Large-Signal Behavior Modeling of GaN P-HEMT Based on GA-ELM Neural Network
The Genetic Algorithm-Extreme Learning Machine (GA-ELM) neural network algorithm is proposed to model the relevant characteristics of GaN pseudomorphic high electron mobility transistor (P-HEMT) large signal. This algorithm solves the over-fitting problem of the Back Propagation (BP) neural network...
Saved in:
| Published in | Circuits, systems, and signal processing Vol. 41; no. 4; pp. 1834 - 1847 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.04.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0278-081X 1531-5878 |
| DOI | 10.1007/s00034-021-01891-7 |
Cover
| Abstract | The Genetic Algorithm-Extreme Learning Machine (GA-ELM) neural network algorithm is proposed to model the relevant characteristics of GaN pseudomorphic high electron mobility transistor (P-HEMT) large signal. This algorithm solves the over-fitting problem of the Back Propagation (BP) neural network algorithm in the prediction data. It has the characteristics of fast calculation speed, so it can greatly save calculation processing time. It can also randomly generate the connection weights of the input layer, the hidden layer and the threshold of the hidden layer neurons, avoiding errors in parameter selection. In order to verify the superiority of the algorithm, the modeling effects of the BP neural network algorithm model, the Genetic Algorithm-Back Propagation (GA-BP) neural network algorithm model and the GA-ELM neural network algorithm model are compared in this paper. The results show that the proposed GA-ELM neural network algorithm model has the highest accuracy. |
|---|---|
| AbstractList | The Genetic Algorithm-Extreme Learning Machine (GA-ELM) neural network algorithm is proposed to model the relevant characteristics of GaN pseudomorphic high electron mobility transistor (P-HEMT) large signal. This algorithm solves the over-fitting problem of the Back Propagation (BP) neural network algorithm in the prediction data. It has the characteristics of fast calculation speed, so it can greatly save calculation processing time. It can also randomly generate the connection weights of the input layer, the hidden layer and the threshold of the hidden layer neurons, avoiding errors in parameter selection. In order to verify the superiority of the algorithm, the modeling effects of the BP neural network algorithm model, the Genetic Algorithm-Back Propagation (GA-BP) neural network algorithm model and the GA-ELM neural network algorithm model are compared in this paper. The results show that the proposed GA-ELM neural network algorithm model has the highest accuracy. |
| Author | Wang, Shaowei Liu, Bo Liu, Min Wang, Jinchan Zhang, Jincan Yang, Shi |
| Author_xml | – sequence: 1 givenname: Shaowei surname: Wang fullname: Wang, Shaowei organization: Electrical Engineering College, Henan University of Science and Technology – sequence: 2 givenname: Jincan orcidid: 0000-0002-8317-764X surname: Zhang fullname: Zhang, Jincan email: zjc850126@163.com organization: Electrical Engineering College, Henan University of Science and Technology – sequence: 3 givenname: Min surname: Liu fullname: Liu, Min organization: Electrical Engineering College, Henan University of Science and Technology – sequence: 4 givenname: Bo surname: Liu fullname: Liu, Bo organization: Electrical Engineering College, Henan University of Science and Technology – sequence: 5 givenname: Jinchan surname: Wang fullname: Wang, Jinchan organization: Electrical Engineering College, Henan University of Science and Technology – sequence: 6 givenname: Shi surname: Yang fullname: Yang, Shi organization: Novaco Microelectronics Technologies Ltd |
| BookMark | eNp9kMFOAjEQhhujiYC-gKcmnqsz7e62ewSCYFzQREy8NWXp4iJusV00vr2La2LigdNc_u-fma9LjitXWUIuEK4QQF4HABARA44MUKXI5BHpYCyQxUqqY9IBLhUDhc-npBvCGgDTKOUdcpcZv7LssVxVZkMH9sV8lM7TqVvaTVmtqCvo2MzoA5uMpnM6MMEuqavouM9G2ZTO7M432MzWn86_npGTwmyCPf-dPfJ0M5oPJyy7H98O-xnLBaY144mIE8mNUEteAHLJuRKLRRqhWkRmKeI0xyIScWESYaRRWMjmozSBRForpBQ9ctn2br1739lQ67Xb-eb-oJvuKJEgJTYp1aZy70LwttB5WZu6dFXtTbnRCHqvTrfqdKNO_6jT-wX8H7r15ZvxX4ch0UKhCVcr6_-uOkB9A6Wrfos |
| CitedBy_id | crossref_primary_10_1007_s10825_023_02067_z crossref_primary_10_1016_j_vlsi_2025_102411 crossref_primary_10_3390_pr11051346 crossref_primary_10_1016_j_mejo_2023_106056 crossref_primary_10_1039_D2JA00322H crossref_primary_10_1109_LMWT_2023_3347546 crossref_primary_10_1155_2022_9588460 crossref_primary_10_1016_j_neucom_2024_127439 crossref_primary_10_3390_agronomy14061165 |
| Cites_doi | 10.1016/j.neucom.2012.03.011 10.1016/j.eswa.2020.114386 10.1109/ACCESS.2020.2987912 10.3390/sym12060936 10.1109/TASC.2020.3015625 10.1109/TED.2013.2265718 10.1155/2021/9540548 10.1109/TII.2016.2595484 10.1515/ijnsns-2019-0244 10.1016/j.sse.2018.05.009 10.3390/sym12061035 10.1016/j.neucom.2020.07.036 10.1109/LED.2013.2288981 10.1109/TCAD.2019.2961322 10.1016/j.sse.2018.11.006 10.1109/ACCESS.2019.2928392 10.1109/TIE.2006.888219 10.1109/TED.2017.2769425 10.1016/j.sse.2018.04.004 10.1007/s11063-020-10401-w 10.1109/JEDS.2020.3035628 10.1109/16.892161 10.1109/TIE.2012.2183833 10.1109/TED.2007.907143 10.1109/TMTT.2020.2990171 10.1109/TNNLS.2014.2362555 10.1186/s13634-020-00710-6 10.23919/EuMIC.2017.8230696 10.1109/ICEmElec.2016.8074569 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| DBID | AAYXX CITATION 3V. 7SC 7SP 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
| DOI | 10.1007/s00034-021-01891-7 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Science Database (NC LIVE) Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1531-5878 |
| EndPage | 1847 |
| ExternalDocumentID | 10_1007_s00034_021_01891_7 |
| GrantInformation_xml | – fundername: the Foundation of He’nan Educational Committee grantid: 21A510002 – fundername: the Foundation of Department of Science and Technology of Henan Province grantid: 202102210322; 212102210286 – fundername: the National Natural Science Foundation of China grantid: 61704049 – fundername: the National Natural Science Foundation of China grantid: 61804046 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29B 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 88I 8AO 8FE 8FG 8FW 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHQN ABJCF ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAS LLZTM M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9P PF0 PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR _50 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7SP 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-2635672a38d2f01272283bb9418b4ad359c1f435fa63a7a81f789196067ee3773 |
| IEDL.DBID | BENPR |
| ISSN | 0278-081X |
| IngestDate | Sat Aug 23 12:36:12 EDT 2025 Wed Oct 01 01:31:41 EDT 2025 Thu Apr 24 22:57:49 EDT 2025 Fri Feb 21 02:47:32 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | GA-ELM neural network algorithm GaN large-signal model GA-BP neural network algorithm BP neural network algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-2635672a38d2f01272283bb9418b4ad359c1f435fa63a7a81f789196067ee3773 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8317-764X |
| PQID | 2634670771 |
| PQPubID | 30136 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2634670771 crossref_citationtrail_10_1007_s00034_021_01891_7 crossref_primary_10_1007_s00034_021_01891_7 springer_journals_10_1007_s00034_021_01891_7 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220400 2022-04-00 20220401 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 4 year: 2022 text: 20220400 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Cambridge |
| PublicationSubtitle | CSSP |
| PublicationTitle | Circuits, systems, and signal processing |
| PublicationTitleAbbrev | Circuits Syst Signal Process |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Jarndal, Kompa (CR14) 2007; 54 Wang, Ma, Luo, Li, Lei, Li, Sun (CR28) 2020; 40 Colangeli, Bentini, Ciccognani, Limiti, Nanni (CR3) 2013; 60 Chen, Hberlen, Lidow, Tsai, Ueda, Uemoto, Wu (CR2) 2017; 64 Jarndal, Husain, Hashmi, Ghannouchi (CR13) 2021; 9 CR15 Saravanan, Ali, Rajchakit, Hammachukiattikul, Priya, Thakur (CR24) 2021; 2021 Wang, Zhu, Wu, Zhang (CR29) 2020; 30 Sriraman, Rajchakit, Lim, Chanthorn, Samidurai (CR26) 2020; 12 Cai, King, Su, Yu, Chen, Sun, Wang, Liu (CR1) 2019; 67 Yan, Ji, Lu, Huang, Shen, Xue (CR32) 2019; 49 Zhao, Zhang, Feng, Zhang, Zhang (CR35) 2020; 68 Yang, Jia, Ye (CR33) 2018; 146 Mompeán, Martínez-Villena, Muñoz, Francés-Víllora, Guerrero-Martínez, Wegrzyn, Adamski (CR19) 2016; 12 Humphries, Rajchakit, Sriraman, Kaewmesri, Chanthorn, Lim, Samidurai (CR11) 2020; 12 Shawash, Selviah (CR25) 2013; 60 Tariq, Sindhu, Abbasi, Khattak, Maqbool, Siddiqui (CR27) 2021; 168 CR8 Xiang, Feng, Zhang (CR31) 2018; 147 Li, Wang, Li, Zhou, Lin (CR18) 2020; 39 Mompean, Martinez-Villena, Rosado-Munoz, Frances-Villora, Guerrero-Martinez, Wegrzyn, Adamski (CR20) 2016; 12 Zhang, Feng, Zhu, Guo, Deng, Zhang (CR34) 2014; 35 Liu, Zhao, Ai, Wu (CR17) 2021; 9 Ren, Hou, Zhou, Shen, Wei, Li (CR23) 2020; 8 Ning, Liu, Dong, Wu, Wu (CR21) 2015; 26 Du, Helaoui, Jarndal, Liu, Ghannouchi (CR6) 2020; 68 Jarndal (CR12) 2019; 7 Grienggrai, Ramalingam, Rajendran (CR10) 2021 Rajchakit, Chanthorn, Niezabitowski, Raja, Baleanu, Pratapg (CR22) 2020; 417 Lee, Cetiner, Torpi, Cai, Li, Alt, Chen, Wen, Wang, Itoh (CR16) 2001; 48 Crupi, Raffo, Vadala (CR4) 2018; 152 Dai, Liu (CR5) 2012; 94 Feng, Liu (CR7) 2020; 24 Wu, Singh, Singh (CR30) 2006; 53 Grienggrai, Ramalingam (CR9) 2021; 53 I Tariq (1891_CR27) 2021; 168 A Jarndal (1891_CR13) 2021; 9 R Sriraman (1891_CR26) 2020; 12 K Yan (1891_CR32) 2019; 49 1891_CR15 S Wang (1891_CR29) 2020; 30 KJ Chen (1891_CR2) 2017; 64 S Colangeli (1891_CR3) 2013; 60 Y Zhang (1891_CR34) 2014; 35 A Jarndal (1891_CR14) 2007; 54 SY Lee (1891_CR16) 2001; 48 XB Liu (1891_CR17) 2021; 9 J Cai (1891_CR1) 2019; 67 Z Zhao (1891_CR35) 2020; 68 J Shawash (1891_CR25) 2013; 60 Z Xiang (1891_CR31) 2018; 147 X Du (1891_CR6) 2020; 68 Q Dai (1891_CR5) 2012; 94 B Feng (1891_CR7) 2020; 24 U Humphries (1891_CR11) 2020; 12 A Jarndal (1891_CR12) 2019; 7 R Grienggrai (1891_CR10) 2021 K Ning (1891_CR21) 2015; 26 MB Mompean (1891_CR20) 2016; 12 1891_CR8 WX Wang (1891_CR28) 2020; 40 J Yang (1891_CR33) 2018; 146 Y Li (1891_CR18) 2020; 39 H Ren (1891_CR23) 2020; 8 S Saravanan (1891_CR24) 2021; 2021 YR Wu (1891_CR30) 2006; 53 MB Mompeán (1891_CR19) 2016; 12 G Rajchakit (1891_CR22) 2020; 417 G Crupi (1891_CR4) 2018; 152 R Grienggrai (1891_CR9) 2021; 53 |
| References_xml | – volume: 67 start-page: 6 year: 2019 ident: CR1 article-title: Bayesian inference-based behavioral modeling technique for GaN HEMTs publication-title: IEEE Trans. Microw. Theory Tech. – volume: 94 start-page: 152 year: 2012 end-page: 158 ident: CR5 article-title: Alleviating the problem of local minima in backpropagation through competitive learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.03.011 – volume: 168 start-page: 4 year: 2021 ident: CR27 article-title: Resolving cross-site scripting attacks through genetic algorithm and reinforcement learning publication-title: Exp. Syst. Appl. doi: 10.1016/j.eswa.2020.114386 – volume: 8 start-page: 71782 year: 2020 end-page: 71797 ident: CR23 article-title: Variable pitch active disturbance rejection control of wind turbines based on BP neural network PID publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2987912 – volume: 12 start-page: 936 issue: 6 year: 2020 ident: CR26 article-title: Discrete-time stochastic quaternion-valued neural networks with time delays: an asymptotic stability analysis publication-title: Symmetry doi: 10.3390/sym12060936 – volume: 30 start-page: 4 year: 2020 ident: CR29 article-title: Active disturbance rejection decoupling control for three-degree-of- freedom six-pole active magnetic bearing based on BP neural network publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/TASC.2020.3015625 – volume: 49 start-page: 7 year: 2019 ident: CR32 article-title: Fast and accurate classification of time series data using extended ELM: application in fault diagnosis of air handling units publication-title: IEEE Trans. Syst., Man, Cybern.: Syst. – volume: 60 start-page: 10 year: 2013 ident: CR3 article-title: GaN-Based robust low-noise amplifiers publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2013.2265718 – volume: 24 start-page: 6 year: 2020 ident: CR7 article-title: Efficient-memory and low-latency BP decoding algorithm for polar codes publication-title: IEEE Commun. Lett. – volume: 2021 start-page: 9540548 year: 2021 ident: CR24 article-title: Finite-time stability analysis of switched genetic regulatory networks with time-varying delays via Wirtinger’s integral inequality publication-title: Complexity doi: 10.1155/2021/9540548 – ident: CR8 – volume: 12 start-page: 3 year: 2016 ident: CR20 article-title: Support tool for the combined software/hardware design of on-chip ELM training for SLFF neural networks publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2016.2595484 – year: 2021 ident: CR10 article-title: Dissipativity analysis of delayed stochastic generalized neural networks with Markovian jump parameters publication-title: Int. J. Nonlinear Sci. Numer. Simul. doi: 10.1515/ijnsns-2019-0244 – volume: 147 start-page: 35 year: 2018 end-page: 38 ident: CR31 article-title: Effect of two-dimensional electron gas on horizontal heat transfer in AlGaN/AlN/GaN heterojunction transistors [J] publication-title: Solid-State Electron. doi: 10.1016/j.sse.2018.05.009 – volume: 12 start-page: 1 issue: 6 year: 2020 end-page: 21 ident: CR11 article-title: An extended analysis on robust dissipativity of uncertain stochastic generalized neural networks with Markovian jumping parameters publication-title: Symmetry doi: 10.3390/sym12061035 – volume: 417 start-page: 290 year: 2020 end-page: 301 ident: CR22 article-title: Impulsive effects on stability and passivity analysis of memristor-based fractional-order competitive neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.036 – volume: 35 start-page: 3 year: 2014 ident: CR34 article-title: Effect of self-heating on the drain current transient response in AlGaN/GaN HEMTs publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2013.2288981 – volume: 39 start-page: 2640 issue: 10 year: 2020 end-page: 2653 ident: CR18 article-title: An Artificial Neural Network Assisted Optimization System for Analog Design Space Exploration publication-title: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems doi: 10.1109/TCAD.2019.2961322 – ident: CR15 – volume: 152 start-page: 11 year: 2018 end-page: 16 ident: CR4 article-title: High-periphery GaN HEMT modeling up to 65 GHz and 200 °C publication-title: Solid-State Electron. doi: 10.1016/j.sse.2018.11.006 – volume: 12 start-page: 3 year: 2016 ident: CR19 article-title: Support tool for the combined software/hardware design of on-chip ELM training for SLFF neural networks publication-title: IEEE Trans. Industr. Inf. doi: 10.1109/TII.2016.2595484 – volume: 7 start-page: 94205 year: 2019 end-page: 94214 ident: CR12 article-title: On neural networks based electrothermal modeling of GaN devices publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2928392 – volume: 53 start-page: 4 year: 2006 ident: CR30 article-title: Device scaling physics and channel velocities in AIGaN/GaN HFETs: velocities and effective gate length publication-title: IEEE Trans. Electron Devices doi: 10.1109/TIE.2006.888219 – volume: 68 start-page: 8 year: 2020 ident: CR35 article-title: Space mapping technique using decomposed mappings for GaN HEMT modeling publication-title: IEEE Trans. Microw. Theory Tech. – volume: 64 start-page: 3 year: 2017 ident: CR2 article-title: GaN-on-Si power technology: devices and applications publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2017.2769425 – volume: 146 start-page: 1 year: 2018 end-page: 8 ident: CR33 article-title: A novel empirical I-V model for GaN HEMTs [J] publication-title: Solid-State Electron. doi: 10.1016/j.sse.2018.04.004 – volume: 53 start-page: 581 issue: 1 year: 2021 end-page: 606 ident: CR9 article-title: Robust passivity and stability analysis of uncertain complex-valued impulsive neural networks with time-varying delays publication-title: Neural Process. Lett. doi: 10.1007/s11063-020-10401-w – volume: 9 start-page: 195 year: 2021 end-page: 208 ident: CR13 article-title: Large-signal modeling of GaN HEMTs using hybrid GA-ANN, PSO-SVR, and GPR-based approaches publication-title: IEEE J. Electron Devices Soc. doi: 10.1109/JEDS.2020.3035628 – volume: 48 start-page: 3 year: 2001 ident: CR16 article-title: An X-band GaN HEMT power amplifier design using an artificial neural network modeling technique publication-title: IEEE Trans. Electron Devices doi: 10.1109/16.892161 – volume: 60 start-page: 1 year: 2013 ident: CR25 article-title: Real-time nonlinear parameter estimation using the Levenburg-Marquardt algorithm on field programmable gate arrays publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2012.2183833 – volume: 40 start-page: 543 year: 2020 end-page: 549 ident: CR28 article-title: Study on the moisture content of dried Hami big jujubes by near-infrared spectroscopy combined with variable preferred and GA-ELM model publication-title: Spectrosc Spectr Anal – volume: 54 start-page: 11 year: 2007 ident: CR14 article-title: Large-signal model for AlGaN/GaN HEMTs accurately predicts trapping- and self-heating-induced dispersion and intermodulation distortion publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2007.907143 – volume: 68 start-page: 7 year: 2020 ident: CR6 article-title: ANN-Based large-signal model of AlGaN/GaN HEMTs with accurate buffer-related trapping effects characterization publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.2020.2990171 – volume: 26 start-page: 9 year: 2015 ident: CR21 article-title: Two efficient twin ELM methods with prediction interval publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2014.2362555 – volume: 9 start-page: 1 year: 2021 ident: CR17 article-title: Pulse radar randomly interrupted transmitting and receiving optimization based on genetic algorithm in radio frequency simulation publication-title: Eurasip J. Adv. Signal Process. doi: 10.1186/s13634-020-00710-6 – volume: 9 start-page: 1 year: 2021 ident: 1891_CR17 publication-title: Eurasip J. Adv. Signal Process. doi: 10.1186/s13634-020-00710-6 – volume: 68 start-page: 8 year: 2020 ident: 1891_CR35 publication-title: IEEE Trans. Microw. Theory Tech. – volume: 24 start-page: 6 year: 2020 ident: 1891_CR7 publication-title: IEEE Commun. Lett. – volume: 68 start-page: 7 year: 2020 ident: 1891_CR6 publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.2020.2990171 – volume: 60 start-page: 1 year: 2013 ident: 1891_CR25 publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2012.2183833 – ident: 1891_CR15 doi: 10.23919/EuMIC.2017.8230696 – year: 2021 ident: 1891_CR10 publication-title: Int. J. Nonlinear Sci. Numer. Simul. doi: 10.1515/ijnsns-2019-0244 – volume: 48 start-page: 3 year: 2001 ident: 1891_CR16 publication-title: IEEE Trans. Electron Devices doi: 10.1109/16.892161 – volume: 26 start-page: 9 year: 2015 ident: 1891_CR21 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2014.2362555 – volume: 49 start-page: 7 year: 2019 ident: 1891_CR32 publication-title: IEEE Trans. Syst., Man, Cybern.: Syst. – volume: 417 start-page: 290 year: 2020 ident: 1891_CR22 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.036 – volume: 94 start-page: 152 year: 2012 ident: 1891_CR5 publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.03.011 – volume: 8 start-page: 71782 year: 2020 ident: 1891_CR23 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2987912 – volume: 12 start-page: 936 issue: 6 year: 2020 ident: 1891_CR26 publication-title: Symmetry doi: 10.3390/sym12060936 – volume: 67 start-page: 6 year: 2019 ident: 1891_CR1 publication-title: IEEE Trans. Microw. Theory Tech. – volume: 40 start-page: 543 year: 2020 ident: 1891_CR28 publication-title: Spectrosc Spectr Anal – volume: 35 start-page: 3 year: 2014 ident: 1891_CR34 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2013.2288981 – volume: 146 start-page: 1 year: 2018 ident: 1891_CR33 publication-title: Solid-State Electron. doi: 10.1016/j.sse.2018.04.004 – volume: 39 start-page: 2640 issue: 10 year: 2020 ident: 1891_CR18 publication-title: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems doi: 10.1109/TCAD.2019.2961322 – volume: 147 start-page: 35 year: 2018 ident: 1891_CR31 publication-title: Solid-State Electron. doi: 10.1016/j.sse.2018.05.009 – volume: 12 start-page: 1 issue: 6 year: 2020 ident: 1891_CR11 publication-title: Symmetry doi: 10.3390/sym12061035 – volume: 9 start-page: 195 year: 2021 ident: 1891_CR13 publication-title: IEEE J. Electron Devices Soc. doi: 10.1109/JEDS.2020.3035628 – volume: 2021 start-page: 9540548 year: 2021 ident: 1891_CR24 publication-title: Complexity doi: 10.1155/2021/9540548 – volume: 168 start-page: 4 year: 2021 ident: 1891_CR27 publication-title: Exp. Syst. Appl. doi: 10.1016/j.eswa.2020.114386 – volume: 7 start-page: 94205 year: 2019 ident: 1891_CR12 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2928392 – volume: 54 start-page: 11 year: 2007 ident: 1891_CR14 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2007.907143 – volume: 12 start-page: 3 year: 2016 ident: 1891_CR19 publication-title: IEEE Trans. Industr. Inf. doi: 10.1109/TII.2016.2595484 – volume: 12 start-page: 3 year: 2016 ident: 1891_CR20 publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2016.2595484 – volume: 152 start-page: 11 year: 2018 ident: 1891_CR4 publication-title: Solid-State Electron. doi: 10.1016/j.sse.2018.11.006 – volume: 30 start-page: 4 year: 2020 ident: 1891_CR29 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/TASC.2020.3015625 – volume: 53 start-page: 4 year: 2006 ident: 1891_CR30 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TIE.2006.888219 – volume: 60 start-page: 10 year: 2013 ident: 1891_CR3 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2013.2265718 – volume: 64 start-page: 3 year: 2017 ident: 1891_CR2 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2017.2769425 – volume: 53 start-page: 581 issue: 1 year: 2021 ident: 1891_CR9 publication-title: Neural Process. Lett. doi: 10.1007/s11063-020-10401-w – ident: 1891_CR8 doi: 10.1109/ICEmElec.2016.8074569 |
| SSID | ssj0019492 |
| Score | 2.3418214 |
| Snippet | The Genetic Algorithm-Extreme Learning Machine (GA-ELM) neural network algorithm is proposed to model the relevant characteristics of GaN pseudomorphic high... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1834 |
| SubjectTerms | Artificial neural networks Back propagation Back propagation networks Circuits and Systems Electrical Engineering Electronics and Microelectronics Engineering Gallium nitrides Genetic algorithms Hierarchies High electron mobility transistors Instrumentation Machine learning Modelling Neural networks Signal,Image and Speech Processing |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86X_RB_MTplDz4poGmTZfmccrm0G0IbrC3kKatCNLJNv9_77K0U1HB594Fcsl9pHf3O0IuMyWNyoKAJZmImMitYCYoUsYVDrYuICg3-B9yOGr3J-J-Gk99U9iiqnavUpLOUtfNbg5LhWFJQcATxZncJFsxwnnBLZ6EnTp3oIQbhYwpNQYOb-pbZX5e46s7WseY39Kiztv09siuDxNpZ3Wu-2QjLw_IzifwwEPyMMAibvb08oyUHudwTnG4GbaY01lB78yIPrJ-dzimN-CtMjor6V2HdQdDiqAcwDZaVYEfkUmvO77tMz8agVnQmSVDCJm2DE2UZGGB2WNEsUlTJXiSCpNFsbK8gEioMO3ISJPwQsJ28bUi8zySMjomjXJW5ieEGlBDC3YLSK2QRiqElFMW9FIkuYllk_BKQtp63HAcX_Gqa8RjJ1UNUtVOqhp4rmqetxVqxp_UrUrw2mvQQsMOwYYHUvImua4OY_3599VO_0d-RrZD7GhwxTgt0ljO3_NziDOW6YW7Vh9wrsJh priority: 102 providerName: Springer Nature |
| Title | Large-Signal Behavior Modeling of GaN P-HEMT Based on GA-ELM Neural Network |
| URI | https://link.springer.com/article/10.1007/s00034-021-01891-7 https://www.proquest.com/docview/2634670771 |
| Volume | 41 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1531-5878 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0019492 issn: 0278-081X databaseCode: AMVHM dateStart: 20110201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1531-5878 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0019492 issn: 0278-081X databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1531-5878 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0019492 issn: 0278-081X databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1531-5878 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019492 issn: 0278-081X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1531-5878 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0019492 issn: 0278-081X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8gvOiD8TOiSPrgmzbuo6zrgzFgxojAQhQSfFq6L2NiBiL-__bKBmoir1uvya693q139_sBXCWCS5EYBnUTZlOWxoxKI4uoKZDYOlNBucR7yGHg9CbscdqaViAoe2GwrLI8E_VBncxivCO_tRxb2bTBuXk__6DIGoXZ1ZJCQxbUCsmdhhjbgZqFyFhVqHW8YPS0zisIpmmSMd1GlTOcFm00uplOY7VQLFkwTFeYlP92VZv480_KVHui7gHsFyEkaa_W_BAqaX4Eez-ABY-hP8ACb_r89oojCwzEBUHiM2w_J7OM-DIgI9rzhmPSUZ4sIbOc-G3qDYYEATuUWLCqED-BSdcbP_RoQZtAY2VPS4rwMg63pO0mVoaZZUS4iSLBTDdiMrFbIjYzFSVl0rEll66ZcfW5-CfD09Tm3D6Faj7L0zMgUplorM40NTRmXHKBcHMiVjbL3FS2eB3MUkNhXGCKI7XFe7hGQ9ZaDZVWQ63VUMlcr2XmK0SNraMbpeLDwro-w81eqMNNuRib1__Pdr59tgvYtbC7QRfmNKC6XHyllyrmWEZN2HG7fhNqbf-l7zWLbaWeTqz2N7tvz3Q |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTgMxDLVYDsABsYqdHOAEEbOkzeRQoQKFQtsRgiL1NmQ2hIRaliLEz_Ft2GmmBSS4cZ7EB49jO7H9HsBOqqRWqePwIBU-F1kiuHbymLuKiK1zTMo1vUO2wnL9Rlx0Sp0x-ChmYaitsvCJxlGnvYTeyA-8so9n2pHSPXx84sQaRdXVgkJDW2qFtGIgxuxgRyN7f8Mr3Evl_AT_967nndbax3VuWQZ4gubX54TGUpae9oPUy6kQS4AwcayEG8RCp35JJW6OSUWuy76WOnBzGSiXEn-ZZb6UPsodh0nhC4WXv8mjWnh5NaxjKGFomam8xzH4duzYjhneM9gwnFokHBclcvk9NI7y3R8lWhP5Tudg1qasrDqwsXkYy7oLMPMFyHARGk1qKOfX93e00mIuPjMiWqNxd9bL2ZkO2SWv11ptdoSRM2W9Ljur8lqzxQggBLeFg470Jbj5FwUuw0S3181WgGl0CQn6UFyaCKmlIng7laCPEEGmS3IV3EJDUWIxzIlK4yEaoi8brUao1choNcI9e8M9jwMEjz9XbxSKj-xpfolGtrcK-8XPGH3-Xdra39K2YarebjWj5nnYWIdpjyYrTFPQBkz0n1-zTcx3-vGWNSoGt_9tx5-mjwZe |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTgMxDLVYJAQHxCqWAjnACaLOkjaTA0KFbtBFSFCptyGzISTUAi1C_Bpfh53OtIBEbz1P4oPzYnti-xngOFJSq8iyuBcJl4s4FFxbScBtRYOtEwzKNb1DttrFekfcdAvdOfjKemGorDKzicZQR_2Q3sjzTtHFO21JaeeTtCzitly9eHnlNEGKMq3ZOI0RRBrx5wf-vg3Or8t41ieOU63cX9V5OmGAhwi9IScmlqJ0tOtFTkJJWCKDCQIlbC8QOnILKrQTDCgSXXS11J6dSE_ZFPTLOHaldFHuPCxKYnGnLvVqbZzBUMIMZKbEHke3200bdkzbnmGF4VQcYdkoj8vfTnES6f5JzhqfV12D1TRYZaURutZhLu5twMoPCsNNaDSplJzfPT3SypRt8Y3RiDVqdGf9hNV0m93yeqV1zy7RZ0as32O1Eq80W4yoQXBbe1SLvgWdmahvGxZ6_V68A0yjMQjReuLSUEgtFRHbqRCtg_BiXZC7YGca8sOUvZyGaDz7Y95lo1Ufteobrfq453S852XE3TF1dS5TvJ_e44E_Qd0unGWHMfn8v7S96dKOYAnR6zev2419WHaopcJUA-VgYfj2Hh9goDMMDg2iGDzMGsLfSR0D-A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-Signal+Behavior+Modeling+of+GaN+P-HEMT+Based+on+GA-ELM+Neural+Network&rft.jtitle=Circuits%2C+systems%2C+and+signal+processing&rft.au=Wang%2C+Shaowei&rft.au=Zhang%2C+Jincan&rft.au=Liu%2C+Min&rft.au=Liu%2C+Bo&rft.date=2022-04-01&rft.issn=0278-081X&rft.eissn=1531-5878&rft.volume=41&rft.issue=4&rft.spage=1834&rft.epage=1847&rft_id=info:doi/10.1007%2Fs00034-021-01891-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00034_021_01891_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-081X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-081X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-081X&client=summon |