The multigrid POTFIT (MGPF) method: Grid representations of potentials for quantum dynamics of large systems

In this article, a new method, multigrid POTFIT (MGPF), is presented. MGPF is a grid-based algorithm which transforms a general potential energy surface into product form, that is, a sum of products of one-dimensional functions. This form is necessary to profit from the computationally advantageous...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 138; no. 1; p. 014108
Main Authors Peláez, Daniel, Meyer, Hans-Dieter
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 07.01.2013
Subjects
Online AccessGet full text
ISSN0021-9606
1089-7690
1089-7690
DOI10.1063/1.4773021

Cover

Abstract In this article, a new method, multigrid POTFIT (MGPF), is presented. MGPF is a grid-based algorithm which transforms a general potential energy surface into product form, that is, a sum of products of one-dimensional functions. This form is necessary to profit from the computationally advantageous multiconfiguration time-dependent Hartree method for quantum dynamics. MGPF circumvents the dimensionality related issues present in POTFIT [A. Jäckle and H.-D. Meyer, J. Chem. Phys. 104, 7974 (1996)10.1063/1.471513], allowing quantum dynamical studies of systems up to about 12 dimensions. MGPF requires the definition of a fine grid and a coarse grid, the latter being a subset of the former. The MGPF approximation relies on a series of underlying POTFIT calculations on grids which are smaller than the fine one and larger than or equal to the coarse one. This aspect makes MGPF a bit less accurate than POTFIT but orders of magnitude faster and orders of magnitude less memory demanding than POTFIT. Moreover, like POTFIT, MGPF is variational and provides an efficient error control.
AbstractList In this article, a new method, multigrid POTFIT (MGPF), is presented. MGPF is a grid-based algorithm which transforms a general potential energy surface into product form, that is, a sum of products of one-dimensional functions. This form is necessary to profit from the computationally advantageous multiconfiguration time-dependent Hartree method for quantum dynamics. MGPF circumvents the dimensionality related issues present in POTFIT [A. Jäckle and H.-D. Meyer, J. Chem. Phys. 104, 7974 (1996)10.1063/1.471513], allowing quantum dynamical studies of systems up to about 12 dimensions. MGPF requires the definition of a fine grid and a coarse grid, the latter being a subset of the former. The MGPF approximation relies on a series of underlying POTFIT calculations on grids which are smaller than the fine one and larger than or equal to the coarse one. This aspect makes MGPF a bit less accurate than POTFIT but orders of magnitude faster and orders of magnitude less memory demanding than POTFIT. Moreover, like POTFIT, MGPF is variational and provides an efficient error control.
In this article, a new method, multigrid POTFIT (MGPF), is presented. MGPF is a grid-based algorithm which transforms a general potential energy surface into product form, that is, a sum of products of one-dimensional functions. This form is necessary to profit from the computationally advantageous multiconfiguration time-dependent Hartree method for quantum dynamics. MGPF circumvents the dimensionality related issues present in POTFIT [A. Jäckle and H.-D. Meyer, J. Chem. Phys. 104, 7974 (1996)], allowing quantum dynamical studies of systems up to about 12 dimensions. MGPF requires the definition of a fine grid and a coarse grid, the latter being a subset of the former. The MGPF approximation relies on a series of underlying POTFIT calculations on grids which are smaller than the fine one and larger than or equal to the coarse one. This aspect makes MGPF a bit less accurate than POTFIT but orders of magnitude faster and orders of magnitude less memory demanding than POTFIT. Moreover, like POTFIT, MGPF is variational and provides an efficient error control.In this article, a new method, multigrid POTFIT (MGPF), is presented. MGPF is a grid-based algorithm which transforms a general potential energy surface into product form, that is, a sum of products of one-dimensional functions. This form is necessary to profit from the computationally advantageous multiconfiguration time-dependent Hartree method for quantum dynamics. MGPF circumvents the dimensionality related issues present in POTFIT [A. Jäckle and H.-D. Meyer, J. Chem. Phys. 104, 7974 (1996)], allowing quantum dynamical studies of systems up to about 12 dimensions. MGPF requires the definition of a fine grid and a coarse grid, the latter being a subset of the former. The MGPF approximation relies on a series of underlying POTFIT calculations on grids which are smaller than the fine one and larger than or equal to the coarse one. This aspect makes MGPF a bit less accurate than POTFIT but orders of magnitude faster and orders of magnitude less memory demanding than POTFIT. Moreover, like POTFIT, MGPF is variational and provides an efficient error control.
In this article, a new method, multigrid POTFIT (MGPF), is presented. MGPF is a grid-based algorithm which transforms a general potential energy surface into product form, that is, a sum of products of one-dimensional functions. This form is necessary to profit from the computationally advantageous multiconfiguration time-dependent Hartree method for quantum dynamics. MGPF circumvents the dimensionality related issues present in POTFIT [A. Jäckle and H.-D. Meyer, J. Chem. Phys.104, 7974 (Year: 1996)10.1063/1.471513], allowing quantum dynamical studies of systems up to about 12 dimensions. MGPF requires the definition of a fine grid and a coarse grid, the latter being a subset of the former. The MGPF approximation relies on a series of underlying POTFIT calculations on grids which are smaller than the fine one and larger than or equal to the coarse one. This aspect makes MGPF a bit less accurate than POTFIT but orders of magnitude faster and orders of magnitude less memory demanding than POTFIT. Moreover, like POTFIT, MGPF is variational and provides an efficient error control.
In this article, a new method, multigrid POTFIT (MGPF), is presented. MGPF is a grid-based algorithm which transforms a general potential energy surface into product form, that is, a sum of products of one-dimensional functions. This form is necessary to profit from the computationally advantageous multiconfiguration time-dependent Hartree method for quantum dynamics. MGPF circumvents the dimensionality related issues present in POTFIT [A. Jäckle and H.-D. Meyer, J. Chem. Phys. 104, 7974 (1996)], allowing quantum dynamical studies of systems up to about 12 dimensions. MGPF requires the definition of a fine grid and a coarse grid, the latter being a subset of the former. The MGPF approximation relies on a series of underlying POTFIT calculations on grids which are smaller than the fine one and larger than or equal to the coarse one. This aspect makes MGPF a bit less accurate than POTFIT but orders of magnitude faster and orders of magnitude less memory demanding than POTFIT. Moreover, like POTFIT, MGPF is variational and provides an efficient error control.
Author Meyer, Hans-Dieter
Peláez, Daniel
Author_xml – sequence: 1
  givenname: Daniel
  surname: Peláez
  fullname: Peláez, Daniel
– sequence: 2
  givenname: Hans-Dieter
  surname: Meyer
  fullname: Meyer, Hans-Dieter
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23298029$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01231238$$DView record in HAL
BookMark eNpt0UtLAzEQAOAgitbHwT8gOephNY91s_EmYmuhood6Dmky20Z2NzXJCv33bm2tIEJgyOSbCcwco_3Wt4DQOSXXlBT8hl7nQnDC6B4aUFLKTBSS7KMB6VOZLEhxhI5jfCeEUMHyQ3TEOJMlYXKA6ukCcNPVyc2Ds_j1ZTocT_Hl8-h1eIUbSAtv7_Bo_RRgGSBCm3Ryvo3YV3jpU393uo648gF_dLpNXYPtqtWNM9-k1mEOOK5igiaeooOqx3C2jSfobfg4fXjKJi-j8cP9JDOcypQxSQvBrTBSSMLBgDWa35aVhELzCmxuTKmtFAKssKU2zDIoKiuqkls7Ezk_QVebvgtdq2VwjQ4r5bVTT_cTtc4Rynh_yk_a28uNXQb_0UFMqnHRQF3rFnwXFWWlzAXhOe_pxZZ2swbsrvPPNH__NcHHGKDaEUrUelOKqu2menvzxxq3GW0K2tX_VHwB5aGT8Q
CitedBy_id crossref_primary_10_1063_1_4864356
crossref_primary_10_1063_5_0088509
crossref_primary_10_1063_1_4967432
crossref_primary_10_1016_j_saa_2013_05_008
crossref_primary_10_3390_math6010013
crossref_primary_10_1039_C5CP07898A
crossref_primary_10_1063_5_0120523
crossref_primary_10_1063_1_5093317
crossref_primary_10_1063_1_4943985
crossref_primary_10_1063_5_0157810
crossref_primary_10_1063_5_0192012
crossref_primary_10_1080_0144235X_2016_1195102
crossref_primary_10_1021_acs_jpclett_2c03080
crossref_primary_10_1063_5_0139224
crossref_primary_10_1021_acs_chemrev_0c00665
crossref_primary_10_1021_acs_jpca_4c06742
crossref_primary_10_1063_5_0035581
crossref_primary_10_1063_1_5130390
crossref_primary_10_1021_acs_chemrev_2c00329
crossref_primary_10_1063_1_4887508
crossref_primary_10_1021_acs_jpcc_9b01250
crossref_primary_10_1038_s41467_022_33650_w
crossref_primary_10_1063_1_4856135
crossref_primary_10_1021_acs_jctc_8b00355
crossref_primary_10_1063_5_0027143
crossref_primary_10_1039_D1CP03008F
crossref_primary_10_1016_j_advengsoft_2025_103873
crossref_primary_10_1016_j_chemphys_2016_08_025
crossref_primary_10_1063_1_4994920
crossref_primary_10_1063_1_4991851
crossref_primary_10_1063_5_0078770
crossref_primary_10_1021_acs_jctc_6b00800
crossref_primary_10_1063_5_0037806
crossref_primary_10_1021_acs_jpca_0c06125
crossref_primary_10_1063_1_4963916
crossref_primary_10_1039_C7CP04010E
crossref_primary_10_1002_wcms_1731
crossref_primary_10_1140_epjs_s11734_023_00928_z
crossref_primary_10_1002_wcms_1614
crossref_primary_10_1063_1_4959228
crossref_primary_10_1142_S0219633617300014
crossref_primary_10_1063_1_4926651
crossref_primary_10_1139_cjc_2014_0590
crossref_primary_10_1021_acs_jpca_3c05630
crossref_primary_10_1063_1_4895557
crossref_primary_10_1063_1_5047912
crossref_primary_10_1063_5_0089570
crossref_primary_10_1021_acs_jctc_1c00241
crossref_primary_10_1021_acs_jctc_8b01113
crossref_primary_10_1063_1_4934506
crossref_primary_10_1016_j_chemphys_2017_11_013
crossref_primary_10_1063_1_5018793
crossref_primary_10_1021_acs_jctc_1c00065
crossref_primary_10_1021_acs_jctc_1c00662
crossref_primary_10_1021_acs_jctc_8b00819
crossref_primary_10_1021_acs_jpca_4c03407
crossref_primary_10_1080_00268976_2015_1096974
crossref_primary_10_1021_acs_jctc_3c00404
crossref_primary_10_1016_j_saa_2013_05_026
crossref_primary_10_1063_5_0216977
crossref_primary_10_3389_fchem_2019_00576
crossref_primary_10_1063_5_0146020
crossref_primary_10_1002_jcc_24410
crossref_primary_10_1063_5_0214557
crossref_primary_10_1002_jcc_27443
crossref_primary_10_1039_C9FD00071B
crossref_primary_10_1088_1361_648X_aa6e96
crossref_primary_10_1063_1_4993219
crossref_primary_10_1021_acs_jctc_1c01241
crossref_primary_10_1063_5_0018149
crossref_primary_10_1063_1_4929707
crossref_primary_10_1021_acs_jpca_3c04558
crossref_primary_10_1063_1_4890116
crossref_primary_10_1016_j_comptc_2019_01_011
crossref_primary_10_1002_qua_24795
crossref_primary_10_1021_acs_jctc_2c00484
crossref_primary_10_1021_acs_jctc_8b00801
crossref_primary_10_1021_acs_jpclett_3c01601
crossref_primary_10_34019_2674_9688_2020_v3_31928
crossref_primary_10_1063_5_0045054
crossref_primary_10_1063_1_5140085
crossref_primary_10_1063_1_4940965
crossref_primary_10_1063_5_0046425
crossref_primary_10_1063_1_4935017
crossref_primary_10_1063_5_0176655
crossref_primary_10_1063_1_4826258
crossref_primary_10_1063_5_0176612
crossref_primary_10_1016_j_cplett_2018_11_035
crossref_primary_10_1063_5_0006081
crossref_primary_10_1063_5_0180233
crossref_primary_10_1021_acs_jctc_2c00370
crossref_primary_10_1063_1_4871981
crossref_primary_10_1088_1361_6455_ad073c
Cites_doi 10.1063/1.2336223
10.1023/A:1019188517934
10.1021/jp811352c
10.1063/1.3514201
10.1002/9783527627400
10.1137/S0895479896305696
10.1063/1.2787588
10.1063/1.476328
10.1007/BF01449770
10.1039/c2cp40173h
10.1002/anie.200804646
10.1063/1.3549817
10.1137/07070111X
10.1039/b807317a
10.1016/S0370-1573(99)00047-2
10.1063/1.476327
10.1063/1.463007
10.1063/1.1632471
10.1063/1.2001654
10.1063/1.472616
10.1063/1.3535541
10.1063/1.2787596
10.1063/1.1361069
10.1016/j.chemphys.2006.06.002
10.1063/1.1696963
10.1063/1.1651051
10.1063/1.471847
10.1063/1.2364892
10.1063/1.1469019
10.1063/1.3183166
10.1063/1.3600343
10.1063/1.474210
10.1080/00268970802258609
10.1021/jp044155v
10.1063/1.471513
10.1063/1.476947
10.1063/1.476977
10.1063/1.3617249
10.1016/j.physrep.2009.05.003
10.1063/1.2761871
10.1063/1.4729536
10.1038/nature00797
10.1063/1.1580111
10.1063/1.2902982
10.1137/S0895479898346995
10.1063/1.3152488
10.1063/1.3675163
10.1021/ja049801i
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
NPM
7X8
1XC
DOI 10.1063/1.4773021
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID oai:HAL:hal-01231238v1
23298029
10_1063_1_4773021
Genre Journal Article
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
85S
AAAAW
AABDS
AAGWI
AAPUP
AAYIH
AAYXX
ABJGX
ABPPZ
ABRJW
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
D-I
DU5
EBS
EJD
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P0-
P2P
RIP
RNS
ROL
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
AAEUA
ESX
NPM
7X8
1XC
ABUFD
ID FETCH-LOGICAL-c319t-291673d7c97903ecedca358f9e6a3fed4cc8ad977ed7d8ac2d2e6fd7f83ddb743
ISSN 0021-9606
1089-7690
IngestDate Tue Oct 14 20:40:13 EDT 2025
Thu Jul 10 18:35:32 EDT 2025
Wed Feb 19 01:51:02 EST 2025
Thu Apr 24 23:09:17 EDT 2025
Tue Jul 01 00:44:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c319t-291673d7c97903ecedca358f9e6a3fed4cc8ad977ed7d8ac2d2e6fd7f83ddb743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3924-7804
0000-0003-1365-0144
PMID 23298029
PQID 1289470343
PQPubID 23479
ParticipantIDs hal_primary_oai_HAL_hal_01231238v1
proquest_miscellaneous_1289470343
pubmed_primary_23298029
crossref_primary_10_1063_1_4773021
crossref_citationtrail_10_1063_1_4773021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-01-07
PublicationDateYYYYMMDD 2013-01-07
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2013
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References (2023062607534168300_c50) 2012; 14
(2023062607534168300_c11) 1996; 104
(2023062607534168300_c42) 2002; 417
(2023062607534168300_c36) 1906; 63
(2023062607534168300_c41) 2004; 120
(2023062607534168300_c26) 2002; 116
(2023062607534168300_c24) 2009; 48
(2023062607534168300_c22) 2007; 127
(2023062607534168300_c33) 2000; 21
Meyer (2023062607534168300_c15) 2009
(2023062607534168300_c9) 2011; 134
(2023062607534168300_c16) 2012
(2023062607534168300_c45) 2006; 125
(2023062607534168300_c39) 2004; 120
(2023062607534168300_c25) 2009; 131
(2023062607534168300_c35) 1998; 109
(2023062607534168300_c53) 2011; 134
(2023062607534168300_c6) 2011; 135
(2023062607534168300_c34) 1996; 105
(2023062607534168300_c43) 2004; 126
(2023062607534168300_c20) 2009; 484
Wyatt (2023062607534168300_c1) 1996
(2023062607534168300_c48) 2006; 329
(2023062607534168300_c3) 1961
(2023062607534168300_c28) 2012; 136
(2023062607534168300_c51) 2003; 119
(2023062607534168300_c47) 2009; 130
(2023062607534168300_c40) 2005; 123
(2023062607534168300_c4) 2008; 106
(2023062607534168300_c7) 1997; 107
(2023062607534168300_c27) 2012; 136
(2023062607534168300_c8) 2007; 127
(2023062607534168300_c44) 2005; 109
(2023062607534168300_c5) 2011; 134
(2023062607534168300_c2) 2009; 51
(2023062607534168300_c29) 2006; 125
(2023062607534168300_c30) 1996; 105
(2023062607534168300_c31) 1998; 109
(2023062607534168300_c21) 2007; 127
(2023062607534168300_c10) 2000
(2023062607534168300_c13) 1992; 97
(2023062607534168300_c38) 1992
(2023062607534168300_c17) 1998; 108
(2023062607534168300_c37) 1965; 43
(2023062607534168300_c52) 2008; 128
(2023062607534168300_c32) 2000; 21
(2023062607534168300_c23) 2008; 10
(2023062607534168300_c12) 1999; 25
(2023062607534168300_c18) 1998; 108
(2023062607534168300_c19) 2001; 114
(2023062607534168300_c46) 2009; 113
(2023062607534168300_c49) 2011; 134
(2023062607534168300_c14) 2000; 324
References_xml – volume: 125
  start-page: 084109
  year: 2006
  ident: 2023062607534168300_c29
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2336223
– volume: 25
  start-page: 197
  year: 1999
  ident: 2023062607534168300_c12
  publication-title: J. Math. Chem.
  doi: 10.1023/A:1019188517934
– volume: 113
  start-page: 7346
  year: 2009
  ident: 2023062607534168300_c46
  publication-title: J. Chem. Phys.
  doi: 10.1021/jp811352c
– volume: 134
  start-page: 054118
  year: 2011
  ident: 2023062607534168300_c9
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3514201
– start-page: 351
  volume-title: Wiley Interdisciplinary Reviews: Computational Molecular Science
  year: 2012
  ident: 2023062607534168300_c16
– volume-title: Multidimensional Quantum Dynamics: MCTDH Theory and Applications
  year: 2009
  ident: 2023062607534168300_c15
  doi: 10.1002/9783527627400
– volume: 21
  start-page: 1253
  year: 2000
  ident: 2023062607534168300_c32
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479896305696
– volume: 127
  start-page: 184302
  year: 2007
  ident: 2023062607534168300_c21
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2787588
– volume: 108
  start-page: 8821
  year: 1998
  ident: 2023062607534168300_c18
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.476328
– volume: 63
  start-page: 433
  year: 1906
  ident: 2023062607534168300_c36
  publication-title: Math. Ann.
  doi: 10.1007/BF01449770
– volume: 14
  start-page: 8628
  year: 2012
  ident: 2023062607534168300_c50
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp40173h
– volume: 48
  start-page: 352
  year: 2009
  ident: 2023062607534168300_c24
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200804646
– volume: 134
  start-page: 054126
  year: 2011
  ident: 2023062607534168300_c5
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3549817
– volume: 51
  start-page: 455
  year: 2009
  ident: 2023062607534168300_c2
  publication-title: SIAM Rev.
  doi: 10.1137/07070111X
– volume: 10
  start-page: 4692
  year: 2008
  ident: 2023062607534168300_c23
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b807317a
– volume-title: Modern Methods and Algorithms of Quantum Chemistry
  year: 2000
  ident: 2023062607534168300_c10
– volume: 324
  start-page: 1
  year: 2000
  ident: 2023062607534168300_c14
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(99)00047-2
– volume: 108
  start-page: 8804
  year: 1998
  ident: 2023062607534168300_c17
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.476327
– volume: 97
  start-page: 3199
  year: 1992
  ident: 2023062607534168300_c13
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.463007
– volume: 120
  start-page: 1306
  year: 2004
  ident: 2023062607534168300_c39
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1632471
– volume: 123
  start-page: 064317
  year: 2005
  ident: 2023062607534168300_c40
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2001654
– volume: 105
  start-page: 8865
  year: 1996
  ident: 2023062607534168300_c34
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.472616
– volume-title: Numerical Recipes
  year: 1992
  ident: 2023062607534168300_c38
– volume: 134
  start-page: 044135
  year: 2011
  ident: 2023062607534168300_c53
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3535541
– volume: 127
  start-page: 184303
  year: 2007
  ident: 2023062607534168300_c22
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2787596
– volume: 114
  start-page: 8275
  year: 2001
  ident: 2023062607534168300_c19
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1361069
– volume: 329
  start-page: 179
  year: 2006
  ident: 2023062607534168300_c48
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2006.06.002
– volume: 43
  start-page: 1515
  year: 1965
  ident: 2023062607534168300_c37
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1696963
– volume: 120
  start-page: 6072
  year: 2004
  ident: 2023062607534168300_c41
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1651051
– volume-title: Adaptive Control Processes: A Guided Tour
  year: 1961
  ident: 2023062607534168300_c3
– volume: 105
  start-page: 6989
  year: 1996
  ident: 2023062607534168300_c30
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.471847
– volume: 125
  start-page: 204306
  year: 2006
  ident: 2023062607534168300_c45
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2364892
– volume: 116
  start-page: 8560
  year: 2002
  ident: 2023062607534168300_c26
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1469019
– volume: 131
  start-page: 034308
  year: 2009
  ident: 2023062607534168300_c25
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3183166
– volume: 134
  start-page: 234307
  year: 2011
  ident: 2023062607534168300_c49
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3600343
– volume: 107
  start-page: 10458
  year: 1997
  ident: 2023062607534168300_c7
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.474210
– volume: 106
  start-page: 2145
  year: 2008
  ident: 2023062607534168300_c4
  publication-title: Mol. Phys.
  doi: 10.1080/00268970802258609
– volume: 109
  start-page: 1487
  year: 2005
  ident: 2023062607534168300_c44
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp044155v
– volume: 104
  start-page: 7974
  year: 1996
  ident: 2023062607534168300_c11
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.471513
– volume: 109
  start-page: 3518
  year: 1998
  ident: 2023062607534168300_c35
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.476947
– volume: 109
  start-page: 3772
  year: 1998
  ident: 2023062607534168300_c31
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.476977
– start-page: 185
  volume-title: Dynamics of Molecules and Chemical Reactions
  year: 1996
  ident: 2023062607534168300_c1
– volume: 135
  start-page: 064101
  year: 2011
  ident: 2023062607534168300_c6
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3617249
– volume: 484
  start-page: 1
  year: 2009
  ident: 2023062607534168300_c20
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2009.05.003
– volume: 127
  start-page: 084110
  year: 2007
  ident: 2023062607534168300_c8
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2761871
– volume: 136
  start-page: 234112
  year: 2012
  ident: 2023062607534168300_c27
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4729536
– volume: 417
  start-page: 925
  year: 2002
  ident: 2023062607534168300_c42
  publication-title: Nature (London)
  doi: 10.1038/nature00797
– volume: 119
  start-page: 1289
  year: 2003
  ident: 2023062607534168300_c51
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1580111
– volume: 128
  start-page: 164116
  year: 2008
  ident: 2023062607534168300_c52
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2902982
– volume: 21
  start-page: 1324
  year: 2000
  ident: 2023062607534168300_c33
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479898346995
– volume: 130
  start-page: 234305
  year: 2009
  ident: 2023062607534168300_c47
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3152488
– volume: 136
  start-page: 034107
  year: 2012
  ident: 2023062607534168300_c28
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3675163
– volume: 126
  start-page: 5042
  year: 2004
  ident: 2023062607534168300_c43
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja049801i
SSID ssj0001724
Score 2.4245276
Snippet In this article, a new method, multigrid POTFIT (MGPF), is presented. MGPF is a grid-based algorithm which transforms a general potential energy surface into...
SourceID hal
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 014108
SubjectTerms Chemical Sciences
or physical chemistry
Theoretical and
Title The multigrid POTFIT (MGPF) method: Grid representations of potentials for quantum dynamics of large systems
URI https://www.ncbi.nlm.nih.gov/pubmed/23298029
https://www.proquest.com/docview/1289470343
https://hal.science/hal-01231238
Volume 138
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1089-7690
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0001724
  issn: 0021-9606
  databaseCode: ADMLS
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELZYJwRfJhgwOl5kEEJDk0sTp4nDt2pbKajbKpFK_RY5tgOTStutLRL8eu5sJ2VQpIFURZVzTSs_T8939r0Q8irWRuKywQQsdywqlGYy7ZQsKHipilAGhbQBsmdxfxR9HHfG63Bbm12yLFrqx8a8kv9BFcYAV8yS_Qdk64fCALwHfOEKCMP1xhjbiMDPVxf6cHie9T5kaDKevh_20N137aHR6bcCtoBllWzkwt_msyWGC2ENZYw3vFzBRK--HmrXp96KTDBW3Fd8Xvxqy66zyqw9q6rSA26zZLFWuhN7Gh-4vWqX017jbL47zvRhyWTHF3W0sN-IwKYQAXMda73ubIuUJbHr_tkyG8YqhcvFH8xy6tNGnYqNmh1MKdxkaEUJ6CSXVH29evbZed4bDQZ5djLOXs8vGTYWwwN432Vli2yHoPjbDbLdPT4dfKqXa7DgIpeF4X5pVX4q5m_rb7tmtGx9wZDZv_kj1i7J7pEdDwDtOnbcJ7fMdJfcOar6-O2S20OHxwMyAcRozRfq-EIPkC1vqOPKO2pv_cYUOivpmikUmEI9U2jFFBSxTKGeKQ_JqHeSHfWZ77bBFKjhJQvBUUi4TlSapG1ulNFK8o4oUxNLXhodKSWkBnfB6EQLqUIdmrjUSSm41gUYoo9IYzqbmseEFnHRSY3giZRBpEotTRwpDAAGa9-Aw90kB9V05sqXoseOKJPchkTEPA9yP_NN8rIWnbv6KxuFAJP6PlZM73cHOY6hywAv8Q2EXlSQ5YAAnovJqZmtFjmYaGkEK1_Em2TPYVk_CxyOVLTDdP8Gn35C7q7_F09JY3m1Ms_AZF0Wzz3pfgJys5fN
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+multigrid+POTFIT+%28MGPF%29+method%3A+grid+representations+of+potentials+for+quantum+dynamics+of+large+systems&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Pel%C3%A1ez%2C+Daniel&rft.au=Meyer%2C+Hans-Dieter&rft.date=2013-01-07&rft.issn=1089-7690&rft.eissn=1089-7690&rft.volume=138&rft.issue=1&rft.spage=014108&rft_id=info:doi/10.1063%2F1.4773021&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon