Architecture of Multiple Convolutional Neural Networks to Construct a Subject-Specific Knee Model for Estimating Local Specific Absorption Rate
Electromagnetic simulation is a credible way to estimate the local specific absorption rate (SAR), which is a key consideration in high-field magnetic resonance imaging of the knee joint. To construct a subject-specific knee model, which is critical for SAR simulation, we proposed an architecture co...
        Saved in:
      
    
          | Published in | Applied magnetic resonance Vol. 52; no. 2; pp. 177 - 199 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Vienna
          Springer Vienna
    
        01.02.2021
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0937-9347 1613-7507  | 
| DOI | 10.1007/s00723-020-01301-2 | 
Cover
| Abstract | Electromagnetic simulation is a credible way to estimate the local specific absorption rate (SAR), which is a key consideration in high-field magnetic resonance imaging of the knee joint. To construct a subject-specific knee model, which is critical for SAR simulation, we proposed an architecture comprising multiple convolutional neural networks. Knee tissues were segmented by three U-Nets. Each network was responsible for the segmentation of two tissues that have relatively similar volumes and distinct intensity distributions (muscle and fat, cancellous and cortical bone, and cartilage and meniscus). Additionally, a weighted loss function was used to further alleviate the effect of class imbalance of the segmented tissues. The outputs of these three networks were merged and morphological filtering was used as the post-processing to eliminate holes and isolated voxels. This method was compared with three other segmentation methods. Good segmentation performance was demonstrated on the test set, and the proposed method was found to be superior to the other methods according to several quantitative measures. Meanwhile, local SAR in a 3 T coil using models constructed with the proposed method, manual delineation, and the comparison methods were also evaluated on the test set. On the whole, the maximum values of SAR
10g
of the models constructed by the proposed method were closer to the results of manual delineation. Overall, the proposed method exhibits promising potential for precisely constructing knee models for SAR simulation. | 
    
|---|---|
| AbstractList | Electromagnetic simulation is a credible way to estimate the local specific absorption rate (SAR), which is a key consideration in high-field magnetic resonance imaging of the knee joint. To construct a subject-specific knee model, which is critical for SAR simulation, we proposed an architecture comprising multiple convolutional neural networks. Knee tissues were segmented by three U-Nets. Each network was responsible for the segmentation of two tissues that have relatively similar volumes and distinct intensity distributions (muscle and fat, cancellous and cortical bone, and cartilage and meniscus). Additionally, a weighted loss function was used to further alleviate the effect of class imbalance of the segmented tissues. The outputs of these three networks were merged and morphological filtering was used as the post-processing to eliminate holes and isolated voxels. This method was compared with three other segmentation methods. Good segmentation performance was demonstrated on the test set, and the proposed method was found to be superior to the other methods according to several quantitative measures. Meanwhile, local SAR in a 3 T coil using models constructed with the proposed method, manual delineation, and the comparison methods were also evaluated on the test set. On the whole, the maximum values of SAR
10g
of the models constructed by the proposed method were closer to the results of manual delineation. Overall, the proposed method exhibits promising potential for precisely constructing knee models for SAR simulation. Electromagnetic simulation is a credible way to estimate the local specific absorption rate (SAR), which is a key consideration in high-field magnetic resonance imaging of the knee joint. To construct a subject-specific knee model, which is critical for SAR simulation, we proposed an architecture comprising multiple convolutional neural networks. Knee tissues were segmented by three U-Nets. Each network was responsible for the segmentation of two tissues that have relatively similar volumes and distinct intensity distributions (muscle and fat, cancellous and cortical bone, and cartilage and meniscus). Additionally, a weighted loss function was used to further alleviate the effect of class imbalance of the segmented tissues. The outputs of these three networks were merged and morphological filtering was used as the post-processing to eliminate holes and isolated voxels. This method was compared with three other segmentation methods. Good segmentation performance was demonstrated on the test set, and the proposed method was found to be superior to the other methods according to several quantitative measures. Meanwhile, local SAR in a 3 T coil using models constructed with the proposed method, manual delineation, and the comparison methods were also evaluated on the test set. On the whole, the maximum values of SAR10g of the models constructed by the proposed method were closer to the results of manual delineation. Overall, the proposed method exhibits promising potential for precisely constructing knee models for SAR simulation.  | 
    
| Author | Xiao, Liang Zhou, Hangyu Zhang, Xiaojing Chen, Na Ma, Yan Xing, Cangju  | 
    
| Author_xml | – sequence: 1 givenname: Liang orcidid: 0000-0002-4174-4570 surname: Xiao fullname: Xiao, Liang email: xiaoliang@mail.buct.edu.cn organization: College of Information Science and Technology, Beijing University of Chemical Technology – sequence: 2 givenname: Hangyu surname: Zhou fullname: Zhou, Hangyu organization: College of Information Science and Technology, Beijing University of Chemical Technology – sequence: 3 givenname: Na surname: Chen fullname: Chen, Na organization: College of Information Science and Technology, Beijing University of Chemical Technology – sequence: 4 givenname: Yan surname: Ma fullname: Ma, Yan organization: College of Information Science and Technology, Beijing University of Chemical Technology – sequence: 5 givenname: Cangju surname: Xing fullname: Xing, Cangju organization: College of Information Science and Technology, Beijing University of Chemical Technology – sequence: 6 givenname: Xiaojing surname: Zhang fullname: Zhang, Xiaojing organization: Radiology Department, Chinese PLA General Hospital  | 
    
| BookMark | eNp9kMFO3DAURa0KpA6UH-jKUteGZzuxk-VoRCliAKkDaytxbOppGgfbKeIr-GWcmQqkLvDCb3Pu9fM5QgeDHwxCXymcUgB5FvPFOAEGBCgHStgntKCCciJLkAdoATWXpOaF_IyOYtwC0LKicoFelkH_csnoNAWDvcXXU5_c2Bu88sNf30_J-aHp8Y2Zwm6kJx9-R5z8DMQUJp1wgzdTu80dZDMa7azT-GowBl_7zvTY-oDPY3J_muSGB7z2Ohe9gcs2-jDOr-CfTTJf0KFt-mhO_s1jdP_9_G71g6xvLy5XyzXRnNaJUNvlI0zHRFG1uqFMVCB1W0ladqWtubac0YqxznZcAAgtdAtFURoh6koAP0bf9r1j8I-TiUlt_RTyT6NiNZU1qwtgmar2lA4-xmCs0i4187IpNK5XFNSsX-31q6xf7fSrOcr-i44hKwjPH4f4PhQzPDyY8L7VB6lXdISbag | 
    
| CitedBy_id | crossref_primary_10_1109_TAP_2024_3411151 crossref_primary_10_1007_s00723_024_01662_y crossref_primary_10_1109_TEMC_2021_3106872  | 
    
| Cites_doi | 10.1109/TBME.2006.872816 10.1016/j.mri.2013.06.005 10.1002/mrm.27948 10.1109/TMI.2009.2015757 10.1007/s10334-011-0281-8 10.1088/0031-9155/57/24/8153 10.1002/mrm.26804 10.1002/mrm.26398 10.1109/TBME.2012.2186612 10.1002/mrm.24329 10.1002/mrm.24215 10.1148/radiol.2018172322 10.1016/j.compbiomed.2016.03.011 10.1016/j.joca.2018.02.907 10.1002/mrm.26841 10.1016/j.media.2014.05.008 10.1002/mrm.27229 10.1109/MeMeA.2018.8438709 10.1002/jmri.10359 10.1109/TMI.2009.2024743 10.1002/mrm.22948 10.1002/(SICI)1522-2594(199908)42:2<215::AID-MRM1>3.0.CO;2-8 10.1002/mrm.22838 10.1002/mrm.26244 10.1002/mrm.20982 10.1109/TMI.2016.2535302 10.1016/j.media.2018.11.009 10.1109/TMI.2016.2553401 10.1007/s00723-010-0126-z 10.1088/1361-6560/ab7308 10.1088/0031-9155/55/2/N01 10.1016/j.neuroimage.2019.116132 10.1002/mrm.23322 10.1002/mrm.25986 10.1007/978-3-319-24574-4_28 10.1109/TPAMI.2016.2644615 10.1109/TMI.2010.2047653  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer-Verlag GmbH Austria, part of Springer Nature 2020 Springer-Verlag GmbH Austria, part of Springer Nature 2020.  | 
    
| Copyright_xml | – notice: Springer-Verlag GmbH Austria, part of Springer Nature 2020 – notice: Springer-Verlag GmbH Austria, part of Springer Nature 2020.  | 
    
| DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO GNUQQ HCIFZ KB. M2P P5Z P62 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U  | 
    
| DOI | 10.1007/s00723-020-01301-2 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest Central Student ProQuest SciTech Premium Collection Materials Science Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic  | 
    
| DatabaseTitle | CrossRef ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New)  | 
    
| DatabaseTitleList | ProQuest Central Student  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Physics | 
    
| EISSN | 1613-7507 | 
    
| EndPage | 199 | 
    
| ExternalDocumentID | 10_1007_s00723_020_01301_2 | 
    
| GeographicLocations | China | 
    
| GeographicLocations_xml | – name: China | 
    
| GroupedDBID | -54 -58 -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 2.D 203 23M 29~ 2J2 2JN 2JY 2KG 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 88I 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KOV LLZTM M2P M4Y MA- N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9T PDBOC PF0 PT4 PT5 QOK QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCM SDH SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UPT UTJUX UZXMN VC2 VFIZW W23 W48 W4F WK8 YLTOR Z45 Z5O Z7V Z7X Z7Y Z83 Z86 Z88 Z8P Z8R Z8S Z8W ZMTXR ~02 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 3V. 7XB 8FE 8FG 8FK D1I P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U  | 
    
| ID | FETCH-LOGICAL-c319t-1fdddd6ed2648bca126807cb8715d5f93cf321822dfd36006c6cb0445e6698603 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 0937-9347 | 
    
| IngestDate | Fri Jul 25 11:08:27 EDT 2025 Wed Oct 01 03:14:23 EDT 2025 Thu Apr 24 22:58:08 EDT 2025 Fri Feb 21 02:48:40 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c319t-1fdddd6ed2648bca126807cb8715d5f93cf321822dfd36006c6cb0445e6698603 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-4174-4570 | 
    
| PQID | 2917929402 | 
    
| PQPubID | 2043726 | 
    
| PageCount | 23 | 
    
| ParticipantIDs | proquest_journals_2917929402 crossref_citationtrail_10_1007_s00723_020_01301_2 crossref_primary_10_1007_s00723_020_01301_2 springer_journals_10_1007_s00723_020_01301_2  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20210200 2021-02-00 20210201  | 
    
| PublicationDateYYYYMMDD | 2021-02-01 | 
    
| PublicationDate_xml | – month: 2 year: 2021 text: 20210200  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Vienna | 
    
| PublicationPlace_xml | – name: Vienna – name: Heidelberg  | 
    
| PublicationTitle | Applied magnetic resonance | 
    
| PublicationTitleAbbrev | Appl Magn Reson | 
    
| PublicationYear | 2021 | 
    
| Publisher | Springer Vienna Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Vienna – name: Springer Nature B.V  | 
    
| References | FrippJCrozierSWarfieldSKOurselinSIEEE Trans. Med. Imag.2010291556410.1109/TMI.2009.2024743 LiuFZhouZJangHSamsonovAZhaoGKijowskiRMagn. Reson. Med.20187942379239110.1002/mrm.26841 GreenspanHVan GinnekenBSummersRMIEEE Trans. Med. Imaging20163551153115910.1109/TMI.2016.2553401 CollinsCMSmithMBJ Magn Reson Imaging200318338338810.1002/jmri.10359 Tissue properties in database of IT'IS Foundation. https://itis.swiss/virtual-population/tissue-properties/database/dielectric-properties/. Accessed 10 Jan 2020 WolfSDiehlDGebhardtMMallowJSpeckOMagn. Reson. Med.20136941157116810.1002/mrm.24329 HomannHGraesslinIEggersHNehrkeKVernickelPKatscherUDösselOBörnertPMagn. Reson. Mater. Phy.201225319320410.1007/s10334-011-0281-8 TajbakhshNShinJYGuruduSRHurstRTKendallCBGotwayMBLiangJIEEE Trans. Med. Imaging20163551299131210.1109/TMI.2016.2535302 ZhouZZhaoGKijowskiRLiuFMagn. Reson. Med.20188062759277010.1002/mrm.27229 JinJWeberEDestruelAO'BrienKHeninBEngstromCCrozierSMagn. Reson. Med.20187931804181610.1002/mrm.26804 MallikarjunaswamyMSHoliMSRamanRJ. Med. Imag. Health In.201553552560 PakinSKXuJSchweitzerMERegatteRRMagn. Reson. Med.200656356357110.1002/mrm.20982 VoigtTHomannHKatscherUDoesselOMagn. Reson. Med.20126841117112610.1002/mrm.23322 V. Gagliardi, A. Retico, L. Biagi, G. Aringhieri, V. Zampa, M.R. Symms, G. Tiberi, M. Tosetti, in Proceedings of the IEEE International Symposium on Medical Measurements and Applications (Rome, Italy, 11-13 June 2018) https://doi.org/10.1109/MeMeA.2018.8438709 JinJLiuFWeberECrozierSPhys. Med. Biol.201257248153817110.1088/0031-9155/57/24/8153 WangPHeXLiYZhuXChenWQiuMJ. Med. Imag. Health In.201664948956 TackAMukhopadhyayAZachowSOsteoarthr. Cartilage201826568068810.1016/j.joca.2018.02.907 KatscherUVoigtTFindekleeCVernickelPNehrkeKDoesselOIEEE Trans. Med. Imag.20092891365137410.1109/TMI.2009.2015757 MurbachMNeufeldECabotEZastrowECórcolesJKainzWKusterNMagn. Reson. Med.201676398699710.1002/mrm.25986 NormanBPedoiaVMajumdarSRadiology2018288117718510.1148/radiol.2018172322 TangJMillingtonSActonSTCrandallJHurwitzSIEEE Trans. Biomed. Eng.200653589690710.1109/TBME.2006.872816 WilliamsTGHolmesAPWatertonJCMaciewiczRAHutchinsonCEMootsRJNashAFTaylorCJIEEE Trans. Med. Imag.20102981541155910.1109/TMI.2010.2047653 PetersonDMCarruthersCEWolvertonBLMeisterKWernerMDuensingGRFitzsimmonsJRMagn. Reson. Med.199942221522110.1002/(SICI)1522-2594(199908)42:2<215::AID-MRM1>3.0.CO;2-8 SimonisFFJRaaijmakersAJELagendijkJJWvan den BergCATMagn. Reson. Med.20177741691170010.1002/mrm.26244 O. Ronneberger, P. Fischer, T. Brox, The 18th international conference on medical image computing and computer assisted interventions (MICCAI 2015, Munich, Germany, 2015) 234–241 (2015) AmbellanaFTackAEhlkeMZachowSMed. Image Anal.20195210911810.1016/j.media.2018.11.009 MeliadòEFRaaijmakersAJESrizziASteensmaBRMasperoMSavenijeMHFLuijtenPRvan den BergCATMagn. Reson. Med.201983269571110.1002/mrm.27948 OrzadaSLaddMEBitzAKMagn. Reson. Med.201778280581110.1002/mrm.26398 WattsAStobbeRWBeaulieuCMagn. Reson. Med.201166369770510.1002/mrm.22838 RashedEADiaoYLHirataAPhys. Med. Biol.202065610.1088/1361-6560/ab7308 Tamez-PeñaJGFarberJGonzalezPCSchreyerESchneiderETottermanSIEEE Trans. Biomed. Eng.20125941177118610.1109/TBME.2012.2186612 KatscherUFindekleeCVoigtTMagn. Reson. Med.20126861911191810.1002/mrm.24215 HomannHBörnertPEggersHNehrkeKDösselOGraesslinIMagn Reson Med.20116661767177610.1002/mrm.22948 ShanLZachCCharlesCNiethammerMMed. Image Anal.20141871233124610.1016/j.media.2014.05.008 HartwigVGiovannettiGVanelloNLandiniLSantarelliMFAppl. Magn. Reson.201038333734810.1007/s00723-010-0126-z ÖztürkCNAlbayrakSComput. Biol. Med.2016729010710.1016/j.compbiomed.2016.03.011 ChristAKainzWHahnEGHoneggerKZeffererMNeufeldERascherWJankaRBautzWJiCKieferBSchmittPHollenbachHPJianxiangSOberleMSzczerbaDKamAGuagJWKusterNPhys. Med. Biol.2010552N23N382010PMB....55...23C10.1088/0031-9155/55/2/N01 ZhangKLuWMarzilianoPMagn. Reson. Imaging.201331101731174310.1016/j.mri.2013.06.005 RashedEAGomez-TamesJHirataANeuroImage.20192021511613210.1016/j.neuroimage.2019.1161321–16 BadrinarayananVKendallACipollaRIEEE Trans. Pattern Anal. Mach. Intell.201739122481249510.1109/TPAMI.2016.2644615 H Homann (1301_CR33) 2011; 66 JG Tamez-Peña (1301_CR18) 2012; 59 A Christ (1301_CR34) 2010; 55 CN Öztürk (1301_CR14) 2016; 72 H Homann (1301_CR7) 2012; 25 A Tack (1301_CR28) 2018; 26 U Katscher (1301_CR5) 2009; 28 J Fripp (1301_CR16) 2010; 29 L Shan (1301_CR19) 2014; 18 1301_CR24 J Jin (1301_CR3) 2018; 79 FFJ Simonis (1301_CR12) 2017; 77 TG Williams (1301_CR17) 2010; 29 B Norman (1301_CR27) 2018; 288 Z Zhou (1301_CR26) 2018; 80 CM Collins (1301_CR35) 2003; 18 M Murbach (1301_CR8) 2016; 76 S Wolf (1301_CR37) 2013; 69 DM Peterson (1301_CR38) 1999; 42 N Tajbakhsh (1301_CR22) 2016; 35 T Voigt (1301_CR11) 2012; 68 MS Mallikarjunaswamy (1301_CR13) 2015; 5 K Zhang (1301_CR20) 2013; 31 U Katscher (1301_CR6) 2012; 68 EA Rashed (1301_CR30) 2019; 202 EA Rashed (1301_CR31) 2020; 65 J Tang (1301_CR15) 2006; 53 P Wang (1301_CR21) 2016; 6 F Liu (1301_CR25) 2018; 79 1301_CR36 1301_CR4 V Hartwig (1301_CR9) 2010; 38 SK Pakin (1301_CR1) 2006; 56 F Ambellana (1301_CR29) 2019; 52 V Badrinarayanan (1301_CR40) 2017; 39 EF Meliadò (1301_CR32) 2019; 83 S Orzada (1301_CR39) 2017; 78 H Greenspan (1301_CR23) 2016; 35 A Watts (1301_CR2) 2011; 66 J Jin (1301_CR10) 2012; 57  | 
    
| References_xml | – reference: MallikarjunaswamyMSHoliMSRamanRJ. Med. Imag. Health In.201553552560 – reference: PakinSKXuJSchweitzerMERegatteRRMagn. Reson. Med.200656356357110.1002/mrm.20982 – reference: RashedEAGomez-TamesJHirataANeuroImage.20192021511613210.1016/j.neuroimage.2019.1161321–16 – reference: SimonisFFJRaaijmakersAJELagendijkJJWvan den BergCATMagn. Reson. Med.20177741691170010.1002/mrm.26244 – reference: TackAMukhopadhyayAZachowSOsteoarthr. Cartilage201826568068810.1016/j.joca.2018.02.907 – reference: WattsAStobbeRWBeaulieuCMagn. Reson. Med.201166369770510.1002/mrm.22838 – reference: HomannHGraesslinIEggersHNehrkeKVernickelPKatscherUDösselOBörnertPMagn. Reson. Mater. Phy.201225319320410.1007/s10334-011-0281-8 – reference: LiuFZhouZJangHSamsonovAZhaoGKijowskiRMagn. Reson. Med.20187942379239110.1002/mrm.26841 – reference: VoigtTHomannHKatscherUDoesselOMagn. Reson. Med.20126841117112610.1002/mrm.23322 – reference: Tamez-PeñaJGFarberJGonzalezPCSchreyerESchneiderETottermanSIEEE Trans. Biomed. Eng.20125941177118610.1109/TBME.2012.2186612 – reference: CollinsCMSmithMBJ Magn Reson Imaging200318338338810.1002/jmri.10359 – reference: MurbachMNeufeldECabotEZastrowECórcolesJKainzWKusterNMagn. Reson. Med.201676398699710.1002/mrm.25986 – reference: ÖztürkCNAlbayrakSComput. Biol. Med.2016729010710.1016/j.compbiomed.2016.03.011 – reference: Tissue properties in database of IT'IS Foundation. https://itis.swiss/virtual-population/tissue-properties/database/dielectric-properties/. Accessed 10 Jan 2020 – reference: MeliadòEFRaaijmakersAJESrizziASteensmaBRMasperoMSavenijeMHFLuijtenPRvan den BergCATMagn. Reson. Med.201983269571110.1002/mrm.27948 – reference: GreenspanHVan GinnekenBSummersRMIEEE Trans. Med. Imaging20163551153115910.1109/TMI.2016.2553401 – reference: WolfSDiehlDGebhardtMMallowJSpeckOMagn. Reson. Med.20136941157116810.1002/mrm.24329 – reference: WangPHeXLiYZhuXChenWQiuMJ. Med. Imag. Health In.201664948956 – reference: RashedEADiaoYLHirataAPhys. Med. Biol.202065610.1088/1361-6560/ab7308 – reference: AmbellanaFTackAEhlkeMZachowSMed. Image Anal.20195210911810.1016/j.media.2018.11.009 – reference: KatscherUVoigtTFindekleeCVernickelPNehrkeKDoesselOIEEE Trans. Med. Imag.20092891365137410.1109/TMI.2009.2015757 – reference: HartwigVGiovannettiGVanelloNLandiniLSantarelliMFAppl. Magn. Reson.201038333734810.1007/s00723-010-0126-z – reference: WilliamsTGHolmesAPWatertonJCMaciewiczRAHutchinsonCEMootsRJNashAFTaylorCJIEEE Trans. Med. Imag.20102981541155910.1109/TMI.2010.2047653 – reference: BadrinarayananVKendallACipollaRIEEE Trans. Pattern Anal. Mach. Intell.201739122481249510.1109/TPAMI.2016.2644615 – reference: NormanBPedoiaVMajumdarSRadiology2018288117718510.1148/radiol.2018172322 – reference: ChristAKainzWHahnEGHoneggerKZeffererMNeufeldERascherWJankaRBautzWJiCKieferBSchmittPHollenbachHPJianxiangSOberleMSzczerbaDKamAGuagJWKusterNPhys. Med. Biol.2010552N23N382010PMB....55...23C10.1088/0031-9155/55/2/N01 – reference: FrippJCrozierSWarfieldSKOurselinSIEEE Trans. Med. Imag.2010291556410.1109/TMI.2009.2024743 – reference: TajbakhshNShinJYGuruduSRHurstRTKendallCBGotwayMBLiangJIEEE Trans. Med. Imaging20163551299131210.1109/TMI.2016.2535302 – reference: KatscherUFindekleeCVoigtTMagn. Reson. Med.20126861911191810.1002/mrm.24215 – reference: ZhangKLuWMarzilianoPMagn. Reson. Imaging.201331101731174310.1016/j.mri.2013.06.005 – reference: TangJMillingtonSActonSTCrandallJHurwitzSIEEE Trans. Biomed. Eng.200653589690710.1109/TBME.2006.872816 – reference: O. Ronneberger, P. Fischer, T. Brox, The 18th international conference on medical image computing and computer assisted interventions (MICCAI 2015, Munich, Germany, 2015) 234–241 (2015) – reference: HomannHBörnertPEggersHNehrkeKDösselOGraesslinIMagn Reson Med.20116661767177610.1002/mrm.22948 – reference: ZhouZZhaoGKijowskiRLiuFMagn. Reson. Med.20188062759277010.1002/mrm.27229 – reference: JinJLiuFWeberECrozierSPhys. Med. Biol.201257248153817110.1088/0031-9155/57/24/8153 – reference: ShanLZachCCharlesCNiethammerMMed. Image Anal.20141871233124610.1016/j.media.2014.05.008 – reference: OrzadaSLaddMEBitzAKMagn. Reson. Med.201778280581110.1002/mrm.26398 – reference: JinJWeberEDestruelAO'BrienKHeninBEngstromCCrozierSMagn. Reson. Med.20187931804181610.1002/mrm.26804 – reference: PetersonDMCarruthersCEWolvertonBLMeisterKWernerMDuensingGRFitzsimmonsJRMagn. Reson. Med.199942221522110.1002/(SICI)1522-2594(199908)42:2<215::AID-MRM1>3.0.CO;2-8 – reference: V. Gagliardi, A. Retico, L. Biagi, G. Aringhieri, V. Zampa, M.R. Symms, G. Tiberi, M. Tosetti, in Proceedings of the IEEE International Symposium on Medical Measurements and Applications (Rome, Italy, 11-13 June 2018) https://doi.org/10.1109/MeMeA.2018.8438709 – volume: 53 start-page: 896 issue: 5 year: 2006 ident: 1301_CR15 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.872816 – volume: 31 start-page: 1731 issue: 10 year: 2013 ident: 1301_CR20 publication-title: Magn. Reson. Imaging. doi: 10.1016/j.mri.2013.06.005 – volume: 83 start-page: 695 issue: 2 year: 2019 ident: 1301_CR32 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27948 – volume: 28 start-page: 1365 issue: 9 year: 2009 ident: 1301_CR5 publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2009.2015757 – volume: 25 start-page: 193 issue: 3 year: 2012 ident: 1301_CR7 publication-title: Magn. Reson. Mater. Phy. doi: 10.1007/s10334-011-0281-8 – volume: 57 start-page: 8153 issue: 24 year: 2012 ident: 1301_CR10 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/57/24/8153 – volume: 79 start-page: 1804 issue: 3 year: 2018 ident: 1301_CR3 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26804 – volume: 78 start-page: 805 issue: 2 year: 2017 ident: 1301_CR39 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26398 – volume: 59 start-page: 1177 issue: 4 year: 2012 ident: 1301_CR18 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2186612 – volume: 69 start-page: 1157 issue: 4 year: 2013 ident: 1301_CR37 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24329 – volume: 68 start-page: 1911 issue: 6 year: 2012 ident: 1301_CR6 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24215 – volume: 288 start-page: 177 issue: 1 year: 2018 ident: 1301_CR27 publication-title: Radiology doi: 10.1148/radiol.2018172322 – volume: 72 start-page: 90 year: 2016 ident: 1301_CR14 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.03.011 – volume: 26 start-page: 680 issue: 5 year: 2018 ident: 1301_CR28 publication-title: Osteoarthr. Cartilage doi: 10.1016/j.joca.2018.02.907 – volume: 79 start-page: 2379 issue: 4 year: 2018 ident: 1301_CR25 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26841 – volume: 18 start-page: 1233 issue: 7 year: 2014 ident: 1301_CR19 publication-title: Med. Image Anal. doi: 10.1016/j.media.2014.05.008 – volume: 80 start-page: 2759 issue: 6 year: 2018 ident: 1301_CR26 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27229 – ident: 1301_CR4 doi: 10.1109/MeMeA.2018.8438709 – ident: 1301_CR36 – volume: 18 start-page: 383 issue: 3 year: 2003 ident: 1301_CR35 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.10359 – volume: 29 start-page: 55 issue: 1 year: 2010 ident: 1301_CR16 publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2009.2024743 – volume: 66 start-page: 1767 issue: 6 year: 2011 ident: 1301_CR33 publication-title: Magn Reson Med. doi: 10.1002/mrm.22948 – volume: 6 start-page: 948 issue: 4 year: 2016 ident: 1301_CR21 publication-title: J. Med. Imag. Health In. – volume: 42 start-page: 215 issue: 2 year: 1999 ident: 1301_CR38 publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199908)42:2<215::AID-MRM1>3.0.CO;2-8 – volume: 66 start-page: 697 issue: 3 year: 2011 ident: 1301_CR2 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22838 – volume: 77 start-page: 1691 issue: 4 year: 2017 ident: 1301_CR12 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26244 – volume: 56 start-page: 563 issue: 3 year: 2006 ident: 1301_CR1 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20982 – volume: 35 start-page: 1299 issue: 5 year: 2016 ident: 1301_CR22 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2535302 – volume: 52 start-page: 109 year: 2019 ident: 1301_CR29 publication-title: Med. Image Anal. doi: 10.1016/j.media.2018.11.009 – volume: 35 start-page: 1153 issue: 5 year: 2016 ident: 1301_CR23 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2553401 – volume: 38 start-page: 337 issue: 3 year: 2010 ident: 1301_CR9 publication-title: Appl. Magn. Reson. doi: 10.1007/s00723-010-0126-z – volume: 65 start-page: 6 year: 2020 ident: 1301_CR31 publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/ab7308 – volume: 55 start-page: N23 issue: 2 year: 2010 ident: 1301_CR34 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/55/2/N01 – volume: 202 start-page: 116132 issue: 15 year: 2019 ident: 1301_CR30 publication-title: NeuroImage. doi: 10.1016/j.neuroimage.2019.116132 – volume: 68 start-page: 1117 issue: 4 year: 2012 ident: 1301_CR11 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.23322 – volume: 76 start-page: 986 issue: 3 year: 2016 ident: 1301_CR8 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25986 – ident: 1301_CR24 doi: 10.1007/978-3-319-24574-4_28 – volume: 39 start-page: 2481 issue: 12 year: 2017 ident: 1301_CR40 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – volume: 29 start-page: 1541 issue: 8 year: 2010 ident: 1301_CR17 publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2010.2047653 – volume: 5 start-page: 552 issue: 3 year: 2015 ident: 1301_CR13 publication-title: J. Med. Imag. Health In.  | 
    
| SSID | ssj0015817 | 
    
| Score | 2.2491984 | 
    
| Snippet | Electromagnetic simulation is a credible way to estimate the local specific absorption rate (SAR), which is a key consideration in high-field magnetic... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 177 | 
    
| SubjectTerms | Absorption Artificial neural networks Atoms and Molecules in Strong Fields Automation Cartilage Datasets Delineation Dielectric properties Dosimetry Hospitals Knee Laser Matter Interaction Magnetic resonance imaging Methods Neural networks Organic Chemistry Original Paper Physical Chemistry Physics Physics and Astronomy Simulation Solid State Physics Spectroscopy/Spectrometry Test sets Volunteers  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50RfAiPnF9kYM3DWbTNtseRFZZER-LiIK30jwqwtKqu_g3_MvOZNNdFbSXHpqU0pnMTDLffANw0C3QyxvhuNC43GKbKK7RC3JtXZHazGRWUnHy7UBdPsZXT8nTHAyaWhiCVTY20RtqWxs6Iz-WuK9AV47bndPXN05doyi72rTQKEJrBXviKcbmYUESM1YLFs76g7v7aV4hSX0PXkGfk0VxN5TR-GI6ItGmnCYBtVDtufzpqmbx56-UqfdEFyuwHEJI1pvIfBXmXLUGix7KaUbr8Nn7lhtgdcluA2aQndfVR9A0nE-0HP7mceAjNq5pwIRPlhUMLQod0XDfoL58Mey6co5R67Qhw0CX9dE2ULRbPbMb8odsOrCnR_W7t0TsHiPZDXi86D-cX_LQdoEbXI9j3iktXspZAr9pU3SkSkXXaNxaJTYps8iUEfG-S1vaCOMlZZTRIo4Tp1SWKhFtQquqK7cFLC3QAbpUZFqb2Eal1t1MJ1ZYUWqZOt2GTvOHcxM4yak1xjCfsil7qeQoldxLJZdtOJzOeZ0wcvw7ercRXB5W5yif6VIbjhphzh7__bbt_9-2A0uSIC8e1L0LLZSY28OYZaz3gyJ-AXnr6SU priority: 102 providerName: ProQuest  | 
    
| Title | Architecture of Multiple Convolutional Neural Networks to Construct a Subject-Specific Knee Model for Estimating Local Specific Absorption Rate | 
    
| URI | https://link.springer.com/article/10.1007/s00723-020-01301-2 https://www.proquest.com/docview/2917929402  | 
    
| Volume | 52 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1613-7507 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015817 issn: 0937-9347 databaseCode: AFBBN dateStart: 19900601 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1613-7507 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0015817 issn: 0937-9347 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1613-7507 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015817 issn: 0937-9347 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1613-7507 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015817 issn: 0937-9347 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGA-6IXgRnzidIwdvWsjSNk2PdeyBc0OGg3kqzaMijFbs8N_wX_ZL1nYqKthLDk1S6Pf6Jd8LocsgASsviXaIAHHzlM8cAVbQEUonXIUyVNQkJ0-mbDT3bhf-okwKK6po98olaTV1nexmilwbn6MJpAK2dEDxNn1Tzgu4eE6j2nfgc9tnl5hPhq4XlKkyP-_x1RxtMOY3t6i1NoN9tFfCRByt6XqAtnR2iHZsuKYsjtB79On-H-cpnpRxgbiXZ28lN8F6U3rDDjbWu8Cr3ExY14zFCQatYa5hHNuEPn2WeJxpjU17tCUGMIv7IP8G0WZP-M7YPFxPjESRv1ptg2eAVo_RfNB_6I2csrWCI0HmVk43VfAwrUyAm5BJlzJOAing-OQrPw1dmbqmtjtVqXIBEzHJpCCe52vGQs6Ie4IaWZ7pU4R5AkZOcxIKIT3lpkIEofAVUSQVlGvRQt3qD8eyrDtu2l8s47pisqVKDFSJLVVi2kJX9ZqXddWNP2e3K8LFpQQWMYVzKEA_OB630HVFzM3r33c7-9_0c7RLTZiLDeRuowZQUF8ATlmJDtrmg2EHNaPh47gP401_ej_rWGb9AKx642c | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVgguqOUhQgvdA5xgxWZtb-xDhdKSKm0eQqWVejPeh7lUdsBRUX9F_xG_jZnNOqGV2ltz8SHrlexvdh6eb2YA3vcKtPJGOC40HrfYJoprtIJcW1ekNjOZlVScPJmq4Vl8fJ6cr8HfthaGaJWtTvSK2taGvpF_lhhXoCnHcOfL7BenqVGUXW1HaBRhtILd8y3GQmHHyF39wRCu2Tv6inh_kPJwcHow5GHKADcofnPeLS3-lLPE9dKm6EqVip7RGEkkNimzyJQRtTmXtrQRugfKKKNFHCdOqSxVIsJ9H8FGHMUZBn8b-4Ppt5NlHiNJ_cxfQY-fRXEvlO344j1q2k05VCKG4THj8qZpXPm7t1K03vIdbsKz4LKy_kLGtmDNVc_hsaeOmuYFXPf_y0WwumSTwFFkB3V1GSQb76c2IP7ieecNm9e0YNG_lhUMNRh9EuLfZ87TBNmoco7RqLYLho41G6AuIu-6-snGZH_ZcmFfN_Vvr_nYCXrOL-HsQQB4BetVXbnXwNICDa5LRaa1iW1Uat3LdGKFFaWWqdMd6LZvODehBzqN4rjIl92bPSo5opJ7VHLZgY_Le2aLDiD3rt5pgcuDNmjylex24FML5urvu3d7c_9uu_BkeDoZ5-Oj6Wgbnkqi23hC-Q6sI3ruLfpLc_0uCCWDHw99Dv4B2bslmg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kongRn1itugdvGrrNY5scS22p9oGIhd5C9iVCSYot_g3_sjObh1VUMJccMruBzOzObOabbwi5aifg5SXTDhOw3HwVcEeAF3SE0kmoIhkpF4uTxxM-mPr3s2C2VsVv0e5lSjKvaUCWpnTVXCjTrArfkPAa848IqgITdWAT3vSRKAEseup2qjxCENqeuwxfH3l-uyib-XmOr67pM978liK1nqe_R3aLkJF2ch3vkw2dHpAtC92Uy0Py3lnLBdDM0HGBEaTdLH0rLAvGIw2HvVnc95KuMhTI-WNpQmEHwV8yjm1Ib14kHaZaU2yVNqcQ2NIe7AUY3abPdIT-j1aCHbHMXu3OQx8hcj0i037vqTtwijYLjoT1t3JaRsHFtUKwm5BJy-Uha0sBR6lABSbypPGQ591VRnkQH3HJpWC-H2jOo5Az75jU0izVJ4SGCTg8HbJICOkrzwjRjkSgmGJGuKEWddIqv3AsCw5ybIUxjyv2ZKuVGLQSW63Ebp1cV2MWOQPHn9KNUnFxsRqXsQtnUggD4ahcJzelMj8f_z7b6f_EL8n2w20_Ht1Nhmdkx0X0i8V3N0gNlKnPIXxZiQtroR8JbuZ7 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Architecture+of+Multiple+Convolutional+Neural+Networks+to+Construct+a+Subject-Specific+Knee+Model+for+Estimating+Local+Specific+Absorption+Rate&rft.jtitle=Applied+magnetic+resonance&rft.au=Xiao%2C+Liang&rft.au=Zhou%2C+Hangyu&rft.au=Chen%2C+Na&rft.au=Ma%2C+Yan&rft.date=2021-02-01&rft.issn=0937-9347&rft.eissn=1613-7507&rft.volume=52&rft.issue=2&rft.spage=177&rft.epage=199&rft_id=info:doi/10.1007%2Fs00723-020-01301-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00723_020_01301_2 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0937-9347&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0937-9347&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0937-9347&client=summon |