Spatial spiking neural network for classification of EEG signals for concealed information test
In the field of neuroscience, a significant challenge lies in extracting essential features from biological signals like Electroencephalography (EEG). Utilized as a non-invasive method, EEG records brain activities through metal electrodes on the scalp. The analysis of EEG data finds applications in...
        Saved in:
      
    
          | Published in | Multimedia tools and applications Vol. 83; no. 33; pp. 79259 - 79280 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.10.2024
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1573-7721 1380-7501 1573-7721  | 
| DOI | 10.1007/s11042-024-18698-8 | 
Cover
| Abstract | In the field of neuroscience, a significant challenge lies in extracting essential features from biological signals like Electroencephalography (EEG). Utilized as a non-invasive method, EEG records brain activities through metal electrodes on the scalp. The analysis of EEG data finds applications in various domains, including concealed information tests, aimed at detecting deception. This paper introduces the Spatial Spiking Neural Network, a supervised approach for classifying EEG data collected during concealed information tests. Temporal EEG data undergoes filtration using a Finite Impulse Response (FIR) filter, while Common Spatial Pattern (CSP) is employed to extract spatial components. Binary classification is achieved through an integrate-and-fire neuron model, where the frequency of spike generation determines the classification. Spiking Neural Networks (SNNs) offers advantages in terms of temporal precision, event-driven processing, and low power consumption. Their spike-based communication allows for efficient handling of sparse data and recognition of temporal patterns, contributing to robustness and energy efficiency. The proposed model is applied separately to each subject’s EEG data, and the results are compared with traditional classification algorithms. The proposed approach attains a peak accuracy of 90.15%, showcasing superior performance compared to alternative methods. | 
    
|---|---|
| AbstractList | In the field of neuroscience, a significant challenge lies in extracting essential features from biological signals like Electroencephalography (EEG). Utilized as a non-invasive method, EEG records brain activities through metal electrodes on the scalp. The analysis of EEG data finds applications in various domains, including concealed information tests, aimed at detecting deception. This paper introduces the Spatial Spiking Neural Network, a supervised approach for classifying EEG data collected during concealed information tests. Temporal EEG data undergoes filtration using a Finite Impulse Response (FIR) filter, while Common Spatial Pattern (CSP) is employed to extract spatial components. Binary classification is achieved through an integrate-and-fire neuron model, where the frequency of spike generation determines the classification. Spiking Neural Networks (SNNs) offers advantages in terms of temporal precision, event-driven processing, and low power consumption. Their spike-based communication allows for efficient handling of sparse data and recognition of temporal patterns, contributing to robustness and energy efficiency. The proposed model is applied separately to each subject’s EEG data, and the results are compared with traditional classification algorithms. The proposed approach attains a peak accuracy of 90.15%, showcasing superior performance compared to alternative methods. | 
    
| Author | Edla, Damoder Reddy Cheruku, Ramalingaswamy Boddu, Vijayasree Dharavath, Ramesh Bablani, Annushree Bhattacharyya, Saugat  | 
    
| Author_xml | – sequence: 1 givenname: Damoder Reddy surname: Edla fullname: Edla, Damoder Reddy organization: Department of CSE, National Institute of Technology Goa – sequence: 2 givenname: Annushree surname: Bablani fullname: Bablani, Annushree organization: Department of CSE, Indian Institute of Information Technology Sricity – sequence: 3 givenname: Saugat surname: Bhattacharyya fullname: Bhattacharyya, Saugat organization: Computer Science, SCEIS, Ulster University, Magee Campus – sequence: 4 givenname: Ramesh surname: Dharavath fullname: Dharavath, Ramesh organization: Department of CSE, Indian Institute of Technology (ISM), Dhanbad – sequence: 5 givenname: Ramalingaswamy orcidid: 0000-0003-1677-5321 surname: Cheruku fullname: Cheruku, Ramalingaswamy email: rmlswamy@nitw.ac.in organization: Department of CSE, National Institute of Technology Warangal – sequence: 6 givenname: Vijayasree surname: Boddu fullname: Boddu, Vijayasree organization: Department of ECE, National Institute of Technology Warangal  | 
    
| BookMark | eNp9kMFKAzEURYNUsFZ_wNWA69G8ZGaSLKXUKhRcqOuQpklJO03GZIr496YdQXHRVd6Dc14u9xKNfPAGoRvAd4Axu08AuCIlJlUJvBG85GdoDDWjJWMERn_mC3SZ0gZjaGpSjZF87VTvVFukzm2dXxfe7GNevek_Q9wWNsRCtyolZ53OZPBFsMVsNi-SW3vVpoEIXhvVmlXhfN53A9ib1F-hc5spc_3zTtD74-xt-lQuXubP04dFqSmIviQE7LKmuhG1YA1hgteUGmM5NFRVxHJByEpAxTjmGhStAGvBQIsKL2EpCJ2g2-FuF8PHPn8sN2EfDwElBagwEMFEpvhA6RhSisZK7fpj2D4q10rA8lCnHOqUuU55rFPyrJJ_ahfdTsWv0xIdpJRhvzbxN9UJ6xshqIjz | 
    
| CitedBy_id | crossref_primary_10_37394_23208_2025_22_16 | 
    
| Cites_doi | 10.1088/1741-2560/9/2/026013 10.1126/science.1227356 10.1016/j.cegh.2020.01.008 10.1088/1741-2552/aace8c 10.1177/1550059411428715 10.1109/IJCNN.2003.1224019 10.1111/j.1469-8986.2004.00158.x 10.1007/s10484-009-9089-y 10.1109/LSP.2009.2022557 10.1016/j.procs.2018.05.056 10.1007/BF01129656 10.1016/j.procs.2018.10.392 10.1016/j.neunet.2009.04.003 10.1109/TIM.2019.2906967 10.1145/3297713 10.1111/j.1469-8986.1991.tb01990.x 10.1007/978-3-642-33212-8_21 10.1109/TNSRE.2023.3246989 10.1109/TIFS.2016.2590938 10.4249/scholarpedia.1349 10.1016/j.cmpb.2017.02.007 10.1016/j.ins.2014.06.028 10.1109/TNSRE.2023.3336467 10.1007/s00138-018-0950-y 10.1113/jphysiol.1952.sp004764 10.1007/11861898_42 10.1016/j.cmpb.2008.10.001 10.1016/j.jneumeth.2003.10.009 10.1007/978-3-642-24955-6_54 10.1111/j.1469-8986.2010.01050.x 10.1109/TIM.2018.2865842 10.1109/TNNLS.2015.2476656 10.1109/TIFS.2013.2244884 10.1016/j.cmpb.2023.107927 10.1016/j.imu.2017.05.004 10.1109/TIM.2018.2838158 10.1016/S0893-6080(97)00011-7 10.1109/TIM.2019.2907036 10.1111/j.1469-8986.2008.00708.x 10.1109/IJCNN.2013.6706930 10.1109/TBME.2010.2082539 10.1103/PhysRevE.51.738 10.1111/coin.12256 10.1016/j.neucom.2018.04.087 10.1016/S0361-9230(99)00161-6 10.1109/JTEHM.2023.3320132 10.1109/IEMBS.2009.5332554 10.1109/TIM.2011.2128670  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U  | 
    
| DOI | 10.1007/s11042-024-18698-8 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic  | 
    
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni)  | 
    
| DatabaseTitleList | ABI/INFORM Global (Corporate) | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 1573-7721 | 
    
| EndPage | 79280 | 
    
| ExternalDocumentID | 10_1007_s11042_024_18698_8 | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PHGZM PHGZT PKEHL PQEST PQGLB PQUKI PRINS Q9U  | 
    
| ID | FETCH-LOGICAL-c319t-221fb53c6959762798533eef8163a42f8922d9147808c1a3410c971c940b1b923 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1573-7721 1380-7501  | 
    
| IngestDate | Mon Oct 06 16:35:26 EDT 2025 Wed Oct 01 04:51:45 EDT 2025 Thu Apr 24 23:11:24 EDT 2025 Fri Feb 21 02:40:21 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 33 | 
    
| Keywords | Electroencephalography Brain computer interface Concealed information test Spiking neural networks  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c319t-221fb53c6959762798533eef8163a42f8922d9147808c1a3410c971c940b1b923 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-1677-5321 | 
    
| PQID | 3114012979 | 
    
| PQPubID | 54626 | 
    
| PageCount | 22 | 
    
| ParticipantIDs | proquest_journals_3114012979 crossref_citationtrail_10_1007_s11042_024_18698_8 crossref_primary_10_1007_s11042_024_18698_8 springer_journals_10_1007_s11042_024_18698_8  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20241000 | 
    
| PublicationDateYYYYMMDD | 2024-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2024 text: 20241000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York – name: Dordrecht  | 
    
| PublicationSubtitle | An International Journal | 
    
| PublicationTitle | Multimedia tools and applications | 
    
| PublicationTitleAbbrev | Multimed Tools Appl | 
    
| PublicationYear | 2024 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | Schrauwen B, Van Campenhout J (2003) Bsa, a fast and accurate spike train encoding scheme. In: Proceedings of the international joint conference on neural networks, 2003, vol 4, pp 2825–2830. IEEE Bablani A, Edla DR, Tripathi D, Kuppili V (2019) An efficient concealed information test: eeg feature extraction and ensemble classification for lie identification. Mach Vis Appl 30:813–832 Alchalabi AE, Shirmohammadi S, Eddin AN, Elsharnouby M (2018) Focus: detecting adhd patients by an eeg-based serious game. IEEE Trans Instrum Meas 67(7):1512–1520 ArastehAMoradiMHJanghorbaniAA novel method based on empirical mode decomposition for p300-based detection of deceptionIEEE Trans. Inf. Forensics Secur201611112584259310.1109/TIFS.2016.2590938 MaassWNetworks of spiking neurons: the third generation of neural network modelsNeural Netw19971091659167110.1016/S0893-6080(97)00011-7 WangDMiaoDBlohmGA new method for eeg-based concealed information testIEEE Trans Inf Forensics Secur20138352052710.1109/TIFS.2013.2244884 LiYZhangJCuiWYuanHWeiHA multiple beta wavelet-based locally regularized ultraorthogonal forward regression algorithm for time-varying system identification with applications to eegIEEE Trans Instrum Meas202069391692810.1109/TIM.2019.2907036 The Mathworks, Inc.: MATLAB Version 9.0.0.321247 (R2016b). Natick, Massachusetts (2016). The Mathworks, Inc Lotte F, Guan C (2011) Regularizing common spatial patterns to improve bci designs: unified theory and new algorithms. IEEE Trans Biomed Eng 58(2):355–362. https://doi.org/10.1109/TBME.2010.2082539 Nuntalid N, Dhoble K, Kasabov N (2011) Eeg classification with bsa spike encoding algorithm and evolving probabilistic spiking neural network. In: International conference on neural information processing, pp 451–460. Springer Kumar S (2004) Neural Networks: a Classroom Approach. Tata McGraw-Hill Education MucarquerJAPradoPEscobarMEl-DeredyWZañartuMImproving eeg muscle artifact removal with an emg arrayIEEE Trans Instrum Meas202069381582410.1109/TIM.2019.2906967 DelormeAMakeigSEeglab: an open source toolbox for analysis of single-trial eeg dynamics including independent component analysisJ Neurosci Methods2004134192110.1016/j.jneumeth.2003.10.009 AkhavanAMoradiMHVandSRSubject-based discriminative sparse representation model for detection of concealed informationComput Methods Programs Biomed2017143253310.1016/j.cmpb.2017.02.007 Rosenfeld JP, Labkovsky E, Winograd M, Lui MA, Vandenboom C, Chedid E (2008) The complex trial protocol (ctp): a new, countermeasure-resistant, accurate, p300-based method for detection of concealed information. Psychophysiology 45(6):906–919 Lu H, Plataniotis KN, Venetsanopoulos AN (2009) Regularized common spatial patterns with generic learning for eeg signal classification. In: Engineering in medicine and biology society, 2009. EMBC 2009. Annual International Conference of the IEEE, pp 6599–6602. IEEE SamekWVidaurreCMüllerKRKawanabeMStationary common spatial patterns for brain-computer interfacingJ Neural Eng20129202601310.1088/1741-2560/9/2/026013 Svojanovsky A. Brain Products. http://www.brainproducts.com/ Accessed 15 May 2017 Svojanovsky A. Easycap. http://www.brainproducts.com/productdetails.php?id=20 Accessed 15 May 2017 BablaniAEdlaDRTripathiDVenkatanareshbabuKSubject based deceit identification using empirical mode decompositionProcedia Comput Sci2018132323910.1016/j.procs.2018.05.056 Kasabov N (2012) Neucube evospike architecture for spatio-temporal modelling and pattern recognition of brain signals. In: Iapr workshop on artificial neural networks in pattern recognition, pp 225–243. Springer SamABoostaniRHashempourSTaghaviMSaneiSDepression identification using eeg signals via a hybrid of lstm and spiking neural networksIEEE Trans Neural Syst Rehabil Eng2023314725473710.1109/TNSRE.2023.3336467 Dodia S, Edla DR, Bablani A, Cheruku R (2020) Lie detection using extreme learning machine: a concealed information test based on short-time fourier transform and binary bat optimization using a novel fitness function. Comput Intell 36(2):637–658 LiWFangCZhuZChenCSongAFractal spiking neural network scheme for eeg-based emotion recognitionIEEE J Transl Eng Health Med20241210611810.1109/JTEHM.2023.3320132 Ghosh-DastidarSAdeliHA new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detectionNeural Netw200922101419143110.1016/j.neunet.2009.04.003 AbootalebiVMoradiMHKhalilzadehMAA new approach for eeg feature extraction in p300-based lie detectionComput Methods Programs Biomed2009941485710.1016/j.cmpb.2008.10.001 GerstnerWTime structure of the activity in neural network modelsPhys Rev E1995511738249617810.1103/PhysRevE.51.738 RosenfeldJPSoskinsMBoshGRyanASimple, effective countermeasures to p300-based tests of detection of concealed informationPsychophysiology200441220521910.1111/j.1469-8986.2004.00158.x Purves D, FD Augustine GJ (2001) Excitatory and Inhibitory Postsynaptic Potentials. Neuroscience. 2nd edition. Sunderland (MA). https://www.ncbi.nlm.nih.gov/books/NBK11117 BablaniAEdlaDRDodiaSClassification of eeg data using k-nearest neighbor approach for concealed information testProcedia Comput Sci201814324224910.1016/j.procs.2018.10.392 HodgkinALHuxleyAFA quantitative description of membrane current and its application to conduction and excitation in nervePhysiol J1952117450054410.1113/jphysiol.1952.sp004764 RazaHRatheeDZhouSMCecottiHPrasadGCovariate shift estimation based adaptive ensemble learning for handling non-stationarity in motor imagery related eeg-based brain-computer interfaceNeurocomputing201934315416610.1016/j.neucom.2018.04.087 GaoJLuLYangYYuGNaLRaoNA novel concealed information test method based on independent component analysis and support vector machineClin EEG Neurosci2012431546310.1177/1550059411428715 MeixnerJBRosenfeldJPA mock terrorism application of the p300-based concealed information testPsychophysiology201148214915410.1111/j.1469-8986.2010.01050.x ZhangYZhouGJinJZhaoQWangXCichockiASparse bayesian classification of eeg for brain-computer interfaceIEEE Trans. Neural Netw. Learn. Syst.2015271122562267357160410.1109/TNNLS.2015.2476656 GaoZLiSCaiQDangWYangYMuCHuiPRelative wavelet entropy complex network for improving eeg-based fatigue driving classificationIEEE Trans Instrum Meas20196872491249710.1109/TIM.2018.2865842 SoviljPMMilovancevSSVujicicVDigital stochastic measurement of a nonstationary signal with an example of eeg signal measurementIEEE Trans Instrum Meas20116093230323210.1109/TIM.2011.2128670 Abbott LF (1999) Lapicque’s introduction of the integrate-and-fire model neuron (1907). Brain research bulletin 50(5–6):303–304 GerstnerWSprekelerHDecoGTheory and simulation in neuroscienceScience20123386103606510.1126/science.1227356 KuboKNittonoHThe role of intention to conceal in the p300-based concealed information testAppl Psychophysiol Biofeedback200934322723510.1007/s10484-009-9089-y Chandra B, Babu KN (2013) A new spiking neuron model. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp 1–5. IEEE Bablani A, Edla DR, Tripathi D, Cheruku R (2019) Survey on brain-computer interface: an emerging computational intelligence paradigm. ACM Comput Surv (CSUR) 52(1):1–32 Farwell LA, Donchin E (1991) The truth will out: Interrogative polygraphy (“lie detection”) with event-related brain potentials. Psychophysiology 28(5):531–547 Huang H, Xie Q, Pan J, He Y, Wen Z, Yu R, Li Y (2019) An eeg-based brain computer interface for emotion recognition and its application in patients with disorder of consciousness. IEEE Transactions on Affective Computing BablaniAEdlaDRKuppiliVRameshDA multi stage eeg data classification using k-means and feed forward neural networkClin Epidemiol Glob Health20208371872410.1016/j.cegh.2020.01.008 KasabovNCapecciESpiking neural network methodology for modelling, classification and understanding of eeg spatio-temporal data measuring cognitive processesInf Sci2015294565575327766110.1016/j.ins.2014.06.028 Farahani ED, Moradi MH (2017) Multimodal detection of concealed information using genetic-svm classifier with strict validation structure. Inform Med Unlocked Izhikevich EM, FitzHugh R (2006) Fitzhugh-nagumo model. Scholarpedia 1(9):1349 Lawhern VJ, Solon AJ, Waytowich NR, Gordon SM, Hung CP, Lance BJ (2018) Eegnet: a compact convolutional neural network for eeg-based brain-computer interfaces. J Neural Eng 15(5):056013 Xu F, Pan D, Zheng H, Ouyang Y, Jia Z, Zeng H (2024) Eescn: a novel spiking neural network method for eeg-based emotion recognition. Comput Methods Programs Biomed 243:107927. https://doi.org/10.1016/j.cmpb.2023.107927 KangHNamYChoiSComposite common spatial pattern for subject-to-subject transferIEEE Signal Process Lett200916868368610.1109/LSP.2009.2022557 KolesZJLazarMSZhouSZSpatial patterns underlying population differences in the background eegBrain Topogr19902427528410.1007/BF01129656 GongPWangPZhouYZhangDA spiking neural network with adaptive graph convolution and lstm for eeg-based brain-computer interfacesIEEE Trans Neural Syst Rehabil Eng2023311440145010.1109/TNSRE.2023.3246989 Tomioka R, Dornhege G, Nolte G, Blankertz B, Aihara K, Müller KR (2006) Spectrally weighted common spatial pattern algorithm for single trial eeg classification. Dept. Math. Eng., Univ. Tokyo, Tokyo, Japan, Tech. Rep 40 Koch C, Segev I (1998) Methods in Neuronal Modeling: from Ions to Networks. MIT press A Bablani (18698_CR54) 2018; 143 D Wang (18698_CR16) 2013; 8 18698_CR21 A Delorme (18698_CR50) 2004; 134 18698_CR13 18698_CR11 V Abootalebi (18698_CR18) 2009; 94 JA Mucarquer (18698_CR7) 2020; 69 Y Zhang (18698_CR4) 2015; 27 W Samek (18698_CR24) 2012; 9 K Kubo (18698_CR14) 2009; 34 N Kasabov (18698_CR32) 2015; 294 P Gong (18698_CR39) 2023; 31 H Kang (18698_CR25) 2009; 16 18698_CR10 18698_CR52 18698_CR51 18698_CR47 ZJ Koles (18698_CR22) 1990; 2 18698_CR46 J Gao (18698_CR20) 2012; 43 18698_CR49 18698_CR48 H Raza (18698_CR2) 2019; 343 JB Meixner (18698_CR15) 2011; 48 18698_CR1 18698_CR3 18698_CR6 Y Li (18698_CR9) 2020; 69 A Arasteh (18698_CR19) 2016; 11 A Sam (18698_CR40) 2023; 31 18698_CR42 AL Hodgkin (18698_CR28) 1952; 117 18698_CR41 18698_CR35 18698_CR34 18698_CR33 18698_CR37 Z Gao (18698_CR8) 2019; 68 A Bablani (18698_CR55) 2020; 8 W Li (18698_CR38) 2024; 12 W Maass (18698_CR43) 1997; 10 S Ghosh-Dastidar (18698_CR36) 2009; 22 W Gerstner (18698_CR45) 2012; 338 18698_CR31 18698_CR30 A Akhavan (18698_CR17) 2017; 143 A Bablani (18698_CR53) 2018; 132 18698_CR23 18698_CR29 18698_CR27 W Gerstner (18698_CR44) 1995; 51 18698_CR26 PM Sovilj (18698_CR5) 2011; 60 JP Rosenfeld (18698_CR12) 2004; 41  | 
    
| References_xml | – reference: HodgkinALHuxleyAFA quantitative description of membrane current and its application to conduction and excitation in nervePhysiol J1952117450054410.1113/jphysiol.1952.sp004764 – reference: Svojanovsky A. Easycap. http://www.brainproducts.com/productdetails.php?id=20 Accessed 15 May 2017 – reference: AkhavanAMoradiMHVandSRSubject-based discriminative sparse representation model for detection of concealed informationComput Methods Programs Biomed2017143253310.1016/j.cmpb.2017.02.007 – reference: KuboKNittonoHThe role of intention to conceal in the p300-based concealed information testAppl Psychophysiol Biofeedback200934322723510.1007/s10484-009-9089-y – reference: Bablani A, Edla DR, Tripathi D, Kuppili V (2019) An efficient concealed information test: eeg feature extraction and ensemble classification for lie identification. Mach Vis Appl 30:813–832 – reference: GongPWangPZhouYZhangDA spiking neural network with adaptive graph convolution and lstm for eeg-based brain-computer interfacesIEEE Trans Neural Syst Rehabil Eng2023311440145010.1109/TNSRE.2023.3246989 – reference: Bablani A, Edla DR, Tripathi D, Cheruku R (2019) Survey on brain-computer interface: an emerging computational intelligence paradigm. ACM Comput Surv (CSUR) 52(1):1–32 – reference: Huang H, Xie Q, Pan J, He Y, Wen Z, Yu R, Li Y (2019) An eeg-based brain computer interface for emotion recognition and its application in patients with disorder of consciousness. IEEE Transactions on Affective Computing – reference: KolesZJLazarMSZhouSZSpatial patterns underlying population differences in the background eegBrain Topogr19902427528410.1007/BF01129656 – reference: Xu F, Pan D, Zheng H, Ouyang Y, Jia Z, Zeng H (2024) Eescn: a novel spiking neural network method for eeg-based emotion recognition. Comput Methods Programs Biomed 243:107927. https://doi.org/10.1016/j.cmpb.2023.107927 – reference: GaoJLuLYangYYuGNaLRaoNA novel concealed information test method based on independent component analysis and support vector machineClin EEG Neurosci2012431546310.1177/1550059411428715 – reference: Tomioka R, Dornhege G, Nolte G, Blankertz B, Aihara K, Müller KR (2006) Spectrally weighted common spatial pattern algorithm for single trial eeg classification. Dept. Math. Eng., Univ. Tokyo, Tokyo, Japan, Tech. Rep 40 – reference: ZhangYZhouGJinJZhaoQWangXCichockiASparse bayesian classification of eeg for brain-computer interfaceIEEE Trans. Neural Netw. Learn. Syst.2015271122562267357160410.1109/TNNLS.2015.2476656 – reference: Chandra B, Babu KN (2013) A new spiking neuron model. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp 1–5. IEEE – reference: MeixnerJBRosenfeldJPA mock terrorism application of the p300-based concealed information testPsychophysiology201148214915410.1111/j.1469-8986.2010.01050.x – reference: Alchalabi AE, Shirmohammadi S, Eddin AN, Elsharnouby M (2018) Focus: detecting adhd patients by an eeg-based serious game. IEEE Trans Instrum Meas 67(7):1512–1520 – reference: LiWFangCZhuZChenCSongAFractal spiking neural network scheme for eeg-based emotion recognitionIEEE J Transl Eng Health Med20241210611810.1109/JTEHM.2023.3320132 – reference: Ghosh-DastidarSAdeliHA new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detectionNeural Netw200922101419143110.1016/j.neunet.2009.04.003 – reference: Nuntalid N, Dhoble K, Kasabov N (2011) Eeg classification with bsa spike encoding algorithm and evolving probabilistic spiking neural network. In: International conference on neural information processing, pp 451–460. Springer – reference: AbootalebiVMoradiMHKhalilzadehMAA new approach for eeg feature extraction in p300-based lie detectionComput Methods Programs Biomed2009941485710.1016/j.cmpb.2008.10.001 – reference: SamABoostaniRHashempourSTaghaviMSaneiSDepression identification using eeg signals via a hybrid of lstm and spiking neural networksIEEE Trans Neural Syst Rehabil Eng2023314725473710.1109/TNSRE.2023.3336467 – reference: Schrauwen B, Van Campenhout J (2003) Bsa, a fast and accurate spike train encoding scheme. In: Proceedings of the international joint conference on neural networks, 2003, vol 4, pp 2825–2830. IEEE – reference: Dodia S, Edla DR, Bablani A, Cheruku R (2020) Lie detection using extreme learning machine: a concealed information test based on short-time fourier transform and binary bat optimization using a novel fitness function. Comput Intell 36(2):637–658 – reference: The Mathworks, Inc.: MATLAB Version 9.0.0.321247 (R2016b). Natick, Massachusetts (2016). The Mathworks, Inc – reference: Koch C, Segev I (1998) Methods in Neuronal Modeling: from Ions to Networks. MIT press – reference: BablaniAEdlaDRTripathiDVenkatanareshbabuKSubject based deceit identification using empirical mode decompositionProcedia Comput Sci2018132323910.1016/j.procs.2018.05.056 – reference: SoviljPMMilovancevSSVujicicVDigital stochastic measurement of a nonstationary signal with an example of eeg signal measurementIEEE Trans Instrum Meas20116093230323210.1109/TIM.2011.2128670 – reference: GerstnerWSprekelerHDecoGTheory and simulation in neuroscienceScience20123386103606510.1126/science.1227356 – reference: DelormeAMakeigSEeglab: an open source toolbox for analysis of single-trial eeg dynamics including independent component analysisJ Neurosci Methods2004134192110.1016/j.jneumeth.2003.10.009 – reference: MaassWNetworks of spiking neurons: the third generation of neural network modelsNeural Netw19971091659167110.1016/S0893-6080(97)00011-7 – reference: BablaniAEdlaDRDodiaSClassification of eeg data using k-nearest neighbor approach for concealed information testProcedia Comput Sci201814324224910.1016/j.procs.2018.10.392 – reference: ArastehAMoradiMHJanghorbaniAA novel method based on empirical mode decomposition for p300-based detection of deceptionIEEE Trans. Inf. Forensics Secur201611112584259310.1109/TIFS.2016.2590938 – reference: Lu H, Plataniotis KN, Venetsanopoulos AN (2009) Regularized common spatial patterns with generic learning for eeg signal classification. In: Engineering in medicine and biology society, 2009. EMBC 2009. Annual International Conference of the IEEE, pp 6599–6602. IEEE – reference: Abbott LF (1999) Lapicque’s introduction of the integrate-and-fire model neuron (1907). Brain research bulletin 50(5–6):303–304 – reference: Kasabov N (2012) Neucube evospike architecture for spatio-temporal modelling and pattern recognition of brain signals. In: Iapr workshop on artificial neural networks in pattern recognition, pp 225–243. Springer – reference: Lawhern VJ, Solon AJ, Waytowich NR, Gordon SM, Hung CP, Lance BJ (2018) Eegnet: a compact convolutional neural network for eeg-based brain-computer interfaces. J Neural Eng 15(5):056013 – reference: SamekWVidaurreCMüllerKRKawanabeMStationary common spatial patterns for brain-computer interfacingJ Neural Eng20129202601310.1088/1741-2560/9/2/026013 – reference: WangDMiaoDBlohmGA new method for eeg-based concealed information testIEEE Trans Inf Forensics Secur20138352052710.1109/TIFS.2013.2244884 – reference: Farahani ED, Moradi MH (2017) Multimodal detection of concealed information using genetic-svm classifier with strict validation structure. Inform Med Unlocked – reference: KangHNamYChoiSComposite common spatial pattern for subject-to-subject transferIEEE Signal Process Lett200916868368610.1109/LSP.2009.2022557 – reference: LiYZhangJCuiWYuanHWeiHA multiple beta wavelet-based locally regularized ultraorthogonal forward regression algorithm for time-varying system identification with applications to eegIEEE Trans Instrum Meas202069391692810.1109/TIM.2019.2907036 – reference: BablaniAEdlaDRKuppiliVRameshDA multi stage eeg data classification using k-means and feed forward neural networkClin Epidemiol Glob Health20208371872410.1016/j.cegh.2020.01.008 – reference: GaoZLiSCaiQDangWYangYMuCHuiPRelative wavelet entropy complex network for improving eeg-based fatigue driving classificationIEEE Trans Instrum Meas20196872491249710.1109/TIM.2018.2865842 – reference: Lotte F, Guan C (2011) Regularizing common spatial patterns to improve bci designs: unified theory and new algorithms. IEEE Trans Biomed Eng 58(2):355–362. https://doi.org/10.1109/TBME.2010.2082539 – reference: KasabovNCapecciESpiking neural network methodology for modelling, classification and understanding of eeg spatio-temporal data measuring cognitive processesInf Sci2015294565575327766110.1016/j.ins.2014.06.028 – reference: MucarquerJAPradoPEscobarMEl-DeredyWZañartuMImproving eeg muscle artifact removal with an emg arrayIEEE Trans Instrum Meas202069381582410.1109/TIM.2019.2906967 – reference: RosenfeldJPSoskinsMBoshGRyanASimple, effective countermeasures to p300-based tests of detection of concealed informationPsychophysiology200441220521910.1111/j.1469-8986.2004.00158.x – reference: Purves D, FD Augustine GJ (2001) Excitatory and Inhibitory Postsynaptic Potentials. Neuroscience. 2nd edition. Sunderland (MA). https://www.ncbi.nlm.nih.gov/books/NBK11117/ – reference: Izhikevich EM, FitzHugh R (2006) Fitzhugh-nagumo model. Scholarpedia 1(9):1349 – reference: GerstnerWTime structure of the activity in neural network modelsPhys Rev E1995511738249617810.1103/PhysRevE.51.738 – reference: Farwell LA, Donchin E (1991) The truth will out: Interrogative polygraphy (“lie detection”) with event-related brain potentials. Psychophysiology 28(5):531–547 – reference: Rosenfeld JP, Labkovsky E, Winograd M, Lui MA, Vandenboom C, Chedid E (2008) The complex trial protocol (ctp): a new, countermeasure-resistant, accurate, p300-based method for detection of concealed information. Psychophysiology 45(6):906–919 – reference: Kumar S (2004) Neural Networks: a Classroom Approach. Tata McGraw-Hill Education – reference: RazaHRatheeDZhouSMCecottiHPrasadGCovariate shift estimation based adaptive ensemble learning for handling non-stationarity in motor imagery related eeg-based brain-computer interfaceNeurocomputing201934315416610.1016/j.neucom.2018.04.087 – reference: Svojanovsky A. Brain Products. http://www.brainproducts.com/ Accessed 15 May 2017 – volume: 9 start-page: 026013 issue: 2 year: 2012 ident: 18698_CR24 publication-title: J Neural Eng doi: 10.1088/1741-2560/9/2/026013 – volume: 338 start-page: 60 issue: 6103 year: 2012 ident: 18698_CR45 publication-title: Science doi: 10.1126/science.1227356 – volume: 8 start-page: 718 issue: 3 year: 2020 ident: 18698_CR55 publication-title: Clin Epidemiol Glob Health doi: 10.1016/j.cegh.2020.01.008 – ident: 18698_CR3 doi: 10.1088/1741-2552/aace8c – volume: 43 start-page: 54 issue: 1 year: 2012 ident: 18698_CR20 publication-title: Clin EEG Neurosci doi: 10.1177/1550059411428715 – ident: 18698_CR35 doi: 10.1109/IJCNN.2003.1224019 – volume: 41 start-page: 205 issue: 2 year: 2004 ident: 18698_CR12 publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2004.00158.x – volume: 34 start-page: 227 issue: 3 year: 2009 ident: 18698_CR14 publication-title: Appl Psychophysiol Biofeedback doi: 10.1007/s10484-009-9089-y – volume: 16 start-page: 683 issue: 8 year: 2009 ident: 18698_CR25 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2009.2022557 – volume: 132 start-page: 32 year: 2018 ident: 18698_CR53 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2018.05.056 – volume: 2 start-page: 275 issue: 4 year: 1990 ident: 18698_CR22 publication-title: Brain Topogr doi: 10.1007/BF01129656 – volume: 143 start-page: 242 year: 2018 ident: 18698_CR54 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2018.10.392 – volume: 22 start-page: 1419 issue: 10 year: 2009 ident: 18698_CR36 publication-title: Neural Netw doi: 10.1016/j.neunet.2009.04.003 – volume: 69 start-page: 815 issue: 3 year: 2020 ident: 18698_CR7 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2019.2906967 – ident: 18698_CR11 doi: 10.1145/3297713 – ident: 18698_CR10 doi: 10.1111/j.1469-8986.1991.tb01990.x – ident: 18698_CR33 doi: 10.1007/978-3-642-33212-8_21 – volume: 31 start-page: 1440 year: 2023 ident: 18698_CR39 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2023.3246989 – volume: 11 start-page: 2584 issue: 11 year: 2016 ident: 18698_CR19 publication-title: IEEE Trans. Inf. Forensics Secur doi: 10.1109/TIFS.2016.2590938 – ident: 18698_CR31 doi: 10.4249/scholarpedia.1349 – volume: 143 start-page: 25 year: 2017 ident: 18698_CR17 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2017.02.007 – volume: 294 start-page: 565 year: 2015 ident: 18698_CR32 publication-title: Inf Sci doi: 10.1016/j.ins.2014.06.028 – volume: 31 start-page: 4725 year: 2023 ident: 18698_CR40 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2023.3336467 – ident: 18698_CR51 doi: 10.1007/s00138-018-0950-y – volume: 117 start-page: 500 issue: 4 year: 1952 ident: 18698_CR28 publication-title: Physiol J doi: 10.1113/jphysiol.1952.sp004764 – ident: 18698_CR23 doi: 10.1007/11861898_42 – ident: 18698_CR46 – volume: 94 start-page: 48 issue: 1 year: 2009 ident: 18698_CR18 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2008.10.001 – volume: 134 start-page: 9 issue: 1 year: 2004 ident: 18698_CR50 publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2003.10.009 – ident: 18698_CR42 – ident: 18698_CR41 – ident: 18698_CR34 doi: 10.1007/978-3-642-24955-6_54 – volume: 48 start-page: 149 issue: 2 year: 2011 ident: 18698_CR15 publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2010.01050.x – volume: 68 start-page: 2491 issue: 7 year: 2019 ident: 18698_CR8 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2018.2865842 – ident: 18698_CR1 – volume: 27 start-page: 2256 issue: 11 year: 2015 ident: 18698_CR4 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2015.2476656 – volume: 8 start-page: 520 issue: 3 year: 2013 ident: 18698_CR16 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2013.2244884 – ident: 18698_CR37 doi: 10.1016/j.cmpb.2023.107927 – ident: 18698_CR21 doi: 10.1016/j.imu.2017.05.004 – ident: 18698_CR49 – ident: 18698_CR6 doi: 10.1109/TIM.2018.2838158 – volume: 10 start-page: 1659 issue: 9 year: 1997 ident: 18698_CR43 publication-title: Neural Netw doi: 10.1016/S0893-6080(97)00011-7 – volume: 69 start-page: 916 issue: 3 year: 2020 ident: 18698_CR9 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2019.2907036 – ident: 18698_CR13 doi: 10.1111/j.1469-8986.2008.00708.x – ident: 18698_CR47 doi: 10.1109/IJCNN.2013.6706930 – ident: 18698_CR27 doi: 10.1109/TBME.2010.2082539 – volume: 51 start-page: 738 issue: 1 year: 1995 ident: 18698_CR44 publication-title: Phys Rev E doi: 10.1103/PhysRevE.51.738 – ident: 18698_CR52 doi: 10.1111/coin.12256 – volume: 343 start-page: 154 year: 2019 ident: 18698_CR2 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.04.087 – ident: 18698_CR29 doi: 10.1016/S0361-9230(99)00161-6 – ident: 18698_CR30 – volume: 12 start-page: 106 year: 2024 ident: 18698_CR38 publication-title: IEEE J Transl Eng Health Med doi: 10.1109/JTEHM.2023.3320132 – ident: 18698_CR26 doi: 10.1109/IEMBS.2009.5332554 – ident: 18698_CR48 – volume: 60 start-page: 3230 issue: 9 year: 2011 ident: 18698_CR5 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2011.2128670  | 
    
| SSID | ssj0016524 | 
    
| Score | 2.3644462 | 
    
| Snippet | In the field of neuroscience, a significant challenge lies in extracting essential features from biological signals like Electroencephalography (EEG). Utilized... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 79259 | 
    
| SubjectTerms | Algorithms Classification Computer Communication Networks Computer Science Data Structures and Information Theory Electroencephalography FIR filters Multimedia Information Systems Neural networks Pattern recognition Signal classification Spatial data Special Purpose and Application-Based Systems Spiking  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L3rwYypOp-TgTQNN1qTJccjmEPTkYLfQpA0I0g1X_39f0nRVUcFbQ196eO8lv1-a94HQtWKA23CyILD3MZIKakjOXEJckRSJM47bYOnHJzGbpw8LvohJYes22r29kgw7dZfsRn0qCWAK8W2UJJHbaIf7cl7gxXM23twdCM7SmB7z87yvENTxym9XoQFhpodoP1JDPG5seYS2yqqPDtq2Cziuwj7a-1RD8Bhp31QYnAivVy_-tzf2FSphWDXx3RhIKbaeIvuYoGAGvHR4MrnHPnQDnK-R8NmLgBUFjpVUgyDQ0PoEzaeT57sZiV0TiIXlVBPGqDN8ZIWCs4JgmQJAHpWlk8C88pQ5qRgrFE0zmUhLc0CxxKqMWpUmhhrge6eoVy2r8gxhznhhYaawQqR2VMgsB0IjDIeHIjd0gGirSG1jSXHf2eJVd8WQvfI1KF8H5Ws5QDebOaumoMaf0sPWPjourrUeUX8qZCpTA3Tb2qx7_fvXzv8nfoF2WXAbH7o3RL367b28BApSm6vgcR-d_dHP priority: 102 providerName: Springer Nature  | 
    
| Title | Spatial spiking neural network for classification of EEG signals for concealed information test | 
    
| URI | https://link.springer.com/article/10.1007/s11042-024-18698-8 https://www.proquest.com/docview/3114012979  | 
    
| Volume | 83 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-7721 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: ADMLS dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-7721 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7721 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED_144U9sK0w0Y1VftgbWMRO4tgPEyooLdpEhRCVylOU2Ik0aWoLlP-fu8ShgARv-bD9cHf2_Wzf3Q_gl5Hot3FnwXHtkzxSouC5rAJeucAFVVHFttb05UxdzKM_i3jRgVmbC0Nhle2aWC_UbmXpjPwkFLQVkCYxp-s7TqxRdLvaUmjknlrB_a5LjHWhL6kyVg_6Z-ns6vr5XkHFnuZWBxx9pfBpNE0ynaBUFfRZnGiaNNevXdUWf765Mq090eQL7HoIycaNzr9Cp1wO4HNLz8D8bB3Apxe1BvcgI_JhNDb2sP5Hx-OMKlni67KJA2cIXpklKE2xQ7W62KpiaTplFOKBRtq0oCxH9CmO-YqrdUOEq5t9mE_Sm_ML7tkVuMVpt-FSiqqIQ6sM7imUTAw67rAsK40ILY9kpY2Uzogo0YG2IkdvF1iTCGuioBAF4sJv0FuuluUBsFjGzmJPZZWKbOh0kiPwUUWMDy4vxBBEK8jM-tLjxIDxP9sWTSbhZyj8rBZ-podw9Nxn3RTe-LD1YaufzE_Ch2xrMkM4bnW2_f3-aN8_Hu0H7MjaTCik7xB6m_vH8idCk00xgq6eTEfQH09v_6Yjb334dS7HT_B14Ic | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4h9kB7AEqpWB6tD_TUWo2dxLEPCNF2YXmtKgQSNzexEwkJ7S7sIsSf62_rTOKwLRLcuCWK7cPMeOZzPDMfwLaRGLfxZMHR90meKFHwXFYRr3zko6qoUldr-nSg-hfJ0WV6OQd_2loYSqtsfWLtqP3I0T_yb7Ggo4A0mdkd33BijaLb1ZZCIw_UCn6nbjEWCjuOy4d7PMJNdg5_or4_S7nfO__R54FlgDs0vymXUlRFGjtlEFsrmRkMYHFZVhqRSp7IShspvRFJpiPtRI5eP3ImE84kUSEKQ40PMAR0kjgxePjrfO8Nfp093mOoNNDq6ohjbBahbKcp3hNUGoMxkhMtlOb6_9A4w7tPrmjryLe_DIsBsrK9xsbewVw5XIGllg6CBe-wAm__6W34HiyRHaNxs8n4in7HM-qcia_DJu-cIVhmjqA75SrV5sFGFev1DhillOCmaEZQVSXGMM9Ch9d6IMLj6SpcvIqcP8D8cDQs14ClMvUOZyqnVOJir7McgZYqUnzweSG6IFpBWhdanRPjxrWdNWkm4VsUvq2Fb3UXvjzOGTeNPl4cvdnqx4ZNP7EzE-3C11Zns8_Pr7b-8mqfYKF_fnpiTw4HxxvwRtYmQ-mEmzA_vb0rtxAWTYuPwfYY_H5tc_8LWRYWsw | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hkBAc2vISS2nrQzmBRexNHPuAqop90QXEASRuJnFiCanaXdhFVf8av46ZxGGhUrlxSxTbh5nPM5_jeQB8NxL9Np4sONo-yWMlcp5JH3FfREXkc5-4StNn52pwFf-6Tq4X4LHJhaGwysYmVoa6GDv6R37YFnQUkCY1hz6ERVx0ej8md5w6SNFNa9NOo4bIsPz7B49v06OTDup6T8pe9_J4wEOHAe4QejMupfB50nbKIK9WMjXovNpl6TWylCyWXhspCyPiVEfaiQwtfuRMKpyJo1zkhooeoPlfSqmKO2Wp9_rPNxgqCQ11dcTRK4uQsFOn7QlKikHvyKkhlOb6tVOcM91_Lmcrn9f7BB8CWWU_a3StwUI5WoePTSMIFuzCOqy-qGq4AZbaHCOs2XRySz_iGdXMxNdRHXHOkCYzR6SdopQqYLCxZ91un1EwCW6HegTlU6L3Klio7VoNRGI824Srd5HyFiyOxqNyG1gik8LhTOWUil270GmGFEvlCT4UWS5aIBpBWheKnFOvjd92Xp6ZhG9R-LYSvtUt2H-eM6lLfLw5erfRjw3bfWrn4GzBQaOz-ef_r7bz9mrfYBlBbk9PzoefYUVWiKE4wl1YnN0_lF-QD83yrxXwGNy8N9KfAJfkFE0 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+spiking+neural+network+for+classification+of+EEG+signals+for+concealed+information+test&rft.jtitle=Multimedia+tools+and+applications&rft.au=Edla%2C+Damoder+Reddy&rft.au=Bablani%2C+Annushree&rft.au=Bhattacharyya%2C+Saugat&rft.au=Dharavath%2C+Ramesh&rft.date=2024-10-01&rft.issn=1573-7721&rft.eissn=1573-7721&rft.volume=83&rft.issue=33&rft.spage=79259&rft.epage=79280&rft_id=info:doi/10.1007%2Fs11042-024-18698-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_024_18698_8 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon |