A non-global disturbance targeted adversarial example algorithm combined with C&W and Grad-Cam

Adversarial examples are artificially crafted to mislead deep learning systems into making wrong decisions. In the research of attack algorithms against multi-class image classifiers, an improved strategy of applying category explanation to the generation control of targeted adversarial example is p...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 35; no. 29; pp. 21633 - 21644
Main Authors Zhu, Yinghui, Jiang, Yuzhen
Format Journal Article
LanguageEnglish
Published London Springer London 01.10.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-023-08921-2

Cover

Abstract Adversarial examples are artificially crafted to mislead deep learning systems into making wrong decisions. In the research of attack algorithms against multi-class image classifiers, an improved strategy of applying category explanation to the generation control of targeted adversarial example is proposed to reduce the perturbation noise and improve the adversarial robustness. On the basis of C&W adversarial attack algorithm, the method uses Grad-Cam, a category visualization explanation algorithm of CNN, to dynamically obtain the salient regions according to the signal features of source and target categories during the iterative generation process. The adversarial example of non-global perturbation is finally achieved by gradually shielding the non-salient regions and fine-tuning the perturbation signals. Compared with other similar algorithms under the same conditions, the method enhances the effects of the original image category signal on the perturbation position. And it makes up for the shortcomings of the adversarial example algorithm in terms of interpretability and teaching intuitiveness. Experimental results show that the improved adversarial examples have higher PSNR. In addition, in a variety of different defense processing tests, the examples can keep high adversarial performance and show strong attacking robustness.
AbstractList Adversarial examples are artificially crafted to mislead deep learning systems into making wrong decisions. In the research of attack algorithms against multi-class image classifiers, an improved strategy of applying category explanation to the generation control of targeted adversarial example is proposed to reduce the perturbation noise and improve the adversarial robustness. On the basis of C&W adversarial attack algorithm, the method uses Grad-Cam, a category visualization explanation algorithm of CNN, to dynamically obtain the salient regions according to the signal features of source and target categories during the iterative generation process. The adversarial example of non-global perturbation is finally achieved by gradually shielding the non-salient regions and fine-tuning the perturbation signals. Compared with other similar algorithms under the same conditions, the method enhances the effects of the original image category signal on the perturbation position. And it makes up for the shortcomings of the adversarial example algorithm in terms of interpretability and teaching intuitiveness. Experimental results show that the improved adversarial examples have higher PSNR. In addition, in a variety of different defense processing tests, the examples can keep high adversarial performance and show strong attacking robustness.
Author Zhu, Yinghui
Jiang, Yuzhen
Author_xml – sequence: 1
  givenname: Yinghui
  surname: Zhu
  fullname: Zhu, Yinghui
  organization: School of Computer and Information Engineering, Hanshan Normal University
– sequence: 2
  givenname: Yuzhen
  surname: Jiang
  fullname: Jiang, Yuzhen
  email: jiangyz@hstc.edu.cn
  organization: School of Computer and Information Engineering, Hanshan Normal University
BookMark eNp9kMtKxEAQRRtRcBz9AVeC4C5a6dd0L4dBR0Fwo7hsKkknZshj7O7x8Tf5lnyZPY4guHBVVdQ9dYt7RPa7vrOEnKZwmQLMrjyAoGkClCWgdOzoHpmknLGEgVD7ZAKax7Xk7JAceb8CAC6VmJBqPg7xVlI1fYbNOBS1DxuXYZfbcQjoKhtsMQ5YvFnn0dVbjf3Adt3YM2yq3tXhpT3L-zaru63wPc7jsLh4jkwX56XDIllge0wOSmy8PfmpU_J0c_24uE3uH5Z3i_l9krNUhyQtUQqFtlSZgJnMtZhlElDFLcoCmOS0FFKUWmc055hpZjXVM55ZmasCgE3J-e7u2vWvG-uDWfUb10VLQ5UUPOWKq6iiO1Xueu-dLc3a1S26T5OC2QZqdoGaGKj5DtTQCKk_UF4HDHXfBYd18z_KdqiPPl1l3e9X_1BfRVSUGQ
CitedBy_id crossref_primary_10_1109_TIFS_2024_3518072
Cites_doi 10.1109/TEVC.2019.2890858
10.1016/j.patcog.2020.107332
10.1109/ACCESS.2018.2807385
10.1109/TPAMI.2021.3083769
10.1002/col.1049
10.21203/rs.3.rs-865960/v1
10.1109/ICCV.2017.74
10.1109/EuroSP.2016.36
10.1007/978-3-030-44584-3_19
10.1109/SP.2016.41
10.1201/9781351251389-8
10.1007/978-3-031-19775-8_17
10.1007/978-3-030-30487-4_24
10.1109/CVPR42600.2020.00112
10.1109/SP.2017.49
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00521-023-08921-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 21644
ExternalDocumentID 10_1007_s00521_023_08921_2
GrantInformation_xml – fundername: Innovative Team Project of Guangdong Universities
  grantid: 2021KCXTD038
– fundername: Teaching Quality and Teaching Reform Project of Guangdong University, China
  grantid: [2023]4-282; 191171-DXSSJJXJD-32
– fundername: Scientific research project of Hanshan Normal University
  grantid: XN202034
– fundername: Key Laboratory of Colleges and Universities in Guangdong Province
  grantid: 2022KSYS003
– fundername: Key Research Topics of Guangdong Provincial Undergraduate University Online Open Course Steering Com-mittee
  grantid: 2022ZXKC310
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-1fa658aef8b5076c957b60a8c31a6d03642f565f99b2c4ab93e92974be6c8d003
IEDL.DBID U2A
ISSN 0941-0643
IngestDate Sat Jul 26 01:24:36 EDT 2025
Wed Oct 01 03:43:39 EDT 2025
Thu Apr 24 22:56:59 EDT 2025
Fri Feb 21 02:41:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 29
Keywords Adversarial example
Targeted attack
Salient region
Category explanation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-1fa658aef8b5076c957b60a8c31a6d03642f565f99b2c4ab93e92974be6c8d003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2865414848
PQPubID 2043988
PageCount 12
ParticipantIDs proquest_journals_2865414848
crossref_primary_10_1007_s00521_023_08921_2
crossref_citationtrail_10_1007_s00521_023_08921_2
springer_journals_10_1007_s00521_023_08921_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231000
2023-10-00
20231001
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 20231000
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Ma, Niu, Gu (CR15) 2020; 110
CR2
CR4
CR3
CR8
CR19
CR7
CR18
CR17
CR9
CR16
CR14
CR12
Akhtar, Jalwana, Bennamoun (CR6) 2021; 44
CR11
CR10
CR21
CR20
Luo, Cui, Rigg (CR13) 2001; 26
Su, Vargas, Kouichi (CR5) 2017; 23
Zhu, Jiang (CR22) 2021
Akhtar, Mian (CR1) 2018; 6
J Su (8921_CR5) 2017; 23
8921_CR11
8921_CR12
8921_CR20
8921_CR10
8921_CR21
MR Luo (8921_CR13) 2001; 26
8921_CR4
Y Zhu (8921_CR22) 2021
8921_CR2
8921_CR3
X Ma (8921_CR15) 2020; 110
N Akhtar (8921_CR6) 2021; 44
8921_CR16
N Akhtar (8921_CR1) 2018; 6
8921_CR14
8921_CR8
8921_CR19
8921_CR9
8921_CR17
8921_CR7
8921_CR18
References_xml – ident: CR21
– ident: CR19
– ident: CR18
– ident: CR3
– ident: CR4
– ident: CR14
– ident: CR2
– volume: 23
  start-page: 828
  issue: 5
  year: 2017
  end-page: 841
  ident: CR5
  article-title: One pixel attack for fooling deep neural networks
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2019.2890858
– ident: CR16
– ident: CR12
– ident: CR17
– ident: CR10
– ident: CR11
– ident: CR9
– volume: 110
  start-page: 107332
  year: 2020
  ident: CR15
  article-title: Understanding adversarial attacks on deep learning based medical image analysis systems
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2020.107332
– volume: 6
  start-page: 14410
  year: 2018
  end-page: 14430
  ident: CR1
  article-title: Threat of adversarial attacks on deep learning in computer vision: a survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2807385
– volume: 44
  start-page: 5980
  year: 2021
  end-page: 5995
  ident: CR6
  article-title: Attack to fool and explain deep networks
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2021.3083769
– ident: CR7
– ident: CR8
– volume: 26
  start-page: 340
  issue: 5
  year: 2001
  end-page: 350
  ident: CR13
  article-title: The development of the CIE 2000 colour-difference formula: CIEDE2000
  publication-title: Color Res Appl
  doi: 10.1002/col.1049
– year: 2021
  ident: CR22
  article-title: A non-global disturbance targeted adversarial example algorithm combined with C&W and Grad Cam
  publication-title: Res Sq
  doi: 10.21203/rs.3.rs-865960/v1
– ident: CR20
– volume: 23
  start-page: 828
  issue: 5
  year: 2017
  ident: 8921_CR5
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2019.2890858
– ident: 8921_CR14
– ident: 8921_CR7
  doi: 10.1109/ICCV.2017.74
– ident: 8921_CR8
– ident: 8921_CR4
  doi: 10.1109/EuroSP.2016.36
– ident: 8921_CR9
– volume: 26
  start-page: 340
  issue: 5
  year: 2001
  ident: 8921_CR13
  publication-title: Color Res Appl
  doi: 10.1002/col.1049
– ident: 8921_CR3
– ident: 8921_CR17
  doi: 10.1007/978-3-030-44584-3_19
– ident: 8921_CR2
– ident: 8921_CR11
  doi: 10.1109/SP.2016.41
– volume: 110
  start-page: 107332
  year: 2020
  ident: 8921_CR15
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2020.107332
– ident: 8921_CR20
  doi: 10.1201/9781351251389-8
– volume: 6
  start-page: 14410
  year: 2018
  ident: 8921_CR1
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2807385
– ident: 8921_CR16
  doi: 10.1007/978-3-031-19775-8_17
– ident: 8921_CR18
  doi: 10.1007/978-3-030-30487-4_24
– ident: 8921_CR19
– volume: 44
  start-page: 5980
  year: 2021
  ident: 8921_CR6
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2021.3083769
– ident: 8921_CR12
  doi: 10.1109/CVPR42600.2020.00112
– year: 2021
  ident: 8921_CR22
  publication-title: Res Sq
  doi: 10.21203/rs.3.rs-865960/v1
– ident: 8921_CR21
– ident: 8921_CR10
  doi: 10.1109/SP.2017.49
SSID ssj0004685
Score 2.3489494
Snippet Adversarial examples are artificially crafted to mislead deep learning systems into making wrong decisions. In the research of attack algorithms against...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 21633
SubjectTerms Algorithms
Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Image Processing and Computer Vision
Machine learning
Original Article
Perturbation
Probability and Statistics in Computer Science
Robustness
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LT8IwGG8QLl58G1E0PRgv2rhH2daDMUhA4oEYI5GTS9d2egBEGIl_vt-3daAmclvWR7bv6-PXfo8fIec8MCZMFZr-PTQzupxFgGOZq4wSWiVwIMu9LfpBb8Afhs1hhfTLWBh0qyzXxHyh1h8K78ivMYKSA3bn0e30kyFrFFpXSwoNaakV9E2eYmyD1DzMjFUltbtO__HpR6RkTtIJZxr09-G-DaPJg-nwhhTeej5zIgFP3u-taoU__5hM852ou0O2LISkrULnu6RiJntku6RnoHa27pPXFoWzPStSflAN-lzMElQyLdy_jaYS6ZjnEgchNV8SMwVTOXqD_87exxQEA-dmqIaXtbR98ULlRNP7mdSsLccHZNDtPLd7zNIpMAXzLGNuKgFuSJNGCYDAQIlmmASOjKBUBhrtkV4K8C4VIvEUl4nwDWCnkCcmUJGG2X9IqvDZ5ojQJldGgPZTR_lQLqXhQgk39UPjc-14deKWkouVzTWOlBejeJklOZd2DNKOc2nH0OZy2WZaZNpYW7tRKiS2s24er8ZInVyVSloV_9_b8freTsgmsswXPnwNUs1mC3MKWCRLzuwA-wb2FNkd
  priority: 102
  providerName: ProQuest
Title A non-global disturbance targeted adversarial example algorithm combined with C&W and Grad-Cam
URI https://link.springer.com/article/10.1007/s00521-023-08921-2
https://www.proquest.com/docview/2865414848
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ADMLS
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: 8FG
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFB60vXhxF6u15CBedCDLZJljLF1QKCIW6ynMTCZVaKskKfhz8lvyy3yTpVVRwVMSZiG8N2_me_M2hM6JI6UbCWX6N5WZ0SDYAxyLDSEFDQUHhazwthg5wzG5mdiTKigsqb3da5NksVOvgt3UDSaovqaFdY_CG2y8TVul84JVPDb9T9GQRSFO0FuUTw-xqlCZn-f4ehytMeY3s2hx2vR30XYFEzW_5Ose2pCLfbRTl2DQKok8QFM_z0CBx2VejzwLgWvLmCtW5lnp5S3DPGOq7HLC1GLLM_nOVEpgjc2mr_FL-jzXgACgIKuO6lo2z7oXjzBmAd-DmIW4y-aHaNzvPXSHuKqdgAUIVYqNiAG2YDLyOCA-R1Db5Y7OPGhlTqiMj2YEWC6ilJuCME4tCUDJJVw6wgtB1I9QA35fHiPNJkJSYHWkCwvaGZOECmpElistEupmCxk1CQNRJRZX9S1mwSolckH2AMgeFGQPYMzlasxbmVbjz97tmjNBJWJJoEJqCShzxGuhq5pb6-bfZzv5X_dTtKVKzJcOfG3USOOlPAMgkvIO2vT6gw5q-oOn2x48r3uju_tOsRo_AFhy3sw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHODCjiirD8AFLJrETeMDQlCWslUIgeBEcGwHDlCgLQJ-jm9jJnEoIMGNWxQ7VjR-tmc8ywNYFKG11VST698nN6MneIR6LPe01dLoBA2yLNqiEdbPxcFl5bIH3otcGAqrLPbEbKM2D5ruyNcog1Kg7i6ijccnTqxR5F0tKDSUo1Yw61mJMZfYcWjfXtCEa6_vb-N8L_n-7s5Zrc4dywDXCL8O91KFp7CyaZSgbhRqWakmYVlF2KpCQ246P0WtJ5Uy8bVQiQwsqhRVkdhQRwYXBY7bC_0iEBKNv_6tncbJ6ZfMzIwUFG0oii8SgUvbyZL36EYW3_oBL0cSn_zvR2NX3_3hos1Ovt0RGHIqK9vMMTYKPbY5BsMFHQRzu8M4XG2y5kOT5yVGmEH8PLcSAhXLw82tYYron9uKQM_sq6LKxEzd3aCcO7f3DCcC7XTsRpfDrLZ8wVTTsL2WMrym7ifg_F8EOwl9-Nt2ClhFaCsRbWlZB9iulBVSSy8NqjYQpuyXwCskF2tX25woNu7iz6rMmbRjlHacSTvGb1Y-v3nMK3v82Xu2mJDYrfJ23MVkCVaLSeo2_z7a9N-jLcBA_ez4KD7abxzOwCAx3Ofxg7PQ12k92znUgzrJvAMbg-v_xvcHEdUVrA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5EQbz4FqtVcxAvurRJtkn2WKq1PigeLPa2bPZRhbaWNAV_Tn5LfpmzebRVVPCWsLNLmNnJfrPzQuiceEr5WhjXv2PcjDbBAeBYbAslqBQhGGRZtEXX6_TIfb_RX8riz6LdS5dkntNgqjSN49pE6to88c3cZoIZ7Li4HlB4gp_wGjGFEmBH95zmUmZk1pQTbBgT30PcIm3m5zW-Hk0LvPnNRZqdPO1ttFlARquZy3gHrajxLtoq2zFYhXbuoUEzTcCYx3mNjzSRIMFZFBqxpkke8a1kmnDTgnnKzcZLE_XBTXlgiw8H79Fb_DqygBlgLBtCc0WbJq2LF5gzhvfbiEvc4qN91GvfPLc6uOijgAUoWIxtzQFncKWDENCfJ2jDD706D2CUe9I4Ih0NuE5TGjqC8JC6CkCTT0LliUCC2h-gVfh8dYisBhGKgth1XbgwzrkiVFBbu75yiaw7FWSXLGSiKDJuel0M2bw8csZ2BmxnGdsZzLmcz5nkJTb-pK6WkmGFuk2ZSa8lYNiRoIKuSmkthn9f7eh_5Gdo_em6zR7vug_HaMN0ns_j-qpoNY5m6gTwSRyeZlvwE1CL4eA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A%C2%A0non-global%C2%A0disturbance%C2%A0targeted%C2%A0adversarial%C2%A0example+algorithm+combined%C2%A0with%C2%A0C%26W%C2%A0and%C2%A0Grad-Cam&rft.jtitle=Neural+computing+%26+applications&rft.au=Zhu%2C+Yinghui&rft.au=Jiang%2C+Yuzhen&rft.date=2023-10-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=35&rft.issue=29&rft.spage=21633&rft.epage=21644&rft_id=info:doi/10.1007%2Fs00521-023-08921-2&rft.externalDocID=10_1007_s00521_023_08921_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon