A multi-objective vibrating particle system algorithm for data clustering

Clustering is an important data mining technique described as unsupervised learning. Till date, many single-objective clustering algorithms have been developed on the basis of swarm intelligence and evolutionary techniques. It is noticed that these clustering algorithms provide better solutions for...

Full description

Saved in:
Bibliographic Details
Published inPattern analysis and applications : PAA Vol. 25; no. 1; pp. 209 - 239
Main Authors Kaur, Arvinder, Kumar, Yugal
Format Journal Article
LanguageEnglish
Published London Springer London 01.02.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1433-7541
1433-755X
DOI10.1007/s10044-021-01052-1

Cover

Abstract Clustering is an important data mining technique described as unsupervised learning. Till date, many single-objective clustering algorithms have been developed on the basis of swarm intelligence and evolutionary techniques. It is noticed that these clustering algorithms provide better solutions for clustering problems, but sometimes, these solutions seem to be biased and also not appropriate for the problem with geometrical shapes datasets. In turn, performance of the clustering algorithms can be degraded. One of the possible solutions is to adopt multi-objective approach instead of single objective. In multi-objective approach, more than one objective functions can be considered for solving the clustering problems and these functions are conflicted in nature. Further, in multi-objective approach, Pareto-optimal solutions can be generated for improving the clustering performance. Hence, this paper presents a multi-objective clustering algorithm based on vibrating particle system (VPS) for effective cluster analysis, called MOVPS. This work considers intra-cluster variance and connectedness as objective functions, and VPS algorithm is used for optimizing the aforementioned objectives to obtain good clustering results. The performance of MOVPS algorithm is tested over a set of benchmark datasets and validated by comparing clustering results with various multi-objective and single-objective clustering algorithms from the literature. The simulation results illustrate the effectiveness of the MOVPS algorithm based on F -measure, coverage, distribution, convergence, non-dominating vector generation and intra-cluster distance measures. The simulation results showed that the proposed MOVPS algorithm enhances the clustering results significantly in comparison with existing multi-objective and single-objective clustering algorithms.
AbstractList Clustering is an important data mining technique described as unsupervised learning. Till date, many single-objective clustering algorithms have been developed on the basis of swarm intelligence and evolutionary techniques. It is noticed that these clustering algorithms provide better solutions for clustering problems, but sometimes, these solutions seem to be biased and also not appropriate for the problem with geometrical shapes datasets. In turn, performance of the clustering algorithms can be degraded. One of the possible solutions is to adopt multi-objective approach instead of single objective. In multi-objective approach, more than one objective functions can be considered for solving the clustering problems and these functions are conflicted in nature. Further, in multi-objective approach, Pareto-optimal solutions can be generated for improving the clustering performance. Hence, this paper presents a multi-objective clustering algorithm based on vibrating particle system (VPS) for effective cluster analysis, called MOVPS. This work considers intra-cluster variance and connectedness as objective functions, and VPS algorithm is used for optimizing the aforementioned objectives to obtain good clustering results. The performance of MOVPS algorithm is tested over a set of benchmark datasets and validated by comparing clustering results with various multi-objective and single-objective clustering algorithms from the literature. The simulation results illustrate the effectiveness of the MOVPS algorithm based on F -measure, coverage, distribution, convergence, non-dominating vector generation and intra-cluster distance measures. The simulation results showed that the proposed MOVPS algorithm enhances the clustering results significantly in comparison with existing multi-objective and single-objective clustering algorithms.
Clustering is an important data mining technique described as unsupervised learning. Till date, many single-objective clustering algorithms have been developed on the basis of swarm intelligence and evolutionary techniques. It is noticed that these clustering algorithms provide better solutions for clustering problems, but sometimes, these solutions seem to be biased and also not appropriate for the problem with geometrical shapes datasets. In turn, performance of the clustering algorithms can be degraded. One of the possible solutions is to adopt multi-objective approach instead of single objective. In multi-objective approach, more than one objective functions can be considered for solving the clustering problems and these functions are conflicted in nature. Further, in multi-objective approach, Pareto-optimal solutions can be generated for improving the clustering performance. Hence, this paper presents a multi-objective clustering algorithm based on vibrating particle system (VPS) for effective cluster analysis, called MOVPS. This work considers intra-cluster variance and connectedness as objective functions, and VPS algorithm is used for optimizing the aforementioned objectives to obtain good clustering results. The performance of MOVPS algorithm is tested over a set of benchmark datasets and validated by comparing clustering results with various multi-objective and single-objective clustering algorithms from the literature. The simulation results illustrate the effectiveness of the MOVPS algorithm based on F-measure, coverage, distribution, convergence, non-dominating vector generation and intra-cluster distance measures. The simulation results showed that the proposed MOVPS algorithm enhances the clustering results significantly in comparison with existing multi-objective and single-objective clustering algorithms.
Author Kaur, Arvinder
Kumar, Yugal
Author_xml – sequence: 1
  givenname: Arvinder
  surname: Kaur
  fullname: Kaur, Arvinder
  organization: Department of Computer Science and Engineering, Jaypee University of Information Technology
– sequence: 2
  givenname: Yugal
  surname: Kumar
  fullname: Kumar, Yugal
  email: yugalkumar.14@gmail.com
  organization: Department of Computer Science and Engineering, Jaypee University of Information Technology
BookMark eNp9kMtKAzEUhoNUsK2-gKuA62iuzcyyFC-FghsFdyGTZmrKzGRMMoW-vakjCi7cnBzI_-WcfDMw6XxnAbgm-JZgLO9irpwjTAnCBAuKyBmYEs4YkkK8TX56Ti7ALMY9xowxWkzBegnboUkO-WpvTXIHCw-uCjq5bgd7HZIzjYXxGJNtoW52Prj03sLaB7jVSUPTDPkq5PQlOK91E-3V9zkHrw_3L6sntHl-XK-WG2QYKROimgsjt5aUhpN6oSvJK1lzbhZFaQppyq2oBDOmrA0umKWm4JpKzGxxCtWCzcHN-G4f_MdgY1J7P4Quj1R0QQUtJcU0p4oxZYKPMdhaGZfyr3yXgnaNIlidxKlRnMri1Jc4RTJK_6B9cK0Ox_8hNkKxP8mw4Xerf6hPixaCwQ
CitedBy_id crossref_primary_10_1007_s40314_024_03004_x
crossref_primary_10_1016_j_swevo_2025_101847
crossref_primary_10_1109_TMM_2023_3266603
crossref_primary_10_1016_j_cherd_2024_06_029
crossref_primary_10_3390_electronics13071202
crossref_primary_10_1007_s42979_024_02883_5
crossref_primary_10_1007_s11227_023_05822_y
crossref_primary_10_1007_s42979_024_03048_0
crossref_primary_10_1155_2022_9596210
Cites_doi 10.1007/s00158-003-0368-6
10.1007/s00707-016-1725-z
10.1109/CEC.2002.1007032
10.1016/j.ins.2018.03.047
10.1007/s00500-017-2590-y
10.1007/s10115-014-0805-4
10.1016/S0031-3203(99)00137-5
10.1007/s12293-010-0047-2
10.1057/jors.2010.180
10.1109/TSMCA.2007.909595
10.1016/j.swevo.2011.08.001
10.1016/j.asoc.2014.11.060
10.1109/TEVC.2015.2476359
10.1007/s00500-013-1086-7
10.1007/s10489-017-0951-y
10.1016/j.asoc.2020.106120
10.1109/TSMCC.2008.2007252
10.1007/978-1-4614-6940-7_15
10.1016/j.ins.2013.12.057
10.1016/j.asoc.2012.12.001
10.1007/s00521-016-2528-9
10.1109/TEVC.2004.826067
10.1016/j.asoc.2018.03.011
10.1007/s12065-020-00373-0
10.1109/CEC.1999.781913
10.1109/TEVC.2007.892759
10.1007/s10462-013-9400-4
10.1016/j.swevo.2018.04.009
10.1007/978-0-85729-652-8_1
10.1016/j.knosys.2019.105018
10.1109/ACCESS.2020.2992903
10.1016/0098-3004(84)90020-7
10.1109/TITS.2018.2890588
10.1007/s00521-015-2095-5
10.1007/978-3-642-27242-4_18
10.1007/s10489-015-0656-z
10.1016/j.patrec.2011.05.010
10.1016/j.eswa.2011.07.123
10.1016/j.ejor.2006.08.008
10.1109/ACCESS.2019.2924957
10.1007/s00500-017-2923-x
10.1007/s00500-019-04620-0
10.1007/s10489-018-1301-4
10.1016/j.asoc.2014.12.009
10.1109/ACCESS.2018.2860791
10.1007/s00521-016-2191-1
10.1016/j.knosys.2013.11.003
10.1016/j.eswa.2016.09.008
10.1016/j.asoc.2012.08.005
10.1016/j.engappai.2016.11.003
10.1016/j.asoc.2019.105971
10.1016/j.engappai.2019.103307
10.1016/j.eswa.2010.06.061
10.1109/TEVC.2017.2726341
10.1007/s10489-018-1238-7
10.1007/s12652-018-0941-x
10.1007/3-540-45356-3_82
10.1007/3-540-45356-3_83
10.1109/CEC.2000.870756
10.1016/j.ins.2018.03.025
10.1007/s11431-020-1587-y
10.1016/j.asoc.2017.06.059
10.1109/TCYB.2018.2817480
10.1007/978-3-642-12538-6_6
10.24138/jcomss.v9i3.146
10.1007/978-981-15-4451-4_51
10.1007/s12293-014-0147-5
10.1007/s13748-018-0157-5
10.1007/978-3-540-30217-9_84
10.1016/j.asoc.2019.02.043
10.1007/s00500-013-1128-1
10.1016/j.eswa.2016.02.009
10.1016/j.patcog.2009.07.004
10.1007/s00366-021-01345-3
10.1016/j.asoc.2010.11.007
10.1007/s00500-005-0043-5
10.1109/TEVC.2006.877146
10.1016/j.asoc.2016.04.026
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s10044-021-01052-1
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1433-755X
EndPage 239
ExternalDocumentID 10_1007_s10044_021_01052_1
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
29O
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c319t-2a45c7de19c41f6ab74b7f44c689c87c9d5b53cc9fc083e2c84a2703e8f44cf53
IEDL.DBID U2A
ISSN 1433-7541
IngestDate Thu Sep 25 00:42:22 EDT 2025
Thu Apr 24 23:01:44 EDT 2025
Wed Oct 01 01:59:47 EDT 2025
Fri Feb 21 02:47:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Cluster analysis
Multi-objective
Pareto-optimal set
Vibrating particle system
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-2a45c7de19c41f6ab74b7f44c689c87c9d5b53cc9fc083e2c84a2703e8f44cf53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2625297202
PQPubID 2043691
PageCount 31
ParticipantIDs proquest_journals_2625297202
crossref_citationtrail_10_1007_s10044_021_01052_1
crossref_primary_10_1007_s10044_021_01052_1
springer_journals_10_1007_s10044_021_01052_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Pattern analysis and applications : PAA
PublicationTitleAbbrev Pattern Anal Applic
PublicationYear 2022
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References ZhuSXuLGoodmanEDEvolutionary multi-objective automatic clustering enhanced with quality metrics and ensemble strategyKnowl-Based Syst2020188105018
CoelloCACLamontGBVan VeldhuizenDAEvolutionary algorithms for solving multi-objective problems2007New YorkSpringer791041142.90029
CuraTA particle swarm optimization approach to clusteringExpert Syst Appl201239115821588
Knowles J, Corne D (1999) The pareto archived evolution strategy: a new baseline algorithm for pareto multiobjective optimisation. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), vol 1. IEEE, pp 98–105
BeumeNNaujoksBEmmerichMSMS-EMOA: multiobjective selection based on dominated hypervolumeEur J Oper Res20071813165316691123.90064
Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, Berlin, pp 65–74
HanXQuanLXiongXAlmeterMXiangJLanYA novel data clustering algorithm based on modified gravitational search algorithmEng Appl Artif Intell20176117
JensiRJijiGWAn improved krill herd algorithm with global exploration capability for solving numerical function optimization problems and its application to data clusteringAppl Soft Comput201646230245
KavehAGhazaanMIVibrating particles system algorithm for truss optimization with multiple natural frequency constraintsActa Mech201722813073223597185
JiangHYiSLiJYangFHuXAnt clustering algorithm with K-harmonic means clusteringExpert Syst Appl2010371286798684
Kushwaha N, Pant M (2018) Fuzzy magnetic optimization clustering algorithm with its application to health care. J Ambient Intell Humaniz Comput 1–10
AntunesVSakataTCFaceliKde SoutoMCHybrid strategy for selecting compact set of clustering partitionsAppl Soft Comput202087105971
RashedABHamdanHSharefNMSulaimanMNYaakobRAbubakarMMulti-objective clustering algorithm using particle swarm optimization with crowding distance (MCPSO-CD)Int J Adv Intell Inf2020617281
SahaIMaulikUPlewczynskiDA new multi-objective technique for differential fuzzy clusteringAppl Soft Comput201111227652776
Zitzler E, Künzli S (2004) Indicator-based selection in multiobjective search. In: International conference on parallel problem solving from nature. Springer, Berlin, pp 832–842
AlokAKSahaSEkbalAA new semi-supervised clustering technique using multi-objective optimizationAppl Intell2015433633661
CaiJWeiHYangHZhaoXA novel clustering algorithm based on DPC and PSOIEEE Access202088820088214
AtteaBAAA fuzzy multi-objective particle swarm optimization for effective data clusteringMemet Comput20102305312
ZhouZZhuSKernel-based multiobjective clustering algorithm with automatic attribute weightingSoft Comput2018221136853709
ZangWWangZJiangDLiuXA kernel-based intuitionistic fuzzy C-means clustering using improved multi-objective immune algorithmIEEE Access201978456584579
Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength Pareto evolutionary algorithm. TIK-report, 103
KavehAGhazaanMIA new meta-heuristic algorithm: vibrating particles systemSci Iran Trans A Civ Eng2017242551
Garza-FabreMHandlJKnowlesJAn improved and more scalable evolutionary approach to multiobjective clusteringIEEE Trans Evol Comput2017224515535
SahaSSpandanaREkbalABandyopadhyaySSimultaneous feature selection and symmetry based clustering using multiobjective frameworkAppl Soft Comput201529479486
SunJZhangHZhouAZhangQZhangKA new learning-based adaptive multi-objective evolutionary algorithmSwarm Evol Comput201944304319
SahaSBandyopadhyaySA generalized automatic clustering algorithm in a multiobjective frameworkAppl Soft Comput201313189108
KotinisMImproving a multi-objective differential evolution optimizer using fuzzy adaptation and $$$$-medoids clusteringSoft Comput2014184757771
HeloulouIRadjefMSKechadiMTAutomatic multi-objective clustering based on game theoryExpert Syst Appl2017673248
PrakashJSinghPKKishorAIntegrating fitness predator optimizer with multi-objective PSO for dynamic partitional clusteringProg Artif Intell2019818399
Martínez-PeñalozaMGMezura-MontesECruz-RamírezNAcosta-MesaHGRíos-FigueroaHVImproved multi-objective clustering with automatic determination of the number of clustersNeural Comput Appl201728822552275
GunantaraNHendrantoroGMulti-objective cross-layer optimization for selection of cooperative path pairs in multihop wireless ad hoc networksJ Commun Softw Syst201393170177
FräntiPSieranojaSK-means properties on six clustering benchmark datasetsAppl Intell201848124743475907043407
CoelloCACPulidoGTLechugaMSHandling multiple objectives with particle swarm optimizationIEEE Trans Evol Comput200483256279
SahaIMaulikUIncremental learning based multiobjective fuzzy clustering for categorical dataInf Sci201426735573177304
De Weck OL (2004) Multiobjective optimization: history and promise. In: Invited Keynote Paper, GL2-2, the third China–Japan–Korea joint symposium on optimization of structural and mechanical systems, Kanazawa, Japan, vol 2, p 34
BouyerAHatamlouAAn efficient hybrid clustering method based on improved cuckoo optimization and modified particle swarm optimization algorithmsAppl Soft Comput201867172182
İnkayaTKayalıgilSÖzdemirelNEAnt colony optimization based clustering methodologyAppl Soft Comput201528301311
MaulikUBandyopadhyaySGenetic algorithm-based clustering techniquePattern Recogn200033914551465
LuoJJiaoLLozanoJAA sparse spectral clustering framework via multiobjective evolutionary algorithmIEEE Trans Evol Comput2015203418433
Corne DW, Knowles JD, Oates MJ (2000) The Pareto envelope-based selection algorithm for multiobjective optimization. In: International conference on parallel problem solving from nature. Springer, Berlin, pp 839–848
AbualigahLMKhaderATHanandehESGandomiAHA novel hybridization strategy for krill herd algorithm applied to clustering techniquesAppl Soft Comput201760423435
MarlerRTAroraJSSurvey of multi-objective optimization methods for engineeringStruct Multidiscip Optim200426636939520573771243.90199
DasSAbrahamAKonarAAutomatic clustering using an improved differential evolution algorithmIEEE Trans Syst Man Cybern-Part A: Syst Hum2007381218237
Rudolph G, Agapie A (2000) Convergence properties of some multi-objective evolutionary algorithms. In: Proceedings of the 2000 congress on evolutionary computation. CEC00 (Cat. No. 00TH8512), vol 2. IEEE, pp 1010–1016
Pang W, Wang KP, Zhou CG, Dong LJ (2004) Fuzzy discrete particle swarm optimization for solving traveling salesman problem. In: Fourth international conference on computer and information technology, 2004. CIT'04. IEEE, pp 796–800
DebKBurkeEKendallGMulti-objective optimizationSearch methodologies2014BostonSpringer403449
LiXWongKCEvolutionary multiobjective clustering and its applications to patient stratificationIEEE Trans Cybern201849516801693
Kumar Y, Kaur A (2021) Variants of bat algorithm for solving partitional clustering problems. Eng Comput 1–27
SahooGA two-step artificial bee colony algorithm for clusteringNeural Comput Appl2017283537551
AlmannaaMHElhenawyMRakhaHAA novel supervised clustering algorithm for transportation system applicationsIEEE Trans Intell Transp Syst2019211222232
KuoRJZulviaFEMulti-objective cluster analysis using a gradient evolution algorithmSoft Comput202024115
Coello CAC, Cortés NC (2002) An approach to solve multiobjective optimization problems based on an artificial immune system
Shahsamandi EsfahaniPSaghaeiAA multi-objective approach to fuzzy clustering using ITLBO algorithmJ AI Data Min201752307317
PrakashJSinghPKGravitational search algorithm and K-means for simultaneous feature selection and data clustering: a multi-objective approachSoft Comput201923620832100
PrakashJSinghPKAn effective multiobjective approach for hard partitional clusteringMemet Comput20157293104
KumarYSinghPKA chaotic teaching learning based optimization algorithm for clustering problemsAppl Intell201949310361062
BezdekJCEhrlichRFullWFCM: the fuzzy c-means clustering algorithmComput Geosci1984102–3191203
HruschkaERCampelloRJFreitasAAA survey of evolutionary algorithms for clusteringIEEE Trans Syst Man Cybern Part C Appl Rev2009392133155
Satapathy SC, Naik A (2011) Data clustering based on teaching-learning-based optimization. In: International conference on swarm, evolutionary, and memetic computing. Springer, Berlin, pp 148–156
CaballeroRLagunaMMartíRMolinaJScatter tabu search for multiobjective clustering problemsJ Oper Res Soc2011621120342046
KavehAHoseini VaezSRHosseiniPEnhanced vibrating particles system algorithm for damage identification of truss structuresSci Iran201726246256
SinghHKumarYA neighborhood search based cat swarm optimization algorithm for clustering problemsEvol Intel2020134593609
PaulAKShillPCNew automatic fuzzy relational clustering algorithms using multi-objective NSGA-IIInf Sci20184481121333784478
Deb K, Thiele L, Laumanns M, Zitzler E (2002) Scalable multi-objective optimization test problems. In: Proceedings of the 2002 congress on evolutionary computation. CEC'02 (Cat. No. 02TH8600), vol 1. IEEE, pp 825–830
LiuCLiuJPengDWuCA general multiobjective clustering approach based on multiple distance measuresIEEE Access201864170641719
ChenLDuanHFanYWeiCMulti-objective clustering analysis via combinatorial pigeon inspired optimizationSci China Technol Sci202063112
WangRLaiSWuGXingLWangLIshibuchiHMulti-clustering via evolutionary multi-objective optimizationInf Sci201845012814037898861440.68244
ZhangQLiHMOEA/D: a multiobjective evolutionary algorithm based on decompositionIEEE Trans Evol Comput2007116712731
Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: International conference on parallel problem solving from nature. Springer, Berlin, pp 849–858
EhrgottMMulticriteria optimization2005BerlinSpringer1132.90001
DebKWangLNgADebKMulti-objective optimisation using evolutionary algorithms: an introductionMulti-objective evolutionary optimization for product design and manufacturing2011LondonSpringer334
PengPAddamOElzohbiMÖzyerSTElhajjAG
B Jiang (1052_CR83) 2014; 18
AA Esmin (1052_CR21) 2015; 44
K Bijari (1052_CR79) 2018; 29
CAC Coello (1052_CR13) 2004; 8
R Jensi (1052_CR80) 2016; 46
Y Kumar (1052_CR84) 2019; 49
H Shen (1052_CR88) 2006; 10
S Saha (1052_CR48) 2015; 29
1052_CR17
MG Martínez-Peñaloza (1052_CR49) 2017; 28
H Singh (1052_CR78) 2020; 13
MH Almannaa (1052_CR62) 2019; 21
V Antunes (1052_CR31) 2020; 87
J Prakash (1052_CR59) 2019; 23
S Zhu (1052_CR30) 2020; 188
1052_CR10
1052_CR12
1052_CR15
T İnkaya (1052_CR14) 2015; 28
R Wang (1052_CR58) 2018; 450
H Jiang (1052_CR71) 2010; 37
J Sun (1052_CR63) 2019; 44
P Shahsamandi Esfahani (1052_CR55) 2017; 5
S Saha (1052_CR34) 2010; 43
W Kwedlo (1052_CR20) 2011; 32
I Saha (1052_CR52) 2014; 267
M Kotinis (1052_CR53) 2014; 18
T Cura (1052_CR69) 2012; 39
R Caballero (1052_CR45) 2011; 62
I Heloulou (1052_CR61) 2017; 67
G Sahoo (1052_CR70) 2017; 28
S Saha (1052_CR26) 2013; 13
I Saha (1052_CR38) 2011; 11
C Liu (1052_CR56) 2019; 78
R Liu (1052_CR50) 2015; 45
Q Zhang (1052_CR9) 2007; 11
BAA Attea (1052_CR33) 2010; 2
AB Rashed (1052_CR37) 2020; 6
P Fränti (1052_CR74) 2018; 48
1052_CR87
1052_CR89
G Armano (1052_CR54) 2016; 55
X Han (1052_CR24) 2017; 61
C Liu (1052_CR65) 2018; 6
U Maulik (1052_CR72) 2000; 33
1052_CR5
M Ehrgott (1052_CR19) 2005
RJ Kuo (1052_CR29) 2020; 24
D Yan (1052_CR46) 2020; 17
A Hatamlou (1052_CR82) 2017; 47
1052_CR8
1052_CR6
1052_CR73
1052_CR7
J Luo (1052_CR39) 2015; 20
A Bouyer (1052_CR85) 2018; 67
AK Alok (1052_CR51) 2015; 43
N Beume (1052_CR11) 2007; 181
CAC Coello (1052_CR4) 2007
W Zang (1052_CR64) 2019; 7
R Akbari (1052_CR16) 2012; 2
S Das (1052_CR76) 2007; 38
Z Zhou (1052_CR43) 2018; 22
1052_CR75
JC Bezdek (1052_CR86) 1984; 10
1052_CR77
LM Abualigah (1052_CR81) 2017; 60
L Chen (1052_CR47) 2020; 63
J Prakash (1052_CR35) 2015; 7
E Hancer (1052_CR36) 2020; 87
A Kaveh (1052_CR66) 2017; 26
RT Marler (1052_CR2) 2004; 26
P Peng (1052_CR44) 2014; 56
A Kaveh (1052_CR67) 2017; 228
AK Paul (1052_CR57) 2018; 448
N Gunantara (1052_CR18) 2013; 9
M Garza-Fabre (1052_CR42) 2017; 22
J Handl (1052_CR25) 2007; 11
X Li (1052_CR60) 2018; 49
J Cai (1052_CR68) 2020; 8
K Deb (1052_CR27) 2011
ER Hruschka (1052_CR22) 2009; 39
R Liu (1052_CR32) 2020; 89
K Deb (1052_CR3) 2014
1052_CR23
A Kaveh (1052_CR28) 2017; 24
M Badami (1052_CR41) 2013; 13
1052_CR1
J Prakash (1052_CR40) 2019; 8
References_xml – reference: PengPAddamOElzohbiMÖzyerSTElhajjAGaoSReporting and analyzing alternative clustering solutions by employing multi-objective genetic algorithm and conducting experiments on cancer dataKnowl-Based Syst201456108122
– reference: Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: International conference on parallel problem solving from nature. Springer, Berlin, pp 849–858
– reference: HancerEA new multi-objective differential evolution approach for simultaneous clustering and feature selectionEng Appl Artif Intell202087103307
– reference: Zitzler E, Künzli S (2004) Indicator-based selection in multiobjective search. In: International conference on parallel problem solving from nature. Springer, Berlin, pp 832–842
– reference: JensiRJijiGWAn improved krill herd algorithm with global exploration capability for solving numerical function optimization problems and its application to data clusteringAppl Soft Comput201646230245
– reference: EsminAACoelhoRAMatwinSA review on particle swarm optimization algorithm and its variants to clustering high-dimensional dataArtif Intell Rev20154412345
– reference: Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, Berlin, pp 65–74
– reference: Deb K, Thiele L, Laumanns M, Zitzler E (2002) Scalable multi-objective optimization test problems. In: Proceedings of the 2002 congress on evolutionary computation. CEC'02 (Cat. No. 02TH8600), vol 1. IEEE, pp 825–830
– reference: Shahsamandi EsfahaniPSaghaeiAA multi-objective approach to fuzzy clustering using ITLBO algorithmJ AI Data Min201752307317
– reference: SahooGA two-step artificial bee colony algorithm for clusteringNeural Comput Appl2017283537551
– reference: ChenLDuanHFanYWeiCMulti-objective clustering analysis via combinatorial pigeon inspired optimizationSci China Technol Sci202063112
– reference: LiXWongKCEvolutionary multiobjective clustering and its applications to patient stratificationIEEE Trans Cybern201849516801693
– reference: Rudolph G, Agapie A (2000) Convergence properties of some multi-objective evolutionary algorithms. In: Proceedings of the 2000 congress on evolutionary computation. CEC00 (Cat. No. 00TH8512), vol 2. IEEE, pp 1010–1016
– reference: RashedABHamdanHSharefNMSulaimanMNYaakobRAbubakarMMulti-objective clustering algorithm using particle swarm optimization with crowding distance (MCPSO-CD)Int J Adv Intell Inf2020617281
– reference: CuraTA particle swarm optimization approach to clusteringExpert Syst Appl201239115821588
– reference: Coello CAC, Cortés NC (2002) An approach to solve multiobjective optimization problems based on an artificial immune system
– reference: KavehAGhazaanMIA new meta-heuristic algorithm: vibrating particles systemSci Iran Trans A Civ Eng2017242551
– reference: LiuRRenRLiuJLiuJA clustering and dimensionality reduction based evolutionary algorithm for large-scale multi-objective problemsAppl Soft Comput202089106120
– reference: HeloulouIRadjefMSKechadiMTAutomatic multi-objective clustering based on game theoryExpert Syst Appl2017673248
– reference: ZhuSXuLGoodmanEDEvolutionary multi-objective automatic clustering enhanced with quality metrics and ensemble strategyKnowl-Based Syst2020188105018
– reference: HandlJKnowlesJAn evolutionary approach to multiobjective clusteringIEEE Trans Evol Comput20071115676
– reference: De Weck OL (2004) Multiobjective optimization: history and promise. In: Invited Keynote Paper, GL2-2, the third China–Japan–Korea joint symposium on optimization of structural and mechanical systems, Kanazawa, Japan, vol 2, p 34
– reference: Corne DW, Knowles JD, Oates MJ (2000) The Pareto envelope-based selection algorithm for multiobjective optimization. In: International conference on parallel problem solving from nature. Springer, Berlin, pp 839–848
– reference: DasSAbrahamAKonarAAutomatic clustering using an improved differential evolution algorithmIEEE Trans Syst Man Cybern-Part A: Syst Hum2007381218237
– reference: AntunesVSakataTCFaceliKde SoutoMCHybrid strategy for selecting compact set of clustering partitionsAppl Soft Comput202087105971
– reference: CaballeroRLagunaMMartíRMolinaJScatter tabu search for multiobjective clustering problemsJ Oper Res Soc2011621120342046
– reference: BouyerAHatamlouAAn efficient hybrid clustering method based on improved cuckoo optimization and modified particle swarm optimization algorithmsAppl Soft Comput201867172182
– reference: SahaIMaulikUPlewczynskiDA new multi-objective technique for differential fuzzy clusteringAppl Soft Comput201111227652776
– reference: HruschkaERCampelloRJFreitasAAA survey of evolutionary algorithms for clusteringIEEE Trans Syst Man Cybern Part C Appl Rev2009392133155
– reference: Knowles J, Corne D (1999) The pareto archived evolution strategy: a new baseline algorithm for pareto multiobjective optimisation. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), vol 1. IEEE, pp 98–105
– reference: JiangHYiSLiJYangFHuXAnt clustering algorithm with K-harmonic means clusteringExpert Syst Appl2010371286798684
– reference: Kumar Y, Kaur A (2021) Variants of bat algorithm for solving partitional clustering problems. Eng Comput 1–27
– reference: AtteaBAAA fuzzy multi-objective particle swarm optimization for effective data clusteringMemet Comput20102305312
– reference: Kushwaha N, Pant M (2018) Fuzzy magnetic optimization clustering algorithm with its application to health care. J Ambient Intell Humaniz Comput 1–10
– reference: BadamiMHamzehAHashemiSAn enriched game-theoretic framework for multi-objective clusteringAppl Soft Comput201313418531868
– reference: YanDCaoHYuYWangYYuXSingle-objective/multiobjective cat swarm optimization clustering analysis for data partitionIEEE Trans Autom Sci Eng20201716331646
– reference: KavehAGhazaanMIVibrating particles system algorithm for truss optimization with multiple natural frequency constraintsActa Mech201722813073223597185
– reference: HanXQuanLXiongXAlmeterMXiangJLanYA novel data clustering algorithm based on modified gravitational search algorithmEng Appl Artif Intell20176117
– reference: CaiJWeiHYangHZhaoXA novel clustering algorithm based on DPC and PSOIEEE Access202088820088214
– reference: LiuCLiYZhaoQLiuCReference vector-based multi-objective clustering for high-dimensional dataAppl Soft Comput201978614629
– reference: JiangBWangNCooperative bare-bone particle swarm optimization for data clusteringSoft Comput201418610791091
– reference: PrakashJSinghPKKishorAIntegrating fitness predator optimizer with multi-objective PSO for dynamic partitional clusteringProg Artif Intell2019818399
– reference: SunJZhangHZhouAZhangQZhangKA new learning-based adaptive multi-objective evolutionary algorithmSwarm Evol Comput201944304319
– reference: BijariKZareHVeisiHBobarshadHMemory-enriched big bang–big crunch optimization algorithm for data clusteringNeural Comput Appl2018296111121
– reference: Garza-FabreMHandlJKnowlesJAn improved and more scalable evolutionary approach to multiobjective clusteringIEEE Trans Evol Comput2017224515535
– reference: GunantaraNHendrantoroGMulti-objective cross-layer optimization for selection of cooperative path pairs in multihop wireless ad hoc networksJ Commun Softw Syst201393170177
– reference: AlmannaaMHElhenawyMRakhaHAA novel supervised clustering algorithm for transportation system applicationsIEEE Trans Intell Transp Syst2019211222232
– reference: İnkayaTKayalıgilSÖzdemirelNEAnt colony optimization based clustering methodologyAppl Soft Comput201528301311
– reference: DebKBurkeEKendallGMulti-objective optimizationSearch methodologies2014BostonSpringer403449
– reference: ShenHYangJWangSLiuXAttribute weighted mercer kernel based fuzzy clustering algorithm for general non-spherical datasetsSoft Comput2006101110611073
– reference: Satapathy SC, Naik A (2011) Data clustering based on teaching-learning-based optimization. In: International conference on swarm, evolutionary, and memetic computing. Springer, Berlin, pp 148–156
– reference: KuoRJZulviaFEMulti-objective cluster analysis using a gradient evolution algorithmSoft Comput202024115
– reference: AlokAKSahaSEkbalAA new semi-supervised clustering technique using multi-objective optimizationAppl Intell2015433633661
– reference: FräntiPSieranojaSK-means properties on six clustering benchmark datasetsAppl Intell201848124743475907043407
– reference: SahaSSpandanaREkbalABandyopadhyaySSimultaneous feature selection and symmetry based clustering using multiobjective frameworkAppl Soft Comput201529479486
– reference: HatamlouAA hybrid bio-inspired algorithm and its applicationAppl Intell201747410591067
– reference: ArmanoGFarmaniMRMultiobjective clustering analysis using particle swarm optimizationExpert Syst Appl201655184193
– reference: SahaSBandyopadhyaySA symmetry based multiobjective clustering technique for automatic evolution of clustersPattern Recogn20104337387511187.68499
– reference: Singh H, Kumar Y (2019) Hybrid big bang-big crunch algorithm for cluster analysis. In: International conference on futuristic trends in networks and computing technologies. Springer, Singapore, pp 648–661
– reference: LiuRZhangLLiBMaYJiaoLSynergy of two mutations based immune multi-objective automatic fuzzy clustering algorithmKnowl Inf Syst2015451133157
– reference: KumarYSinghPKA chaotic teaching learning based optimization algorithm for clustering problemsAppl Intell201949310361062
– reference: Pang W, Wang KP, Zhou CG, Dong LJ (2004) Fuzzy discrete particle swarm optimization for solving traveling salesman problem. In: Fourth international conference on computer and information technology, 2004. CIT'04. IEEE, pp 796–800
– reference: WangRLaiSWuGXingLWangLIshibuchiHMulti-clustering via evolutionary multi-objective optimizationInf Sci201845012814037898861440.68244
– reference: MaulikUBandyopadhyaySGenetic algorithm-based clustering techniquePattern Recogn200033914551465
– reference: KwedloWA clustering method combining differential evolution with the K-means algorithmPattern Recogn Lett2011321216131621
– reference: LuoJJiaoLLozanoJAA sparse spectral clustering framework via multiobjective evolutionary algorithmIEEE Trans Evol Comput2015203418433
– reference: BezdekJCEhrlichRFullWFCM: the fuzzy c-means clustering algorithmComput Geosci1984102–3191203
– reference: CoelloCACLamontGBVan VeldhuizenDAEvolutionary algorithms for solving multi-objective problems2007New YorkSpringer791041142.90029
– reference: PrakashJSinghPKAn effective multiobjective approach for hard partitional clusteringMemet Comput20157293104
– reference: DebKWangLNgADebKMulti-objective optimisation using evolutionary algorithms: an introductionMulti-objective evolutionary optimization for product design and manufacturing2011LondonSpringer334
– reference: SahaSBandyopadhyaySA generalized automatic clustering algorithm in a multiobjective frameworkAppl Soft Comput201313189108
– reference: SinghHKumarYA neighborhood search based cat swarm optimization algorithm for clustering problemsEvol Intel2020134593609
– reference: PrakashJSinghPKGravitational search algorithm and K-means for simultaneous feature selection and data clustering: a multi-objective approachSoft Comput201923620832100
– reference: EhrgottMMulticriteria optimization2005BerlinSpringer1132.90001
– reference: ZangWWangZJiangDLiuXA kernel-based intuitionistic fuzzy C-means clustering using improved multi-objective immune algorithmIEEE Access201978456584579
– reference: KavehAHoseini VaezSRHosseiniPEnhanced vibrating particles system algorithm for damage identification of truss structuresSci Iran201726246256
– reference: ZhouZZhuSKernel-based multiobjective clustering algorithm with automatic attribute weightingSoft Comput2018221136853709
– reference: BeumeNNaujoksBEmmerichMSMS-EMOA: multiobjective selection based on dominated hypervolumeEur J Oper Res20071813165316691123.90064
– reference: PaulAKShillPCNew automatic fuzzy relational clustering algorithms using multi-objective NSGA-IIInf Sci20184481121333784478
– reference: LiuCLiuJPengDWuCA general multiobjective clustering approach based on multiple distance measuresIEEE Access201864170641719
– reference: SahaIMaulikUIncremental learning based multiobjective fuzzy clustering for categorical dataInf Sci201426735573177304
– reference: Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength Pareto evolutionary algorithm. TIK-report, 103
– reference: CoelloCACPulidoGTLechugaMSHandling multiple objectives with particle swarm optimizationIEEE Trans Evol Comput200483256279
– reference: MarlerRTAroraJSSurvey of multi-objective optimization methods for engineeringStruct Multidiscip Optim200426636939520573771243.90199
– reference: AkbariRHedayatzadehRZiaratiKHassanizadehBA multi-objective artificial bee colony algorithmSwarm Evol Comput201223952
– reference: KotinisMImproving a multi-objective differential evolution optimizer using fuzzy adaptation and $$$$-medoids clusteringSoft Comput2014184757771
– reference: AbualigahLMKhaderATHanandehESGandomiAHA novel hybridization strategy for krill herd algorithm applied to clustering techniquesAppl Soft Comput201760423435
– reference: ZhangQLiHMOEA/D: a multiobjective evolutionary algorithm based on decompositionIEEE Trans Evol Comput2007116712731
– reference: Martínez-PeñalozaMGMezura-MontesECruz-RamírezNAcosta-MesaHGRíos-FigueroaHVImproved multi-objective clustering with automatic determination of the number of clustersNeural Comput Appl201728822552275
– volume-title: Multicriteria optimization
  year: 2005
  ident: 1052_CR19
– volume: 26
  start-page: 369
  issue: 6
  year: 2004
  ident: 1052_CR2
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-003-0368-6
– volume: 228
  start-page: 307
  issue: 1
  year: 2017
  ident: 1052_CR67
  publication-title: Acta Mech
  doi: 10.1007/s00707-016-1725-z
– ident: 1052_CR1
  doi: 10.1109/CEC.2002.1007032
– volume: 450
  start-page: 128
  year: 2018
  ident: 1052_CR58
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.03.047
– volume: 22
  start-page: 3685
  issue: 11
  year: 2018
  ident: 1052_CR43
  publication-title: Soft Comput
  doi: 10.1007/s00500-017-2590-y
– volume: 45
  start-page: 133
  issue: 1
  year: 2015
  ident: 1052_CR50
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-014-0805-4
– volume: 33
  start-page: 1455
  issue: 9
  year: 2000
  ident: 1052_CR72
  publication-title: Pattern Recogn
  doi: 10.1016/S0031-3203(99)00137-5
– volume: 2
  start-page: 305
  year: 2010
  ident: 1052_CR33
  publication-title: Memet Comput
  doi: 10.1007/s12293-010-0047-2
– volume: 62
  start-page: 2034
  issue: 11
  year: 2011
  ident: 1052_CR45
  publication-title: J Oper Res Soc
  doi: 10.1057/jors.2010.180
– volume: 38
  start-page: 218
  issue: 1
  year: 2007
  ident: 1052_CR76
  publication-title: IEEE Trans Syst Man Cybern-Part A: Syst Hum
  doi: 10.1109/TSMCA.2007.909595
– volume: 2
  start-page: 39
  year: 2012
  ident: 1052_CR16
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2011.08.001
– volume: 28
  start-page: 301
  year: 2015
  ident: 1052_CR14
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.11.060
– volume: 20
  start-page: 418
  issue: 3
  year: 2015
  ident: 1052_CR39
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2015.2476359
– volume: 18
  start-page: 757
  issue: 4
  year: 2014
  ident: 1052_CR53
  publication-title: Soft Comput
  doi: 10.1007/s00500-013-1086-7
– volume: 5
  start-page: 307
  issue: 2
  year: 2017
  ident: 1052_CR55
  publication-title: J AI Data Min
– volume: 47
  start-page: 1059
  issue: 4
  year: 2017
  ident: 1052_CR82
  publication-title: Appl Intell
  doi: 10.1007/s10489-017-0951-y
– volume: 89
  start-page: 106120
  year: 2020
  ident: 1052_CR32
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106120
– ident: 1052_CR6
– volume: 39
  start-page: 133
  issue: 2
  year: 2009
  ident: 1052_CR22
  publication-title: IEEE Trans Syst Man Cybern Part C Appl Rev
  doi: 10.1109/TSMCC.2008.2007252
– start-page: 403
  volume-title: Search methodologies
  year: 2014
  ident: 1052_CR3
  doi: 10.1007/978-1-4614-6940-7_15
– volume: 267
  start-page: 35
  year: 2014
  ident: 1052_CR52
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2013.12.057
– volume: 13
  start-page: 1853
  issue: 4
  year: 2013
  ident: 1052_CR41
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2012.12.001
– volume: 29
  start-page: 111
  issue: 6
  year: 2018
  ident: 1052_CR79
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2528-9
– volume: 8
  start-page: 256
  issue: 3
  year: 2004
  ident: 1052_CR13
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2004.826067
– volume: 67
  start-page: 172
  year: 2018
  ident: 1052_CR85
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.03.011
– volume: 13
  start-page: 593
  issue: 4
  year: 2020
  ident: 1052_CR78
  publication-title: Evol Intel
  doi: 10.1007/s12065-020-00373-0
– ident: 1052_CR7
  doi: 10.1109/CEC.1999.781913
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 1052_CR9
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2007.892759
– volume: 44
  start-page: 23
  issue: 1
  year: 2015
  ident: 1052_CR21
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-013-9400-4
– volume: 44
  start-page: 304
  year: 2019
  ident: 1052_CR63
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2018.04.009
– start-page: 3
  volume-title: Multi-objective evolutionary optimization for product design and manufacturing
  year: 2011
  ident: 1052_CR27
  doi: 10.1007/978-0-85729-652-8_1
– volume: 188
  start-page: 105018
  year: 2020
  ident: 1052_CR30
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.105018
– ident: 1052_CR87
– volume: 8
  start-page: 88200
  year: 2020
  ident: 1052_CR68
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2992903
– volume: 10
  start-page: 191
  issue: 2–3
  year: 1984
  ident: 1052_CR86
  publication-title: Comput Geosci
  doi: 10.1016/0098-3004(84)90020-7
– volume: 21
  start-page: 222
  issue: 1
  year: 2019
  ident: 1052_CR62
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2018.2890588
– volume: 28
  start-page: 537
  issue: 3
  year: 2017
  ident: 1052_CR70
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-2095-5
– ident: 1052_CR77
  doi: 10.1007/978-3-642-27242-4_18
– volume: 43
  start-page: 633
  issue: 3
  year: 2015
  ident: 1052_CR51
  publication-title: Appl Intell
  doi: 10.1007/s10489-015-0656-z
– volume: 32
  start-page: 1613
  issue: 12
  year: 2011
  ident: 1052_CR20
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2011.05.010
– volume: 39
  start-page: 1582
  issue: 1
  year: 2012
  ident: 1052_CR69
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.07.123
– volume: 181
  start-page: 1653
  issue: 3
  year: 2007
  ident: 1052_CR11
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2006.08.008
– volume: 7
  start-page: 84565
  year: 2019
  ident: 1052_CR64
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2924957
– volume: 6
  start-page: 72
  issue: 1
  year: 2020
  ident: 1052_CR37
  publication-title: Int J Adv Intell Inf
– volume: 23
  start-page: 2083
  issue: 6
  year: 2019
  ident: 1052_CR59
  publication-title: Soft Comput
  doi: 10.1007/s00500-017-2923-x
– volume: 24
  start-page: 1
  year: 2020
  ident: 1052_CR29
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-04620-0
– volume: 49
  start-page: 1036
  issue: 3
  year: 2019
  ident: 1052_CR84
  publication-title: Appl Intell
  doi: 10.1007/s10489-018-1301-4
– volume: 29
  start-page: 479
  year: 2015
  ident: 1052_CR48
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.12.009
– ident: 1052_CR17
– volume: 6
  start-page: 41706
  year: 2018
  ident: 1052_CR65
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2860791
– volume: 28
  start-page: 2255
  issue: 8
  year: 2017
  ident: 1052_CR49
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2191-1
– volume: 56
  start-page: 108
  year: 2014
  ident: 1052_CR44
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2013.11.003
– volume: 67
  start-page: 32
  year: 2017
  ident: 1052_CR61
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.09.008
– volume: 13
  start-page: 89
  issue: 1
  year: 2013
  ident: 1052_CR26
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2012.08.005
– volume: 61
  start-page: 1
  year: 2017
  ident: 1052_CR24
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2016.11.003
– volume: 87
  start-page: 105971
  year: 2020
  ident: 1052_CR31
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105971
– volume: 87
  start-page: 103307
  year: 2020
  ident: 1052_CR36
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2019.103307
– volume: 37
  start-page: 8679
  issue: 12
  year: 2010
  ident: 1052_CR71
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.06.061
– volume: 22
  start-page: 515
  issue: 4
  year: 2017
  ident: 1052_CR42
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2017.2726341
– volume: 48
  start-page: 4743
  issue: 12
  year: 2018
  ident: 1052_CR74
  publication-title: Appl Intell
  doi: 10.1007/s10489-018-1238-7
– ident: 1052_CR89
  doi: 10.1007/s12652-018-0941-x
– ident: 1052_CR8
  doi: 10.1007/3-540-45356-3_82
– ident: 1052_CR12
  doi: 10.1007/3-540-45356-3_83
– ident: 1052_CR5
  doi: 10.1109/CEC.2000.870756
– volume: 448
  start-page: 112
  year: 2018
  ident: 1052_CR57
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.03.025
– volume: 63
  start-page: 1
  year: 2020
  ident: 1052_CR47
  publication-title: Sci China Technol Sci
  doi: 10.1007/s11431-020-1587-y
– volume: 60
  start-page: 423
  year: 2017
  ident: 1052_CR81
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.06.059
– start-page: 79
  volume-title: Evolutionary algorithms for solving multi-objective problems
  year: 2007
  ident: 1052_CR4
– volume: 26
  start-page: 246
  year: 2017
  ident: 1052_CR66
  publication-title: Sci Iran
– volume: 49
  start-page: 1680
  issue: 5
  year: 2018
  ident: 1052_CR60
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2018.2817480
– ident: 1052_CR73
  doi: 10.1007/978-3-642-12538-6_6
– volume: 9
  start-page: 170
  issue: 3
  year: 2013
  ident: 1052_CR18
  publication-title: J Commun Softw Syst
  doi: 10.24138/jcomss.v9i3.146
– ident: 1052_CR75
  doi: 10.1007/978-981-15-4451-4_51
– volume: 7
  start-page: 93
  issue: 2
  year: 2015
  ident: 1052_CR35
  publication-title: Memet Comput
  doi: 10.1007/s12293-014-0147-5
– volume: 8
  start-page: 83
  issue: 1
  year: 2019
  ident: 1052_CR40
  publication-title: Prog Artif Intell
  doi: 10.1007/s13748-018-0157-5
– ident: 1052_CR10
  doi: 10.1007/978-3-540-30217-9_84
– volume: 78
  start-page: 614
  year: 2019
  ident: 1052_CR56
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.02.043
– volume: 18
  start-page: 1079
  issue: 6
  year: 2014
  ident: 1052_CR83
  publication-title: Soft Comput
  doi: 10.1007/s00500-013-1128-1
– volume: 24
  start-page: 551
  issue: 2
  year: 2017
  ident: 1052_CR28
  publication-title: Sci Iran Trans A Civ Eng
– volume: 55
  start-page: 184
  year: 2016
  ident: 1052_CR54
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.02.009
– volume: 43
  start-page: 738
  issue: 3
  year: 2010
  ident: 1052_CR34
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2009.07.004
– ident: 1052_CR23
  doi: 10.1007/s00366-021-01345-3
– volume: 11
  start-page: 2765
  issue: 2
  year: 2011
  ident: 1052_CR38
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2010.11.007
– volume: 10
  start-page: 1061
  issue: 11
  year: 2006
  ident: 1052_CR88
  publication-title: Soft Comput
  doi: 10.1007/s00500-005-0043-5
– volume: 11
  start-page: 56
  issue: 1
  year: 2007
  ident: 1052_CR25
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2006.877146
– volume: 46
  start-page: 230
  year: 2016
  ident: 1052_CR80
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2016.04.026
– ident: 1052_CR15
– volume: 17
  start-page: 1633
  year: 2020
  ident: 1052_CR46
  publication-title: IEEE Trans Autom Sci Eng
SSID ssj0033328
Score 2.3342762
Snippet Clustering is an important data mining technique described as unsupervised learning. Till date, many single-objective clustering algorithms have been developed...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 209
SubjectTerms Algorithms
Cluster analysis
Clustering
Computer Science
Data mining
Datasets
Industrial and Commercial Application
Machine learning
Optimization
Pattern Recognition
Swarm intelligence
Title A multi-objective vibrating particle system algorithm for data clustering
URI https://link.springer.com/article/10.1007/s10044-021-01052-1
https://www.proquest.com/docview/2625297202
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-755X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033328
  issn: 1433-7541
  databaseCode: AFBBN
  dateStart: 19980301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-755X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033328
  issn: 1433-7541
  databaseCode: AGYKE
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-755X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033328
  issn: 1433-7541
  databaseCode: U2A
  dateStart: 19980329
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLZQu7BwI1pK5YENLMVXnYwRaikgmKhUpih2bA6VtmpTfj92YlNAgMTqvHh45_fkdwBwSqNIWrE75CYkchEayYJpJGILr02iqClcg_PtXW84YtdjPvZNYctQ7R6eJCtP_anZLWIMuZICt9WRIJvzNLkb52W1eETS4H8ppdVGVQsEKBKcYd8q8_MdX8PRGmN-exatos1gB2x5mAjTWq67YENP98C2h4zQG-TSHoWtDOFsH1ylsKoSRDP5Unsz-OZyYlffDOdeU2A9wRnmk8fZ4rl8eoUWvEJXLgrVZOWGJ1jqAzAa9O8vhsgvTEDKWlKJSM64EoXGiWLY9HIpmBSGMdWLExULlRRccqpUYpRFXpqomOXEmryOHZHh9BA0prOpPgKwkLmgXPMCs5wZLSRVNtXBhhNpCDaqBXDgW6b8NHG31GKSrecgO15nltdZxesMt8DZxz_zepbGn9SdII7M29UyIzZdI4kgEWmB8yCi9effb2v_j_wYbBLX51CVZ3dAo1ys9IlFH6XsgmZ6-XDT71ZK9w6DWtC-
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4MHvTi24ii9uBNm-z2QXePxEhAgRMk3Jptt_URBAKLv992txU1auK1O9vDTGf6TTrzDQBXJIqkNbtDblwid0MjmVONeGLhtUkVMblrcO4Pmp0RvR-zsW8KW4Zq9_AkWUbqT81uEaXIlRS4qY4Y2Zxn0xFYOcb8EW6F-EsIKSeqWiBAEGc09q0yP-_x9TpaY8xvz6LlbdPeAzseJsJWZdd9sKGnB2DXQ0boHXJpl8JUhrB2CLotWFYJopl8qaIZfHM5satvhnN_UmDF4AyzyeNs8Vw8vUILXqErF4VqsnLkCVb6CIzad8PbDvIDE5CynlQgnFGmeK7jVNHYNDPJqeSGUtVMUpVwleZMMqJUapRFXhqrhGbYurxOnJBh5BjUprOpPgEwlxknTLM8phk1mkuibKoTG4alwbFRdRAHvQnl2cTdUIuJWPMgO10Lq2tR6lrEdXD98c-84tL4U7oRzCG8Xy0FtukaTjmOcB3cBBOtP_--2-n_xC_BVmfY74led_BwBrax63koS7UboFYsVvrcIpFCXpQH7x3ft9IW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVQkRAXdkShgA_cwGripU6OFVC1LBUHKvVmxY7NopJWbcr3YycOLQiQuDoTH2ax38gzbwA4I0EgrdkdcuMSuRsayZRqxCMLr02siEldg_N9v9Ud0JshGy518RfV7tWTZNnT4Fiasrw5SU1zqfEtoBS58gI34REjm_-sUkeUYD16gNvVWUwIKaarWlBAEGc09G0zP-_x9Wpa4M1vT6TFzdPZAhseMsJ2aeNtsKKzHbDp4SP0wTmzS9WEhmptF_TasKgYRGP5Wp5s8N3lx67WGU6818CSzRkmo6fx9CV_foMWyEJXOgrVaO6IFKz0Hhh0rh8vu8gPT0DKRlWOcEKZ4qkOY0VD00okp5IbSlUrilXEVZwyyYhSsVEWhWmsIppgG_46ckKGkX1Qy8aZPgAwlQknTLM0pAk1mkuibNoTGoalwaFRdRBWehPKM4u7ARcjseBEdroWVtei0LUI6-D8859Jyavxp3SjMofwMTYT2KZuOOY4wHVwUZlo8fn33Q7_J34K1h6uOuKu1789AuvYtT8UVdsNUMunc31sQUkuTwq_-wBC1NZS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-objective+vibrating+particle+system+algorithm+for+data+clustering&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Kaur%2C+Arvinder&rft.au=Kumar%2C+Yugal&rft.date=2022-02-01&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=25&rft.issue=1&rft.spage=209&rft.epage=239&rft_id=info:doi/10.1007%2Fs10044-021-01052-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10044_021_01052_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon