Critical elastic parameters motivating divergence instability of frictional composite infinitely long media

The current study addresses the occurrence of smooth dynamic paths which rapidly diverge the mechanical system away from equilibrium configuration in an exponentially (non-oscillatory) path. The explored paths begin arbitrarily in the neighborhood of equilibrium states of an infinite orthotropic com...

Full description

Saved in:
Bibliographic Details
Published inNonlinear dynamics Vol. 97; no. 1; pp. 431 - 448
Main Author Agwa, M. A.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.07.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0924-090X
1573-269X
DOI10.1007/s11071-019-04990-y

Cover

Abstract The current study addresses the occurrence of smooth dynamic paths which rapidly diverge the mechanical system away from equilibrium configuration in an exponentially (non-oscillatory) path. The explored paths begin arbitrarily in the neighborhood of equilibrium states of an infinite orthotropic composite elastic layer. The subject treated here is handled from both the analytical and the numerical models. The divergence instability problem is reformulated as a nonlinear constrained optimization problem. Fortran implementation of sequential quadratic programming optimization algorithm for finding the minimum coefficient of friction for the onset of instability and the corresponding parameters is exploited. A finite element model is worked out to approximate the continuum. The results of several sets of numerical experiments for finding the minimum coefficient of friction for the onset of instability and the corresponding parameters are presented. The finite element method results were computed and compared with the analytic solutions: A very good matching between numerical and analytical results was obtained. It is concluded that, for normal relationships among elastic material properties and specific orthotropic directions, significantly surprising very low thresholds of the coefficient of friction were required for the onset of divergence instability.
AbstractList The current study addresses the occurrence of smooth dynamic paths which rapidly diverge the mechanical system away from equilibrium configuration in an exponentially (non-oscillatory) path. The explored paths begin arbitrarily in the neighborhood of equilibrium states of an infinite orthotropic composite elastic layer. The subject treated here is handled from both the analytical and the numerical models. The divergence instability problem is reformulated as a nonlinear constrained optimization problem. Fortran implementation of sequential quadratic programming optimization algorithm for finding the minimum coefficient of friction for the onset of instability and the corresponding parameters is exploited. A finite element model is worked out to approximate the continuum. The results of several sets of numerical experiments for finding the minimum coefficient of friction for the onset of instability and the corresponding parameters are presented. The finite element method results were computed and compared with the analytic solutions: A very good matching between numerical and analytical results was obtained. It is concluded that, for normal relationships among elastic material properties and specific orthotropic directions, significantly surprising very low thresholds of the coefficient of friction were required for the onset of divergence instability.
Author Agwa, M. A.
Author_xml – sequence: 1
  givenname: M. A.
  orcidid: 0000-0002-6484-1373
  surname: Agwa
  fullname: Agwa, M. A.
  email: mwa.agwa@gmail.com, mwa.agwa@zu.edu.eg
  organization: Department of Mechanical Design and Production Engineering, Faculty of Engineering, Zagazig University, Mechanical Engineering Department, College of Engineering, Shaqra University
BookMark eNp9kM9LwzAcxYNMcJv-A54KnqvfJF3THGX4CwQvCruFNE1HZpvUJBv0vzezguBhp-87vM_jfd8CzayzGqFrDLcYgN0FjIHhHDDPoeAc8vEMzfGK0ZyUfDNDc-CkyIHD5gItQtgBACVQzdHn2ptolOwy3cmQVDZIL3sdtQ9Z76I5yGjsNmvMQfuttkpnxoYoa9OZOGauzVpvVDTOpgjl-sEFE4-e1tgkujHrXMJ73Rh5ic5b2QV99XuX6OPx4X39nL--Pb2s719zRTGPOaGUqQrrulQVaWRRFrRgQKAkNfBGKQoEEyobrRvaqEoyVTAJijea1YpQTpfoZsodvPva6xDFzu19KhgEIWVBgJbVKrmqyaW8C8HrVigT5fGT6KXpBAZxnFZM04o0rfiZVowJJf_QwZte-vE0RCcoJLPdav_X6gT1DTpzkY8
CitedBy_id crossref_primary_10_1016_j_euromechsol_2020_104062
crossref_primary_10_1016_j_euromechsol_2020_104063
Cites_doi 10.1016/j.jmaa.2004.05.026
10.1115/1.3111080
10.1016/0045-7825(85)90009-X
10.1115/1.4041479
10.1090/S0025-5718-03-01614-4
10.1016/j.cma.2003.09.013
10.1016/j.polymertesting.2019.02.011
10.1515/amcs-2015-0020
10.1023/B:NODY.0000045512.75470.f4
10.1016/j.jmps.2011.05.007
10.1007/s10589-009-9297-7
10.1016/j.ijengsci.2017.08.012
10.1016/j.ijengsci.2012.02.001
10.1016/S0045-7825(03)00419-5
10.1002/zamm.201400143
10.1016/j.euromechsol.2007.09.006
10.1016/j.ijengsci.2016.07.005
10.2514/8.1346
10.1016/j.piutam.2017.03.005
10.2514/3.4974
10.1007/BF00541909
10.1016/j.mechmat.2012.01.004
10.1115/1.4003744
10.1007/s11071-018-4280-4
10.1007/s10589-008-9167-8
10.1016/0020-7683(88)90002-9
10.1002/zamm.201600219
10.1016/j.compstruc.2009.08.007
10.1016/j.proeng.2017.09.195
10.1016/j.ijsolstr.2016.11.032
10.1016/S0020-7683(98)00291-1
10.1016/S0045-7825(98)00386-7
10.1016/j.mechmat.2016.06.003
10.1590/S0101-82052009000100003
10.1016/j.ijengsci.2004.09.001
10.1007/s11071-007-9244-z
10.1115/1.3111079
ContentType Journal Article
Copyright Springer Nature B.V. 2019
Nonlinear Dynamics is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Nature B.V. 2019
– notice: Nonlinear Dynamics is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11071-019-04990-y
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList Engineering Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-269X
EndPage 448
ExternalDocumentID 10_1007_s11071_019_04990_y
GroupedDBID -5B
-5G
-BR
-EM
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
203
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
LAK
LLZTM
M4Y
M7S
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9T
PF0
PT4
PT5
PTHSS
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
_50
~A9
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFFNX
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
AMVHM
ARCEE
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
H13
KOW
N2Q
NDZJH
O9-
OVD
PHGZM
PHGZT
PQGLB
PUEGO
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCLPG
SCV
T16
TEORI
UZXMN
VFIZW
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-2337c81eb6c82da46434702062b09dcc302123adeed3dc8a7c47a0c9de7bc2393
IEDL.DBID 8FG
ISSN 0924-090X
IngestDate Fri Jul 25 11:19:34 EDT 2025
Thu Apr 24 23:07:30 EDT 2025
Wed Oct 01 02:34:43 EDT 2025
Fri Feb 21 02:32:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Infinite media
Finite elements
Frictional contact
Orthotropic composite
Divergence instability
Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-2337c81eb6c82da46434702062b09dcc302123adeed3dc8a7c47a0c9de7bc2393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6484-1373
PQID 2264203685
PQPubID 2043746
PageCount 18
ParticipantIDs proquest_journals_2264203685
crossref_citationtrail_10_1007_s11071_019_04990_y
crossref_primary_10_1007_s11071_019_04990_y
springer_journals_10_1007_s11071_019_04990_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190701
2019-7-00
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 7
  year: 2019
  text: 20190701
  day: 1
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems
PublicationTitle Nonlinear dynamics
PublicationTitleAbbrev Nonlinear Dyn
PublicationYear 2019
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Rodríguez-TemblequeLuisSáezAndrésAliabadiMHIndentation response of piezoelectric films under frictional contactInt. J. Eng. Sci.2016107365310.1016/j.ijengsci.2016.07.00506984732
HassaniRHildPIonescuIRSakkiNDA mixed finite element method and solution multiplicity for Coulomb frictional contactComput. Methods Appl. Mech. Eng.200319245174531201248010.1016/S0045-7825(03)00419-51054.74052
QiaoSBeloiuDMIbrahimRADeterministic and stochastic characterization of friction-induced vibration in disc brakesNonlinear Dyn.20043636137810.1023/B:NODY.0000045512.75470.f41157.74308
Agwa, M.A., Pinto da Costa, A.: Equilibria directional instability in systems with Coulomb friction. In: 7th World Congress on Computational Mechanics, Los Angeles, CA, Los Angeles, CA, USA, 16–22 (2006)
IbrahimRAFriction-induced vibration, chatter, squeal, and chaos, part II: dynamics and modelingASME Appl. Mech. Rev.199447722725310.1115/1.3111080
Pinto da Costa, A., Agwa, M.A.: Flutter instability in orthotropic linear elastic half-spaces with a frictional boundary condition. In: Euromech Colloquium, Nonsmooth Contact and Impact Laws in Mechanics, Grenoble, France, 6–8 (2011)
CrawfordR JPlastics Engineering19983BostonButterwort-Heinemann
Batoz, J.-L., Dhatt, G.: Modélization des Structures par Éléments Finis, vol. 1: solides élastiques. Hermes (1990)
LigurskýTomášRenardYvesA method of piecewise-smooth numerical branchingZAMM J. Appl. Math. Mech.2017977815827367092510.1002/zamm.201600219
Agwa, M.A., Andersson, Lars-Erik, Pinto da Costa, A.: Critical bounds for discrete frictional incremental problems, rate problems and wedging problems. In: Computational Contact Mechanics an International Symposium sponsored by IUTAM, Euromech 514: New Trends in Contact Mechanics, Cargese—Corsica, France, 27–31 (2012)
AgwaMAPinto da CostaAInstability of frictional contact states in infinite layersEur. J. Mech. A/Solids2008273487503240792610.1016/j.euromechsol.2007.09.0061154.74347
Zhou, J.L., Tits, A.L., Lawrence, C.T.: User’s Guide for FFSQP Version 3.7: A FORTRAN Code for Solving Constrained Nonlinear (Minimax) Optimization Problems, Generating Iterates Satisfying All Inequality and Linear Constraints (1997)
BigoniDavideNoselliGiovanniExperimental evidence of flutter and divergence instabilities induced by dry frictionJ. Mech. Phys. Solids201159102208222610.1016/j.jmps.2011.05.007
AgwaMAAliMNEffective damage indicator for aluminum alloy (AA6082Zr) processed by ECAEASME J. Manuf. Sci. Eng.201814012121014–121014–1010.1115/1.4041479
CookRDMalkusDSPleshaMEConcepts and Applications of Finite Element Analysis1989New YorkWiley0696.73039
ZieglerHPrinciples of Structural Stability1968WalthamBlaisdell Publishing Company
HuseyinKVibrations and Stability of Multiparameter Systems1978LeydenSijthoff & Noordhoff International Publishers0399.73032
SioJFAPinto da CostaASimõesFMFBuckling of unilaterally constrained columns by complementarity eigenvalue analysesInt. J. Solids Struct.2017106–107465510.1016/j.ijsolstr.2016.11.032
Adly, S., Seeger, A.: A nonsmooth algorithm for cone-constrained eigenvalue problems. Comput. Optim. Appl. (2010). https://doi.org/10.1007/s10589-009-9297-7
De DomenicoDFaillaIRicciardiGAnalysis of dynamic instabilities in bridges under wind action through a simple friction-based mechanical modelProcedia Eng.201719913413910.1016/j.proeng.2017.09.195
Pinto da Costa, A., Agwa, M.A.: Using symbolic computation in the detection of frictional instabilities. In: Computational Contact Mechanics an International Symposium sponsored by IUTAM, SYMCOMP 2013, Lisbon, Portugal, 9–10 (September 2013)
Ionescu, I. R., Hassani, R.: Equilibrium configurations with Coulomb friction. existence, multiplicity and stability. In: Mota Soares C.A. et al. (eds.) Solids, Structures and Coupled Problems in Engineering. Proceedings of the III European Conference on Computational Mechanics, Lisboa Portugal (2006)
NguyenQ-SBifurcation and Stability of Dissipative Systems, vol. 327 of CISM Courses and lectUres, Chapter Bifurcation and Stability of Time-Independent Standard Dissipative Systems1993WienSpringer4594
Pinto da Costa, A., Agwa, M. A.: The effects of obstacle curvature and material anisotropy on frictional directional instabilities. In: Computational Contact Mechanics An International Symposium Sponsored by IUTAM, Institut für Baumechanik und Numerische Mechanik Universität Hannover, Appelstr.9A, 30167 Hannover, Germany, 5–9 (2006)
MartinsJACBarbarinSRaousMPinto da CostaADynamic stability of finite dimensional linearly elastic systems with unilateral contact and Coulomb frictionComput. Methods Appl. Mech. Eng.1999177289328171046110.1016/S0045-7825(98)00386-70943.74023
AgwaMAPinto da CostaAUsing symbolic computation in the characterization of frictional instabilities involving orthotropic materialsInt. J. Appl. Math. Comput. Sci.2015252259267336351410.1515/amcs-2015-00201322.70013
SuiXinDingQianInstability and stochastic analyses of a pad-on-disc frictional system in moving interactionsNonlinear Dyn.20189331619163410.1007/s11071-018-4280-4
KlarbringAOn discrete and discretized non-linear elastic structures in unilateral contact (stability, uniqueness and variational principles)Int. J. Solids Struct.198824545947994480410.1016/0020-7683(88)90002-90636.73096
BaumannMichaelLeineRemco ISynchronization-based estimation of the maximal lyapunov exponent of nonsmooth systemsProcedia IUTAM201720263310.1016/j.piutam.2017.03.005
ShanleyFRInelastic column theoryJ. Aeronaut. Sci.194714526126710.2514/8.1346
AntoniNicolasA further analysis on the analogy between friction and plasticity in solid mechanicsInt. J. Eng. Sci.20171213451371572410.1016/j.ijengsci.2017.08.01206985827
Pinto da CostaASeegerANumerical resolution of cone-constrained eigenvalue problems: theory and algorithmsComput. Appl. Math.20092813761249582610.1590/S0101-820520090001000031171.65027
MartinsJACSimõesFMFPinto da CostaAAssessing the (in)stability of quasi-static pathsInt. J. Eng. Sci.2012551834290890210.1016/j.ijengsci.2012.02.00106923614
Agwa, M.A., Pinto da Costa, A.: Frictional instabilities in contact problems: numerical and analytical computations of instability modes. In: Congresso de Métodos Numéricos em Engenharia CMNE/CILAMCE, Porto, Portugal, 13–15 (2007)
MartinsJACPinto da CostaAStability of finite-dimensional nonlinear elastic systems with unilateral contact and frictionInt. J. Solids Struct.2000371825192564175706310.1016/S0020-7683(98)00291-10959.74048
SimõesFMFMartinsJACFlutter instability in a non-associative elastic-plastic layer: analytical versus finite element resultsInt. J. Eng. Sci.200543118920810.1016/j.ijengsci.2004.09.001
LeineRIVan de WouwNStability and Convergence of Mechanical Systems with Unilateral Constraints. Lecture Notes in Applied and Computational Mechanics2008New YorkSpringer1143.70001
OdenJTMartinsJACModels and computational methods for dynamic friction phenomenaComput. Methods Appl. Mech. Eng.19855252763482275710.1016/0045-7825(85)90009-X0567.73122
KlarbringAExamples of non-uniqueness and non-existence of solutions to quasistatic contact problems with frictionIng. Arch.199056529541
MAPLE. Waterloo Maple Inc (2001). http://www.maplesoft.com/. Accessed 2001
Pinto da Costa, A., Figueiredo, I.N., Júdice, J.J., Martins, J.A.C.: Contact avec frottement en terme de complementarité: instabilité et non-unicité. Laboratoire de Mathématiques de l’Université de Savoie, Le Bourget-du-Lac, France, In Instabilité du Frottement (1999)
QueirozMJúdiceJHumesCJrThe symmetric eigenvalue complementarity problemMath. Comput.20047318491863205973910.1090/S0025-5718-03-01614-41119.90059
LeineRIvan de WouwNStability properties of equilibrium sets of non-linear mechanical systems with dry friction and impactNonlinear Dyn.2008514551583238034110.1007/s11071-007-9244-z1170.70340
AgwaMAPinto da CostaASurface instabilities in linear orthotropic half-spaces with a frictional interfaceASME J. Appl. Mech.2011784041002-041002-910.1115/1.4003744
Pinto da CostaAAgwaMAFrictional instabilities in orthotropic hollow cylindersComput. Struct.2009871275128610.1016/j.compstruc.2009.08.007
LempriereBMPoisson’s ratio in orthotropic materialsAIAA J.19686112226222710.2514/3.4974
AnderssonL-EPinto da CostaAAgwaMAExistence and uniqueness for frictional incremental and rate problems—sharp critical boundsZAMM J. Appl. Math. Mech.201696178105345431610.1002/zamm.2014001431335.74006
Pinto da CostaAFigueiredoINJúdiceJJMartinsJACComplementarity: Applications, Algorithms and Extensions, vol. 50, Chapter A Complementarity Eigenproblem in the Stability Analysis of Finite Dimensional Elastic Systems with Frictional Contact2001DordrechtKluwer Academic Publishers67831119.74503
Pinto da CostaAMartinsJACFigueiredoINJúdiceJJThe directional instability problem in systems with frictional contactsComput. Methods Appl. Mech. Eng.2004193357384203123210.1016/j.cma.2003.09.0131075.74596
Renard, Y.: Modélisation des instabilités liées au frottement sec des solides élastiques, aspects théoriques et numériques. Phd thesis, Université Joseph Fourier—Grenoble I, Grenoble, France (1998)
Agwa, M.A.: Friction-induced dynamic instabilities and solution (non-)uniqueness in contact mechanics. PhD thesis, Technical University of Lisbon, Instituto Superior Técnico, Lisbon, Portugal (2011)
Moirot, F.: Étude de la Stabilité d’un Équilibre en Présence de Frottement de Coulomb. PhD thesis, École Polytechnique, Paris, France (1998)
AgwaMAMegahedAANew nonlinear regression modeling and multi-objective optimization of cutting parameters in drilling of GFRE composites to minimize delaminationPolym. Test.20197519220410.1016/j.polymertesting.2019.02.011
ChateauXNguyenQ-SBuckling of elastic structures in unilateral contact with or without frictionEur. J. Mech. A/Solids1991101718911264310735.73043
IbrahimRAFriction-induced vibration, chatter, squeal, and chaos, part I: mechanics of contact and frictionASME Appl. Mech. Rev.199447720922610.1115/1.3111079
Agwa, M.A., Pinto da Costa, A.: On a sufficient condition for solution uniqueness of the qua
A Klarbring (4990_CR18) 1988; 24
D De Domenico (4990_CR16) 2017; 199
FR Shanley (4990_CR20) 1947; 14
MA Agwa (4990_CR26) 2011; 78
MA Agwa (4990_CR41) 2018; 140
A Pinto da Costa (4990_CR57) 2010; 45
Tomáš Ligurský (4990_CR17) 2017; 97
L-E Andersson (4990_CR12) 2016; 96
H Ziegler (4990_CR49) 1968
FMF Simões (4990_CR34) 2005; 43
M Queiroz (4990_CR59) 2004; 73
JT Oden (4990_CR13) 1985; 52
A Pinto da Costa (4990_CR29) 2004; 193
4990_CR33
MA Agwa (4990_CR48) 2016; 100
A Pinto da Costa (4990_CR30) 2009; 28
RI Leine (4990_CR51) 2008
Q-S Nguyen (4990_CR14) 1993
JAC Martins (4990_CR15) 1999; 177
JAC Martins (4990_CR19) 2000; 37
Michael Baumann (4990_CR53) 2017; 20
K Huseyin (4990_CR50) 1978
JFA Sio (4990_CR22) 2017; 106–107
A Pinto da Costa (4990_CR1) 2001
S Qiao (4990_CR5) 2004; 36
RD Cook (4990_CR35) 1989
Xin Sui (4990_CR6) 2018; 93
MA Agwa (4990_CR28) 2015; 25
JAC Martins (4990_CR40) 2012; 55
4990_CR46
P Hild (4990_CR3) 2004; 297
RA Ibrahim (4990_CR8) 1994; 47
4990_CR45
4990_CR44
4990_CR43
4990_CR42
MA Agwa (4990_CR25) 2008; 27
Davide Bigoni (4990_CR9) 2011; 59
MA Agwa (4990_CR47) 2019; 75
4990_CR4
RA Ibrahim (4990_CR7) 1994; 47
4990_CR58
4990_CR56
4990_CR11
4990_CR55
4990_CR10
BM Lempriere (4990_CR36) 1968; 6
4990_CR54
Gerardo G Nava-Gómez (4990_CR37) 2012; 48
4990_CR60
R Hassani (4990_CR2) 2003; 192
A Klarbring (4990_CR32) 1990; 56
R J Crawford (4990_CR61) 1998
X Chateau (4990_CR23) 1991; 10
4990_CR27
Luis Rodríguez-Tembleque (4990_CR38) 2016; 107
4990_CR24
RI Leine (4990_CR52) 2008; 51
4990_CR21
A Pinto da Costa (4990_CR31) 2009; 87
Nicolas Antoni (4990_CR39) 2017; 121
References_xml – reference: Agwa, M.A.: Friction-induced dynamic instabilities and solution (non-)uniqueness in contact mechanics. PhD thesis, Technical University of Lisbon, Instituto Superior Técnico, Lisbon, Portugal (2011)
– reference: Agwa, M.A., Pinto da Costa, A.: Frictional instabilities in contact problems: numerical and analytical computations of instability modes. In: Congresso de Métodos Numéricos em Engenharia CMNE/CILAMCE, Porto, Portugal, 13–15 (2007)
– reference: Pinto da Costa, A., Agwa, M.A.: Flutter instability in orthotropic linear elastic half-spaces with a frictional boundary condition. In: Euromech Colloquium, Nonsmooth Contact and Impact Laws in Mechanics, Grenoble, France, 6–8 (2011)
– reference: QiaoSBeloiuDMIbrahimRADeterministic and stochastic characterization of friction-induced vibration in disc brakesNonlinear Dyn.20043636137810.1023/B:NODY.0000045512.75470.f41157.74308
– reference: ChateauXNguyenQ-SBuckling of elastic structures in unilateral contact with or without frictionEur. J. Mech. A/Solids1991101718911264310735.73043
– reference: Moirot, F.: Étude de la Stabilité d’un Équilibre en Présence de Frottement de Coulomb. PhD thesis, École Polytechnique, Paris, France (1998)
– reference: LeineRIvan de WouwNStability properties of equilibrium sets of non-linear mechanical systems with dry friction and impactNonlinear Dyn.2008514551583238034110.1007/s11071-007-9244-z1170.70340
– reference: QueirozMJúdiceJHumesCJrThe symmetric eigenvalue complementarity problemMath. Comput.20047318491863205973910.1090/S0025-5718-03-01614-41119.90059
– reference: De DomenicoDFaillaIRicciardiGAnalysis of dynamic instabilities in bridges under wind action through a simple friction-based mechanical modelProcedia Eng.201719913413910.1016/j.proeng.2017.09.195
– reference: KlarbringAExamples of non-uniqueness and non-existence of solutions to quasistatic contact problems with frictionIng. Arch.199056529541
– reference: NguyenQ-SBifurcation and Stability of Dissipative Systems, vol. 327 of CISM Courses and lectUres, Chapter Bifurcation and Stability of Time-Independent Standard Dissipative Systems1993WienSpringer4594
– reference: Pinto da CostaAMartinsJACFigueiredoINJúdiceJJThe directional instability problem in systems with frictional contactsComput. Methods Appl. Mech. Eng.2004193357384203123210.1016/j.cma.2003.09.0131075.74596
– reference: HildPSakkiNDOn solution multiplicity in friction problems with normal complianceJ. Math. Anal. Appl.2004297113207964310.1016/j.jmaa.2004.05.0261071.74040
– reference: Zhou, J.L., Tits, A.L., Lawrence, C.T.: User’s Guide for FFSQP Version 3.7: A FORTRAN Code for Solving Constrained Nonlinear (Minimax) Optimization Problems, Generating Iterates Satisfying All Inequality and Linear Constraints (1997)
– reference: Pinto da Costa, A., Agwa, M.A.: Using symbolic computation in the detection of frictional instabilities. In: Computational Contact Mechanics an International Symposium sponsored by IUTAM, SYMCOMP 2013, Lisbon, Portugal, 9–10 (September 2013)
– reference: Adly, S., Seeger, A.: A nonsmooth algorithm for cone-constrained eigenvalue problems. Comput. Optim. Appl. (2010). https://doi.org/10.1007/s10589-009-9297-7
– reference: Pinto da CostaASeegerACone-constrained eigenvalue problems: theory and algorithmsComput. Optim. Appl.20104512557259459510.1007/s10589-008-9167-81193.65039
– reference: Pinto da CostaAFigueiredoINJúdiceJJMartinsJACComplementarity: Applications, Algorithms and Extensions, vol. 50, Chapter A Complementarity Eigenproblem in the Stability Analysis of Finite Dimensional Elastic Systems with Frictional Contact2001DordrechtKluwer Academic Publishers67831119.74503
– reference: AgwaMAPinto da CostaASurface instabilities in linear orthotropic half-spaces with a frictional interfaceASME J. Appl. Mech.2011784041002-041002-910.1115/1.4003744
– reference: AgwaMAPinto da CostaAUsing symbolic computation in the characterization of frictional instabilities involving orthotropic materialsInt. J. Appl. Math. Comput. Sci.2015252259267336351410.1515/amcs-2015-00201322.70013
– reference: IbrahimRAFriction-induced vibration, chatter, squeal, and chaos, part I: mechanics of contact and frictionASME Appl. Mech. Rev.199447720922610.1115/1.3111079
– reference: Ionescu, I. R., Hassani, R.: Equilibrium configurations with Coulomb friction. existence, multiplicity and stability. In: Mota Soares C.A. et al. (eds.) Solids, Structures and Coupled Problems in Engineering. Proceedings of the III European Conference on Computational Mechanics, Lisboa Portugal (2006)
– reference: MartinsJACSimõesFMFPinto da CostaAAssessing the (in)stability of quasi-static pathsInt. J. Eng. Sci.2012551834290890210.1016/j.ijengsci.2012.02.00106923614
– reference: KlarbringAOn discrete and discretized non-linear elastic structures in unilateral contact (stability, uniqueness and variational principles)Int. J. Solids Struct.198824545947994480410.1016/0020-7683(88)90002-90636.73096
– reference: BigoniDavideNoselliGiovanniExperimental evidence of flutter and divergence instabilities induced by dry frictionJ. Mech. Phys. Solids201159102208222610.1016/j.jmps.2011.05.007
– reference: LeineRIVan de WouwNStability and Convergence of Mechanical Systems with Unilateral Constraints. Lecture Notes in Applied and Computational Mechanics2008New YorkSpringer1143.70001
– reference: IbrahimRAFriction-induced vibration, chatter, squeal, and chaos, part II: dynamics and modelingASME Appl. Mech. Rev.199447722725310.1115/1.3111080
– reference: Agwa, M.A., Pinto da Costa, A.: On a sufficient condition for solution uniqueness of the quasi-static incremental frictional contact problem. In: The 7th\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$7^{\text{th}}$$\end{document} EUROMECH Solid Mechanics Conference, ESMC2009, Lisbon, Portugal, 7–11 (2009)
– reference: AgwaMAMegahedAANew nonlinear regression modeling and multi-objective optimization of cutting parameters in drilling of GFRE composites to minimize delaminationPolym. Test.20197519220410.1016/j.polymertesting.2019.02.011
– reference: MAPLE. Waterloo Maple Inc (2001). http://www.maplesoft.com/. Accessed 2001
– reference: LigurskýTomášRenardYvesA method of piecewise-smooth numerical branchingZAMM J. Appl. Math. Mech.2017977815827367092510.1002/zamm.201600219
– reference: Agwa, M.A., Andersson, Lars-Erik, Pinto da Costa, A.: Critical bounds for discrete frictional incremental problems, rate problems and wedging problems. In: Computational Contact Mechanics an International Symposium sponsored by IUTAM, Euromech 514: New Trends in Contact Mechanics, Cargese—Corsica, France, 27–31 (2012)
– reference: ShanleyFRInelastic column theoryJ. Aeronaut. Sci.194714526126710.2514/8.1346
– reference: Brooke, A., Kendrick, D., Meeraus, A., Raman, R., Rosenthal, R.E.: GAMS A User’s Guide. GAMS Development Corporation (1998). http://www.gams.com. Accessed 2004
– reference: CrawfordR JPlastics Engineering19983BostonButterwort-Heinemann
– reference: ZieglerHPrinciples of Structural Stability1968WalthamBlaisdell Publishing Company
– reference: SioJFAPinto da CostaASimõesFMFBuckling of unilaterally constrained columns by complementarity eigenvalue analysesInt. J. Solids Struct.2017106–107465510.1016/j.ijsolstr.2016.11.032
– reference: HassaniRHildPIonescuIRSakkiNDA mixed finite element method and solution multiplicity for Coulomb frictional contactComput. Methods Appl. Mech. Eng.200319245174531201248010.1016/S0045-7825(03)00419-51054.74052
– reference: AntoniNicolasA further analysis on the analogy between friction and plasticity in solid mechanicsInt. J. Eng. Sci.20171213451371572410.1016/j.ijengsci.2017.08.01206985827
– reference: HuseyinKVibrations and Stability of Multiparameter Systems1978LeydenSijthoff & Noordhoff International Publishers0399.73032
– reference: SuiXinDingQianInstability and stochastic analyses of a pad-on-disc frictional system in moving interactionsNonlinear Dyn.20189331619163410.1007/s11071-018-4280-4
– reference: AnderssonL-EPinto da CostaAAgwaMAExistence and uniqueness for frictional incremental and rate problems—sharp critical boundsZAMM J. Appl. Math. Mech.201696178105345431610.1002/zamm.2014001431335.74006
– reference: Agwa, M.A., Pinto da Costa, A.: Equilibria directional instability in systems with Coulomb friction. In: 7th World Congress on Computational Mechanics, Los Angeles, CA, Los Angeles, CA, USA, 16–22 (2006)
– reference: AgwaMAPinto da CostaAInstability of frictional contact states in infinite layersEur. J. Mech. A/Solids2008273487503240792610.1016/j.euromechsol.2007.09.0061154.74347
– reference: Pinto da CostaASeegerANumerical resolution of cone-constrained eigenvalue problems: theory and algorithmsComput. Appl. Math.20092813761249582610.1590/S0101-820520090001000031171.65027
– reference: LempriereBMPoisson’s ratio in orthotropic materialsAIAA J.19686112226222710.2514/3.4974
– reference: SimõesFMFMartinsJACFlutter instability in a non-associative elastic-plastic layer: analytical versus finite element resultsInt. J. Eng. Sci.200543118920810.1016/j.ijengsci.2004.09.001
– reference: MartinsJACBarbarinSRaousMPinto da CostaADynamic stability of finite dimensional linearly elastic systems with unilateral contact and Coulomb frictionComput. Methods Appl. Mech. Eng.1999177289328171046110.1016/S0045-7825(98)00386-70943.74023
– reference: CookRDMalkusDSPleshaMEConcepts and Applications of Finite Element Analysis1989New YorkWiley0696.73039
– reference: Pinto da CostaAAgwaMAFrictional instabilities in orthotropic hollow cylindersComput. Struct.2009871275128610.1016/j.compstruc.2009.08.007
– reference: Renard, Y.: Modélisation des instabilités liées au frottement sec des solides élastiques, aspects théoriques et numériques. Phd thesis, Université Joseph Fourier—Grenoble I, Grenoble, France (1998)
– reference: Nava-GómezGerardo GCamacho-MontesHéctorSabinaFederico JRodríguez-RamosReinaldoFuentesLuisGuinovart-DíazRaúlElastic properties of an orthotropic binary fiber-reinforced composite with auxetic and conventional constituentsMech. Mater.20124812510.1016/j.mechmat.2012.01.004
– reference: Rodríguez-TemblequeLuisSáezAndrésAliabadiMHIndentation response of piezoelectric films under frictional contactInt. J. Eng. Sci.2016107365310.1016/j.ijengsci.2016.07.00506984732
– reference: MartinsJACPinto da CostaAStability of finite-dimensional nonlinear elastic systems with unilateral contact and frictionInt. J. Solids Struct.2000371825192564175706310.1016/S0020-7683(98)00291-10959.74048
– reference: BaumannMichaelLeineRemco ISynchronization-based estimation of the maximal lyapunov exponent of nonsmooth systemsProcedia IUTAM201720263310.1016/j.piutam.2017.03.005
– reference: AgwaMAAliMNEffective damage indicator for aluminum alloy (AA6082Zr) processed by ECAEASME J. Manuf. Sci. Eng.201814012121014–121014–1010.1115/1.4041479
– reference: OdenJTMartinsJACModels and computational methods for dynamic friction phenomenaComput. Methods Appl. Mech. Eng.19855252763482275710.1016/0045-7825(85)90009-X0567.73122
– reference: Batoz, J.-L., Dhatt, G.: Modélization des Structures par Éléments Finis, vol. 1: solides élastiques. Hermes (1990)
– reference: AgwaMAAliMNAl-ShorbagyAEOptimum processing parameters for equal channel angular pressingMech. Mater.201610011110.1016/j.mechmat.2016.06.003
– reference: Pinto da Costa, A., Figueiredo, I.N., Júdice, J.J., Martins, J.A.C.: Contact avec frottement en terme de complementarité: instabilité et non-unicité. Laboratoire de Mathématiques de l’Université de Savoie, Le Bourget-du-Lac, France, In Instabilité du Frottement (1999)
– reference: Pinto da Costa, A., Agwa, M. A.: The effects of obstacle curvature and material anisotropy on frictional directional instabilities. In: Computational Contact Mechanics An International Symposium Sponsored by IUTAM, Institut für Baumechanik und Numerische Mechanik Universität Hannover, Appelstr.9A, 30167 Hannover, Germany, 5–9 (2006)
– volume: 297
  start-page: 1
  year: 2004
  ident: 4990_CR3
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2004.05.026
– volume-title: Vibrations and Stability of Multiparameter Systems
  year: 1978
  ident: 4990_CR50
– volume: 47
  start-page: 227
  issue: 7
  year: 1994
  ident: 4990_CR8
  publication-title: ASME Appl. Mech. Rev.
  doi: 10.1115/1.3111080
– volume: 52
  start-page: 527
  year: 1985
  ident: 4990_CR13
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(85)90009-X
– volume: 140
  start-page: 121014–121014–1
  issue: 12
  year: 2018
  ident: 4990_CR41
  publication-title: ASME J. Manuf. Sci. Eng.
  doi: 10.1115/1.4041479
– ident: 4990_CR60
– ident: 4990_CR45
– volume: 73
  start-page: 1849
  year: 2004
  ident: 4990_CR59
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-03-01614-4
– volume: 193
  start-page: 357
  year: 2004
  ident: 4990_CR29
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2003.09.013
– ident: 4990_CR55
– volume: 75
  start-page: 192
  year: 2019
  ident: 4990_CR47
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2019.02.011
– volume: 25
  start-page: 259
  issue: 2
  year: 2015
  ident: 4990_CR28
  publication-title: Int. J. Appl. Math. Comput. Sci.
  doi: 10.1515/amcs-2015-0020
– volume: 36
  start-page: 361
  year: 2004
  ident: 4990_CR5
  publication-title: Nonlinear Dyn.
  doi: 10.1023/B:NODY.0000045512.75470.f4
– volume: 59
  start-page: 2208
  issue: 10
  year: 2011
  ident: 4990_CR9
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2011.05.007
– ident: 4990_CR46
– ident: 4990_CR58
  doi: 10.1007/s10589-009-9297-7
– volume-title: Stability and Convergence of Mechanical Systems with Unilateral Constraints. Lecture Notes in Applied and Computational Mechanics
  year: 2008
  ident: 4990_CR51
– ident: 4990_CR42
– ident: 4990_CR21
– volume: 121
  start-page: 34
  year: 2017
  ident: 4990_CR39
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2017.08.012
– ident: 4990_CR56
– volume: 55
  start-page: 18
  year: 2012
  ident: 4990_CR40
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2012.02.001
– volume: 192
  start-page: 4517
  year: 2003
  ident: 4990_CR2
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(03)00419-5
– ident: 4990_CR10
– volume: 96
  start-page: 78
  issue: 1
  year: 2016
  ident: 4990_CR12
  publication-title: ZAMM J. Appl. Math. Mech.
  doi: 10.1002/zamm.201400143
– volume: 27
  start-page: 487
  issue: 3
  year: 2008
  ident: 4990_CR25
  publication-title: Eur. J. Mech. A/Solids
  doi: 10.1016/j.euromechsol.2007.09.006
– volume-title: Concepts and Applications of Finite Element Analysis
  year: 1989
  ident: 4990_CR35
– ident: 4990_CR4
– volume: 107
  start-page: 36
  year: 2016
  ident: 4990_CR38
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2016.07.005
– volume: 14
  start-page: 261
  issue: 5
  year: 1947
  ident: 4990_CR20
  publication-title: J. Aeronaut. Sci.
  doi: 10.2514/8.1346
– volume: 20
  start-page: 26
  year: 2017
  ident: 4990_CR53
  publication-title: Procedia IUTAM
  doi: 10.1016/j.piutam.2017.03.005
– volume: 6
  start-page: 2226
  issue: 11
  year: 1968
  ident: 4990_CR36
  publication-title: AIAA J.
  doi: 10.2514/3.4974
– ident: 4990_CR43
– ident: 4990_CR24
– volume: 56
  start-page: 529
  year: 1990
  ident: 4990_CR32
  publication-title: Ing. Arch.
  doi: 10.1007/BF00541909
– ident: 4990_CR27
– volume: 48
  start-page: 1
  year: 2012
  ident: 4990_CR37
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2012.01.004
– start-page: 67
  volume-title: Complementarity: Applications, Algorithms and Extensions, vol. 50, Chapter A Complementarity Eigenproblem in the Stability Analysis of Finite Dimensional Elastic Systems with Frictional Contact
  year: 2001
  ident: 4990_CR1
– volume: 78
  start-page: 041002-041002-9
  issue: 4
  year: 2011
  ident: 4990_CR26
  publication-title: ASME J. Appl. Mech.
  doi: 10.1115/1.4003744
– volume-title: Plastics Engineering
  year: 1998
  ident: 4990_CR61
– volume: 93
  start-page: 1619
  issue: 3
  year: 2018
  ident: 4990_CR6
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-018-4280-4
– volume: 10
  start-page: 71
  issue: 1
  year: 1991
  ident: 4990_CR23
  publication-title: Eur. J. Mech. A/Solids
– volume: 45
  start-page: 25
  issue: 1
  year: 2010
  ident: 4990_CR57
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-008-9167-8
– ident: 4990_CR11
– volume: 24
  start-page: 459
  issue: 5
  year: 1988
  ident: 4990_CR18
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/0020-7683(88)90002-9
– volume: 97
  start-page: 815
  issue: 7
  year: 2017
  ident: 4990_CR17
  publication-title: ZAMM J. Appl. Math. Mech.
  doi: 10.1002/zamm.201600219
– volume: 87
  start-page: 1275
  year: 2009
  ident: 4990_CR31
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2009.08.007
– volume: 199
  start-page: 134
  year: 2017
  ident: 4990_CR16
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2017.09.195
– start-page: 45
  volume-title: Bifurcation and Stability of Dissipative Systems, vol. 327 of CISM Courses and lectUres, Chapter Bifurcation and Stability of Time-Independent Standard Dissipative Systems
  year: 1993
  ident: 4990_CR14
– volume: 106–107
  start-page: 46
  year: 2017
  ident: 4990_CR22
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2016.11.032
– volume: 37
  start-page: 2519
  issue: 18
  year: 2000
  ident: 4990_CR19
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/S0020-7683(98)00291-1
– volume: 177
  start-page: 289
  year: 1999
  ident: 4990_CR15
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(98)00386-7
– ident: 4990_CR44
– volume: 100
  start-page: 1
  year: 2016
  ident: 4990_CR48
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2016.06.003
– volume: 28
  start-page: 37
  issue: 1
  year: 2009
  ident: 4990_CR30
  publication-title: Comput. Appl. Math.
  doi: 10.1590/S0101-82052009000100003
– ident: 4990_CR54
– ident: 4990_CR33
– volume: 43
  start-page: 189
  issue: 1
  year: 2005
  ident: 4990_CR34
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2004.09.001
– volume-title: Principles of Structural Stability
  year: 1968
  ident: 4990_CR49
– volume: 51
  start-page: 551
  issue: 4
  year: 2008
  ident: 4990_CR52
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-007-9244-z
– volume: 47
  start-page: 209
  issue: 7
  year: 1994
  ident: 4990_CR7
  publication-title: ASME Appl. Mech. Rev.
  doi: 10.1115/1.3111079
SSID ssj0003208
Score 2.2498424
Snippet The current study addresses the occurrence of smooth dynamic paths which rapidly diverge the mechanical system away from equilibrium configuration in an...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 431
SubjectTerms Algorithms
Automotive Engineering
Classical Mechanics
Coefficient of friction
Control
Divergence
Dynamical Systems
Elastic layers
Elastic properties
Engineering
Exact solutions
Finite element method
Friction
Material properties
Mathematical models
Mechanical Engineering
Mechanical systems
Optimization
Original Paper
Parameters
Quadratic programming
Stability
Stability analysis
Vibration
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oXPQgihpRND140yVsuy-OxIBEoydJ8LTp9mEILyNwwF9vZ7fLKlETbpts2-y20_ab9ptvAK5DVFnzE-oI19WOF-mmEzHOHF8GVLc4pZGLAc5Pz0Gv7z0M_IENCpvnbPf8SjJdqYtgN-OpoOuLh_lmDXVWu1D20UEpQbl9__rYWa_AjKaZ6JrGt8BziIENlvm9lZ8bUoEyNy5G0_2mW4F-_qUZzWTUWC6ShvjcEHHc9lcO4cACUNLOLOYIdtS0ChULRomd6vMq7H9TKjyGUZ4SgSgDt80TQc3wCXJp5mRic6RN34hEmkeq70mGCDxT6u2KzDTBfETZuSNBGjtyxbCMHiLoHa_IeGaqp3EsJ9Dvdl7ueo7N0-AIM4EXDmUsFJGrkkBEVHLPgBwvNDA0oEmzJYVgKCPPuDTbMZMi4qHwQt4ULanCRKAE2ymUprOpOgMihNcy7Sjl-8yTSZCYQlpqn2uteMRlDdx8sGJhRcwxl8Y4LuSXsW9j07dx2rfxqgY36zrvmYTHv6XruQ3EdjrPY4w2xhvbyK_BbT6kxeu_WzvfrvgF7NHUKpAOXIfS4mOpLg3oWSRX1sa_AHh1-yk
  priority: 102
  providerName: Springer Nature
Title Critical elastic parameters motivating divergence instability of frictional composite infinitely long media
URI https://link.springer.com/article/10.1007/s11071-019-04990-y
https://www.proquest.com/docview/2264203685
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-269X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: AFBBN
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-269X
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwEB2xXODAjiibfOAGFo2drSdUUAsCgRCiUjlFjheEKC3QcujfM-M6FJDglChxfMiMx8-zvAE4yIhlLSkF11HkeJy7Os-lkjwxqXANJUQeUYHz9U160Ykvu0k3ONyGIa2ysoneUJuBJh_5MRV8UtAsT05e3zh1jaLoamihMQvzkUBNokrx9vmXJZbCd6Sr4xmD_BHdUDQzKZ3Dcw8dpCk0gBaZj39uTFO0-StA6ved9gosBcDImhMJr8KM7a_BcgCPLCzN4RosfmMWXIfnqoUBswiP8Y4Rx_cL5b4M2UvoadZ_ZIbSMjwfJ3sioOhTZcds4Bj1D5r4CRmlnVNuF41xTwRSe2PWG-Dnvu5kAzrt1v3ZBQ99FbjGBTfiQspM55EtU50Lo2IEJXGGsDEVZb1htJZE-y6Vwe1TGp2rTMeZquuGsVmpiTJtE-b6g77dAqZ13MB5rE0SGZsyLXGQMy5RzlmVK1ODqPqphQ6k49T7oldM6ZJJEAUKovCCKMY1OPz65nVCufHv6N1KVkVYfsNiqiw1OKrkN33992zb_8-2AwvCqwyl6-7C3Oj9w-4hKBmV-17z9mG-ef5w1cLraevm9g6fdkTzEzDC5IE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB4BPRQO0FIqwqPdA5zaFfGuH5sDQog2Dc8TSLm5631UiJAACUL-U_xGZtY2oZXKjZsl787BM57H7sz3AWxlhLKWFIKbKPI8Vr7NldSSJzYVvqOFUBENOJ-epb2L-Kif9GfgsZmFobbKxicGR21Hhs7Id2jgky7NVLJ3c8uJNYpuVxsKjcosjl35gCXbePfwB-p3W4juz_ODHq9ZBbhBc5twIWVmVOSK1ChhdYwhOc4waUpF0e5YYySBnkttMXhIa5TOTJzptulYlxWGAMNQ7iy8i6WUhNWvur-ePb8UgQGvjTUNnX_06yGdalQP6ywq3OkqAiMAL_8OhNPs9p8L2RDnuh9gsU5Q2X5lUR9hxg2XYalOVlntCsbLsPACyfATXDWUCcxhOo5PjDDFr6nXZsyuaw614R9mqQ0k4H-yS0pMQ2tuyUaeEV9RdS7JqM2deslojb-kpHhQssEIt4c5lxW4eJMv_hnmhqOhWwVmTNxBOc4liYxtkRa4yFufaO-dVtq2IGo-am5qkHPi2hjkU3hmUkSOisiDIvKyBd-e99xUEB-vrt5odJXXv_s4nxpnC743-pu-_r-0tdelfYX3vfPTk_zk8Ox4HeZFMB9qFd6AucndvdvEhGhSfAlWyOD3W5v9E7NDHU0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRAMPAqIQgEPbBDR2Hl1rICqvCoGKnWLHD9QRZtWtAz99_icpCkIkNgi5ewhZ-e-s-_7DuA8RJU1P6GOcF3teJFuOBHjzPFlQHWTUxq5SHB-6gadnnff9_tLLH5b7V5cSWacBlRpSmdXE6mvSuKbyVowDcaDffM_dearsOaZWI3pV4-2Fv9iRm1PuobJMvBEop_TZn6e42toKvHmtytSG3naO7CVQ0bSyny8CysqrcJ2Dh9JvjmnVdhc0hbcg7eiiQFRBiCbJ4Iq3yOsfpmSUd7VLH0lEgszrCInGSBUtMWyczLWBDsIZSeFBAvPsboLbfQAYepwToZjM9wyT_ah1759ue44eWcFR5gtN3MoY6GIXJUEIqKSewaWeKEBjgFNGk0pBEPhd8alCaBMioiHwgt5QzSlChOBomkHUEnHqToEIoTXNPMo5fvMk0mQGCMttc-1VjzisgZu8VFjkcuOY_eLYVwKJqMjYuOI2DointfgYjFmkolu_GldL3wV5xtwGiM_GO9YI78Gl4X_yte_z3b0P_MzWH--acePd92HY9igdjVhLW8dKrP3D3ViEMssObWL8hP6TuUb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Critical+elastic+parameters+motivating+divergence+instability+of+frictional+composite+infinitely+long+media&rft.jtitle=Nonlinear+dynamics&rft.au=Agwa%2C+M+A&rft.date=2019-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=97&rft.issue=1&rft.spage=431&rft.epage=448&rft_id=info:doi/10.1007%2Fs11071-019-04990-y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon