Spatial spiking neural network for classification of EEG signals for concealed information test

In the field of neuroscience, a significant challenge lies in extracting essential features from biological signals like Electroencephalography (EEG). Utilized as a non-invasive method, EEG records brain activities through metal electrodes on the scalp. The analysis of EEG data finds applications in...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 83; no. 33; pp. 79259 - 79280
Main Authors Edla, Damoder Reddy, Bablani, Annushree, Bhattacharyya, Saugat, Dharavath, Ramesh, Cheruku, Ramalingaswamy, Boddu, Vijayasree
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1573-7721
1380-7501
1573-7721
DOI10.1007/s11042-024-18698-8

Cover

Abstract In the field of neuroscience, a significant challenge lies in extracting essential features from biological signals like Electroencephalography (EEG). Utilized as a non-invasive method, EEG records brain activities through metal electrodes on the scalp. The analysis of EEG data finds applications in various domains, including concealed information tests, aimed at detecting deception. This paper introduces the Spatial Spiking Neural Network, a supervised approach for classifying EEG data collected during concealed information tests. Temporal EEG data undergoes filtration using a Finite Impulse Response (FIR) filter, while Common Spatial Pattern (CSP) is employed to extract spatial components. Binary classification is achieved through an integrate-and-fire neuron model, where the frequency of spike generation determines the classification. Spiking Neural Networks (SNNs) offers advantages in terms of temporal precision, event-driven processing, and low power consumption. Their spike-based communication allows for efficient handling of sparse data and recognition of temporal patterns, contributing to robustness and energy efficiency. The proposed model is applied separately to each subject’s EEG data, and the results are compared with traditional classification algorithms. The proposed approach attains a peak accuracy of 90.15%, showcasing superior performance compared to alternative methods.
AbstractList In the field of neuroscience, a significant challenge lies in extracting essential features from biological signals like Electroencephalography (EEG). Utilized as a non-invasive method, EEG records brain activities through metal electrodes on the scalp. The analysis of EEG data finds applications in various domains, including concealed information tests, aimed at detecting deception. This paper introduces the Spatial Spiking Neural Network, a supervised approach for classifying EEG data collected during concealed information tests. Temporal EEG data undergoes filtration using a Finite Impulse Response (FIR) filter, while Common Spatial Pattern (CSP) is employed to extract spatial components. Binary classification is achieved through an integrate-and-fire neuron model, where the frequency of spike generation determines the classification. Spiking Neural Networks (SNNs) offers advantages in terms of temporal precision, event-driven processing, and low power consumption. Their spike-based communication allows for efficient handling of sparse data and recognition of temporal patterns, contributing to robustness and energy efficiency. The proposed model is applied separately to each subject’s EEG data, and the results are compared with traditional classification algorithms. The proposed approach attains a peak accuracy of 90.15%, showcasing superior performance compared to alternative methods.
Author Edla, Damoder Reddy
Cheruku, Ramalingaswamy
Boddu, Vijayasree
Dharavath, Ramesh
Bablani, Annushree
Bhattacharyya, Saugat
Author_xml – sequence: 1
  givenname: Damoder Reddy
  surname: Edla
  fullname: Edla, Damoder Reddy
  organization: Department of CSE, National Institute of Technology Goa
– sequence: 2
  givenname: Annushree
  surname: Bablani
  fullname: Bablani, Annushree
  organization: Department of CSE, Indian Institute of Information Technology Sricity
– sequence: 3
  givenname: Saugat
  surname: Bhattacharyya
  fullname: Bhattacharyya, Saugat
  organization: Computer Science, SCEIS, Ulster University, Magee Campus
– sequence: 4
  givenname: Ramesh
  surname: Dharavath
  fullname: Dharavath, Ramesh
  organization: Department of CSE, Indian Institute of Technology (ISM), Dhanbad
– sequence: 5
  givenname: Ramalingaswamy
  orcidid: 0000-0003-1677-5321
  surname: Cheruku
  fullname: Cheruku, Ramalingaswamy
  email: rmlswamy@nitw.ac.in
  organization: Department of CSE, National Institute of Technology Warangal
– sequence: 6
  givenname: Vijayasree
  surname: Boddu
  fullname: Boddu, Vijayasree
  organization: Department of ECE, National Institute of Technology Warangal
BookMark eNp9kMFKAzEURYNUsFZ_wNWA69G8ZGaSLKXUKhRcqOuQpklJO03GZIr496YdQXHRVd6Dc14u9xKNfPAGoRvAd4Axu08AuCIlJlUJvBG85GdoDDWjJWMERn_mC3SZ0gZjaGpSjZF87VTvVFukzm2dXxfe7GNevek_Q9wWNsRCtyolZ53OZPBFsMVsNi-SW3vVpoEIXhvVmlXhfN53A9ib1F-hc5spc_3zTtD74-xt-lQuXubP04dFqSmIviQE7LKmuhG1YA1hgteUGmM5NFRVxHJByEpAxTjmGhStAGvBQIsKL2EpCJ2g2-FuF8PHPn8sN2EfDwElBagwEMFEpvhA6RhSisZK7fpj2D4q10rA8lCnHOqUuU55rFPyrJJ_ahfdTsWv0xIdpJRhvzbxN9UJ6xshqIjz
CitedBy_id crossref_primary_10_37394_23208_2025_22_16
Cites_doi 10.1088/1741-2560/9/2/026013
10.1126/science.1227356
10.1016/j.cegh.2020.01.008
10.1088/1741-2552/aace8c
10.1177/1550059411428715
10.1109/IJCNN.2003.1224019
10.1111/j.1469-8986.2004.00158.x
10.1007/s10484-009-9089-y
10.1109/LSP.2009.2022557
10.1016/j.procs.2018.05.056
10.1007/BF01129656
10.1016/j.procs.2018.10.392
10.1016/j.neunet.2009.04.003
10.1109/TIM.2019.2906967
10.1145/3297713
10.1111/j.1469-8986.1991.tb01990.x
10.1007/978-3-642-33212-8_21
10.1109/TNSRE.2023.3246989
10.1109/TIFS.2016.2590938
10.4249/scholarpedia.1349
10.1016/j.cmpb.2017.02.007
10.1016/j.ins.2014.06.028
10.1109/TNSRE.2023.3336467
10.1007/s00138-018-0950-y
10.1113/jphysiol.1952.sp004764
10.1007/11861898_42
10.1016/j.cmpb.2008.10.001
10.1016/j.jneumeth.2003.10.009
10.1007/978-3-642-24955-6_54
10.1111/j.1469-8986.2010.01050.x
10.1109/TIM.2018.2865842
10.1109/TNNLS.2015.2476656
10.1109/TIFS.2013.2244884
10.1016/j.cmpb.2023.107927
10.1016/j.imu.2017.05.004
10.1109/TIM.2018.2838158
10.1016/S0893-6080(97)00011-7
10.1109/TIM.2019.2907036
10.1111/j.1469-8986.2008.00708.x
10.1109/IJCNN.2013.6706930
10.1109/TBME.2010.2082539
10.1103/PhysRevE.51.738
10.1111/coin.12256
10.1016/j.neucom.2018.04.087
10.1016/S0361-9230(99)00161-6
10.1109/JTEHM.2023.3320132
10.1109/IEMBS.2009.5332554
10.1109/TIM.2011.2128670
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11042-024-18698-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 79280
ExternalDocumentID 10_1007_s11042_024_18698_8
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-221fb53c6959762798533eef8163a42f8922d9147808c1a3410c971c940b1b923
IEDL.DBID BENPR
ISSN 1573-7721
1380-7501
IngestDate Mon Oct 06 16:35:26 EDT 2025
Wed Oct 01 04:51:45 EDT 2025
Thu Apr 24 23:11:24 EDT 2025
Fri Feb 21 02:40:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 33
Keywords Electroencephalography
Brain computer interface
Concealed information test
Spiking neural networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-221fb53c6959762798533eef8163a42f8922d9147808c1a3410c971c940b1b923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1677-5321
PQID 3114012979
PQPubID 54626
PageCount 22
ParticipantIDs proquest_journals_3114012979
crossref_citationtrail_10_1007_s11042_024_18698_8
crossref_primary_10_1007_s11042_024_18698_8
springer_journals_10_1007_s11042_024_18698_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241000
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 20241000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Schrauwen B, Van Campenhout J (2003) Bsa, a fast and accurate spike train encoding scheme. In: Proceedings of the international joint conference on neural networks, 2003, vol 4, pp 2825–2830. IEEE
Bablani A, Edla DR, Tripathi D, Kuppili V (2019) An efficient concealed information test: eeg feature extraction and ensemble classification for lie identification. Mach Vis Appl 30:813–832
Alchalabi AE, Shirmohammadi S, Eddin AN, Elsharnouby M (2018) Focus: detecting adhd patients by an eeg-based serious game. IEEE Trans Instrum Meas 67(7):1512–1520
ArastehAMoradiMHJanghorbaniAA novel method based on empirical mode decomposition for p300-based detection of deceptionIEEE Trans. Inf. Forensics Secur201611112584259310.1109/TIFS.2016.2590938
MaassWNetworks of spiking neurons: the third generation of neural network modelsNeural Netw19971091659167110.1016/S0893-6080(97)00011-7
WangDMiaoDBlohmGA new method for eeg-based concealed information testIEEE Trans Inf Forensics Secur20138352052710.1109/TIFS.2013.2244884
LiYZhangJCuiWYuanHWeiHA multiple beta wavelet-based locally regularized ultraorthogonal forward regression algorithm for time-varying system identification with applications to eegIEEE Trans Instrum Meas202069391692810.1109/TIM.2019.2907036
The Mathworks, Inc.: MATLAB Version 9.0.0.321247 (R2016b). Natick, Massachusetts (2016). The Mathworks, Inc
Lotte F, Guan C (2011) Regularizing common spatial patterns to improve bci designs: unified theory and new algorithms. IEEE Trans Biomed Eng 58(2):355–362. https://doi.org/10.1109/TBME.2010.2082539
Nuntalid N, Dhoble K, Kasabov N (2011) Eeg classification with bsa spike encoding algorithm and evolving probabilistic spiking neural network. In: International conference on neural information processing, pp 451–460. Springer
Kumar S (2004) Neural Networks: a Classroom Approach. Tata McGraw-Hill Education
MucarquerJAPradoPEscobarMEl-DeredyWZañartuMImproving eeg muscle artifact removal with an emg arrayIEEE Trans Instrum Meas202069381582410.1109/TIM.2019.2906967
DelormeAMakeigSEeglab: an open source toolbox for analysis of single-trial eeg dynamics including independent component analysisJ Neurosci Methods2004134192110.1016/j.jneumeth.2003.10.009
AkhavanAMoradiMHVandSRSubject-based discriminative sparse representation model for detection of concealed informationComput Methods Programs Biomed2017143253310.1016/j.cmpb.2017.02.007
Rosenfeld JP, Labkovsky E, Winograd M, Lui MA, Vandenboom C, Chedid E (2008) The complex trial protocol (ctp): a new, countermeasure-resistant, accurate, p300-based method for detection of concealed information. Psychophysiology 45(6):906–919
Lu H, Plataniotis KN, Venetsanopoulos AN (2009) Regularized common spatial patterns with generic learning for eeg signal classification. In: Engineering in medicine and biology society, 2009. EMBC 2009. Annual International Conference of the IEEE, pp 6599–6602. IEEE
SamekWVidaurreCMüllerKRKawanabeMStationary common spatial patterns for brain-computer interfacingJ Neural Eng20129202601310.1088/1741-2560/9/2/026013
Svojanovsky A. Brain Products. http://www.brainproducts.com/ Accessed 15 May 2017
Svojanovsky A. Easycap. http://www.brainproducts.com/productdetails.php?id=20 Accessed 15 May 2017
BablaniAEdlaDRTripathiDVenkatanareshbabuKSubject based deceit identification using empirical mode decompositionProcedia Comput Sci2018132323910.1016/j.procs.2018.05.056
Kasabov N (2012) Neucube evospike architecture for spatio-temporal modelling and pattern recognition of brain signals. In: Iapr workshop on artificial neural networks in pattern recognition, pp 225–243. Springer
SamABoostaniRHashempourSTaghaviMSaneiSDepression identification using eeg signals via a hybrid of lstm and spiking neural networksIEEE Trans Neural Syst Rehabil Eng2023314725473710.1109/TNSRE.2023.3336467
Dodia S, Edla DR, Bablani A, Cheruku R (2020) Lie detection using extreme learning machine: a concealed information test based on short-time fourier transform and binary bat optimization using a novel fitness function. Comput Intell 36(2):637–658
LiWFangCZhuZChenCSongAFractal spiking neural network scheme for eeg-based emotion recognitionIEEE J Transl Eng Health Med20241210611810.1109/JTEHM.2023.3320132
Ghosh-DastidarSAdeliHA new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detectionNeural Netw200922101419143110.1016/j.neunet.2009.04.003
AbootalebiVMoradiMHKhalilzadehMAA new approach for eeg feature extraction in p300-based lie detectionComput Methods Programs Biomed2009941485710.1016/j.cmpb.2008.10.001
GerstnerWTime structure of the activity in neural network modelsPhys Rev E1995511738249617810.1103/PhysRevE.51.738
RosenfeldJPSoskinsMBoshGRyanASimple, effective countermeasures to p300-based tests of detection of concealed informationPsychophysiology200441220521910.1111/j.1469-8986.2004.00158.x
Purves D, FD Augustine GJ (2001) Excitatory and Inhibitory Postsynaptic Potentials. Neuroscience. 2nd edition. Sunderland (MA). https://www.ncbi.nlm.nih.gov/books/NBK11117
BablaniAEdlaDRDodiaSClassification of eeg data using k-nearest neighbor approach for concealed information testProcedia Comput Sci201814324224910.1016/j.procs.2018.10.392
HodgkinALHuxleyAFA quantitative description of membrane current and its application to conduction and excitation in nervePhysiol J1952117450054410.1113/jphysiol.1952.sp004764
RazaHRatheeDZhouSMCecottiHPrasadGCovariate shift estimation based adaptive ensemble learning for handling non-stationarity in motor imagery related eeg-based brain-computer interfaceNeurocomputing201934315416610.1016/j.neucom.2018.04.087
GaoJLuLYangYYuGNaLRaoNA novel concealed information test method based on independent component analysis and support vector machineClin EEG Neurosci2012431546310.1177/1550059411428715
MeixnerJBRosenfeldJPA mock terrorism application of the p300-based concealed information testPsychophysiology201148214915410.1111/j.1469-8986.2010.01050.x
ZhangYZhouGJinJZhaoQWangXCichockiASparse bayesian classification of eeg for brain-computer interfaceIEEE Trans. Neural Netw. Learn. Syst.2015271122562267357160410.1109/TNNLS.2015.2476656
GaoZLiSCaiQDangWYangYMuCHuiPRelative wavelet entropy complex network for improving eeg-based fatigue driving classificationIEEE Trans Instrum Meas20196872491249710.1109/TIM.2018.2865842
SoviljPMMilovancevSSVujicicVDigital stochastic measurement of a nonstationary signal with an example of eeg signal measurementIEEE Trans Instrum Meas20116093230323210.1109/TIM.2011.2128670
Abbott LF (1999) Lapicque’s introduction of the integrate-and-fire model neuron (1907). Brain research bulletin 50(5–6):303–304
GerstnerWSprekelerHDecoGTheory and simulation in neuroscienceScience20123386103606510.1126/science.1227356
KuboKNittonoHThe role of intention to conceal in the p300-based concealed information testAppl Psychophysiol Biofeedback200934322723510.1007/s10484-009-9089-y
Chandra B, Babu KN (2013) A new spiking neuron model. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp 1–5. IEEE
Bablani A, Edla DR, Tripathi D, Cheruku R (2019) Survey on brain-computer interface: an emerging computational intelligence paradigm. ACM Comput Surv (CSUR) 52(1):1–32
Farwell LA, Donchin E (1991) The truth will out: Interrogative polygraphy (“lie detection”) with event-related brain potentials. Psychophysiology 28(5):531–547
Huang H, Xie Q, Pan J, He Y, Wen Z, Yu R, Li Y (2019) An eeg-based brain computer interface for emotion recognition and its application in patients with disorder of consciousness. IEEE Transactions on Affective Computing
BablaniAEdlaDRKuppiliVRameshDA multi stage eeg data classification using k-means and feed forward neural networkClin Epidemiol Glob Health20208371872410.1016/j.cegh.2020.01.008
KasabovNCapecciESpiking neural network methodology for modelling, classification and understanding of eeg spatio-temporal data measuring cognitive processesInf Sci2015294565575327766110.1016/j.ins.2014.06.028
Farahani ED, Moradi MH (2017) Multimodal detection of concealed information using genetic-svm classifier with strict validation structure. Inform Med Unlocked
Izhikevich EM, FitzHugh R (2006) Fitzhugh-nagumo model. Scholarpedia 1(9):1349
Lawhern VJ, Solon AJ, Waytowich NR, Gordon SM, Hung CP, Lance BJ (2018) Eegnet: a compact convolutional neural network for eeg-based brain-computer interfaces. J Neural Eng 15(5):056013
Xu F, Pan D, Zheng H, Ouyang Y, Jia Z, Zeng H (2024) Eescn: a novel spiking neural network method for eeg-based emotion recognition. Comput Methods Programs Biomed 243:107927. https://doi.org/10.1016/j.cmpb.2023.107927
KangHNamYChoiSComposite common spatial pattern for subject-to-subject transferIEEE Signal Process Lett200916868368610.1109/LSP.2009.2022557
KolesZJLazarMSZhouSZSpatial patterns underlying population differences in the background eegBrain Topogr19902427528410.1007/BF01129656
GongPWangPZhouYZhangDA spiking neural network with adaptive graph convolution and lstm for eeg-based brain-computer interfacesIEEE Trans Neural Syst Rehabil Eng2023311440145010.1109/TNSRE.2023.3246989
Tomioka R, Dornhege G, Nolte G, Blankertz B, Aihara K, Müller KR (2006) Spectrally weighted common spatial pattern algorithm for single trial eeg classification. Dept. Math. Eng., Univ. Tokyo, Tokyo, Japan, Tech. Rep 40
Koch C, Segev I (1998) Methods in Neuronal Modeling: from Ions to Networks. MIT press
A Bablani (18698_CR54) 2018; 143
D Wang (18698_CR16) 2013; 8
18698_CR21
A Delorme (18698_CR50) 2004; 134
18698_CR13
18698_CR11
V Abootalebi (18698_CR18) 2009; 94
JA Mucarquer (18698_CR7) 2020; 69
Y Zhang (18698_CR4) 2015; 27
W Samek (18698_CR24) 2012; 9
K Kubo (18698_CR14) 2009; 34
N Kasabov (18698_CR32) 2015; 294
P Gong (18698_CR39) 2023; 31
H Kang (18698_CR25) 2009; 16
18698_CR10
18698_CR52
18698_CR51
18698_CR47
ZJ Koles (18698_CR22) 1990; 2
18698_CR46
J Gao (18698_CR20) 2012; 43
18698_CR49
18698_CR48
H Raza (18698_CR2) 2019; 343
JB Meixner (18698_CR15) 2011; 48
18698_CR1
18698_CR3
18698_CR6
Y Li (18698_CR9) 2020; 69
A Arasteh (18698_CR19) 2016; 11
A Sam (18698_CR40) 2023; 31
18698_CR42
AL Hodgkin (18698_CR28) 1952; 117
18698_CR41
18698_CR35
18698_CR34
18698_CR33
18698_CR37
Z Gao (18698_CR8) 2019; 68
A Bablani (18698_CR55) 2020; 8
W Li (18698_CR38) 2024; 12
W Maass (18698_CR43) 1997; 10
S Ghosh-Dastidar (18698_CR36) 2009; 22
W Gerstner (18698_CR45) 2012; 338
18698_CR31
18698_CR30
A Akhavan (18698_CR17) 2017; 143
A Bablani (18698_CR53) 2018; 132
18698_CR23
18698_CR29
18698_CR27
W Gerstner (18698_CR44) 1995; 51
18698_CR26
PM Sovilj (18698_CR5) 2011; 60
JP Rosenfeld (18698_CR12) 2004; 41
References_xml – reference: HodgkinALHuxleyAFA quantitative description of membrane current and its application to conduction and excitation in nervePhysiol J1952117450054410.1113/jphysiol.1952.sp004764
– reference: Svojanovsky A. Easycap. http://www.brainproducts.com/productdetails.php?id=20 Accessed 15 May 2017
– reference: AkhavanAMoradiMHVandSRSubject-based discriminative sparse representation model for detection of concealed informationComput Methods Programs Biomed2017143253310.1016/j.cmpb.2017.02.007
– reference: KuboKNittonoHThe role of intention to conceal in the p300-based concealed information testAppl Psychophysiol Biofeedback200934322723510.1007/s10484-009-9089-y
– reference: Bablani A, Edla DR, Tripathi D, Kuppili V (2019) An efficient concealed information test: eeg feature extraction and ensemble classification for lie identification. Mach Vis Appl 30:813–832
– reference: GongPWangPZhouYZhangDA spiking neural network with adaptive graph convolution and lstm for eeg-based brain-computer interfacesIEEE Trans Neural Syst Rehabil Eng2023311440145010.1109/TNSRE.2023.3246989
– reference: Bablani A, Edla DR, Tripathi D, Cheruku R (2019) Survey on brain-computer interface: an emerging computational intelligence paradigm. ACM Comput Surv (CSUR) 52(1):1–32
– reference: Huang H, Xie Q, Pan J, He Y, Wen Z, Yu R, Li Y (2019) An eeg-based brain computer interface for emotion recognition and its application in patients with disorder of consciousness. IEEE Transactions on Affective Computing
– reference: KolesZJLazarMSZhouSZSpatial patterns underlying population differences in the background eegBrain Topogr19902427528410.1007/BF01129656
– reference: Xu F, Pan D, Zheng H, Ouyang Y, Jia Z, Zeng H (2024) Eescn: a novel spiking neural network method for eeg-based emotion recognition. Comput Methods Programs Biomed 243:107927. https://doi.org/10.1016/j.cmpb.2023.107927
– reference: GaoJLuLYangYYuGNaLRaoNA novel concealed information test method based on independent component analysis and support vector machineClin EEG Neurosci2012431546310.1177/1550059411428715
– reference: Tomioka R, Dornhege G, Nolte G, Blankertz B, Aihara K, Müller KR (2006) Spectrally weighted common spatial pattern algorithm for single trial eeg classification. Dept. Math. Eng., Univ. Tokyo, Tokyo, Japan, Tech. Rep 40
– reference: ZhangYZhouGJinJZhaoQWangXCichockiASparse bayesian classification of eeg for brain-computer interfaceIEEE Trans. Neural Netw. Learn. Syst.2015271122562267357160410.1109/TNNLS.2015.2476656
– reference: Chandra B, Babu KN (2013) A new spiking neuron model. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp 1–5. IEEE
– reference: MeixnerJBRosenfeldJPA mock terrorism application of the p300-based concealed information testPsychophysiology201148214915410.1111/j.1469-8986.2010.01050.x
– reference: Alchalabi AE, Shirmohammadi S, Eddin AN, Elsharnouby M (2018) Focus: detecting adhd patients by an eeg-based serious game. IEEE Trans Instrum Meas 67(7):1512–1520
– reference: LiWFangCZhuZChenCSongAFractal spiking neural network scheme for eeg-based emotion recognitionIEEE J Transl Eng Health Med20241210611810.1109/JTEHM.2023.3320132
– reference: Ghosh-DastidarSAdeliHA new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detectionNeural Netw200922101419143110.1016/j.neunet.2009.04.003
– reference: Nuntalid N, Dhoble K, Kasabov N (2011) Eeg classification with bsa spike encoding algorithm and evolving probabilistic spiking neural network. In: International conference on neural information processing, pp 451–460. Springer
– reference: AbootalebiVMoradiMHKhalilzadehMAA new approach for eeg feature extraction in p300-based lie detectionComput Methods Programs Biomed2009941485710.1016/j.cmpb.2008.10.001
– reference: SamABoostaniRHashempourSTaghaviMSaneiSDepression identification using eeg signals via a hybrid of lstm and spiking neural networksIEEE Trans Neural Syst Rehabil Eng2023314725473710.1109/TNSRE.2023.3336467
– reference: Schrauwen B, Van Campenhout J (2003) Bsa, a fast and accurate spike train encoding scheme. In: Proceedings of the international joint conference on neural networks, 2003, vol 4, pp 2825–2830. IEEE
– reference: Dodia S, Edla DR, Bablani A, Cheruku R (2020) Lie detection using extreme learning machine: a concealed information test based on short-time fourier transform and binary bat optimization using a novel fitness function. Comput Intell 36(2):637–658
– reference: The Mathworks, Inc.: MATLAB Version 9.0.0.321247 (R2016b). Natick, Massachusetts (2016). The Mathworks, Inc
– reference: Koch C, Segev I (1998) Methods in Neuronal Modeling: from Ions to Networks. MIT press
– reference: BablaniAEdlaDRTripathiDVenkatanareshbabuKSubject based deceit identification using empirical mode decompositionProcedia Comput Sci2018132323910.1016/j.procs.2018.05.056
– reference: SoviljPMMilovancevSSVujicicVDigital stochastic measurement of a nonstationary signal with an example of eeg signal measurementIEEE Trans Instrum Meas20116093230323210.1109/TIM.2011.2128670
– reference: GerstnerWSprekelerHDecoGTheory and simulation in neuroscienceScience20123386103606510.1126/science.1227356
– reference: DelormeAMakeigSEeglab: an open source toolbox for analysis of single-trial eeg dynamics including independent component analysisJ Neurosci Methods2004134192110.1016/j.jneumeth.2003.10.009
– reference: MaassWNetworks of spiking neurons: the third generation of neural network modelsNeural Netw19971091659167110.1016/S0893-6080(97)00011-7
– reference: BablaniAEdlaDRDodiaSClassification of eeg data using k-nearest neighbor approach for concealed information testProcedia Comput Sci201814324224910.1016/j.procs.2018.10.392
– reference: ArastehAMoradiMHJanghorbaniAA novel method based on empirical mode decomposition for p300-based detection of deceptionIEEE Trans. Inf. Forensics Secur201611112584259310.1109/TIFS.2016.2590938
– reference: Lu H, Plataniotis KN, Venetsanopoulos AN (2009) Regularized common spatial patterns with generic learning for eeg signal classification. In: Engineering in medicine and biology society, 2009. EMBC 2009. Annual International Conference of the IEEE, pp 6599–6602. IEEE
– reference: Abbott LF (1999) Lapicque’s introduction of the integrate-and-fire model neuron (1907). Brain research bulletin 50(5–6):303–304
– reference: Kasabov N (2012) Neucube evospike architecture for spatio-temporal modelling and pattern recognition of brain signals. In: Iapr workshop on artificial neural networks in pattern recognition, pp 225–243. Springer
– reference: Lawhern VJ, Solon AJ, Waytowich NR, Gordon SM, Hung CP, Lance BJ (2018) Eegnet: a compact convolutional neural network for eeg-based brain-computer interfaces. J Neural Eng 15(5):056013
– reference: SamekWVidaurreCMüllerKRKawanabeMStationary common spatial patterns for brain-computer interfacingJ Neural Eng20129202601310.1088/1741-2560/9/2/026013
– reference: WangDMiaoDBlohmGA new method for eeg-based concealed information testIEEE Trans Inf Forensics Secur20138352052710.1109/TIFS.2013.2244884
– reference: Farahani ED, Moradi MH (2017) Multimodal detection of concealed information using genetic-svm classifier with strict validation structure. Inform Med Unlocked
– reference: KangHNamYChoiSComposite common spatial pattern for subject-to-subject transferIEEE Signal Process Lett200916868368610.1109/LSP.2009.2022557
– reference: LiYZhangJCuiWYuanHWeiHA multiple beta wavelet-based locally regularized ultraorthogonal forward regression algorithm for time-varying system identification with applications to eegIEEE Trans Instrum Meas202069391692810.1109/TIM.2019.2907036
– reference: BablaniAEdlaDRKuppiliVRameshDA multi stage eeg data classification using k-means and feed forward neural networkClin Epidemiol Glob Health20208371872410.1016/j.cegh.2020.01.008
– reference: GaoZLiSCaiQDangWYangYMuCHuiPRelative wavelet entropy complex network for improving eeg-based fatigue driving classificationIEEE Trans Instrum Meas20196872491249710.1109/TIM.2018.2865842
– reference: Lotte F, Guan C (2011) Regularizing common spatial patterns to improve bci designs: unified theory and new algorithms. IEEE Trans Biomed Eng 58(2):355–362. https://doi.org/10.1109/TBME.2010.2082539
– reference: KasabovNCapecciESpiking neural network methodology for modelling, classification and understanding of eeg spatio-temporal data measuring cognitive processesInf Sci2015294565575327766110.1016/j.ins.2014.06.028
– reference: MucarquerJAPradoPEscobarMEl-DeredyWZañartuMImproving eeg muscle artifact removal with an emg arrayIEEE Trans Instrum Meas202069381582410.1109/TIM.2019.2906967
– reference: RosenfeldJPSoskinsMBoshGRyanASimple, effective countermeasures to p300-based tests of detection of concealed informationPsychophysiology200441220521910.1111/j.1469-8986.2004.00158.x
– reference: Purves D, FD Augustine GJ (2001) Excitatory and Inhibitory Postsynaptic Potentials. Neuroscience. 2nd edition. Sunderland (MA). https://www.ncbi.nlm.nih.gov/books/NBK11117/
– reference: Izhikevich EM, FitzHugh R (2006) Fitzhugh-nagumo model. Scholarpedia 1(9):1349
– reference: GerstnerWTime structure of the activity in neural network modelsPhys Rev E1995511738249617810.1103/PhysRevE.51.738
– reference: Farwell LA, Donchin E (1991) The truth will out: Interrogative polygraphy (“lie detection”) with event-related brain potentials. Psychophysiology 28(5):531–547
– reference: Rosenfeld JP, Labkovsky E, Winograd M, Lui MA, Vandenboom C, Chedid E (2008) The complex trial protocol (ctp): a new, countermeasure-resistant, accurate, p300-based method for detection of concealed information. Psychophysiology 45(6):906–919
– reference: Kumar S (2004) Neural Networks: a Classroom Approach. Tata McGraw-Hill Education
– reference: RazaHRatheeDZhouSMCecottiHPrasadGCovariate shift estimation based adaptive ensemble learning for handling non-stationarity in motor imagery related eeg-based brain-computer interfaceNeurocomputing201934315416610.1016/j.neucom.2018.04.087
– reference: Svojanovsky A. Brain Products. http://www.brainproducts.com/ Accessed 15 May 2017
– volume: 9
  start-page: 026013
  issue: 2
  year: 2012
  ident: 18698_CR24
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/9/2/026013
– volume: 338
  start-page: 60
  issue: 6103
  year: 2012
  ident: 18698_CR45
  publication-title: Science
  doi: 10.1126/science.1227356
– volume: 8
  start-page: 718
  issue: 3
  year: 2020
  ident: 18698_CR55
  publication-title: Clin Epidemiol Glob Health
  doi: 10.1016/j.cegh.2020.01.008
– ident: 18698_CR3
  doi: 10.1088/1741-2552/aace8c
– volume: 43
  start-page: 54
  issue: 1
  year: 2012
  ident: 18698_CR20
  publication-title: Clin EEG Neurosci
  doi: 10.1177/1550059411428715
– ident: 18698_CR35
  doi: 10.1109/IJCNN.2003.1224019
– volume: 41
  start-page: 205
  issue: 2
  year: 2004
  ident: 18698_CR12
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2004.00158.x
– volume: 34
  start-page: 227
  issue: 3
  year: 2009
  ident: 18698_CR14
  publication-title: Appl Psychophysiol Biofeedback
  doi: 10.1007/s10484-009-9089-y
– volume: 16
  start-page: 683
  issue: 8
  year: 2009
  ident: 18698_CR25
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2009.2022557
– volume: 132
  start-page: 32
  year: 2018
  ident: 18698_CR53
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2018.05.056
– volume: 2
  start-page: 275
  issue: 4
  year: 1990
  ident: 18698_CR22
  publication-title: Brain Topogr
  doi: 10.1007/BF01129656
– volume: 143
  start-page: 242
  year: 2018
  ident: 18698_CR54
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2018.10.392
– volume: 22
  start-page: 1419
  issue: 10
  year: 2009
  ident: 18698_CR36
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2009.04.003
– volume: 69
  start-page: 815
  issue: 3
  year: 2020
  ident: 18698_CR7
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2019.2906967
– ident: 18698_CR11
  doi: 10.1145/3297713
– ident: 18698_CR10
  doi: 10.1111/j.1469-8986.1991.tb01990.x
– ident: 18698_CR33
  doi: 10.1007/978-3-642-33212-8_21
– volume: 31
  start-page: 1440
  year: 2023
  ident: 18698_CR39
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2023.3246989
– volume: 11
  start-page: 2584
  issue: 11
  year: 2016
  ident: 18698_CR19
  publication-title: IEEE Trans. Inf. Forensics Secur
  doi: 10.1109/TIFS.2016.2590938
– ident: 18698_CR31
  doi: 10.4249/scholarpedia.1349
– volume: 143
  start-page: 25
  year: 2017
  ident: 18698_CR17
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2017.02.007
– volume: 294
  start-page: 565
  year: 2015
  ident: 18698_CR32
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.06.028
– volume: 31
  start-page: 4725
  year: 2023
  ident: 18698_CR40
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2023.3336467
– ident: 18698_CR51
  doi: 10.1007/s00138-018-0950-y
– volume: 117
  start-page: 500
  issue: 4
  year: 1952
  ident: 18698_CR28
  publication-title: Physiol J
  doi: 10.1113/jphysiol.1952.sp004764
– ident: 18698_CR23
  doi: 10.1007/11861898_42
– ident: 18698_CR46
– volume: 94
  start-page: 48
  issue: 1
  year: 2009
  ident: 18698_CR18
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2008.10.001
– volume: 134
  start-page: 9
  issue: 1
  year: 2004
  ident: 18698_CR50
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: 18698_CR42
– ident: 18698_CR41
– ident: 18698_CR34
  doi: 10.1007/978-3-642-24955-6_54
– volume: 48
  start-page: 149
  issue: 2
  year: 2011
  ident: 18698_CR15
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2010.01050.x
– volume: 68
  start-page: 2491
  issue: 7
  year: 2019
  ident: 18698_CR8
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2018.2865842
– ident: 18698_CR1
– volume: 27
  start-page: 2256
  issue: 11
  year: 2015
  ident: 18698_CR4
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2476656
– volume: 8
  start-page: 520
  issue: 3
  year: 2013
  ident: 18698_CR16
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2013.2244884
– ident: 18698_CR37
  doi: 10.1016/j.cmpb.2023.107927
– ident: 18698_CR21
  doi: 10.1016/j.imu.2017.05.004
– ident: 18698_CR49
– ident: 18698_CR6
  doi: 10.1109/TIM.2018.2838158
– volume: 10
  start-page: 1659
  issue: 9
  year: 1997
  ident: 18698_CR43
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(97)00011-7
– volume: 69
  start-page: 916
  issue: 3
  year: 2020
  ident: 18698_CR9
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2019.2907036
– ident: 18698_CR13
  doi: 10.1111/j.1469-8986.2008.00708.x
– ident: 18698_CR47
  doi: 10.1109/IJCNN.2013.6706930
– ident: 18698_CR27
  doi: 10.1109/TBME.2010.2082539
– volume: 51
  start-page: 738
  issue: 1
  year: 1995
  ident: 18698_CR44
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.51.738
– ident: 18698_CR52
  doi: 10.1111/coin.12256
– volume: 343
  start-page: 154
  year: 2019
  ident: 18698_CR2
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.04.087
– ident: 18698_CR29
  doi: 10.1016/S0361-9230(99)00161-6
– ident: 18698_CR30
– volume: 12
  start-page: 106
  year: 2024
  ident: 18698_CR38
  publication-title: IEEE J Transl Eng Health Med
  doi: 10.1109/JTEHM.2023.3320132
– ident: 18698_CR26
  doi: 10.1109/IEMBS.2009.5332554
– ident: 18698_CR48
– volume: 60
  start-page: 3230
  issue: 9
  year: 2011
  ident: 18698_CR5
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2011.2128670
SSID ssj0016524
Score 2.3644462
Snippet In the field of neuroscience, a significant challenge lies in extracting essential features from biological signals like Electroencephalography (EEG). Utilized...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 79259
SubjectTerms Algorithms
Classification
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Electroencephalography
FIR filters
Multimedia Information Systems
Neural networks
Pattern recognition
Signal classification
Spatial data
Special Purpose and Application-Based Systems
Spiking
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L3rwYypOp-TgTQNN1qTJccjmEPTkYLfQpA0I0g1X_39f0nRVUcFbQ196eO8lv1-a94HQtWKA23CyILD3MZIKakjOXEJckRSJM47bYOnHJzGbpw8LvohJYes22r29kgw7dZfsRn0qCWAK8W2UJJHbaIf7cl7gxXM23twdCM7SmB7z87yvENTxym9XoQFhpodoP1JDPG5seYS2yqqPDtq2Cziuwj7a-1RD8Bhp31QYnAivVy_-tzf2FSphWDXx3RhIKbaeIvuYoGAGvHR4MrnHPnQDnK-R8NmLgBUFjpVUgyDQ0PoEzaeT57sZiV0TiIXlVBPGqDN8ZIWCs4JgmQJAHpWlk8C88pQ5qRgrFE0zmUhLc0CxxKqMWpUmhhrge6eoVy2r8gxhznhhYaawQqR2VMgsB0IjDIeHIjd0gGirSG1jSXHf2eJVd8WQvfI1KF8H5Ws5QDebOaumoMaf0sPWPjourrUeUX8qZCpTA3Tb2qx7_fvXzv8nfoF2WXAbH7o3RL367b28BApSm6vgcR-d_dHP
  priority: 102
  providerName: Springer Nature
Title Spatial spiking neural network for classification of EEG signals for concealed information test
URI https://link.springer.com/article/10.1007/s11042-024-18698-8
https://www.proquest.com/docview/3114012979
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: ADMLS
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED_144U9sK0w0Y1VftgbWMRO4tgPEyooLdpEhRCVylOU2Ik0aWoLlP-fu8ShgARv-bD9cHf2_Wzf3Q_gl5Hot3FnwXHtkzxSouC5rAJeucAFVVHFttb05UxdzKM_i3jRgVmbC0Nhle2aWC_UbmXpjPwkFLQVkCYxp-s7TqxRdLvaUmjknlrB_a5LjHWhL6kyVg_6Z-ns6vr5XkHFnuZWBxx9pfBpNE0ynaBUFfRZnGiaNNevXdUWf765Mq090eQL7HoIycaNzr9Cp1wO4HNLz8D8bB3Apxe1BvcgI_JhNDb2sP5Hx-OMKlni67KJA2cIXpklKE2xQ7W62KpiaTplFOKBRtq0oCxH9CmO-YqrdUOEq5t9mE_Sm_ML7tkVuMVpt-FSiqqIQ6sM7imUTAw67rAsK40ILY9kpY2Uzogo0YG2IkdvF1iTCGuioBAF4sJv0FuuluUBsFjGzmJPZZWKbOh0kiPwUUWMDy4vxBBEK8jM-tLjxIDxP9sWTSbhZyj8rBZ-podw9Nxn3RTe-LD1YaufzE_Ch2xrMkM4bnW2_f3-aN8_Hu0H7MjaTCik7xB6m_vH8idCk00xgq6eTEfQH09v_6Yjb334dS7HT_B14Ic
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4h9kB7AEqpWB6tD_TUWo2dxLEPCNF2YXmtKgQSNzexEwkJ7S7sIsSf62_rTOKwLRLcuCWK7cPMeOZzPDMfwLaRGLfxZMHR90meKFHwXFYRr3zko6qoUldr-nSg-hfJ0WV6OQd_2loYSqtsfWLtqP3I0T_yb7Ggo4A0mdkd33BijaLb1ZZCIw_UCn6nbjEWCjuOy4d7PMJNdg5_or4_S7nfO__R54FlgDs0vymXUlRFGjtlEFsrmRkMYHFZVhqRSp7IShspvRFJpiPtRI5eP3ImE84kUSEKQ40PMAR0kjgxePjrfO8Nfp093mOoNNDq6ohjbBahbKcp3hNUGoMxkhMtlOb6_9A4w7tPrmjryLe_DIsBsrK9xsbewVw5XIGllg6CBe-wAm__6W34HiyRHaNxs8n4in7HM-qcia_DJu-cIVhmjqA75SrV5sFGFev1DhillOCmaEZQVSXGMM9Ch9d6IMLj6SpcvIqcP8D8cDQs14ClMvUOZyqnVOJir7McgZYqUnzweSG6IFpBWhdanRPjxrWdNWkm4VsUvq2Fb3UXvjzOGTeNPl4cvdnqx4ZNP7EzE-3C11Zns8_Pr7b-8mqfYKF_fnpiTw4HxxvwRtYmQ-mEmzA_vb0rtxAWTYuPwfYY_H5tc_8LWRYWsw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hkBAc2vISS2nrQzmBRexNHPuAqop90QXEASRuJnFiCanaXdhFVf8av46ZxGGhUrlxSxTbh5nPM5_jeQB8NxL9Np4sONo-yWMlcp5JH3FfREXkc5-4StNn52pwFf-6Tq4X4LHJhaGwysYmVoa6GDv6R37YFnQUkCY1hz6ERVx0ej8md5w6SNFNa9NOo4bIsPz7B49v06OTDup6T8pe9_J4wEOHAe4QejMupfB50nbKIK9WMjXovNpl6TWylCyWXhspCyPiVEfaiQwtfuRMKpyJo1zkhooeoPlfSqmKO2Wp9_rPNxgqCQ11dcTRK4uQsFOn7QlKikHvyKkhlOb6tVOcM91_Lmcrn9f7BB8CWWU_a3StwUI5WoePTSMIFuzCOqy-qGq4AZbaHCOs2XRySz_iGdXMxNdRHXHOkCYzR6SdopQqYLCxZ91un1EwCW6HegTlU6L3Klio7VoNRGI824Srd5HyFiyOxqNyG1gik8LhTOWUil270GmGFEvlCT4UWS5aIBpBWheKnFOvjd92Xp6ZhG9R-LYSvtUt2H-eM6lLfLw5erfRjw3bfWrn4GzBQaOz-ef_r7bz9mrfYBlBbk9PzoefYUVWiKE4wl1YnN0_lF-QD83yrxXwGNy8N9KfAJfkFE0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+spiking+neural+network+for+classification+of+EEG+signals+for+concealed+information+test&rft.jtitle=Multimedia+tools+and+applications&rft.au=Edla%2C+Damoder+Reddy&rft.au=Bablani%2C+Annushree&rft.au=Bhattacharyya%2C+Saugat&rft.au=Dharavath%2C+Ramesh&rft.date=2024-10-01&rft.issn=1573-7721&rft.eissn=1573-7721&rft.volume=83&rft.issue=33&rft.spage=79259&rft.epage=79280&rft_id=info:doi/10.1007%2Fs11042-024-18698-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_024_18698_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon