Large-Signal Behavior Modeling of GaN P-HEMT Based on GA-ELM Neural Network

The Genetic Algorithm-Extreme Learning Machine (GA-ELM) neural network algorithm is proposed to model the relevant characteristics of GaN pseudomorphic high electron mobility transistor (P-HEMT) large signal. This algorithm solves the over-fitting problem of the Back Propagation (BP) neural network...

Full description

Saved in:
Bibliographic Details
Published inCircuits, systems, and signal processing Vol. 41; no. 4; pp. 1834 - 1847
Main Authors Wang, Shaowei, Zhang, Jincan, Liu, Min, Liu, Bo, Wang, Jinchan, Yang, Shi
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0278-081X
1531-5878
DOI10.1007/s00034-021-01891-7

Cover

Abstract The Genetic Algorithm-Extreme Learning Machine (GA-ELM) neural network algorithm is proposed to model the relevant characteristics of GaN pseudomorphic high electron mobility transistor (P-HEMT) large signal. This algorithm solves the over-fitting problem of the Back Propagation (BP) neural network algorithm in the prediction data. It has the characteristics of fast calculation speed, so it can greatly save calculation processing time. It can also randomly generate the connection weights of the input layer, the hidden layer and the threshold of the hidden layer neurons, avoiding errors in parameter selection. In order to verify the superiority of the algorithm, the modeling effects of the BP neural network algorithm model, the Genetic Algorithm-Back Propagation (GA-BP) neural network algorithm model and the GA-ELM neural network algorithm model are compared in this paper. The results show that the proposed GA-ELM neural network algorithm model has the highest accuracy.
AbstractList The Genetic Algorithm-Extreme Learning Machine (GA-ELM) neural network algorithm is proposed to model the relevant characteristics of GaN pseudomorphic high electron mobility transistor (P-HEMT) large signal. This algorithm solves the over-fitting problem of the Back Propagation (BP) neural network algorithm in the prediction data. It has the characteristics of fast calculation speed, so it can greatly save calculation processing time. It can also randomly generate the connection weights of the input layer, the hidden layer and the threshold of the hidden layer neurons, avoiding errors in parameter selection. In order to verify the superiority of the algorithm, the modeling effects of the BP neural network algorithm model, the Genetic Algorithm-Back Propagation (GA-BP) neural network algorithm model and the GA-ELM neural network algorithm model are compared in this paper. The results show that the proposed GA-ELM neural network algorithm model has the highest accuracy.
Author Wang, Shaowei
Liu, Bo
Liu, Min
Wang, Jinchan
Zhang, Jincan
Yang, Shi
Author_xml – sequence: 1
  givenname: Shaowei
  surname: Wang
  fullname: Wang, Shaowei
  organization: Electrical Engineering College, Henan University of Science and Technology
– sequence: 2
  givenname: Jincan
  orcidid: 0000-0002-8317-764X
  surname: Zhang
  fullname: Zhang, Jincan
  email: zjc850126@163.com
  organization: Electrical Engineering College, Henan University of Science and Technology
– sequence: 3
  givenname: Min
  surname: Liu
  fullname: Liu, Min
  organization: Electrical Engineering College, Henan University of Science and Technology
– sequence: 4
  givenname: Bo
  surname: Liu
  fullname: Liu, Bo
  organization: Electrical Engineering College, Henan University of Science and Technology
– sequence: 5
  givenname: Jinchan
  surname: Wang
  fullname: Wang, Jinchan
  organization: Electrical Engineering College, Henan University of Science and Technology
– sequence: 6
  givenname: Shi
  surname: Yang
  fullname: Yang, Shi
  organization: Novaco Microelectronics Technologies Ltd
BookMark eNp9kMFOAjEQhhujiYC-gKcmnqsz7e62ewSCYFzQREy8NWXp4iJusV00vr2La2LigdNc_u-fma9LjitXWUIuEK4QQF4HABARA44MUKXI5BHpYCyQxUqqY9IBLhUDhc-npBvCGgDTKOUdcpcZv7LssVxVZkMH9sV8lM7TqVvaTVmtqCvo2MzoA5uMpnM6MMEuqavouM9G2ZTO7M432MzWn86_npGTwmyCPf-dPfJ0M5oPJyy7H98O-xnLBaY144mIE8mNUEteAHLJuRKLRRqhWkRmKeI0xyIScWESYaRRWMjmozSBRForpBQ9ctn2br1739lQ67Xb-eb-oJvuKJEgJTYp1aZy70LwttB5WZu6dFXtTbnRCHqvTrfqdKNO_6jT-wX8H7r15ZvxX4ch0UKhCVcr6_-uOkB9A6Wrfos
CitedBy_id crossref_primary_10_1007_s10825_023_02067_z
crossref_primary_10_1016_j_vlsi_2025_102411
crossref_primary_10_3390_pr11051346
crossref_primary_10_1016_j_mejo_2023_106056
crossref_primary_10_1039_D2JA00322H
crossref_primary_10_1109_LMWT_2023_3347546
crossref_primary_10_1155_2022_9588460
crossref_primary_10_1016_j_neucom_2024_127439
crossref_primary_10_3390_agronomy14061165
Cites_doi 10.1016/j.neucom.2012.03.011
10.1016/j.eswa.2020.114386
10.1109/ACCESS.2020.2987912
10.3390/sym12060936
10.1109/TASC.2020.3015625
10.1109/TED.2013.2265718
10.1155/2021/9540548
10.1109/TII.2016.2595484
10.1515/ijnsns-2019-0244
10.1016/j.sse.2018.05.009
10.3390/sym12061035
10.1016/j.neucom.2020.07.036
10.1109/LED.2013.2288981
10.1109/TCAD.2019.2961322
10.1016/j.sse.2018.11.006
10.1109/ACCESS.2019.2928392
10.1109/TIE.2006.888219
10.1109/TED.2017.2769425
10.1016/j.sse.2018.04.004
10.1007/s11063-020-10401-w
10.1109/JEDS.2020.3035628
10.1109/16.892161
10.1109/TIE.2012.2183833
10.1109/TED.2007.907143
10.1109/TMTT.2020.2990171
10.1109/TNNLS.2014.2362555
10.1186/s13634-020-00710-6
10.23919/EuMIC.2017.8230696
10.1109/ICEmElec.2016.8074569
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7SP
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1007/s00034-021-01891-7
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Science Database (NC LIVE)
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1531-5878
EndPage 1847
ExternalDocumentID 10_1007_s00034_021_01891_7
GrantInformation_xml – fundername: the Foundation of He’nan Educational Committee
  grantid: 21A510002
– fundername: the Foundation of Department of Science and Technology of Henan Province
  grantid: 202102210322; 212102210286
– fundername: the National Natural Science Foundation of China
  grantid: 61704049
– fundername: the National Natural Science Foundation of China
  grantid: 61804046
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29B
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
88I
8AO
8FE
8FG
8FW
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9P
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7SP
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-2635672a38d2f01272283bb9418b4ad359c1f435fa63a7a81f789196067ee3773
IEDL.DBID BENPR
ISSN 0278-081X
IngestDate Sat Aug 23 12:36:12 EDT 2025
Wed Oct 01 01:31:41 EDT 2025
Thu Apr 24 22:57:49 EDT 2025
Fri Feb 21 02:47:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords GA-ELM neural network algorithm
GaN large-signal model
GA-BP neural network algorithm
BP neural network algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-2635672a38d2f01272283bb9418b4ad359c1f435fa63a7a81f789196067ee3773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8317-764X
PQID 2634670771
PQPubID 30136
PageCount 14
ParticipantIDs proquest_journals_2634670771
crossref_citationtrail_10_1007_s00034_021_01891_7
crossref_primary_10_1007_s00034_021_01891_7
springer_journals_10_1007_s00034_021_01891_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220400
2022-04-00
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 4
  year: 2022
  text: 20220400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Cambridge
PublicationSubtitle CSSP
PublicationTitle Circuits, systems, and signal processing
PublicationTitleAbbrev Circuits Syst Signal Process
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Jarndal, Kompa (CR14) 2007; 54
Wang, Ma, Luo, Li, Lei, Li, Sun (CR28) 2020; 40
Colangeli, Bentini, Ciccognani, Limiti, Nanni (CR3) 2013; 60
Chen, Hberlen, Lidow, Tsai, Ueda, Uemoto, Wu (CR2) 2017; 64
Jarndal, Husain, Hashmi, Ghannouchi (CR13) 2021; 9
CR15
Saravanan, Ali, Rajchakit, Hammachukiattikul, Priya, Thakur (CR24) 2021; 2021
Wang, Zhu, Wu, Zhang (CR29) 2020; 30
Sriraman, Rajchakit, Lim, Chanthorn, Samidurai (CR26) 2020; 12
Cai, King, Su, Yu, Chen, Sun, Wang, Liu (CR1) 2019; 67
Yan, Ji, Lu, Huang, Shen, Xue (CR32) 2019; 49
Zhao, Zhang, Feng, Zhang, Zhang (CR35) 2020; 68
Yang, Jia, Ye (CR33) 2018; 146
Mompeán, Martínez-Villena, Muñoz, Francés-Víllora, Guerrero-Martínez, Wegrzyn, Adamski (CR19) 2016; 12
Humphries, Rajchakit, Sriraman, Kaewmesri, Chanthorn, Lim, Samidurai (CR11) 2020; 12
Shawash, Selviah (CR25) 2013; 60
Tariq, Sindhu, Abbasi, Khattak, Maqbool, Siddiqui (CR27) 2021; 168
CR8
Xiang, Feng, Zhang (CR31) 2018; 147
Li, Wang, Li, Zhou, Lin (CR18) 2020; 39
Mompean, Martinez-Villena, Rosado-Munoz, Frances-Villora, Guerrero-Martinez, Wegrzyn, Adamski (CR20) 2016; 12
Zhang, Feng, Zhu, Guo, Deng, Zhang (CR34) 2014; 35
Liu, Zhao, Ai, Wu (CR17) 2021; 9
Ren, Hou, Zhou, Shen, Wei, Li (CR23) 2020; 8
Ning, Liu, Dong, Wu, Wu (CR21) 2015; 26
Du, Helaoui, Jarndal, Liu, Ghannouchi (CR6) 2020; 68
Jarndal (CR12) 2019; 7
Grienggrai, Ramalingam, Rajendran (CR10) 2021
Rajchakit, Chanthorn, Niezabitowski, Raja, Baleanu, Pratapg (CR22) 2020; 417
Lee, Cetiner, Torpi, Cai, Li, Alt, Chen, Wen, Wang, Itoh (CR16) 2001; 48
Crupi, Raffo, Vadala (CR4) 2018; 152
Dai, Liu (CR5) 2012; 94
Feng, Liu (CR7) 2020; 24
Wu, Singh, Singh (CR30) 2006; 53
Grienggrai, Ramalingam (CR9) 2021; 53
I Tariq (1891_CR27) 2021; 168
A Jarndal (1891_CR13) 2021; 9
R Sriraman (1891_CR26) 2020; 12
K Yan (1891_CR32) 2019; 49
1891_CR15
S Wang (1891_CR29) 2020; 30
KJ Chen (1891_CR2) 2017; 64
S Colangeli (1891_CR3) 2013; 60
Y Zhang (1891_CR34) 2014; 35
A Jarndal (1891_CR14) 2007; 54
SY Lee (1891_CR16) 2001; 48
XB Liu (1891_CR17) 2021; 9
J Cai (1891_CR1) 2019; 67
Z Zhao (1891_CR35) 2020; 68
J Shawash (1891_CR25) 2013; 60
Z Xiang (1891_CR31) 2018; 147
X Du (1891_CR6) 2020; 68
Q Dai (1891_CR5) 2012; 94
B Feng (1891_CR7) 2020; 24
U Humphries (1891_CR11) 2020; 12
A Jarndal (1891_CR12) 2019; 7
R Grienggrai (1891_CR10) 2021
K Ning (1891_CR21) 2015; 26
MB Mompean (1891_CR20) 2016; 12
1891_CR8
WX Wang (1891_CR28) 2020; 40
J Yang (1891_CR33) 2018; 146
Y Li (1891_CR18) 2020; 39
H Ren (1891_CR23) 2020; 8
S Saravanan (1891_CR24) 2021; 2021
YR Wu (1891_CR30) 2006; 53
MB Mompeán (1891_CR19) 2016; 12
G Rajchakit (1891_CR22) 2020; 417
G Crupi (1891_CR4) 2018; 152
R Grienggrai (1891_CR9) 2021; 53
References_xml – volume: 67
  start-page: 6
  year: 2019
  ident: CR1
  article-title: Bayesian inference-based behavioral modeling technique for GaN HEMTs
  publication-title: IEEE Trans. Microw. Theory Tech.
– volume: 94
  start-page: 152
  year: 2012
  end-page: 158
  ident: CR5
  article-title: Alleviating the problem of local minima in backpropagation through competitive learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.03.011
– volume: 168
  start-page: 4
  year: 2021
  ident: CR27
  article-title: Resolving cross-site scripting attacks through genetic algorithm and reinforcement learning
  publication-title: Exp. Syst. Appl.
  doi: 10.1016/j.eswa.2020.114386
– volume: 8
  start-page: 71782
  year: 2020
  end-page: 71797
  ident: CR23
  article-title: Variable pitch active disturbance rejection control of wind turbines based on BP neural network PID
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2987912
– volume: 12
  start-page: 936
  issue: 6
  year: 2020
  ident: CR26
  article-title: Discrete-time stochastic quaternion-valued neural networks with time delays: an asymptotic stability analysis
  publication-title: Symmetry
  doi: 10.3390/sym12060936
– volume: 30
  start-page: 4
  year: 2020
  ident: CR29
  article-title: Active disturbance rejection decoupling control for three-degree-of- freedom six-pole active magnetic bearing based on BP neural network
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/TASC.2020.3015625
– volume: 49
  start-page: 7
  year: 2019
  ident: CR32
  article-title: Fast and accurate classification of time series data using extended ELM: application in fault diagnosis of air handling units
  publication-title: IEEE Trans. Syst., Man, Cybern.: Syst.
– volume: 60
  start-page: 10
  year: 2013
  ident: CR3
  article-title: GaN-Based robust low-noise amplifiers
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2013.2265718
– volume: 24
  start-page: 6
  year: 2020
  ident: CR7
  article-title: Efficient-memory and low-latency BP decoding algorithm for polar codes
  publication-title: IEEE Commun. Lett.
– volume: 2021
  start-page: 9540548
  year: 2021
  ident: CR24
  article-title: Finite-time stability analysis of switched genetic regulatory networks with time-varying delays via Wirtinger’s integral inequality
  publication-title: Complexity
  doi: 10.1155/2021/9540548
– ident: CR8
– volume: 12
  start-page: 3
  year: 2016
  ident: CR20
  article-title: Support tool for the combined software/hardware design of on-chip ELM training for SLFF neural networks
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2016.2595484
– year: 2021
  ident: CR10
  article-title: Dissipativity analysis of delayed stochastic generalized neural networks with Markovian jump parameters
  publication-title: Int. J. Nonlinear Sci. Numer. Simul.
  doi: 10.1515/ijnsns-2019-0244
– volume: 147
  start-page: 35
  year: 2018
  end-page: 38
  ident: CR31
  article-title: Effect of two-dimensional electron gas on horizontal heat transfer in AlGaN/AlN/GaN heterojunction transistors [J]
  publication-title: Solid-State Electron.
  doi: 10.1016/j.sse.2018.05.009
– volume: 12
  start-page: 1
  issue: 6
  year: 2020
  end-page: 21
  ident: CR11
  article-title: An extended analysis on robust dissipativity of uncertain stochastic generalized neural networks with Markovian jumping parameters
  publication-title: Symmetry
  doi: 10.3390/sym12061035
– volume: 417
  start-page: 290
  year: 2020
  end-page: 301
  ident: CR22
  article-title: Impulsive effects on stability and passivity analysis of memristor-based fractional-order competitive neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.036
– volume: 35
  start-page: 3
  year: 2014
  ident: CR34
  article-title: Effect of self-heating on the drain current transient response in AlGaN/GaN HEMTs
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2013.2288981
– volume: 39
  start-page: 2640
  issue: 10
  year: 2020
  end-page: 2653
  ident: CR18
  article-title: An Artificial Neural Network Assisted Optimization System for Analog Design Space Exploration
  publication-title: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
  doi: 10.1109/TCAD.2019.2961322
– ident: CR15
– volume: 152
  start-page: 11
  year: 2018
  end-page: 16
  ident: CR4
  article-title: High-periphery GaN HEMT modeling up to 65 GHz and 200 °C
  publication-title: Solid-State Electron.
  doi: 10.1016/j.sse.2018.11.006
– volume: 12
  start-page: 3
  year: 2016
  ident: CR19
  article-title: Support tool for the combined software/hardware design of on-chip ELM training for SLFF neural networks
  publication-title: IEEE Trans. Industr. Inf.
  doi: 10.1109/TII.2016.2595484
– volume: 7
  start-page: 94205
  year: 2019
  end-page: 94214
  ident: CR12
  article-title: On neural networks based electrothermal modeling of GaN devices
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2928392
– volume: 53
  start-page: 4
  year: 2006
  ident: CR30
  article-title: Device scaling physics and channel velocities in AIGaN/GaN HFETs: velocities and effective gate length
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TIE.2006.888219
– volume: 68
  start-page: 8
  year: 2020
  ident: CR35
  article-title: Space mapping technique using decomposed mappings for GaN HEMT modeling
  publication-title: IEEE Trans. Microw. Theory Tech.
– volume: 64
  start-page: 3
  year: 2017
  ident: CR2
  article-title: GaN-on-Si power technology: devices and applications
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2017.2769425
– volume: 146
  start-page: 1
  year: 2018
  end-page: 8
  ident: CR33
  article-title: A novel empirical I-V model for GaN HEMTs [J]
  publication-title: Solid-State Electron.
  doi: 10.1016/j.sse.2018.04.004
– volume: 53
  start-page: 581
  issue: 1
  year: 2021
  end-page: 606
  ident: CR9
  article-title: Robust passivity and stability analysis of uncertain complex-valued impulsive neural networks with time-varying delays
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-020-10401-w
– volume: 9
  start-page: 195
  year: 2021
  end-page: 208
  ident: CR13
  article-title: Large-signal modeling of GaN HEMTs using hybrid GA-ANN, PSO-SVR, and GPR-based approaches
  publication-title: IEEE J. Electron Devices Soc.
  doi: 10.1109/JEDS.2020.3035628
– volume: 48
  start-page: 3
  year: 2001
  ident: CR16
  article-title: An X-band GaN HEMT power amplifier design using an artificial neural network modeling technique
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/16.892161
– volume: 60
  start-page: 1
  year: 2013
  ident: CR25
  article-title: Real-time nonlinear parameter estimation using the Levenburg-Marquardt algorithm on field programmable gate arrays
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2012.2183833
– volume: 40
  start-page: 543
  year: 2020
  end-page: 549
  ident: CR28
  article-title: Study on the moisture content of dried Hami big jujubes by near-infrared spectroscopy combined with variable preferred and GA-ELM model
  publication-title: Spectrosc Spectr Anal
– volume: 54
  start-page: 11
  year: 2007
  ident: CR14
  article-title: Large-signal model for AlGaN/GaN HEMTs accurately predicts trapping- and self-heating-induced dispersion and intermodulation distortion
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2007.907143
– volume: 68
  start-page: 7
  year: 2020
  ident: CR6
  article-title: ANN-Based large-signal model of AlGaN/GaN HEMTs with accurate buffer-related trapping effects characterization
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/TMTT.2020.2990171
– volume: 26
  start-page: 9
  year: 2015
  ident: CR21
  article-title: Two efficient twin ELM methods with prediction interval
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2014.2362555
– volume: 9
  start-page: 1
  year: 2021
  ident: CR17
  article-title: Pulse radar randomly interrupted transmitting and receiving optimization based on genetic algorithm in radio frequency simulation
  publication-title: Eurasip J. Adv. Signal Process.
  doi: 10.1186/s13634-020-00710-6
– volume: 9
  start-page: 1
  year: 2021
  ident: 1891_CR17
  publication-title: Eurasip J. Adv. Signal Process.
  doi: 10.1186/s13634-020-00710-6
– volume: 68
  start-page: 8
  year: 2020
  ident: 1891_CR35
  publication-title: IEEE Trans. Microw. Theory Tech.
– volume: 24
  start-page: 6
  year: 2020
  ident: 1891_CR7
  publication-title: IEEE Commun. Lett.
– volume: 68
  start-page: 7
  year: 2020
  ident: 1891_CR6
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/TMTT.2020.2990171
– volume: 60
  start-page: 1
  year: 2013
  ident: 1891_CR25
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2012.2183833
– ident: 1891_CR15
  doi: 10.23919/EuMIC.2017.8230696
– year: 2021
  ident: 1891_CR10
  publication-title: Int. J. Nonlinear Sci. Numer. Simul.
  doi: 10.1515/ijnsns-2019-0244
– volume: 48
  start-page: 3
  year: 2001
  ident: 1891_CR16
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/16.892161
– volume: 26
  start-page: 9
  year: 2015
  ident: 1891_CR21
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2014.2362555
– volume: 49
  start-page: 7
  year: 2019
  ident: 1891_CR32
  publication-title: IEEE Trans. Syst., Man, Cybern.: Syst.
– volume: 417
  start-page: 290
  year: 2020
  ident: 1891_CR22
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.036
– volume: 94
  start-page: 152
  year: 2012
  ident: 1891_CR5
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.03.011
– volume: 8
  start-page: 71782
  year: 2020
  ident: 1891_CR23
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2987912
– volume: 12
  start-page: 936
  issue: 6
  year: 2020
  ident: 1891_CR26
  publication-title: Symmetry
  doi: 10.3390/sym12060936
– volume: 67
  start-page: 6
  year: 2019
  ident: 1891_CR1
  publication-title: IEEE Trans. Microw. Theory Tech.
– volume: 40
  start-page: 543
  year: 2020
  ident: 1891_CR28
  publication-title: Spectrosc Spectr Anal
– volume: 35
  start-page: 3
  year: 2014
  ident: 1891_CR34
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2013.2288981
– volume: 146
  start-page: 1
  year: 2018
  ident: 1891_CR33
  publication-title: Solid-State Electron.
  doi: 10.1016/j.sse.2018.04.004
– volume: 39
  start-page: 2640
  issue: 10
  year: 2020
  ident: 1891_CR18
  publication-title: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
  doi: 10.1109/TCAD.2019.2961322
– volume: 147
  start-page: 35
  year: 2018
  ident: 1891_CR31
  publication-title: Solid-State Electron.
  doi: 10.1016/j.sse.2018.05.009
– volume: 12
  start-page: 1
  issue: 6
  year: 2020
  ident: 1891_CR11
  publication-title: Symmetry
  doi: 10.3390/sym12061035
– volume: 9
  start-page: 195
  year: 2021
  ident: 1891_CR13
  publication-title: IEEE J. Electron Devices Soc.
  doi: 10.1109/JEDS.2020.3035628
– volume: 2021
  start-page: 9540548
  year: 2021
  ident: 1891_CR24
  publication-title: Complexity
  doi: 10.1155/2021/9540548
– volume: 168
  start-page: 4
  year: 2021
  ident: 1891_CR27
  publication-title: Exp. Syst. Appl.
  doi: 10.1016/j.eswa.2020.114386
– volume: 7
  start-page: 94205
  year: 2019
  ident: 1891_CR12
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2928392
– volume: 54
  start-page: 11
  year: 2007
  ident: 1891_CR14
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2007.907143
– volume: 12
  start-page: 3
  year: 2016
  ident: 1891_CR19
  publication-title: IEEE Trans. Industr. Inf.
  doi: 10.1109/TII.2016.2595484
– volume: 12
  start-page: 3
  year: 2016
  ident: 1891_CR20
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2016.2595484
– volume: 152
  start-page: 11
  year: 2018
  ident: 1891_CR4
  publication-title: Solid-State Electron.
  doi: 10.1016/j.sse.2018.11.006
– volume: 30
  start-page: 4
  year: 2020
  ident: 1891_CR29
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/TASC.2020.3015625
– volume: 53
  start-page: 4
  year: 2006
  ident: 1891_CR30
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TIE.2006.888219
– volume: 60
  start-page: 10
  year: 2013
  ident: 1891_CR3
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2013.2265718
– volume: 64
  start-page: 3
  year: 2017
  ident: 1891_CR2
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2017.2769425
– volume: 53
  start-page: 581
  issue: 1
  year: 2021
  ident: 1891_CR9
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-020-10401-w
– ident: 1891_CR8
  doi: 10.1109/ICEmElec.2016.8074569
SSID ssj0019492
Score 2.3418214
Snippet The Genetic Algorithm-Extreme Learning Machine (GA-ELM) neural network algorithm is proposed to model the relevant characteristics of GaN pseudomorphic high...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1834
SubjectTerms Artificial neural networks
Back propagation
Back propagation networks
Circuits and Systems
Electrical Engineering
Electronics and Microelectronics
Engineering
Gallium nitrides
Genetic algorithms
Hierarchies
High electron mobility transistors
Instrumentation
Machine learning
Modelling
Neural networks
Signal,Image and Speech Processing
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86X_RB_MTplDz4poGmTZfmccrm0G0IbrC3kKatCNLJNv9_77K0U1HB594Fcsl9pHf3O0IuMyWNyoKAJZmImMitYCYoUsYVDrYuICg3-B9yOGr3J-J-Gk99U9iiqnavUpLOUtfNbg5LhWFJQcATxZncJFsxwnnBLZ6EnTp3oIQbhYwpNQYOb-pbZX5e46s7WseY39Kiztv09siuDxNpZ3Wu-2QjLw_IzifwwEPyMMAibvb08oyUHudwTnG4GbaY01lB78yIPrJ-dzimN-CtMjor6V2HdQdDiqAcwDZaVYEfkUmvO77tMz8agVnQmSVDCJm2DE2UZGGB2WNEsUlTJXiSCpNFsbK8gEioMO3ISJPwQsJ28bUi8zySMjomjXJW5ieEGlBDC3YLSK2QRiqElFMW9FIkuYllk_BKQtp63HAcX_Gqa8RjJ1UNUtVOqhp4rmqetxVqxp_UrUrw2mvQQsMOwYYHUvImua4OY_3599VO_0d-RrZD7GhwxTgt0ljO3_NziDOW6YW7Vh9wrsJh
  priority: 102
  providerName: Springer Nature
Title Large-Signal Behavior Modeling of GaN P-HEMT Based on GA-ELM Neural Network
URI https://link.springer.com/article/10.1007/s00034-021-01891-7
https://www.proquest.com/docview/2634670771
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1531-5878
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0019492
  issn: 0278-081X
  databaseCode: AMVHM
  dateStart: 20110201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1531-5878
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0019492
  issn: 0278-081X
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1531-5878
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0019492
  issn: 0278-081X
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1531-5878
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019492
  issn: 0278-081X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1531-5878
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019492
  issn: 0278-081X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8gvOiD8TOiSPrgmzbuo6zrgzFgxojAQhQSfFq6L2NiBiL-__bKBmoir1uvya693q139_sBXCWCS5EYBnUTZlOWxoxKI4uoKZDYOlNBucR7yGHg9CbscdqaViAoe2GwrLI8E_VBncxivCO_tRxb2bTBuXk__6DIGoXZ1ZJCQxbUCsmdhhjbgZqFyFhVqHW8YPS0zisIpmmSMd1GlTOcFm00uplOY7VQLFkwTFeYlP92VZv480_KVHui7gHsFyEkaa_W_BAqaX4Eez-ABY-hP8ACb_r89oojCwzEBUHiM2w_J7OM-DIgI9rzhmPSUZ4sIbOc-G3qDYYEATuUWLCqED-BSdcbP_RoQZtAY2VPS4rwMg63pO0mVoaZZUS4iSLBTDdiMrFbIjYzFSVl0rEll66ZcfW5-CfD09Tm3D6Faj7L0zMgUplorM40NTRmXHKBcHMiVjbL3FS2eB3MUkNhXGCKI7XFe7hGQ9ZaDZVWQ63VUMlcr2XmK0SNraMbpeLDwro-w81eqMNNuRib1__Pdr59tgvYtbC7QRfmNKC6XHyllyrmWEZN2HG7fhNqbf-l7zWLbaWeTqz2N7tvz3Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTgMxDLVYDsABsYqdHOAEEbOkzeRQoQKFQtsRgiL1NmQ2hIRaliLEz_Ft2GmmBSS4cZ7EB49jO7H9HsBOqqRWqePwIBU-F1kiuHbymLuKiK1zTMo1vUO2wnL9Rlx0Sp0x-ChmYaitsvCJxlGnvYTeyA-8so9n2pHSPXx84sQaRdXVgkJDW2qFtGIgxuxgRyN7f8Mr3Evl_AT_967nndbax3VuWQZ4gubX54TGUpae9oPUy6kQS4AwcayEG8RCp35JJW6OSUWuy76WOnBzGSiXEn-ZZb6UPsodh0nhC4WXv8mjWnh5NaxjKGFomam8xzH4duzYjhneM9gwnFokHBclcvk9NI7y3R8lWhP5Tudg1qasrDqwsXkYy7oLMPMFyHARGk1qKOfX93e00mIuPjMiWqNxd9bL2ZkO2SWv11ptdoSRM2W9Ljur8lqzxQggBLeFg470Jbj5FwUuw0S3181WgGl0CQn6UFyaCKmlIng7laCPEEGmS3IV3EJDUWIxzIlK4yEaoi8brUao1choNcI9e8M9jwMEjz9XbxSKj-xpfolGtrcK-8XPGH3-Xdra39K2YarebjWj5nnYWIdpjyYrTFPQBkz0n1-zTcx3-vGWNSoGt_9tx5-mjwZe
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTgMxDLVYJAQHxCqWAjnACaLOkjaTA0KFbtBFSFCptyGzISTUAi1C_Bpfh53OtIBEbz1P4oPzYnti-xngOFJSq8iyuBcJl4s4FFxbScBtRYOtEwzKNb1DttrFekfcdAvdOfjKemGorDKzicZQR_2Q3sjzTtHFO21JaeeTtCzitly9eHnlNEGKMq3ZOI0RRBrx5wf-vg3Or8t41ieOU63cX9V5OmGAhwi9IScmlqJ0tOtFTkJJWCKDCQIlbC8QOnILKrQTDCgSXXS11J6dSE_ZFPTLOHaldFHuPCxKYnGnLvVqbZzBUMIMZKbEHke3200bdkzbnmGF4VQcYdkoj8vfTnES6f5JzhqfV12D1TRYZaURutZhLu5twMoPCsNNaDSplJzfPT3SypRt8Y3RiDVqdGf9hNV0m93yeqV1zy7RZ0as32O1Eq80W4yoQXBbe1SLvgWdmahvGxZ6_V68A0yjMQjReuLSUEgtFRHbqRCtg_BiXZC7YGca8sOUvZyGaDz7Y95lo1Ufteobrfq453S852XE3TF1dS5TvJ_e44E_Qd0unGWHMfn8v7S96dKOYAnR6zev2419WHaopcJUA-VgYfj2Hh9goDMMDg2iGDzMGsLfSR0D-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-Signal+Behavior+Modeling+of+GaN+P-HEMT+Based+on+GA-ELM+Neural+Network&rft.jtitle=Circuits%2C+systems%2C+and+signal+processing&rft.au=Wang%2C+Shaowei&rft.au=Zhang%2C+Jincan&rft.au=Liu%2C+Min&rft.au=Liu%2C+Bo&rft.date=2022-04-01&rft.issn=0278-081X&rft.eissn=1531-5878&rft.volume=41&rft.issue=4&rft.spage=1834&rft.epage=1847&rft_id=info:doi/10.1007%2Fs00034-021-01891-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00034_021_01891_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-081X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-081X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-081X&client=summon