103 – reference: CoelloCACPulidoGTLechugaMSHandling multiple objectives with particle swarm optimizationIEEE Trans Evol Comput200483256279 – reference: MarlerRTAroraJSSurvey of multi-objective optimization methods for engineeringStruct Multidiscip Optim200426636939520573771243.90199 – reference: AkbariRHedayatzadehRZiaratiKHassanizadehBA multi-objective artificial bee colony algorithmSwarm Evol Comput201223952 – reference: KotinisMImproving a multi-objective differential evolution optimizer using fuzzy adaptation and $$$$-medoids clusteringSoft Comput2014184757771 – reference: AbualigahLMKhaderATHanandehESGandomiAHA novel hybridization strategy for krill herd algorithm applied to clustering techniquesAppl Soft Comput201760423435 – reference: ZhangQLiHMOEA/D: a multiobjective evolutionary algorithm based on decompositionIEEE Trans Evol Comput2007116712731 – reference: Martínez-PeñalozaMGMezura-MontesECruz-RamírezNAcosta-MesaHGRíos-FigueroaHVImproved multi-objective clustering with automatic determination of the number of clustersNeural Comput Appl201728822552275 – volume-title: Multicriteria optimization year: 2005 ident: 1052_CR19 – volume: 26 start-page: 369 issue: 6 year: 2004 ident: 1052_CR2 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-003-0368-6 – volume: 228 start-page: 307 issue: 1 year: 2017 ident: 1052_CR67 publication-title: Acta Mech doi: 10.1007/s00707-016-1725-z – ident: 1052_CR1 doi: 10.1109/CEC.2002.1007032 – volume: 450 start-page: 128 year: 2018 ident: 1052_CR58 publication-title: Inf Sci doi: 10.1016/j.ins.2018.03.047 – volume: 22 start-page: 3685 issue: 11 year: 2018 ident: 1052_CR43 publication-title: Soft Comput doi: 10.1007/s00500-017-2590-y – volume: 45 start-page: 133 issue: 1 year: 2015 ident: 1052_CR50 publication-title: Knowl Inf Syst doi: 10.1007/s10115-014-0805-4 – volume: 33 start-page: 1455 issue: 9 year: 2000 ident: 1052_CR72 publication-title: Pattern Recogn doi: 10.1016/S0031-3203(99)00137-5 – volume: 2 start-page: 305 year: 2010 ident: 1052_CR33 publication-title: Memet Comput doi: 10.1007/s12293-010-0047-2 – volume: 62 start-page: 2034 issue: 11 year: 2011 ident: 1052_CR45 publication-title: J Oper Res Soc doi: 10.1057/jors.2010.180 – volume: 38 start-page: 218 issue: 1 year: 2007 ident: 1052_CR76 publication-title: IEEE Trans Syst Man Cybern-Part A: Syst Hum doi: 10.1109/TSMCA.2007.909595 – volume: 2 start-page: 39 year: 2012 ident: 1052_CR16 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2011.08.001 – volume: 28 start-page: 301 year: 2015 ident: 1052_CR14 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2014.11.060 – volume: 20 start-page: 418 issue: 3 year: 2015 ident: 1052_CR39 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2015.2476359 – volume: 18 start-page: 757 issue: 4 year: 2014 ident: 1052_CR53 publication-title: Soft Comput doi: 10.1007/s00500-013-1086-7 – volume: 5 start-page: 307 issue: 2 year: 2017 ident: 1052_CR55 publication-title: J AI Data Min – volume: 47 start-page: 1059 issue: 4 year: 2017 ident: 1052_CR82 publication-title: Appl Intell doi: 10.1007/s10489-017-0951-y – volume: 89 start-page: 106120 year: 2020 ident: 1052_CR32 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106120 – ident: 1052_CR6 – volume: 39 start-page: 133 issue: 2 year: 2009 ident: 1052_CR22 publication-title: IEEE Trans Syst Man Cybern Part C Appl Rev doi: 10.1109/TSMCC.2008.2007252 – start-page: 403 volume-title: Search methodologies year: 2014 ident: 1052_CR3 doi: 10.1007/978-1-4614-6940-7_15 – volume: 267 start-page: 35 year: 2014 ident: 1052_CR52 publication-title: Inf Sci doi: 10.1016/j.ins.2013.12.057 – volume: 13 start-page: 1853 issue: 4 year: 2013 ident: 1052_CR41 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2012.12.001 – volume: 29 start-page: 111 issue: 6 year: 2018 ident: 1052_CR79 publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2528-9 – volume: 8 start-page: 256 issue: 3 year: 2004 ident: 1052_CR13 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2004.826067 – volume: 67 start-page: 172 year: 2018 ident: 1052_CR85 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.03.011 – volume: 13 start-page: 593 issue: 4 year: 2020 ident: 1052_CR78 publication-title: Evol Intel doi: 10.1007/s12065-020-00373-0 – ident: 1052_CR7 doi: 10.1109/CEC.1999.781913 – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 1052_CR9 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2007.892759 – volume: 44 start-page: 23 issue: 1 year: 2015 ident: 1052_CR21 publication-title: Artif Intell Rev doi: 10.1007/s10462-013-9400-4 – volume: 44 start-page: 304 year: 2019 ident: 1052_CR63 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2018.04.009 – start-page: 3 volume-title: Multi-objective evolutionary optimization for product design and manufacturing year: 2011 ident: 1052_CR27 doi: 10.1007/978-0-85729-652-8_1 – volume: 188 start-page: 105018 year: 2020 ident: 1052_CR30 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2019.105018 – ident: 1052_CR87 – volume: 8 start-page: 88200 year: 2020 ident: 1052_CR68 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2992903 – volume: 10 start-page: 191 issue: 2–3 year: 1984 ident: 1052_CR86 publication-title: Comput Geosci doi: 10.1016/0098-3004(84)90020-7 – volume: 21 start-page: 222 issue: 1 year: 2019 ident: 1052_CR62 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2018.2890588 – volume: 28 start-page: 537 issue: 3 year: 2017 ident: 1052_CR70 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-2095-5 – ident: 1052_CR77 doi: 10.1007/978-3-642-27242-4_18 – volume: 43 start-page: 633 issue: 3 year: 2015 ident: 1052_CR51 publication-title: Appl Intell doi: 10.1007/s10489-015-0656-z – volume: 32 start-page: 1613 issue: 12 year: 2011 ident: 1052_CR20 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2011.05.010 – volume: 39 start-page: 1582 issue: 1 year: 2012 ident: 1052_CR69 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.07.123 – volume: 181 start-page: 1653 issue: 3 year: 2007 ident: 1052_CR11 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2006.08.008 – volume: 7 start-page: 84565 year: 2019 ident: 1052_CR64 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2924957 – volume: 6 start-page: 72 issue: 1 year: 2020 ident: 1052_CR37 publication-title: Int J Adv Intell Inf – volume: 23 start-page: 2083 issue: 6 year: 2019 ident: 1052_CR59 publication-title: Soft Comput doi: 10.1007/s00500-017-2923-x – volume: 24 start-page: 1 year: 2020 ident: 1052_CR29 publication-title: Soft Comput doi: 10.1007/s00500-019-04620-0 – volume: 49 start-page: 1036 issue: 3 year: 2019 ident: 1052_CR84 publication-title: Appl Intell doi: 10.1007/s10489-018-1301-4 – volume: 29 start-page: 479 year: 2015 ident: 1052_CR48 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2014.12.009 – ident: 1052_CR17 – volume: 6 start-page: 41706 year: 2018 ident: 1052_CR65 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2860791 – volume: 28 start-page: 2255 issue: 8 year: 2017 ident: 1052_CR49 publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2191-1 – volume: 56 start-page: 108 year: 2014 ident: 1052_CR44 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2013.11.003 – volume: 67 start-page: 32 year: 2017 ident: 1052_CR61 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.09.008 – volume: 13 start-page: 89 issue: 1 year: 2013 ident: 1052_CR26 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2012.08.005 – volume: 61 start-page: 1 year: 2017 ident: 1052_CR24 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2016.11.003 – volume: 87 start-page: 105971 year: 2020 ident: 1052_CR31 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105971 – volume: 87 start-page: 103307 year: 2020 ident: 1052_CR36 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2019.103307 – volume: 37 start-page: 8679 issue: 12 year: 2010 ident: 1052_CR71 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.06.061 – volume: 22 start-page: 515 issue: 4 year: 2017 ident: 1052_CR42 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2017.2726341 – volume: 48 start-page: 4743 issue: 12 year: 2018 ident: 1052_CR74 publication-title: Appl Intell doi: 10.1007/s10489-018-1238-7 – ident: 1052_CR89 doi: 10.1007/s12652-018-0941-x – ident: 1052_CR8 doi: 10.1007/3-540-45356-3_82 – ident: 1052_CR12 doi: 10.1007/3-540-45356-3_83 – ident: 1052_CR5 doi: 10.1109/CEC.2000.870756 – volume: 448 start-page: 112 year: 2018 ident: 1052_CR57 publication-title: Inf Sci doi: 10.1016/j.ins.2018.03.025 – volume: 63 start-page: 1 year: 2020 ident: 1052_CR47 publication-title: Sci China Technol Sci doi: 10.1007/s11431-020-1587-y – volume: 60 start-page: 423 year: 2017 ident: 1052_CR81 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.06.059 – start-page: 79 volume-title: Evolutionary algorithms for solving multi-objective problems year: 2007 ident: 1052_CR4 – volume: 26 start-page: 246 year: 2017 ident: 1052_CR66 publication-title: Sci Iran – volume: 49 start-page: 1680 issue: 5 year: 2018 ident: 1052_CR60 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2018.2817480 – ident: 1052_CR73 doi: 10.1007/978-3-642-12538-6_6 – volume: 9 start-page: 170 issue: 3 year: 2013 ident: 1052_CR18 publication-title: J Commun Softw Syst doi: 10.24138/jcomss.v9i3.146 – ident: 1052_CR75 doi: 10.1007/978-981-15-4451-4_51 – volume: 7 start-page: 93 issue: 2 year: 2015 ident: 1052_CR35 publication-title: Memet Comput doi: 10.1007/s12293-014-0147-5 – volume: 8 start-page: 83 issue: 1 year: 2019 ident: 1052_CR40 publication-title: Prog Artif Intell doi: 10.1007/s13748-018-0157-5 – ident: 1052_CR10 doi: 10.1007/978-3-540-30217-9_84 – volume: 78 start-page: 614 year: 2019 ident: 1052_CR56 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.02.043 – volume: 18 start-page: 1079 issue: 6 year: 2014 ident: 1052_CR83 publication-title: Soft Comput doi: 10.1007/s00500-013-1128-1 – volume: 24 start-page: 551 issue: 2 year: 2017 ident: 1052_CR28 publication-title: Sci Iran Trans A Civ Eng – volume: 55 start-page: 184 year: 2016 ident: 1052_CR54 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.02.009 – volume: 43 start-page: 738 issue: 3 year: 2010 ident: 1052_CR34 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2009.07.004 – ident: 1052_CR23 doi: 10.1007/s00366-021-01345-3 – volume: 11 start-page: 2765 issue: 2 year: 2011 ident: 1052_CR38 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2010.11.007 – volume: 10 start-page: 1061 issue: 11 year: 2006 ident: 1052_CR88 publication-title: Soft Comput doi: 10.1007/s00500-005-0043-5 – volume: 11 start-page: 56 issue: 1 year: 2007 ident: 1052_CR25 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2006.877146 – volume: 46 start-page: 230 year: 2016 ident: 1052_CR80 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2016.04.026 – ident: 1052_CR15 – volume: 17 start-page: 1633 year: 2020 ident: 1052_CR46 publication-title: IEEE Trans Autom Sci Eng |
| SSID | ssj0033328 |
| Score | 2.3342762 |
| Snippet | Clustering is an important data mining technique described as unsupervised learning. Till date, many single-objective clustering algorithms have been developed... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 209 |
| SubjectTerms | Algorithms Cluster analysis Clustering Computer Science Data mining Datasets Industrial and Commercial Application Machine learning Optimization Pattern Recognition Swarm intelligence |
| Title | A multi-objective vibrating particle system algorithm for data clustering |
| URI | https://link.springer.com/article/10.1007/s10044-021-01052-1 https://www.proquest.com/docview/2625297202 |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-755X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033328 issn: 1433-7541 databaseCode: AFBBN dateStart: 19980301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-755X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033328 issn: 1433-7541 databaseCode: AGYKE dateStart: 19980101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-755X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033328 issn: 1433-7541 databaseCode: U2A dateStart: 19980329 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLZQu7BwI1pK5YENLMVXnYwRaikgmKhUpih2bA6VtmpTfj92YlNAgMTqvHh45_fkdwBwSqNIWrE75CYkchEayYJpJGILr02iqClcg_PtXW84YtdjPvZNYctQ7R6eJCtP_anZLWIMuZICt9WRIJvzNLkb52W1eETS4H8ppdVGVQsEKBKcYd8q8_MdX8PRGmN-exatos1gB2x5mAjTWq67YENP98C2h4zQG-TSHoWtDOFsH1ylsKoSRDP5Unsz-OZyYlffDOdeU2A9wRnmk8fZ4rl8eoUWvEJXLgrVZOWGJ1jqAzAa9O8vhsgvTEDKWlKJSM64EoXGiWLY9HIpmBSGMdWLExULlRRccqpUYpRFXpqomOXEmryOHZHh9BA0prOpPgKwkLmgXPMCs5wZLSRVNtXBhhNpCDaqBXDgW6b8NHG31GKSrecgO15nltdZxesMt8DZxz_zepbGn9SdII7M29UyIzZdI4kgEWmB8yCi9effb2v_j_wYbBLX51CVZ3dAo1ys9IlFH6XsgmZ6-XDT71ZK9w6DWtC- |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4MHvTi24ii9uBNm-z2QXePxEhAgRMk3Jptt_URBAKLv992txU1auK1O9vDTGf6TTrzDQBXJIqkNbtDblwid0MjmVONeGLhtUkVMblrcO4Pmp0RvR-zsW8KW4Zq9_AkWUbqT81uEaXIlRS4qY4Y2Zxn0xFYOcb8EW6F-EsIKSeqWiBAEGc09q0yP-_x9TpaY8xvz6LlbdPeAzseJsJWZdd9sKGnB2DXQ0boHXJpl8JUhrB2CLotWFYJopl8qaIZfHM5satvhnN_UmDF4AyzyeNs8Vw8vUILXqErF4VqsnLkCVb6CIzad8PbDvIDE5CynlQgnFGmeK7jVNHYNDPJqeSGUtVMUpVwleZMMqJUapRFXhqrhGbYurxOnJBh5BjUprOpPgEwlxknTLM8phk1mkuibKoTG4alwbFRdRAHvQnl2cTdUIuJWPMgO10Lq2tR6lrEdXD98c-84tL4U7oRzCG8Xy0FtukaTjmOcB3cBBOtP_--2-n_xC_BVmfY74led_BwBrax63koS7UboFYsVvrcIpFCXpQH7x3ft9IW |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVQkRAXdkShgA_cwGripU6OFVC1LBUHKvVmxY7NopJWbcr3YycOLQiQuDoTH2ax38gzbwA4I0EgrdkdcuMSuRsayZRqxCMLr02siEldg_N9v9Ud0JshGy518RfV7tWTZNnT4Fiasrw5SU1zqfEtoBS58gI34REjm_-sUkeUYD16gNvVWUwIKaarWlBAEGc09G0zP-_x9Wpa4M1vT6TFzdPZAhseMsJ2aeNtsKKzHbDp4SP0wTmzS9WEhmptF_TasKgYRGP5Wp5s8N3lx67WGU6818CSzRkmo6fx9CV_foMWyEJXOgrVaO6IFKz0Hhh0rh8vu8gPT0DKRlWOcEKZ4qkOY0VD00okp5IbSlUrilXEVZwyyYhSsVEWhWmsIppgG_46ckKGkX1Qy8aZPgAwlQknTLM0pAk1mkuibNoTGoalwaFRdRBWehPKM4u7ARcjseBEdroWVtei0LUI6-D8859Jyavxp3SjMofwMTYT2KZuOOY4wHVwUZlo8fn33Q7_J34K1h6uOuKu1789AuvYtT8UVdsNUMunc31sQUkuTwq_-wBC1NZS |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-objective+vibrating+particle+system+algorithm+for+data+clustering&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Kaur%2C+Arvinder&rft.au=Kumar%2C+Yugal&rft.date=2022-02-01&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=25&rft.issue=1&rft.spage=209&rft.epage=239&rft_id=info:doi/10.1007%2Fs10044-021-01052-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10044_021_01052_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon |