The multigrid POTFIT (MGPF) method: Grid representations of potentials for quantum dynamics of large systems
In this article, a new method, multigrid POTFIT (MGPF), is presented. MGPF is a grid-based algorithm which transforms a general potential energy surface into product form, that is, a sum of products of one-dimensional functions. This form is necessary to profit from the computationally advantageous...
Saved in:
| Published in | The Journal of chemical physics Vol. 138; no. 1; p. 014108 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
American Institute of Physics
07.01.2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0021-9606 1089-7690 1089-7690 |
| DOI | 10.1063/1.4773021 |
Cover
| Abstract | In this article, a new method, multigrid POTFIT (MGPF), is presented. MGPF is a grid-based algorithm which transforms a general potential energy surface into product form, that is, a sum of products of one-dimensional functions. This form is necessary to profit from the computationally advantageous multiconfiguration time-dependent Hartree method for quantum dynamics. MGPF circumvents the dimensionality related issues present in POTFIT [A. Jäckle and H.-D. Meyer, J. Chem. Phys. 104, 7974 (1996)10.1063/1.471513], allowing quantum dynamical studies of systems up to about 12 dimensions. MGPF requires the definition of a fine grid and a coarse grid, the latter being a subset of the former. The MGPF approximation relies on a series of underlying POTFIT calculations on grids which are smaller than the fine one and larger than or equal to the coarse one. This aspect makes MGPF a bit less accurate than POTFIT but orders of magnitude faster and orders of magnitude less memory demanding than POTFIT. Moreover, like POTFIT, MGPF is variational and provides an efficient error control. |
|---|---|
| AbstractList | In this article, a new method, multigrid POTFIT (MGPF), is presented. MGPF is a grid-based algorithm which transforms a general potential energy surface into product form, that is, a sum of products of one-dimensional functions. This form is necessary to profit from the computationally advantageous multiconfiguration time-dependent Hartree method for quantum dynamics. MGPF circumvents the dimensionality related issues present in POTFIT [A. Jäckle and H.-D. Meyer, J. Chem. Phys. 104, 7974 (1996)10.1063/1.471513], allowing quantum dynamical studies of systems up to about 12 dimensions. MGPF requires the definition of a fine grid and a coarse grid, the latter being a subset of the former. The MGPF approximation relies on a series of underlying POTFIT calculations on grids which are smaller than the fine one and larger than or equal to the coarse one. This aspect makes MGPF a bit less accurate than POTFIT but orders of magnitude faster and orders of magnitude less memory demanding than POTFIT. Moreover, like POTFIT, MGPF is variational and provides an efficient error control. In this article, a new method, multigrid POTFIT (MGPF), is presented. MGPF is a grid-based algorithm which transforms a general potential energy surface into product form, that is, a sum of products of one-dimensional functions. This form is necessary to profit from the computationally advantageous multiconfiguration time-dependent Hartree method for quantum dynamics. MGPF circumvents the dimensionality related issues present in POTFIT [A. Jäckle and H.-D. Meyer, J. Chem. Phys. 104, 7974 (1996)], allowing quantum dynamical studies of systems up to about 12 dimensions. MGPF requires the definition of a fine grid and a coarse grid, the latter being a subset of the former. The MGPF approximation relies on a series of underlying POTFIT calculations on grids which are smaller than the fine one and larger than or equal to the coarse one. This aspect makes MGPF a bit less accurate than POTFIT but orders of magnitude faster and orders of magnitude less memory demanding than POTFIT. Moreover, like POTFIT, MGPF is variational and provides an efficient error control.In this article, a new method, multigrid POTFIT (MGPF), is presented. MGPF is a grid-based algorithm which transforms a general potential energy surface into product form, that is, a sum of products of one-dimensional functions. This form is necessary to profit from the computationally advantageous multiconfiguration time-dependent Hartree method for quantum dynamics. MGPF circumvents the dimensionality related issues present in POTFIT [A. Jäckle and H.-D. Meyer, J. Chem. Phys. 104, 7974 (1996)], allowing quantum dynamical studies of systems up to about 12 dimensions. MGPF requires the definition of a fine grid and a coarse grid, the latter being a subset of the former. The MGPF approximation relies on a series of underlying POTFIT calculations on grids which are smaller than the fine one and larger than or equal to the coarse one. This aspect makes MGPF a bit less accurate than POTFIT but orders of magnitude faster and orders of magnitude less memory demanding than POTFIT. Moreover, like POTFIT, MGPF is variational and provides an efficient error control. In this article, a new method, multigrid POTFIT (MGPF), is presented. MGPF is a grid-based algorithm which transforms a general potential energy surface into product form, that is, a sum of products of one-dimensional functions. This form is necessary to profit from the computationally advantageous multiconfiguration time-dependent Hartree method for quantum dynamics. MGPF circumvents the dimensionality related issues present in POTFIT [A. Jäckle and H.-D. Meyer, J. Chem. Phys.104, 7974 (Year: 1996)10.1063/1.471513], allowing quantum dynamical studies of systems up to about 12 dimensions. MGPF requires the definition of a fine grid and a coarse grid, the latter being a subset of the former. The MGPF approximation relies on a series of underlying POTFIT calculations on grids which are smaller than the fine one and larger than or equal to the coarse one. This aspect makes MGPF a bit less accurate than POTFIT but orders of magnitude faster and orders of magnitude less memory demanding than POTFIT. Moreover, like POTFIT, MGPF is variational and provides an efficient error control. In this article, a new method, multigrid POTFIT (MGPF), is presented. MGPF is a grid-based algorithm which transforms a general potential energy surface into product form, that is, a sum of products of one-dimensional functions. This form is necessary to profit from the computationally advantageous multiconfiguration time-dependent Hartree method for quantum dynamics. MGPF circumvents the dimensionality related issues present in POTFIT [A. Jäckle and H.-D. Meyer, J. Chem. Phys. 104, 7974 (1996)], allowing quantum dynamical studies of systems up to about 12 dimensions. MGPF requires the definition of a fine grid and a coarse grid, the latter being a subset of the former. The MGPF approximation relies on a series of underlying POTFIT calculations on grids which are smaller than the fine one and larger than or equal to the coarse one. This aspect makes MGPF a bit less accurate than POTFIT but orders of magnitude faster and orders of magnitude less memory demanding than POTFIT. Moreover, like POTFIT, MGPF is variational and provides an efficient error control. |
| Author | Meyer, Hans-Dieter Peláez, Daniel |
| Author_xml | – sequence: 1 givenname: Daniel surname: Peláez fullname: Peláez, Daniel – sequence: 2 givenname: Hans-Dieter surname: Meyer fullname: Meyer, Hans-Dieter |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23298029$$D View this record in MEDLINE/PubMed https://hal.science/hal-01231238$$DView record in HAL |
| BookMark | eNpt0UtLAzEQAOAgitbHwT8gOephNY91s_EmYmuhood6Dmky20Z2NzXJCv33bm2tIEJgyOSbCcwco_3Wt4DQOSXXlBT8hl7nQnDC6B4aUFLKTBSS7KMB6VOZLEhxhI5jfCeEUMHyQ3TEOJMlYXKA6ukCcNPVyc2Ds_j1ZTocT_Hl8-h1eIUbSAtv7_Bo_RRgGSBCm3Ryvo3YV3jpU393uo648gF_dLpNXYPtqtWNM9-k1mEOOK5igiaeooOqx3C2jSfobfg4fXjKJi-j8cP9JDOcypQxSQvBrTBSSMLBgDWa35aVhELzCmxuTKmtFAKssKU2zDIoKiuqkls7Ezk_QVebvgtdq2VwjQ4r5bVTT_cTtc4Rynh_yk_a28uNXQb_0UFMqnHRQF3rFnwXFWWlzAXhOe_pxZZ2swbsrvPPNH__NcHHGKDaEUrUelOKqu2menvzxxq3GW0K2tX_VHwB5aGT8Q |
| CitedBy_id | crossref_primary_10_1063_1_4864356 crossref_primary_10_1063_5_0088509 crossref_primary_10_1063_1_4967432 crossref_primary_10_1016_j_saa_2013_05_008 crossref_primary_10_3390_math6010013 crossref_primary_10_1039_C5CP07898A crossref_primary_10_1063_5_0120523 crossref_primary_10_1063_1_5093317 crossref_primary_10_1063_1_4943985 crossref_primary_10_1063_5_0157810 crossref_primary_10_1063_5_0192012 crossref_primary_10_1080_0144235X_2016_1195102 crossref_primary_10_1021_acs_jpclett_2c03080 crossref_primary_10_1063_5_0139224 crossref_primary_10_1021_acs_chemrev_0c00665 crossref_primary_10_1021_acs_jpca_4c06742 crossref_primary_10_1063_5_0035581 crossref_primary_10_1063_1_5130390 crossref_primary_10_1021_acs_chemrev_2c00329 crossref_primary_10_1063_1_4887508 crossref_primary_10_1021_acs_jpcc_9b01250 crossref_primary_10_1038_s41467_022_33650_w crossref_primary_10_1063_1_4856135 crossref_primary_10_1021_acs_jctc_8b00355 crossref_primary_10_1063_5_0027143 crossref_primary_10_1039_D1CP03008F crossref_primary_10_1016_j_advengsoft_2025_103873 crossref_primary_10_1016_j_chemphys_2016_08_025 crossref_primary_10_1063_1_4994920 crossref_primary_10_1063_1_4991851 crossref_primary_10_1063_5_0078770 crossref_primary_10_1021_acs_jctc_6b00800 crossref_primary_10_1063_5_0037806 crossref_primary_10_1021_acs_jpca_0c06125 crossref_primary_10_1063_1_4963916 crossref_primary_10_1039_C7CP04010E crossref_primary_10_1002_wcms_1731 crossref_primary_10_1140_epjs_s11734_023_00928_z crossref_primary_10_1002_wcms_1614 crossref_primary_10_1063_1_4959228 crossref_primary_10_1142_S0219633617300014 crossref_primary_10_1063_1_4926651 crossref_primary_10_1139_cjc_2014_0590 crossref_primary_10_1021_acs_jpca_3c05630 crossref_primary_10_1063_1_4895557 crossref_primary_10_1063_1_5047912 crossref_primary_10_1063_5_0089570 crossref_primary_10_1021_acs_jctc_1c00241 crossref_primary_10_1021_acs_jctc_8b01113 crossref_primary_10_1063_1_4934506 crossref_primary_10_1016_j_chemphys_2017_11_013 crossref_primary_10_1063_1_5018793 crossref_primary_10_1021_acs_jctc_1c00065 crossref_primary_10_1021_acs_jctc_1c00662 crossref_primary_10_1021_acs_jctc_8b00819 crossref_primary_10_1021_acs_jpca_4c03407 crossref_primary_10_1080_00268976_2015_1096974 crossref_primary_10_1021_acs_jctc_3c00404 crossref_primary_10_1016_j_saa_2013_05_026 crossref_primary_10_1063_5_0216977 crossref_primary_10_3389_fchem_2019_00576 crossref_primary_10_1063_5_0146020 crossref_primary_10_1002_jcc_24410 crossref_primary_10_1063_5_0214557 crossref_primary_10_1002_jcc_27443 crossref_primary_10_1039_C9FD00071B crossref_primary_10_1088_1361_648X_aa6e96 crossref_primary_10_1063_1_4993219 crossref_primary_10_1021_acs_jctc_1c01241 crossref_primary_10_1063_5_0018149 crossref_primary_10_1063_1_4929707 crossref_primary_10_1021_acs_jpca_3c04558 crossref_primary_10_1063_1_4890116 crossref_primary_10_1016_j_comptc_2019_01_011 crossref_primary_10_1002_qua_24795 crossref_primary_10_1021_acs_jctc_2c00484 crossref_primary_10_1021_acs_jctc_8b00801 crossref_primary_10_1021_acs_jpclett_3c01601 crossref_primary_10_34019_2674_9688_2020_v3_31928 crossref_primary_10_1063_5_0045054 crossref_primary_10_1063_1_5140085 crossref_primary_10_1063_1_4940965 crossref_primary_10_1063_5_0046425 crossref_primary_10_1063_1_4935017 crossref_primary_10_1063_5_0176655 crossref_primary_10_1063_1_4826258 crossref_primary_10_1063_5_0176612 crossref_primary_10_1016_j_cplett_2018_11_035 crossref_primary_10_1063_5_0006081 crossref_primary_10_1063_5_0180233 crossref_primary_10_1021_acs_jctc_2c00370 crossref_primary_10_1063_1_4871981 crossref_primary_10_1088_1361_6455_ad073c |
| Cites_doi | 10.1063/1.2336223 10.1023/A:1019188517934 10.1021/jp811352c 10.1063/1.3514201 10.1002/9783527627400 10.1137/S0895479896305696 10.1063/1.2787588 10.1063/1.476328 10.1007/BF01449770 10.1039/c2cp40173h 10.1002/anie.200804646 10.1063/1.3549817 10.1137/07070111X 10.1039/b807317a 10.1016/S0370-1573(99)00047-2 10.1063/1.476327 10.1063/1.463007 10.1063/1.1632471 10.1063/1.2001654 10.1063/1.472616 10.1063/1.3535541 10.1063/1.2787596 10.1063/1.1361069 10.1016/j.chemphys.2006.06.002 10.1063/1.1696963 10.1063/1.1651051 10.1063/1.471847 10.1063/1.2364892 10.1063/1.1469019 10.1063/1.3183166 10.1063/1.3600343 10.1063/1.474210 10.1080/00268970802258609 10.1021/jp044155v 10.1063/1.471513 10.1063/1.476947 10.1063/1.476977 10.1063/1.3617249 10.1016/j.physrep.2009.05.003 10.1063/1.2761871 10.1063/1.4729536 10.1038/nature00797 10.1063/1.1580111 10.1063/1.2902982 10.1137/S0895479898346995 10.1063/1.3152488 10.1063/1.3675163 10.1021/ja049801i |
| ContentType | Journal Article |
| Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION NPM 7X8 1XC |
| DOI | 10.1063/1.4773021 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Physics |
| EISSN | 1089-7690 |
| ExternalDocumentID | oai:HAL:hal-01231238v1 23298029 10_1063_1_4773021 |
| Genre | Journal Article |
| GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 85S AAAAW AABDS AAGWI AAPUP AAYIH AAYXX ABJGX ABPPZ ABRJW ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM ADMLS AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D-I DU5 EBS EJD F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P0- P2P RIP RNS ROL RQS TN5 TWZ UPT WH7 YQT YZZ ~02 AAEUA ESX NPM 7X8 1XC ABUFD |
| ID | FETCH-LOGICAL-c319t-291673d7c97903ecedca358f9e6a3fed4cc8ad977ed7d8ac2d2e6fd7f83ddb743 |
| ISSN | 0021-9606 1089-7690 |
| IngestDate | Tue Oct 14 20:40:13 EDT 2025 Thu Jul 10 18:35:32 EDT 2025 Wed Feb 19 01:51:02 EST 2025 Thu Apr 24 23:09:17 EDT 2025 Tue Jul 01 00:44:52 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c319t-291673d7c97903ecedca358f9e6a3fed4cc8ad977ed7d8ac2d2e6fd7f83ddb743 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-3924-7804 0000-0003-1365-0144 |
| PMID | 23298029 |
| PQID | 1289470343 |
| PQPubID | 23479 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01231238v1 proquest_miscellaneous_1289470343 pubmed_primary_23298029 crossref_primary_10_1063_1_4773021 crossref_citationtrail_10_1063_1_4773021 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-01-07 |
| PublicationDateYYYYMMDD | 2013-01-07 |
| PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-07 day: 07 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | The Journal of chemical physics |
| PublicationTitleAlternate | J Chem Phys |
| PublicationYear | 2013 |
| Publisher | American Institute of Physics |
| Publisher_xml | – name: American Institute of Physics |
| References | (2023062607534168300_c50) 2012; 14 (2023062607534168300_c11) 1996; 104 (2023062607534168300_c42) 2002; 417 (2023062607534168300_c36) 1906; 63 (2023062607534168300_c41) 2004; 120 (2023062607534168300_c26) 2002; 116 (2023062607534168300_c24) 2009; 48 (2023062607534168300_c22) 2007; 127 (2023062607534168300_c33) 2000; 21 Meyer (2023062607534168300_c15) 2009 (2023062607534168300_c9) 2011; 134 (2023062607534168300_c16) 2012 (2023062607534168300_c45) 2006; 125 (2023062607534168300_c39) 2004; 120 (2023062607534168300_c25) 2009; 131 (2023062607534168300_c35) 1998; 109 (2023062607534168300_c53) 2011; 134 (2023062607534168300_c6) 2011; 135 (2023062607534168300_c34) 1996; 105 (2023062607534168300_c43) 2004; 126 (2023062607534168300_c20) 2009; 484 Wyatt (2023062607534168300_c1) 1996 (2023062607534168300_c48) 2006; 329 (2023062607534168300_c3) 1961 (2023062607534168300_c28) 2012; 136 (2023062607534168300_c51) 2003; 119 (2023062607534168300_c47) 2009; 130 (2023062607534168300_c40) 2005; 123 (2023062607534168300_c4) 2008; 106 (2023062607534168300_c7) 1997; 107 (2023062607534168300_c27) 2012; 136 (2023062607534168300_c8) 2007; 127 (2023062607534168300_c44) 2005; 109 (2023062607534168300_c5) 2011; 134 (2023062607534168300_c2) 2009; 51 (2023062607534168300_c29) 2006; 125 (2023062607534168300_c30) 1996; 105 (2023062607534168300_c31) 1998; 109 (2023062607534168300_c21) 2007; 127 (2023062607534168300_c10) 2000 (2023062607534168300_c13) 1992; 97 (2023062607534168300_c38) 1992 (2023062607534168300_c17) 1998; 108 (2023062607534168300_c37) 1965; 43 (2023062607534168300_c52) 2008; 128 (2023062607534168300_c32) 2000; 21 (2023062607534168300_c23) 2008; 10 (2023062607534168300_c12) 1999; 25 (2023062607534168300_c18) 1998; 108 (2023062607534168300_c19) 2001; 114 (2023062607534168300_c46) 2009; 113 (2023062607534168300_c49) 2011; 134 (2023062607534168300_c14) 2000; 324 |
| References_xml | – volume: 125 start-page: 084109 year: 2006 ident: 2023062607534168300_c29 publication-title: J. Chem. Phys. doi: 10.1063/1.2336223 – volume: 25 start-page: 197 year: 1999 ident: 2023062607534168300_c12 publication-title: J. Math. Chem. doi: 10.1023/A:1019188517934 – volume: 113 start-page: 7346 year: 2009 ident: 2023062607534168300_c46 publication-title: J. Chem. Phys. doi: 10.1021/jp811352c – volume: 134 start-page: 054118 year: 2011 ident: 2023062607534168300_c9 publication-title: J. Chem. Phys. doi: 10.1063/1.3514201 – start-page: 351 volume-title: Wiley Interdisciplinary Reviews: Computational Molecular Science year: 2012 ident: 2023062607534168300_c16 – volume-title: Multidimensional Quantum Dynamics: MCTDH Theory and Applications year: 2009 ident: 2023062607534168300_c15 doi: 10.1002/9783527627400 – volume: 21 start-page: 1253 year: 2000 ident: 2023062607534168300_c32 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479896305696 – volume: 127 start-page: 184302 year: 2007 ident: 2023062607534168300_c21 publication-title: J. Chem. Phys. doi: 10.1063/1.2787588 – volume: 108 start-page: 8821 year: 1998 ident: 2023062607534168300_c18 publication-title: J. Chem. Phys. doi: 10.1063/1.476328 – volume: 63 start-page: 433 year: 1906 ident: 2023062607534168300_c36 publication-title: Math. Ann. doi: 10.1007/BF01449770 – volume: 14 start-page: 8628 year: 2012 ident: 2023062607534168300_c50 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp40173h – volume: 48 start-page: 352 year: 2009 ident: 2023062607534168300_c24 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200804646 – volume: 134 start-page: 054126 year: 2011 ident: 2023062607534168300_c5 publication-title: J. Chem. Phys. doi: 10.1063/1.3549817 – volume: 51 start-page: 455 year: 2009 ident: 2023062607534168300_c2 publication-title: SIAM Rev. doi: 10.1137/07070111X – volume: 10 start-page: 4692 year: 2008 ident: 2023062607534168300_c23 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b807317a – volume-title: Modern Methods and Algorithms of Quantum Chemistry year: 2000 ident: 2023062607534168300_c10 – volume: 324 start-page: 1 year: 2000 ident: 2023062607534168300_c14 publication-title: Phys. Rep. doi: 10.1016/S0370-1573(99)00047-2 – volume: 108 start-page: 8804 year: 1998 ident: 2023062607534168300_c17 publication-title: J. Chem. Phys. doi: 10.1063/1.476327 – volume: 97 start-page: 3199 year: 1992 ident: 2023062607534168300_c13 publication-title: J. Chem. Phys. doi: 10.1063/1.463007 – volume: 120 start-page: 1306 year: 2004 ident: 2023062607534168300_c39 publication-title: J. Chem. Phys. doi: 10.1063/1.1632471 – volume: 123 start-page: 064317 year: 2005 ident: 2023062607534168300_c40 publication-title: J. Chem. Phys. doi: 10.1063/1.2001654 – volume: 105 start-page: 8865 year: 1996 ident: 2023062607534168300_c34 publication-title: J. Chem. Phys. doi: 10.1063/1.472616 – volume-title: Numerical Recipes year: 1992 ident: 2023062607534168300_c38 – volume: 134 start-page: 044135 year: 2011 ident: 2023062607534168300_c53 publication-title: J. Chem. Phys. doi: 10.1063/1.3535541 – volume: 127 start-page: 184303 year: 2007 ident: 2023062607534168300_c22 publication-title: J. Chem. Phys. doi: 10.1063/1.2787596 – volume: 114 start-page: 8275 year: 2001 ident: 2023062607534168300_c19 publication-title: J. Chem. Phys. doi: 10.1063/1.1361069 – volume: 329 start-page: 179 year: 2006 ident: 2023062607534168300_c48 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2006.06.002 – volume: 43 start-page: 1515 year: 1965 ident: 2023062607534168300_c37 publication-title: J. Chem. Phys. doi: 10.1063/1.1696963 – volume: 120 start-page: 6072 year: 2004 ident: 2023062607534168300_c41 publication-title: J. Chem. Phys. doi: 10.1063/1.1651051 – volume-title: Adaptive Control Processes: A Guided Tour year: 1961 ident: 2023062607534168300_c3 – volume: 105 start-page: 6989 year: 1996 ident: 2023062607534168300_c30 publication-title: J. Chem. Phys. doi: 10.1063/1.471847 – volume: 125 start-page: 204306 year: 2006 ident: 2023062607534168300_c45 publication-title: J. Chem. Phys. doi: 10.1063/1.2364892 – volume: 116 start-page: 8560 year: 2002 ident: 2023062607534168300_c26 publication-title: J. Chem. Phys. doi: 10.1063/1.1469019 – volume: 131 start-page: 034308 year: 2009 ident: 2023062607534168300_c25 publication-title: J. Chem. Phys. doi: 10.1063/1.3183166 – volume: 134 start-page: 234307 year: 2011 ident: 2023062607534168300_c49 publication-title: J. Chem. Phys. doi: 10.1063/1.3600343 – volume: 107 start-page: 10458 year: 1997 ident: 2023062607534168300_c7 publication-title: J. Chem. Phys. doi: 10.1063/1.474210 – volume: 106 start-page: 2145 year: 2008 ident: 2023062607534168300_c4 publication-title: Mol. Phys. doi: 10.1080/00268970802258609 – volume: 109 start-page: 1487 year: 2005 ident: 2023062607534168300_c44 publication-title: J. Phys. Chem. A doi: 10.1021/jp044155v – volume: 104 start-page: 7974 year: 1996 ident: 2023062607534168300_c11 publication-title: J. Chem. Phys. doi: 10.1063/1.471513 – volume: 109 start-page: 3518 year: 1998 ident: 2023062607534168300_c35 publication-title: J. Chem. Phys. doi: 10.1063/1.476947 – volume: 109 start-page: 3772 year: 1998 ident: 2023062607534168300_c31 publication-title: J. Chem. Phys. doi: 10.1063/1.476977 – start-page: 185 volume-title: Dynamics of Molecules and Chemical Reactions year: 1996 ident: 2023062607534168300_c1 – volume: 135 start-page: 064101 year: 2011 ident: 2023062607534168300_c6 publication-title: J. Chem. Phys. doi: 10.1063/1.3617249 – volume: 484 start-page: 1 year: 2009 ident: 2023062607534168300_c20 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2009.05.003 – volume: 127 start-page: 084110 year: 2007 ident: 2023062607534168300_c8 publication-title: J. Chem. Phys. doi: 10.1063/1.2761871 – volume: 136 start-page: 234112 year: 2012 ident: 2023062607534168300_c27 publication-title: J. Chem. Phys. doi: 10.1063/1.4729536 – volume: 417 start-page: 925 year: 2002 ident: 2023062607534168300_c42 publication-title: Nature (London) doi: 10.1038/nature00797 – volume: 119 start-page: 1289 year: 2003 ident: 2023062607534168300_c51 publication-title: J. Chem. Phys. doi: 10.1063/1.1580111 – volume: 128 start-page: 164116 year: 2008 ident: 2023062607534168300_c52 publication-title: J. Chem. Phys. doi: 10.1063/1.2902982 – volume: 21 start-page: 1324 year: 2000 ident: 2023062607534168300_c33 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479898346995 – volume: 130 start-page: 234305 year: 2009 ident: 2023062607534168300_c47 publication-title: J. Chem. Phys. doi: 10.1063/1.3152488 – volume: 136 start-page: 034107 year: 2012 ident: 2023062607534168300_c28 publication-title: J. Chem. Phys. doi: 10.1063/1.3675163 – volume: 126 start-page: 5042 year: 2004 ident: 2023062607534168300_c43 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja049801i |
| SSID | ssj0001724 |
| Score | 2.4245276 |
| Snippet | In this article, a new method, multigrid POTFIT (MGPF), is presented. MGPF is a grid-based algorithm which transforms a general potential energy surface into... |
| SourceID | hal proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 014108 |
| SubjectTerms | Chemical Sciences or physical chemistry Theoretical and |
| Title | The multigrid POTFIT (MGPF) method: Grid representations of potentials for quantum dynamics of large systems |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/23298029 https://www.proquest.com/docview/1289470343 https://hal.science/hal-01231238 |
| Volume | 138 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1089-7690 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0001724 issn: 0021-9606 databaseCode: ADMLS dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELZYJwRfJhgwOl5kEEJDk0sTp4nDt2pbKajbKpFK_RY5tgOTStutLRL8eu5sJ2VQpIFURZVzTSs_T8939r0Q8irWRuKywQQsdywqlGYy7ZQsKHipilAGhbQBsmdxfxR9HHfG63Bbm12yLFrqx8a8kv9BFcYAV8yS_Qdk64fCALwHfOEKCMP1xhjbiMDPVxf6cHie9T5kaDKevh_20N137aHR6bcCtoBllWzkwt_msyWGC2ENZYw3vFzBRK--HmrXp96KTDBW3Fd8Xvxqy66zyqw9q6rSA26zZLFWuhN7Gh-4vWqX017jbL47zvRhyWTHF3W0sN-IwKYQAXMda73ubIuUJbHr_tkyG8YqhcvFH8xy6tNGnYqNmh1MKdxkaEUJ6CSXVH29evbZed4bDQZ5djLOXs8vGTYWwwN432Vli2yHoPjbDbLdPT4dfKqXa7DgIpeF4X5pVX4q5m_rb7tmtGx9wZDZv_kj1i7J7pEdDwDtOnbcJ7fMdJfcOar6-O2S20OHxwMyAcRozRfq-EIPkC1vqOPKO2pv_cYUOivpmikUmEI9U2jFFBSxTKGeKQ_JqHeSHfWZ77bBFKjhJQvBUUi4TlSapG1ulNFK8o4oUxNLXhodKSWkBnfB6EQLqUIdmrjUSSm41gUYoo9IYzqbmseEFnHRSY3giZRBpEotTRwpDAAGa9-Aw90kB9V05sqXoseOKJPchkTEPA9yP_NN8rIWnbv6KxuFAJP6PlZM73cHOY6hywAv8Q2EXlSQ5YAAnovJqZmtFjmYaGkEK1_Em2TPYVk_CxyOVLTDdP8Gn35C7q7_F09JY3m1Ms_AZF0Wzz3pfgJys5fN |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+multigrid+POTFIT+%28MGPF%29+method%3A+grid+representations+of+potentials+for+quantum+dynamics+of+large+systems&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Pel%C3%A1ez%2C+Daniel&rft.au=Meyer%2C+Hans-Dieter&rft.date=2013-01-07&rft.issn=1089-7690&rft.eissn=1089-7690&rft.volume=138&rft.issue=1&rft.spage=014108&rft_id=info:doi/10.1063%2F1.4773021&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |