Architecture of Multiple Convolutional Neural Networks to Construct a Subject-Specific Knee Model for Estimating Local Specific Absorption Rate

Electromagnetic simulation is a credible way to estimate the local specific absorption rate (SAR), which is a key consideration in high-field magnetic resonance imaging of the knee joint. To construct a subject-specific knee model, which is critical for SAR simulation, we proposed an architecture co...

Full description

Saved in:
Bibliographic Details
Published inApplied magnetic resonance Vol. 52; no. 2; pp. 177 - 199
Main Authors Xiao, Liang, Zhou, Hangyu, Chen, Na, Ma, Yan, Xing, Cangju, Zhang, Xiaojing
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.02.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0937-9347
1613-7507
DOI10.1007/s00723-020-01301-2

Cover

Abstract Electromagnetic simulation is a credible way to estimate the local specific absorption rate (SAR), which is a key consideration in high-field magnetic resonance imaging of the knee joint. To construct a subject-specific knee model, which is critical for SAR simulation, we proposed an architecture comprising multiple convolutional neural networks. Knee tissues were segmented by three U-Nets. Each network was responsible for the segmentation of two tissues that have relatively similar volumes and distinct intensity distributions (muscle and fat, cancellous and cortical bone, and cartilage and meniscus). Additionally, a weighted loss function was used to further alleviate the effect of class imbalance of the segmented tissues. The outputs of these three networks were merged and morphological filtering was used as the post-processing to eliminate holes and isolated voxels. This method was compared with three other segmentation methods. Good segmentation performance was demonstrated on the test set, and the proposed method was found to be superior to the other methods according to several quantitative measures. Meanwhile, local SAR in a 3 T coil using models constructed with the proposed method, manual delineation, and the comparison methods were also evaluated on the test set. On the whole, the maximum values of SAR 10g of the models constructed by the proposed method were closer to the results of manual delineation. Overall, the proposed method exhibits promising potential for precisely constructing knee models for SAR simulation.
AbstractList Electromagnetic simulation is a credible way to estimate the local specific absorption rate (SAR), which is a key consideration in high-field magnetic resonance imaging of the knee joint. To construct a subject-specific knee model, which is critical for SAR simulation, we proposed an architecture comprising multiple convolutional neural networks. Knee tissues were segmented by three U-Nets. Each network was responsible for the segmentation of two tissues that have relatively similar volumes and distinct intensity distributions (muscle and fat, cancellous and cortical bone, and cartilage and meniscus). Additionally, a weighted loss function was used to further alleviate the effect of class imbalance of the segmented tissues. The outputs of these three networks were merged and morphological filtering was used as the post-processing to eliminate holes and isolated voxels. This method was compared with three other segmentation methods. Good segmentation performance was demonstrated on the test set, and the proposed method was found to be superior to the other methods according to several quantitative measures. Meanwhile, local SAR in a 3 T coil using models constructed with the proposed method, manual delineation, and the comparison methods were also evaluated on the test set. On the whole, the maximum values of SAR 10g of the models constructed by the proposed method were closer to the results of manual delineation. Overall, the proposed method exhibits promising potential for precisely constructing knee models for SAR simulation.
Electromagnetic simulation is a credible way to estimate the local specific absorption rate (SAR), which is a key consideration in high-field magnetic resonance imaging of the knee joint. To construct a subject-specific knee model, which is critical for SAR simulation, we proposed an architecture comprising multiple convolutional neural networks. Knee tissues were segmented by three U-Nets. Each network was responsible for the segmentation of two tissues that have relatively similar volumes and distinct intensity distributions (muscle and fat, cancellous and cortical bone, and cartilage and meniscus). Additionally, a weighted loss function was used to further alleviate the effect of class imbalance of the segmented tissues. The outputs of these three networks were merged and morphological filtering was used as the post-processing to eliminate holes and isolated voxels. This method was compared with three other segmentation methods. Good segmentation performance was demonstrated on the test set, and the proposed method was found to be superior to the other methods according to several quantitative measures. Meanwhile, local SAR in a 3 T coil using models constructed with the proposed method, manual delineation, and the comparison methods were also evaluated on the test set. On the whole, the maximum values of SAR10g of the models constructed by the proposed method were closer to the results of manual delineation. Overall, the proposed method exhibits promising potential for precisely constructing knee models for SAR simulation.
Author Xiao, Liang
Zhou, Hangyu
Zhang, Xiaojing
Chen, Na
Ma, Yan
Xing, Cangju
Author_xml – sequence: 1
  givenname: Liang
  orcidid: 0000-0002-4174-4570
  surname: Xiao
  fullname: Xiao, Liang
  email: xiaoliang@mail.buct.edu.cn
  organization: College of Information Science and Technology, Beijing University of Chemical Technology
– sequence: 2
  givenname: Hangyu
  surname: Zhou
  fullname: Zhou, Hangyu
  organization: College of Information Science and Technology, Beijing University of Chemical Technology
– sequence: 3
  givenname: Na
  surname: Chen
  fullname: Chen, Na
  organization: College of Information Science and Technology, Beijing University of Chemical Technology
– sequence: 4
  givenname: Yan
  surname: Ma
  fullname: Ma, Yan
  organization: College of Information Science and Technology, Beijing University of Chemical Technology
– sequence: 5
  givenname: Cangju
  surname: Xing
  fullname: Xing, Cangju
  organization: College of Information Science and Technology, Beijing University of Chemical Technology
– sequence: 6
  givenname: Xiaojing
  surname: Zhang
  fullname: Zhang, Xiaojing
  organization: Radiology Department, Chinese PLA General Hospital
BookMark eNp9kMFO3DAURa0KpA6UH-jKUteGZzuxk-VoRCliAKkDaytxbOppGgfbKeIr-GWcmQqkLvDCb3Pu9fM5QgeDHwxCXymcUgB5FvPFOAEGBCgHStgntKCCciJLkAdoATWXpOaF_IyOYtwC0LKicoFelkH_csnoNAWDvcXXU5_c2Bu88sNf30_J-aHp8Y2Zwm6kJx9-R5z8DMQUJp1wgzdTu80dZDMa7azT-GowBl_7zvTY-oDPY3J_muSGB7z2Ohe9gcs2-jDOr-CfTTJf0KFt-mhO_s1jdP_9_G71g6xvLy5XyzXRnNaJUNvlI0zHRFG1uqFMVCB1W0ladqWtubac0YqxznZcAAgtdAtFURoh6koAP0bf9r1j8I-TiUlt_RTyT6NiNZU1qwtgmar2lA4-xmCs0i4187IpNK5XFNSsX-31q6xf7fSrOcr-i44hKwjPH4f4PhQzPDyY8L7VB6lXdISbag
CitedBy_id crossref_primary_10_1109_TAP_2024_3411151
crossref_primary_10_1007_s00723_024_01662_y
crossref_primary_10_1109_TEMC_2021_3106872
Cites_doi 10.1109/TBME.2006.872816
10.1016/j.mri.2013.06.005
10.1002/mrm.27948
10.1109/TMI.2009.2015757
10.1007/s10334-011-0281-8
10.1088/0031-9155/57/24/8153
10.1002/mrm.26804
10.1002/mrm.26398
10.1109/TBME.2012.2186612
10.1002/mrm.24329
10.1002/mrm.24215
10.1148/radiol.2018172322
10.1016/j.compbiomed.2016.03.011
10.1016/j.joca.2018.02.907
10.1002/mrm.26841
10.1016/j.media.2014.05.008
10.1002/mrm.27229
10.1109/MeMeA.2018.8438709
10.1002/jmri.10359
10.1109/TMI.2009.2024743
10.1002/mrm.22948
10.1002/(SICI)1522-2594(199908)42:2<215::AID-MRM1>3.0.CO;2-8
10.1002/mrm.22838
10.1002/mrm.26244
10.1002/mrm.20982
10.1109/TMI.2016.2535302
10.1016/j.media.2018.11.009
10.1109/TMI.2016.2553401
10.1007/s00723-010-0126-z
10.1088/1361-6560/ab7308
10.1088/0031-9155/55/2/N01
10.1016/j.neuroimage.2019.116132
10.1002/mrm.23322
10.1002/mrm.25986
10.1007/978-3-319-24574-4_28
10.1109/TPAMI.2016.2644615
10.1109/TMI.2010.2047653
ContentType Journal Article
Copyright Springer-Verlag GmbH Austria, part of Springer Nature 2020
Springer-Verlag GmbH Austria, part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag GmbH Austria, part of Springer Nature 2020
– notice: Springer-Verlag GmbH Austria, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
M2P
P5Z
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s00723-020-01301-2
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
ProQuest SciTech Premium Collection
Materials Science Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
ProQuest Central Student
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1613-7507
EndPage 199
ExternalDocumentID 10_1007_s00723_020_01301_2
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID -54
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
2.D
203
23M
29~
2J2
2JN
2JY
2KG
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
88I
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KOV
LLZTM
M2P
M4Y
MA-
N2Q
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9T
PDBOC
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCM
SDH
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UPT
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WK8
YLTOR
Z45
Z5O
Z7V
Z7X
Z7Y
Z83
Z86
Z88
Z8P
Z8R
Z8S
Z8W
ZMTXR
~02
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
3V.
7XB
8FE
8FG
8FK
D1I
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-1fdddd6ed2648bca126807cb8715d5f93cf321822dfd36006c6cb0445e6698603
IEDL.DBID U2A
ISSN 0937-9347
IngestDate Fri Jul 25 11:08:27 EDT 2025
Wed Oct 01 03:14:23 EDT 2025
Thu Apr 24 22:58:08 EDT 2025
Fri Feb 21 02:48:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-1fdddd6ed2648bca126807cb8715d5f93cf321822dfd36006c6cb0445e6698603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4174-4570
PQID 2917929402
PQPubID 2043726
PageCount 23
ParticipantIDs proquest_journals_2917929402
crossref_citationtrail_10_1007_s00723_020_01301_2
crossref_primary_10_1007_s00723_020_01301_2
springer_journals_10_1007_s00723_020_01301_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210200
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 2
  year: 2021
  text: 20210200
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Heidelberg
PublicationTitle Applied magnetic resonance
PublicationTitleAbbrev Appl Magn Reson
PublicationYear 2021
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References FrippJCrozierSWarfieldSKOurselinSIEEE Trans. Med. Imag.2010291556410.1109/TMI.2009.2024743
LiuFZhouZJangHSamsonovAZhaoGKijowskiRMagn. Reson. Med.20187942379239110.1002/mrm.26841
GreenspanHVan GinnekenBSummersRMIEEE Trans. Med. Imaging20163551153115910.1109/TMI.2016.2553401
CollinsCMSmithMBJ Magn Reson Imaging200318338338810.1002/jmri.10359
Tissue properties in database of IT'IS Foundation. https://itis.swiss/virtual-population/tissue-properties/database/dielectric-properties/. Accessed 10 Jan 2020
WolfSDiehlDGebhardtMMallowJSpeckOMagn. Reson. Med.20136941157116810.1002/mrm.24329
HomannHGraesslinIEggersHNehrkeKVernickelPKatscherUDösselOBörnertPMagn. Reson. Mater. Phy.201225319320410.1007/s10334-011-0281-8
TajbakhshNShinJYGuruduSRHurstRTKendallCBGotwayMBLiangJIEEE Trans. Med. Imaging20163551299131210.1109/TMI.2016.2535302
ZhouZZhaoGKijowskiRLiuFMagn. Reson. Med.20188062759277010.1002/mrm.27229
JinJWeberEDestruelAO'BrienKHeninBEngstromCCrozierSMagn. Reson. Med.20187931804181610.1002/mrm.26804
MallikarjunaswamyMSHoliMSRamanRJ. Med. Imag. Health In.201553552560
PakinSKXuJSchweitzerMERegatteRRMagn. Reson. Med.200656356357110.1002/mrm.20982
VoigtTHomannHKatscherUDoesselOMagn. Reson. Med.20126841117112610.1002/mrm.23322
V. Gagliardi, A. Retico, L. Biagi, G. Aringhieri, V. Zampa, M.R. Symms, G. Tiberi, M. Tosetti, in Proceedings of the IEEE International Symposium on Medical Measurements and Applications (Rome, Italy, 11-13 June 2018) https://doi.org/10.1109/MeMeA.2018.8438709
JinJLiuFWeberECrozierSPhys. Med. Biol.201257248153817110.1088/0031-9155/57/24/8153
WangPHeXLiYZhuXChenWQiuMJ. Med. Imag. Health In.201664948956
TackAMukhopadhyayAZachowSOsteoarthr. Cartilage201826568068810.1016/j.joca.2018.02.907
KatscherUVoigtTFindekleeCVernickelPNehrkeKDoesselOIEEE Trans. Med. Imag.20092891365137410.1109/TMI.2009.2015757
MurbachMNeufeldECabotEZastrowECórcolesJKainzWKusterNMagn. Reson. Med.201676398699710.1002/mrm.25986
NormanBPedoiaVMajumdarSRadiology2018288117718510.1148/radiol.2018172322
TangJMillingtonSActonSTCrandallJHurwitzSIEEE Trans. Biomed. Eng.200653589690710.1109/TBME.2006.872816
WilliamsTGHolmesAPWatertonJCMaciewiczRAHutchinsonCEMootsRJNashAFTaylorCJIEEE Trans. Med. Imag.20102981541155910.1109/TMI.2010.2047653
PetersonDMCarruthersCEWolvertonBLMeisterKWernerMDuensingGRFitzsimmonsJRMagn. Reson. Med.199942221522110.1002/(SICI)1522-2594(199908)42:2<215::AID-MRM1>3.0.CO;2-8
SimonisFFJRaaijmakersAJELagendijkJJWvan den BergCATMagn. Reson. Med.20177741691170010.1002/mrm.26244
O. Ronneberger, P. Fischer, T. Brox, The 18th international conference on medical image computing and computer assisted interventions (MICCAI 2015, Munich, Germany, 2015) 234–241 (2015)
AmbellanaFTackAEhlkeMZachowSMed. Image Anal.20195210911810.1016/j.media.2018.11.009
MeliadòEFRaaijmakersAJESrizziASteensmaBRMasperoMSavenijeMHFLuijtenPRvan den BergCATMagn. Reson. Med.201983269571110.1002/mrm.27948
OrzadaSLaddMEBitzAKMagn. Reson. Med.201778280581110.1002/mrm.26398
WattsAStobbeRWBeaulieuCMagn. Reson. Med.201166369770510.1002/mrm.22838
RashedEADiaoYLHirataAPhys. Med. Biol.202065610.1088/1361-6560/ab7308
Tamez-PeñaJGFarberJGonzalezPCSchreyerESchneiderETottermanSIEEE Trans. Biomed. Eng.20125941177118610.1109/TBME.2012.2186612
KatscherUFindekleeCVoigtTMagn. Reson. Med.20126861911191810.1002/mrm.24215
HomannHBörnertPEggersHNehrkeKDösselOGraesslinIMagn Reson Med.20116661767177610.1002/mrm.22948
ShanLZachCCharlesCNiethammerMMed. Image Anal.20141871233124610.1016/j.media.2014.05.008
HartwigVGiovannettiGVanelloNLandiniLSantarelliMFAppl. Magn. Reson.201038333734810.1007/s00723-010-0126-z
ÖztürkCNAlbayrakSComput. Biol. Med.2016729010710.1016/j.compbiomed.2016.03.011
ChristAKainzWHahnEGHoneggerKZeffererMNeufeldERascherWJankaRBautzWJiCKieferBSchmittPHollenbachHPJianxiangSOberleMSzczerbaDKamAGuagJWKusterNPhys. Med. Biol.2010552N23N382010PMB....55...23C10.1088/0031-9155/55/2/N01
ZhangKLuWMarzilianoPMagn. Reson. Imaging.201331101731174310.1016/j.mri.2013.06.005
RashedEAGomez-TamesJHirataANeuroImage.20192021511613210.1016/j.neuroimage.2019.1161321–16
BadrinarayananVKendallACipollaRIEEE Trans. Pattern Anal. Mach. Intell.201739122481249510.1109/TPAMI.2016.2644615
H Homann (1301_CR33) 2011; 66
JG Tamez-Peña (1301_CR18) 2012; 59
A Christ (1301_CR34) 2010; 55
CN Öztürk (1301_CR14) 2016; 72
H Homann (1301_CR7) 2012; 25
A Tack (1301_CR28) 2018; 26
U Katscher (1301_CR5) 2009; 28
J Fripp (1301_CR16) 2010; 29
L Shan (1301_CR19) 2014; 18
1301_CR24
J Jin (1301_CR3) 2018; 79
FFJ Simonis (1301_CR12) 2017; 77
TG Williams (1301_CR17) 2010; 29
B Norman (1301_CR27) 2018; 288
Z Zhou (1301_CR26) 2018; 80
CM Collins (1301_CR35) 2003; 18
M Murbach (1301_CR8) 2016; 76
S Wolf (1301_CR37) 2013; 69
DM Peterson (1301_CR38) 1999; 42
N Tajbakhsh (1301_CR22) 2016; 35
T Voigt (1301_CR11) 2012; 68
MS Mallikarjunaswamy (1301_CR13) 2015; 5
K Zhang (1301_CR20) 2013; 31
U Katscher (1301_CR6) 2012; 68
EA Rashed (1301_CR30) 2019; 202
EA Rashed (1301_CR31) 2020; 65
J Tang (1301_CR15) 2006; 53
P Wang (1301_CR21) 2016; 6
F Liu (1301_CR25) 2018; 79
1301_CR36
1301_CR4
V Hartwig (1301_CR9) 2010; 38
SK Pakin (1301_CR1) 2006; 56
F Ambellana (1301_CR29) 2019; 52
V Badrinarayanan (1301_CR40) 2017; 39
EF Meliadò (1301_CR32) 2019; 83
S Orzada (1301_CR39) 2017; 78
H Greenspan (1301_CR23) 2016; 35
A Watts (1301_CR2) 2011; 66
J Jin (1301_CR10) 2012; 57
References_xml – reference: MallikarjunaswamyMSHoliMSRamanRJ. Med. Imag. Health In.201553552560
– reference: PakinSKXuJSchweitzerMERegatteRRMagn. Reson. Med.200656356357110.1002/mrm.20982
– reference: RashedEAGomez-TamesJHirataANeuroImage.20192021511613210.1016/j.neuroimage.2019.1161321–16
– reference: SimonisFFJRaaijmakersAJELagendijkJJWvan den BergCATMagn. Reson. Med.20177741691170010.1002/mrm.26244
– reference: TackAMukhopadhyayAZachowSOsteoarthr. Cartilage201826568068810.1016/j.joca.2018.02.907
– reference: WattsAStobbeRWBeaulieuCMagn. Reson. Med.201166369770510.1002/mrm.22838
– reference: HomannHGraesslinIEggersHNehrkeKVernickelPKatscherUDösselOBörnertPMagn. Reson. Mater. Phy.201225319320410.1007/s10334-011-0281-8
– reference: LiuFZhouZJangHSamsonovAZhaoGKijowskiRMagn. Reson. Med.20187942379239110.1002/mrm.26841
– reference: VoigtTHomannHKatscherUDoesselOMagn. Reson. Med.20126841117112610.1002/mrm.23322
– reference: Tamez-PeñaJGFarberJGonzalezPCSchreyerESchneiderETottermanSIEEE Trans. Biomed. Eng.20125941177118610.1109/TBME.2012.2186612
– reference: CollinsCMSmithMBJ Magn Reson Imaging200318338338810.1002/jmri.10359
– reference: MurbachMNeufeldECabotEZastrowECórcolesJKainzWKusterNMagn. Reson. Med.201676398699710.1002/mrm.25986
– reference: ÖztürkCNAlbayrakSComput. Biol. Med.2016729010710.1016/j.compbiomed.2016.03.011
– reference: Tissue properties in database of IT'IS Foundation. https://itis.swiss/virtual-population/tissue-properties/database/dielectric-properties/. Accessed 10 Jan 2020
– reference: MeliadòEFRaaijmakersAJESrizziASteensmaBRMasperoMSavenijeMHFLuijtenPRvan den BergCATMagn. Reson. Med.201983269571110.1002/mrm.27948
– reference: GreenspanHVan GinnekenBSummersRMIEEE Trans. Med. Imaging20163551153115910.1109/TMI.2016.2553401
– reference: WolfSDiehlDGebhardtMMallowJSpeckOMagn. Reson. Med.20136941157116810.1002/mrm.24329
– reference: WangPHeXLiYZhuXChenWQiuMJ. Med. Imag. Health In.201664948956
– reference: RashedEADiaoYLHirataAPhys. Med. Biol.202065610.1088/1361-6560/ab7308
– reference: AmbellanaFTackAEhlkeMZachowSMed. Image Anal.20195210911810.1016/j.media.2018.11.009
– reference: KatscherUVoigtTFindekleeCVernickelPNehrkeKDoesselOIEEE Trans. Med. Imag.20092891365137410.1109/TMI.2009.2015757
– reference: HartwigVGiovannettiGVanelloNLandiniLSantarelliMFAppl. Magn. Reson.201038333734810.1007/s00723-010-0126-z
– reference: WilliamsTGHolmesAPWatertonJCMaciewiczRAHutchinsonCEMootsRJNashAFTaylorCJIEEE Trans. Med. Imag.20102981541155910.1109/TMI.2010.2047653
– reference: BadrinarayananVKendallACipollaRIEEE Trans. Pattern Anal. Mach. Intell.201739122481249510.1109/TPAMI.2016.2644615
– reference: NormanBPedoiaVMajumdarSRadiology2018288117718510.1148/radiol.2018172322
– reference: ChristAKainzWHahnEGHoneggerKZeffererMNeufeldERascherWJankaRBautzWJiCKieferBSchmittPHollenbachHPJianxiangSOberleMSzczerbaDKamAGuagJWKusterNPhys. Med. Biol.2010552N23N382010PMB....55...23C10.1088/0031-9155/55/2/N01
– reference: FrippJCrozierSWarfieldSKOurselinSIEEE Trans. Med. Imag.2010291556410.1109/TMI.2009.2024743
– reference: TajbakhshNShinJYGuruduSRHurstRTKendallCBGotwayMBLiangJIEEE Trans. Med. Imaging20163551299131210.1109/TMI.2016.2535302
– reference: KatscherUFindekleeCVoigtTMagn. Reson. Med.20126861911191810.1002/mrm.24215
– reference: ZhangKLuWMarzilianoPMagn. Reson. Imaging.201331101731174310.1016/j.mri.2013.06.005
– reference: TangJMillingtonSActonSTCrandallJHurwitzSIEEE Trans. Biomed. Eng.200653589690710.1109/TBME.2006.872816
– reference: O. Ronneberger, P. Fischer, T. Brox, The 18th international conference on medical image computing and computer assisted interventions (MICCAI 2015, Munich, Germany, 2015) 234–241 (2015)
– reference: HomannHBörnertPEggersHNehrkeKDösselOGraesslinIMagn Reson Med.20116661767177610.1002/mrm.22948
– reference: ZhouZZhaoGKijowskiRLiuFMagn. Reson. Med.20188062759277010.1002/mrm.27229
– reference: JinJLiuFWeberECrozierSPhys. Med. Biol.201257248153817110.1088/0031-9155/57/24/8153
– reference: ShanLZachCCharlesCNiethammerMMed. Image Anal.20141871233124610.1016/j.media.2014.05.008
– reference: OrzadaSLaddMEBitzAKMagn. Reson. Med.201778280581110.1002/mrm.26398
– reference: JinJWeberEDestruelAO'BrienKHeninBEngstromCCrozierSMagn. Reson. Med.20187931804181610.1002/mrm.26804
– reference: PetersonDMCarruthersCEWolvertonBLMeisterKWernerMDuensingGRFitzsimmonsJRMagn. Reson. Med.199942221522110.1002/(SICI)1522-2594(199908)42:2<215::AID-MRM1>3.0.CO;2-8
– reference: V. Gagliardi, A. Retico, L. Biagi, G. Aringhieri, V. Zampa, M.R. Symms, G. Tiberi, M. Tosetti, in Proceedings of the IEEE International Symposium on Medical Measurements and Applications (Rome, Italy, 11-13 June 2018) https://doi.org/10.1109/MeMeA.2018.8438709
– volume: 53
  start-page: 896
  issue: 5
  year: 2006
  ident: 1301_CR15
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.872816
– volume: 31
  start-page: 1731
  issue: 10
  year: 2013
  ident: 1301_CR20
  publication-title: Magn. Reson. Imaging.
  doi: 10.1016/j.mri.2013.06.005
– volume: 83
  start-page: 695
  issue: 2
  year: 2019
  ident: 1301_CR32
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27948
– volume: 28
  start-page: 1365
  issue: 9
  year: 2009
  ident: 1301_CR5
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2009.2015757
– volume: 25
  start-page: 193
  issue: 3
  year: 2012
  ident: 1301_CR7
  publication-title: Magn. Reson. Mater. Phy.
  doi: 10.1007/s10334-011-0281-8
– volume: 57
  start-page: 8153
  issue: 24
  year: 2012
  ident: 1301_CR10
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/57/24/8153
– volume: 79
  start-page: 1804
  issue: 3
  year: 2018
  ident: 1301_CR3
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26804
– volume: 78
  start-page: 805
  issue: 2
  year: 2017
  ident: 1301_CR39
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26398
– volume: 59
  start-page: 1177
  issue: 4
  year: 2012
  ident: 1301_CR18
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2186612
– volume: 69
  start-page: 1157
  issue: 4
  year: 2013
  ident: 1301_CR37
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24329
– volume: 68
  start-page: 1911
  issue: 6
  year: 2012
  ident: 1301_CR6
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24215
– volume: 288
  start-page: 177
  issue: 1
  year: 2018
  ident: 1301_CR27
  publication-title: Radiology
  doi: 10.1148/radiol.2018172322
– volume: 72
  start-page: 90
  year: 2016
  ident: 1301_CR14
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.03.011
– volume: 26
  start-page: 680
  issue: 5
  year: 2018
  ident: 1301_CR28
  publication-title: Osteoarthr. Cartilage
  doi: 10.1016/j.joca.2018.02.907
– volume: 79
  start-page: 2379
  issue: 4
  year: 2018
  ident: 1301_CR25
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26841
– volume: 18
  start-page: 1233
  issue: 7
  year: 2014
  ident: 1301_CR19
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.05.008
– volume: 80
  start-page: 2759
  issue: 6
  year: 2018
  ident: 1301_CR26
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27229
– ident: 1301_CR4
  doi: 10.1109/MeMeA.2018.8438709
– ident: 1301_CR36
– volume: 18
  start-page: 383
  issue: 3
  year: 2003
  ident: 1301_CR35
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.10359
– volume: 29
  start-page: 55
  issue: 1
  year: 2010
  ident: 1301_CR16
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2009.2024743
– volume: 66
  start-page: 1767
  issue: 6
  year: 2011
  ident: 1301_CR33
  publication-title: Magn Reson Med.
  doi: 10.1002/mrm.22948
– volume: 6
  start-page: 948
  issue: 4
  year: 2016
  ident: 1301_CR21
  publication-title: J. Med. Imag. Health In.
– volume: 42
  start-page: 215
  issue: 2
  year: 1999
  ident: 1301_CR38
  publication-title: Magn. Reson. Med.
  doi: 10.1002/(SICI)1522-2594(199908)42:2<215::AID-MRM1>3.0.CO;2-8
– volume: 66
  start-page: 697
  issue: 3
  year: 2011
  ident: 1301_CR2
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22838
– volume: 77
  start-page: 1691
  issue: 4
  year: 2017
  ident: 1301_CR12
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26244
– volume: 56
  start-page: 563
  issue: 3
  year: 2006
  ident: 1301_CR1
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20982
– volume: 35
  start-page: 1299
  issue: 5
  year: 2016
  ident: 1301_CR22
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2535302
– volume: 52
  start-page: 109
  year: 2019
  ident: 1301_CR29
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.11.009
– volume: 35
  start-page: 1153
  issue: 5
  year: 2016
  ident: 1301_CR23
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2553401
– volume: 38
  start-page: 337
  issue: 3
  year: 2010
  ident: 1301_CR9
  publication-title: Appl. Magn. Reson.
  doi: 10.1007/s00723-010-0126-z
– volume: 65
  start-page: 6
  year: 2020
  ident: 1301_CR31
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab7308
– volume: 55
  start-page: N23
  issue: 2
  year: 2010
  ident: 1301_CR34
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/55/2/N01
– volume: 202
  start-page: 116132
  issue: 15
  year: 2019
  ident: 1301_CR30
  publication-title: NeuroImage.
  doi: 10.1016/j.neuroimage.2019.116132
– volume: 68
  start-page: 1117
  issue: 4
  year: 2012
  ident: 1301_CR11
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.23322
– volume: 76
  start-page: 986
  issue: 3
  year: 2016
  ident: 1301_CR8
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25986
– ident: 1301_CR24
  doi: 10.1007/978-3-319-24574-4_28
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: 1301_CR40
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– volume: 29
  start-page: 1541
  issue: 8
  year: 2010
  ident: 1301_CR17
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2010.2047653
– volume: 5
  start-page: 552
  issue: 3
  year: 2015
  ident: 1301_CR13
  publication-title: J. Med. Imag. Health In.
SSID ssj0015817
Score 2.2491984
Snippet Electromagnetic simulation is a credible way to estimate the local specific absorption rate (SAR), which is a key consideration in high-field magnetic...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 177
SubjectTerms Absorption
Artificial neural networks
Atoms and Molecules in Strong Fields
Automation
Cartilage
Datasets
Delineation
Dielectric properties
Dosimetry
Hospitals
Knee
Laser Matter Interaction
Magnetic resonance imaging
Methods
Neural networks
Organic Chemistry
Original Paper
Physical Chemistry
Physics
Physics and Astronomy
Simulation
Solid State Physics
Spectroscopy/Spectrometry
Test sets
Volunteers
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50RfAiPnF9kYM3DWbTNtseRFZZER-LiIK30jwqwtKqu_g3_MvOZNNdFbSXHpqU0pnMTDLffANw0C3QyxvhuNC43GKbKK7RC3JtXZHazGRWUnHy7UBdPsZXT8nTHAyaWhiCVTY20RtqWxs6Iz-WuK9AV47bndPXN05doyi72rTQKEJrBXviKcbmYUESM1YLFs76g7v7aV4hSX0PXkGfk0VxN5TR-GI6ItGmnCYBtVDtufzpqmbx56-UqfdEFyuwHEJI1pvIfBXmXLUGix7KaUbr8Nn7lhtgdcluA2aQndfVR9A0nE-0HP7mceAjNq5pwIRPlhUMLQod0XDfoL58Mey6co5R67Qhw0CX9dE2ULRbPbMb8odsOrCnR_W7t0TsHiPZDXi86D-cX_LQdoEbXI9j3iktXspZAr9pU3SkSkXXaNxaJTYps8iUEfG-S1vaCOMlZZTRIo4Tp1SWKhFtQquqK7cFLC3QAbpUZFqb2Eal1t1MJ1ZYUWqZOt2GTvOHcxM4yak1xjCfsil7qeQoldxLJZdtOJzOeZ0wcvw7ercRXB5W5yif6VIbjhphzh7__bbt_9-2A0uSIC8e1L0LLZSY28OYZaz3gyJ-AXnr6SU
  priority: 102
  providerName: ProQuest
Title Architecture of Multiple Convolutional Neural Networks to Construct a Subject-Specific Knee Model for Estimating Local Specific Absorption Rate
URI https://link.springer.com/article/10.1007/s00723-020-01301-2
https://www.proquest.com/docview/2917929402
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1613-7507
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015817
  issn: 0937-9347
  databaseCode: AFBBN
  dateStart: 19900601
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1613-7507
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0015817
  issn: 0937-9347
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1613-7507
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015817
  issn: 0937-9347
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1613-7507
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015817
  issn: 0937-9347
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGA-6IXgRnzidIwdvWsjSNk2PdeyBc0OGg3kqzaMijFbs8N_wX_ZL1nYqKthLDk1S6Pf6Jd8LocsgASsviXaIAHHzlM8cAVbQEUonXIUyVNQkJ0-mbDT3bhf-okwKK6po98olaTV1nexmilwbn6MJpAK2dEDxNn1Tzgu4eE6j2nfgc9tnl5hPhq4XlKkyP-_x1RxtMOY3t6i1NoN9tFfCRByt6XqAtnR2iHZsuKYsjtB79On-H-cpnpRxgbiXZ28lN8F6U3rDDjbWu8Cr3ExY14zFCQatYa5hHNuEPn2WeJxpjU17tCUGMIv7IP8G0WZP-M7YPFxPjESRv1ptg2eAVo_RfNB_6I2csrWCI0HmVk43VfAwrUyAm5BJlzJOAing-OQrPw1dmbqmtjtVqXIBEzHJpCCe52vGQs6Ie4IaWZ7pU4R5AkZOcxIKIT3lpkIEofAVUSQVlGvRQt3qD8eyrDtu2l8s47pisqVKDFSJLVVi2kJX9ZqXddWNP2e3K8LFpQQWMYVzKEA_OB630HVFzM3r33c7-9_0c7RLTZiLDeRuowZQUF8ATlmJDtrmg2EHNaPh47gP401_ej_rWGb9AKx642c
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVgguqOUhQgvdA5xgxWZtb-xDhdKSKm0eQqWVejPeh7lUdsBRUX9F_xG_jZnNOqGV2ltz8SHrlexvdh6eb2YA3vcKtPJGOC40HrfYJoprtIJcW1ekNjOZlVScPJmq4Vl8fJ6cr8HfthaGaJWtTvSK2taGvpF_lhhXoCnHcOfL7BenqVGUXW1HaBRhtILd8y3GQmHHyF39wRCu2Tv6inh_kPJwcHow5GHKADcofnPeLS3-lLPE9dKm6EqVip7RGEkkNimzyJQRtTmXtrQRugfKKKNFHCdOqSxVIsJ9H8FGHMUZBn8b-4Ppt5NlHiNJ_cxfQY-fRXEvlO344j1q2k05VCKG4THj8qZpXPm7t1K03vIdbsKz4LKy_kLGtmDNVc_hsaeOmuYFXPf_y0WwumSTwFFkB3V1GSQb76c2IP7ieecNm9e0YNG_lhUMNRh9EuLfZ87TBNmoco7RqLYLho41G6AuIu-6-snGZH_ZcmFfN_Vvr_nYCXrOL-HsQQB4BetVXbnXwNICDa5LRaa1iW1Uat3LdGKFFaWWqdMd6LZvODehBzqN4rjIl92bPSo5opJ7VHLZgY_Le2aLDiD3rt5pgcuDNmjylex24FML5urvu3d7c_9uu_BkeDoZ5-Oj6Wgbnkqi23hC-Q6sI3ruLfpLc_0uCCWDHw99Dv4B2bslmg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kongRn1itugdvGrrNY5scS22p9oGIhd5C9iVCSYot_g3_sjObh1VUMJccMruBzOzObOabbwi5aifg5SXTDhOw3HwVcEeAF3SE0kmoIhkpF4uTxxM-mPr3s2C2VsVv0e5lSjKvaUCWpnTVXCjTrArfkPAa848IqgITdWAT3vSRKAEseup2qjxCENqeuwxfH3l-uyib-XmOr67pM978liK1nqe_R3aLkJF2ch3vkw2dHpAtC92Uy0Py3lnLBdDM0HGBEaTdLH0rLAvGIw2HvVnc95KuMhTI-WNpQmEHwV8yjm1Ib14kHaZaU2yVNqcQ2NIe7AUY3abPdIT-j1aCHbHMXu3OQx8hcj0i037vqTtwijYLjoT1t3JaRsHFtUKwm5BJy-Uha0sBR6lABSbypPGQ591VRnkQH3HJpWC-H2jOo5Az75jU0izVJ4SGCTg8HbJICOkrzwjRjkSgmGJGuKEWddIqv3AsCw5ybIUxjyv2ZKuVGLQSW63Ebp1cV2MWOQPHn9KNUnFxsRqXsQtnUggD4ahcJzelMj8f_z7b6f_EL8n2w20_Ht1Nhmdkx0X0i8V3N0gNlKnPIXxZiQtroR8JbuZ7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Architecture+of+Multiple+Convolutional+Neural+Networks+to+Construct+a+Subject-Specific+Knee+Model+for+Estimating+Local+Specific+Absorption+Rate&rft.jtitle=Applied+magnetic+resonance&rft.au=Xiao%2C+Liang&rft.au=Zhou%2C+Hangyu&rft.au=Chen%2C+Na&rft.au=Ma%2C+Yan&rft.date=2021-02-01&rft.issn=0937-9347&rft.eissn=1613-7507&rft.volume=52&rft.issue=2&rft.spage=177&rft.epage=199&rft_id=info:doi/10.1007%2Fs00723-020-01301-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00723_020_01301_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0937-9347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0937-9347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0937-9347&client=summon