A non-global disturbance targeted adversarial example algorithm combined with C&W and Grad-Cam
Adversarial examples are artificially crafted to mislead deep learning systems into making wrong decisions. In the research of attack algorithms against multi-class image classifiers, an improved strategy of applying category explanation to the generation control of targeted adversarial example is p...
Saved in:
| Published in | Neural computing & applications Vol. 35; no. 29; pp. 21633 - 21644 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.10.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0941-0643 1433-3058 |
| DOI | 10.1007/s00521-023-08921-2 |
Cover
| Abstract | Adversarial examples are artificially crafted to mislead deep learning systems into making wrong decisions. In the research of attack algorithms against multi-class image classifiers, an improved strategy of applying category explanation to the generation control of targeted adversarial example is proposed to reduce the perturbation noise and improve the adversarial robustness. On the basis of C&W adversarial attack algorithm, the method uses Grad-Cam, a category visualization explanation algorithm of CNN, to dynamically obtain the salient regions according to the signal features of source and target categories during the iterative generation process. The adversarial example of non-global perturbation is finally achieved by gradually shielding the non-salient regions and fine-tuning the perturbation signals. Compared with other similar algorithms under the same conditions, the method enhances the effects of the original image category signal on the perturbation position. And it makes up for the shortcomings of the adversarial example algorithm in terms of interpretability and teaching intuitiveness. Experimental results show that the improved adversarial examples have higher PSNR. In addition, in a variety of different defense processing tests, the examples can keep high adversarial performance and show strong attacking robustness. |
|---|---|
| AbstractList | Adversarial examples are artificially crafted to mislead deep learning systems into making wrong decisions. In the research of attack algorithms against multi-class image classifiers, an improved strategy of applying category explanation to the generation control of targeted adversarial example is proposed to reduce the perturbation noise and improve the adversarial robustness. On the basis of C&W adversarial attack algorithm, the method uses Grad-Cam, a category visualization explanation algorithm of CNN, to dynamically obtain the salient regions according to the signal features of source and target categories during the iterative generation process. The adversarial example of non-global perturbation is finally achieved by gradually shielding the non-salient regions and fine-tuning the perturbation signals. Compared with other similar algorithms under the same conditions, the method enhances the effects of the original image category signal on the perturbation position. And it makes up for the shortcomings of the adversarial example algorithm in terms of interpretability and teaching intuitiveness. Experimental results show that the improved adversarial examples have higher PSNR. In addition, in a variety of different defense processing tests, the examples can keep high adversarial performance and show strong attacking robustness. |
| Author | Zhu, Yinghui Jiang, Yuzhen |
| Author_xml | – sequence: 1 givenname: Yinghui surname: Zhu fullname: Zhu, Yinghui organization: School of Computer and Information Engineering, Hanshan Normal University – sequence: 2 givenname: Yuzhen surname: Jiang fullname: Jiang, Yuzhen email: jiangyz@hstc.edu.cn organization: School of Computer and Information Engineering, Hanshan Normal University |
| BookMark | eNp9kMtKxEAQRRtRcBz9AVeC4C5a6dd0L4dBR0Fwo7hsKkknZshj7O7x8Tf5lnyZPY4guHBVVdQ9dYt7RPa7vrOEnKZwmQLMrjyAoGkClCWgdOzoHpmknLGEgVD7ZAKax7Xk7JAceb8CAC6VmJBqPg7xVlI1fYbNOBS1DxuXYZfbcQjoKhtsMQ5YvFnn0dVbjf3Adt3YM2yq3tXhpT3L-zaru63wPc7jsLh4jkwX56XDIllge0wOSmy8PfmpU_J0c_24uE3uH5Z3i_l9krNUhyQtUQqFtlSZgJnMtZhlElDFLcoCmOS0FFKUWmc055hpZjXVM55ZmasCgE3J-e7u2vWvG-uDWfUb10VLQ5UUPOWKq6iiO1Xueu-dLc3a1S26T5OC2QZqdoGaGKj5DtTQCKk_UF4HDHXfBYd18z_KdqiPPl1l3e9X_1BfRVSUGQ |
| CitedBy_id | crossref_primary_10_1109_TIFS_2024_3518072 |
| Cites_doi | 10.1109/TEVC.2019.2890858 10.1016/j.patcog.2020.107332 10.1109/ACCESS.2018.2807385 10.1109/TPAMI.2021.3083769 10.1002/col.1049 10.21203/rs.3.rs-865960/v1 10.1109/ICCV.2017.74 10.1109/EuroSP.2016.36 10.1007/978-3-030-44584-3_19 10.1109/SP.2016.41 10.1201/9781351251389-8 10.1007/978-3-031-19775-8_17 10.1007/978-3-030-30487-4_24 10.1109/CVPR42600.2020.00112 10.1109/SP.2017.49 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s00521-023-08921-2 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 21644 |
| ExternalDocumentID | 10_1007_s00521_023_08921_2 |
| GrantInformation_xml | – fundername: Innovative Team Project of Guangdong Universities grantid: 2021KCXTD038 – fundername: Teaching Quality and Teaching Reform Project of Guangdong University, China grantid: [2023]4-282; 191171-DXSSJJXJD-32 – fundername: Scientific research project of Hanshan Normal University grantid: XN202034 – fundername: Key Laboratory of Colleges and Universities in Guangdong Province grantid: 2022KSYS003 – fundername: Key Research Topics of Guangdong Provincial Undergraduate University Online Open Course Steering Com-mittee grantid: 2022ZXKC310 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO DWQXO PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-1fa658aef8b5076c957b60a8c31a6d03642f565f99b2c4ab93e92974be6c8d003 |
| IEDL.DBID | U2A |
| ISSN | 0941-0643 |
| IngestDate | Sat Jul 26 01:24:36 EDT 2025 Wed Oct 01 03:43:39 EDT 2025 Thu Apr 24 22:56:59 EDT 2025 Fri Feb 21 02:41:53 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 29 |
| Keywords | Adversarial example Targeted attack Salient region Category explanation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-1fa658aef8b5076c957b60a8c31a6d03642f565f99b2c4ab93e92974be6c8d003 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2865414848 |
| PQPubID | 2043988 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2865414848 crossref_primary_10_1007_s00521_023_08921_2 crossref_citationtrail_10_1007_s00521_023_08921_2 springer_journals_10_1007_s00521_023_08921_2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20231000 2023-10-00 20231001 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: 20231000 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2023 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Ma, Niu, Gu (CR15) 2020; 110 CR2 CR4 CR3 CR8 CR19 CR7 CR18 CR17 CR9 CR16 CR14 CR12 Akhtar, Jalwana, Bennamoun (CR6) 2021; 44 CR11 CR10 CR21 CR20 Luo, Cui, Rigg (CR13) 2001; 26 Su, Vargas, Kouichi (CR5) 2017; 23 Zhu, Jiang (CR22) 2021 Akhtar, Mian (CR1) 2018; 6 J Su (8921_CR5) 2017; 23 8921_CR11 8921_CR12 8921_CR20 8921_CR10 8921_CR21 MR Luo (8921_CR13) 2001; 26 8921_CR4 Y Zhu (8921_CR22) 2021 8921_CR2 8921_CR3 X Ma (8921_CR15) 2020; 110 N Akhtar (8921_CR6) 2021; 44 8921_CR16 N Akhtar (8921_CR1) 2018; 6 8921_CR14 8921_CR8 8921_CR19 8921_CR9 8921_CR17 8921_CR7 8921_CR18 |
| References_xml | – ident: CR21 – ident: CR19 – ident: CR18 – ident: CR3 – ident: CR4 – ident: CR14 – ident: CR2 – volume: 23 start-page: 828 issue: 5 year: 2017 end-page: 841 ident: CR5 article-title: One pixel attack for fooling deep neural networks publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2019.2890858 – ident: CR16 – ident: CR12 – ident: CR17 – ident: CR10 – ident: CR11 – ident: CR9 – volume: 110 start-page: 107332 year: 2020 ident: CR15 article-title: Understanding adversarial attacks on deep learning based medical image analysis systems publication-title: Pattern Recognit doi: 10.1016/j.patcog.2020.107332 – volume: 6 start-page: 14410 year: 2018 end-page: 14430 ident: CR1 article-title: Threat of adversarial attacks on deep learning in computer vision: a survey publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2807385 – volume: 44 start-page: 5980 year: 2021 end-page: 5995 ident: CR6 article-title: Attack to fool and explain deep networks publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2021.3083769 – ident: CR7 – ident: CR8 – volume: 26 start-page: 340 issue: 5 year: 2001 end-page: 350 ident: CR13 article-title: The development of the CIE 2000 colour-difference formula: CIEDE2000 publication-title: Color Res Appl doi: 10.1002/col.1049 – year: 2021 ident: CR22 article-title: A non-global disturbance targeted adversarial example algorithm combined with C&W and Grad Cam publication-title: Res Sq doi: 10.21203/rs.3.rs-865960/v1 – ident: CR20 – volume: 23 start-page: 828 issue: 5 year: 2017 ident: 8921_CR5 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2019.2890858 – ident: 8921_CR14 – ident: 8921_CR7 doi: 10.1109/ICCV.2017.74 – ident: 8921_CR8 – ident: 8921_CR4 doi: 10.1109/EuroSP.2016.36 – ident: 8921_CR9 – volume: 26 start-page: 340 issue: 5 year: 2001 ident: 8921_CR13 publication-title: Color Res Appl doi: 10.1002/col.1049 – ident: 8921_CR3 – ident: 8921_CR17 doi: 10.1007/978-3-030-44584-3_19 – ident: 8921_CR2 – ident: 8921_CR11 doi: 10.1109/SP.2016.41 – volume: 110 start-page: 107332 year: 2020 ident: 8921_CR15 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2020.107332 – ident: 8921_CR20 doi: 10.1201/9781351251389-8 – volume: 6 start-page: 14410 year: 2018 ident: 8921_CR1 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2807385 – ident: 8921_CR16 doi: 10.1007/978-3-031-19775-8_17 – ident: 8921_CR18 doi: 10.1007/978-3-030-30487-4_24 – ident: 8921_CR19 – volume: 44 start-page: 5980 year: 2021 ident: 8921_CR6 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2021.3083769 – ident: 8921_CR12 doi: 10.1109/CVPR42600.2020.00112 – year: 2021 ident: 8921_CR22 publication-title: Res Sq doi: 10.21203/rs.3.rs-865960/v1 – ident: 8921_CR21 – ident: 8921_CR10 doi: 10.1109/SP.2017.49 |
| SSID | ssj0004685 |
| Score | 2.3489494 |
| Snippet | Adversarial examples are artificially crafted to mislead deep learning systems into making wrong decisions. In the research of attack algorithms against... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 21633 |
| SubjectTerms | Algorithms Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Image Processing and Computer Vision Machine learning Original Article Perturbation Probability and Statistics in Computer Science Robustness |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LT8IwGG8QLl58G1E0PRgv2rhH2daDMUhA4oEYI5GTS9d2egBEGIl_vt-3daAmclvWR7bv6-PXfo8fIec8MCZMFZr-PTQzupxFgGOZq4wSWiVwIMu9LfpBb8Afhs1hhfTLWBh0qyzXxHyh1h8K78ivMYKSA3bn0e30kyFrFFpXSwoNaakV9E2eYmyD1DzMjFUltbtO__HpR6RkTtIJZxr09-G-DaPJg-nwhhTeej5zIgFP3u-taoU__5hM852ou0O2LISkrULnu6RiJntku6RnoHa27pPXFoWzPStSflAN-lzMElQyLdy_jaYS6ZjnEgchNV8SMwVTOXqD_87exxQEA-dmqIaXtbR98ULlRNP7mdSsLccHZNDtPLd7zNIpMAXzLGNuKgFuSJNGCYDAQIlmmASOjKBUBhrtkV4K8C4VIvEUl4nwDWCnkCcmUJGG2X9IqvDZ5ojQJldGgPZTR_lQLqXhQgk39UPjc-14deKWkouVzTWOlBejeJklOZd2DNKOc2nH0OZy2WZaZNpYW7tRKiS2s24er8ZInVyVSloV_9_b8freTsgmsswXPnwNUs1mC3MKWCRLzuwA-wb2FNkd priority: 102 providerName: ProQuest |
| Title | A non-global disturbance targeted adversarial example algorithm combined with C&W and Grad-Cam |
| URI | https://link.springer.com/article/10.1007/s00521-023-08921-2 https://www.proquest.com/docview/2865414848 |
| Volume | 35 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3058 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ADMLS dateStart: 19930301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: 8FG dateStart: 20180401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFB60vXhxF6u15CBedCDLZJljLF1QKCIW6ynMTCZVaKskKfhz8lvyy3yTpVVRwVMSZiG8N2_me_M2hM6JI6UbCWX6N5WZ0SDYAxyLDSEFDQUHhazwthg5wzG5mdiTKigsqb3da5NksVOvgt3UDSaovqaFdY_CG2y8TVul84JVPDb9T9GQRSFO0FuUTw-xqlCZn-f4ehytMeY3s2hx2vR30XYFEzW_5Ose2pCLfbRTl2DQKok8QFM_z0CBx2VejzwLgWvLmCtW5lnp5S3DPGOq7HLC1GLLM_nOVEpgjc2mr_FL-jzXgACgIKuO6lo2z7oXjzBmAd-DmIW4y-aHaNzvPXSHuKqdgAUIVYqNiAG2YDLyOCA-R1Db5Y7OPGhlTqiMj2YEWC6ilJuCME4tCUDJJVw6wgtB1I9QA35fHiPNJkJSYHWkCwvaGZOECmpElistEupmCxk1CQNRJRZX9S1mwSolckH2AMgeFGQPYMzlasxbmVbjz97tmjNBJWJJoEJqCShzxGuhq5pb6-bfZzv5X_dTtKVKzJcOfG3USOOlPAMgkvIO2vT6gw5q-oOn2x48r3uju_tOsRo_AFhy3sw |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHODCjiirD8AFLJrETeMDQlCWslUIgeBEcGwHDlCgLQJ-jm9jJnEoIMGNWxQ7VjR-tmc8ywNYFKG11VST698nN6MneIR6LPe01dLoBA2yLNqiEdbPxcFl5bIH3otcGAqrLPbEbKM2D5ruyNcog1Kg7i6ijccnTqxR5F0tKDSUo1Yw61mJMZfYcWjfXtCEa6_vb-N8L_n-7s5Zrc4dywDXCL8O91KFp7CyaZSgbhRqWakmYVlF2KpCQ246P0WtJ5Uy8bVQiQwsqhRVkdhQRwYXBY7bC_0iEBKNv_6tncbJ6ZfMzIwUFG0oii8SgUvbyZL36EYW3_oBL0cSn_zvR2NX3_3hos1Ovt0RGHIqK9vMMTYKPbY5BsMFHQRzu8M4XG2y5kOT5yVGmEH8PLcSAhXLw82tYYron9uKQM_sq6LKxEzd3aCcO7f3DCcC7XTsRpfDrLZ8wVTTsL2WMrym7ifg_F8EOwl9-Nt2ClhFaCsRbWlZB9iulBVSSy8NqjYQpuyXwCskF2tX25woNu7iz6rMmbRjlHacSTvGb1Y-v3nMK3v82Xu2mJDYrfJ23MVkCVaLSeo2_z7a9N-jLcBA_ez4KD7abxzOwCAx3Ofxg7PQ12k92znUgzrJvAMbg-v_xvcHEdUVrA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5EQbz4FqtVcxAvurRJtkn2WKq1PigeLPa2bPZRhbaWNAV_Tn5LfpmzebRVVPCWsLNLmNnJfrPzQuiceEr5WhjXv2PcjDbBAeBYbAslqBQhGGRZtEXX6_TIfb_RX8riz6LdS5dkntNgqjSN49pE6to88c3cZoIZ7Li4HlB4gp_wGjGFEmBH95zmUmZk1pQTbBgT30PcIm3m5zW-Hk0LvPnNRZqdPO1ttFlARquZy3gHrajxLtoq2zFYhXbuoUEzTcCYx3mNjzSRIMFZFBqxpkke8a1kmnDTgnnKzcZLE_XBTXlgiw8H79Fb_DqygBlgLBtCc0WbJq2LF5gzhvfbiEvc4qN91GvfPLc6uOijgAUoWIxtzQFncKWDENCfJ2jDD706D2CUe9I4Ih0NuE5TGjqC8JC6CkCTT0LliUCC2h-gVfh8dYisBhGKgth1XbgwzrkiVFBbu75yiaw7FWSXLGSiKDJuel0M2bw8csZ2BmxnGdsZzLmcz5nkJTb-pK6WkmGFuk2ZSa8lYNiRoIKuSmkthn9f7eh_5Gdo_em6zR7vug_HaMN0ns_j-qpoNY5m6gTwSRyeZlvwE1CL4eA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A%C2%A0non-global%C2%A0disturbance%C2%A0targeted%C2%A0adversarial%C2%A0example+algorithm+combined%C2%A0with%C2%A0C%26W%C2%A0and%C2%A0Grad-Cam&rft.jtitle=Neural+computing+%26+applications&rft.au=Zhu%2C+Yinghui&rft.au=Jiang%2C+Yuzhen&rft.date=2023-10-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=35&rft.issue=29&rft.spage=21633&rft.epage=21644&rft_id=info:doi/10.1007%2Fs00521-023-08921-2&rft.externalDocID=10_1007_s00521_023_08921_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |