Non-dominated Sorting Genetic Algorithm (NSGA-III) for effective resource allocation in cloud
Resource management system helps the enterprises to coordinate the IT resources in connection to the action performed by the key players such as cloud customers and service providers. Present day cloud resource and service providers use a heterogeneous allocation strategy for resources allocation ac...
Saved in:
| Published in | Evolutionary intelligence Vol. 14; no. 2; pp. 759 - 765 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2021
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1864-5909 1864-5917 |
| DOI | 10.1007/s12065-020-00436-2 |
Cover
| Abstract | Resource management system helps the enterprises to coordinate the IT resources in connection to the action performed by the key players such as cloud customers and service providers. Present day cloud resource and service providers use a heterogeneous allocation strategy for resources allocation across various geographical locations. Further, these allocations are completely in need of secure transactions, effective scheduling and dynamic resource allocation strategies. To overcome the above mentioned issues, this paper proposes a novel resource allocation framework for the cloud service providers to schedule and effective resource allocation. The key idea of the proposed resource allocation scheme is to utilize Non dominated Sorting Genetic Algorithm (NSGA-III) to effectively allocate resources. Furthermore, the proposed NSGA-III is modified to support any interim data sources (any middle wares). The proposed model is experimentally validated in the test bed with multi-node Hadoop cluster. The experimental results confirm that the proposed model outperforms the existing state of the art models such as Lion optimization, Traditional ACO and Particle based Kernel function algorithms with more than 95% in accuracy. |
|---|---|
| AbstractList | Resource management system helps the enterprises to coordinate the IT resources in connection to the action performed by the key players such as cloud customers and service providers. Present day cloud resource and service providers use a heterogeneous allocation strategy for resources allocation across various geographical locations. Further, these allocations are completely in need of secure transactions, effective scheduling and dynamic resource allocation strategies. To overcome the above mentioned issues, this paper proposes a novel resource allocation framework for the cloud service providers to schedule and effective resource allocation. The key idea of the proposed resource allocation scheme is to utilize Non dominated Sorting Genetic Algorithm (NSGA-III) to effectively allocate resources. Furthermore, the proposed NSGA-III is modified to support any interim data sources (any middle wares). The proposed model is experimentally validated in the test bed with multi-node Hadoop cluster. The experimental results confirm that the proposed model outperforms the existing state of the art models such as Lion optimization, Traditional ACO and Particle based Kernel function algorithms with more than 95% in accuracy. |
| Author | Chakaravarthi, S. Miriam, A. Jemshia Saminathan, R. |
| Author_xml | – sequence: 1 givenname: A. Jemshia orcidid: 0000-0002-2846-5729 surname: Miriam fullname: Miriam, A. Jemshia email: jemshiamiriamajs@gmail.com organization: Department of Computer Science and Engineering, Annamalai University, Tamil Nadu – sequence: 2 givenname: R. surname: Saminathan fullname: Saminathan, R. organization: Department of Computer Science and Engineering, Annamalai University, Tamil Nadu – sequence: 3 givenname: S. surname: Chakaravarthi fullname: Chakaravarthi, S. organization: Department of Computer Science and Engineering, Velammal Engineering College, Tamil Nadu |
| BookMark | eNp9kE1LAzEQhoMo-PkHPAW86CE6SXaT3WMRrQWpB_UoIc0mNbJNapIK_nvXVhQ89DRzeJ-Zl-cQ7YYYLEKnFC4pgLzKlIGoCTAgABUXhO2gA9qIitQtlbu_O7T76DDnNwDBQFYH6GUaA-niwgddbIcfYyo-zPHYBlu8waN-HpMvrwt8Pn0cj8hkMrnALiZsnbOm-A-Lk81xlYzFuu-j0cXHgH3Apo-r7hjtOd1ne_Izj9Dz7c3T9R25fxhPrkf3xHDaFkK17LQGx5yZSd5QJ4UwjBvhwHSCtryaUdPWztUNwAy4Fq3WUuiqrUTXyJYfobPN3WWK7yubi3obOoXhpWI1rzlQkM2QajYpk2LOyTplfFkXLkn7XlFQ3zLVRqYaZKq1TMUGlP1Dl8kvdPrcDvENlIdwmNv012oL9QU6vIgN |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3520701 crossref_primary_10_3390_computers10110147 crossref_primary_10_18400_tekderg_981601 crossref_primary_10_1016_j_asoc_2023_110027 crossref_primary_10_1108_IJICC_04_2022_0118 crossref_primary_10_1016_j_ceja_2024_100702 crossref_primary_10_1016_j_comnet_2023_109986 crossref_primary_10_7717_peerj_cs_2023 crossref_primary_10_1016_j_swevo_2024_101575 crossref_primary_10_1016_j_autcon_2022_104587 |
| Cites_doi | 10.1109/TCC.2015.2415776 10.1016/j.compeleceng.2014.10.008 10.1109/TCC.2015.2453966 10.1007/s00521-018-3383-7 10.1109/CLOUD.2017.96 10.1007/s11277-017-5200-5 10.1109/TCC.2015.2424888 10.1007/978-3-319-13987-6_24 10.1109/ICC.2015.7248934 10.1016/j.future.2016.12.022 10.1109/JIOT.2015.2471260 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2020 Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s12065-020-00436-2 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1864-5917 |
| EndPage | 765 |
| ExternalDocumentID | 10_1007_s12065_020_00436_2 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 06D 0R~ 0VY 1N0 203 29G 29~ 2JN 2JY 2KG 2VQ 2~H 30V 4.4 406 408 409 40D 5GY 5VS 67Z 6NX 875 8TC 8UJ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AUKKA AXYYD AYJHY B-. BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PT4 QOS R89 RLLFE ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG TSK U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 |
| ID | FETCH-LOGICAL-c319t-1a7daa0f2fcb7381f766c23c6f0cd61934b1c95ff5800b03a69aa76a4946d8793 |
| IEDL.DBID | AGYKE |
| ISSN | 1864-5909 |
| IngestDate | Wed Sep 17 23:58:28 EDT 2025 Wed Oct 01 04:42:24 EDT 2025 Thu Apr 24 23:02:07 EDT 2025 Fri Feb 21 02:49:09 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | NSGA-II Ant colony optimization NSGA-III NSGA Ant colony optimization algorithm Cloud resource allocation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-1a7daa0f2fcb7381f766c23c6f0cd61934b1c95ff5800b03a69aa76a4946d8793 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2846-5729 |
| PQID | 2535301078 |
| PQPubID | 2043920 |
| PageCount | 7 |
| ParticipantIDs | proquest_journals_2535301078 crossref_citationtrail_10_1007_s12065_020_00436_2 crossref_primary_10_1007_s12065_020_00436_2 springer_journals_10_1007_s12065_020_00436_2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-01 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Evolutionary intelligence |
| PublicationTitleAbbrev | Evol. Intel |
| PublicationYear | 2021 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | B Tan, H Ma, Y Mei (2017) A NSGA-II-based approach for service resource allocation in Cloud. In: 2017 IEEE congress on evolutionary computation (CEC). IEEE, San Sebastian, pp 2574–2581, 5–8 June 2017 Al FaruqueMAVatanparvarKEnergy management-as-a-service over fog computing platformIEEE Internet Things J20163216116910.1109/JIOT.2015.2471260 Deng R, Lu R, Lai C, et al. (2015) Towards power consumption-delay tradeoff by workload allocation in cloud-fog computing. In: 2015 IEEE International Conference on Communications (ICC). IEEE, London, UK, pp 3909–3914, 8–12 June 2015 Lin H, et al (2014) Hybridizing infeasibility driven and constrained-domination principle with MOEA/D for constrained multiobjective evolutionary optimization. In: Cheng SM, Day MY (eds) Technologies and applications of artificial intelligence, TAAI 2014. lecture notes in computer science, vol 8916. Springer, Cham. SunYLinFHaitaoXuMulti-objective optimization of resource scheduling in Fog computing using an improved NSGA-IIWirel Pers Commun201810221369138510.1007/s11277-017-5200-5 MazumdarSPranzoMPower efficient server consolidation for cloud data centerFut Gen Comput Syst20177041610.1016/j.future.2016.12.022 Xu X, Dou W, Zhang X, Chen J (2016) EnReal: an energy-aware resource allocation method for scientific workflow executions in cloud environment. In: IEEE transactions on cloud computing, vol. 4, no. 2, pp. 166–179, 1 April–June 2016. Maenhaut P, Moens H, Volckaert B, Ongenae V, Turck FD (2017) Resource allocation in the cloud: from simulation to experimental validation. In: 2017 IEEE 10th international conference on cloud computing (CLOUD). IEEE, Honolulu, CA, 2017, pp 701–704, 25–30 June 2017 WangDYangYMiZA genetic-based approach to web service composition in geo-distributed cloud environmentComput Electr Eng20154312914110.1016/j.compeleceng.2014.10.008 JoshanAJSibi ChakkaravarthySVasuhiSVaidehiVTrajectory based abnormal event detection in video traffic surveillance using general potential data field with spectral clusteringMultim Tools Appl20192019127 Khasnabish JN, Mithani MF, Rao S (2017) Tier-centric resource allocation in multi-tier cloud systems. In: IEEE transactions on cloud computing, vol. 5, no. 3.IEEE, pp 576–589, 1 July-Sept. 2017. Arivudainambi D, Varun Kumar KA, Sibi Chakkaravarthy S (2019) LION IDS: a meta-heuristic approach to detect DDoS attacks against software defined networks, neural computing and applications, vol. 31, issue 5, May 2019, Springer. https://doi.org/10.1007/s00521-018-3383-7 Wang X, Wang X, Che H, Li K, Huang M, Gao C (2015) An intelligent economic approach for dynamic resource allocation in cloud services. In: IEEE transactions on cloud computing, vol. 3, no. 3. IEEE, pp 275–289, 1 July–Sept. 2015. https://doi.org/10.1109/TCC.2015.2415776 436_CR13 436_CR12 436_CR1 436_CR3 436_CR11 436_CR10 436_CR7 436_CR9 S Mazumdar (436_CR4) 2017; 70 D Wang (436_CR5) 2015; 43 AJ Joshan (436_CR8) 2019; 2019 Y Sun (436_CR2) 2018; 102 MA Al Faruque (436_CR6) 2016; 3 |
| References_xml | – reference: JoshanAJSibi ChakkaravarthySVasuhiSVaidehiVTrajectory based abnormal event detection in video traffic surveillance using general potential data field with spectral clusteringMultim Tools Appl20192019127 – reference: MazumdarSPranzoMPower efficient server consolidation for cloud data centerFut Gen Comput Syst20177041610.1016/j.future.2016.12.022 – reference: B Tan, H Ma, Y Mei (2017) A NSGA-II-based approach for service resource allocation in Cloud. In: 2017 IEEE congress on evolutionary computation (CEC). IEEE, San Sebastian, pp 2574–2581, 5–8 June 2017 – reference: Arivudainambi D, Varun Kumar KA, Sibi Chakkaravarthy S (2019) LION IDS: a meta-heuristic approach to detect DDoS attacks against software defined networks, neural computing and applications, vol. 31, issue 5, May 2019, Springer. https://doi.org/10.1007/s00521-018-3383-7 – reference: Lin H, et al (2014) Hybridizing infeasibility driven and constrained-domination principle with MOEA/D for constrained multiobjective evolutionary optimization. In: Cheng SM, Day MY (eds) Technologies and applications of artificial intelligence, TAAI 2014. lecture notes in computer science, vol 8916. Springer, Cham. – reference: SunYLinFHaitaoXuMulti-objective optimization of resource scheduling in Fog computing using an improved NSGA-IIWirel Pers Commun201810221369138510.1007/s11277-017-5200-5 – reference: Khasnabish JN, Mithani MF, Rao S (2017) Tier-centric resource allocation in multi-tier cloud systems. In: IEEE transactions on cloud computing, vol. 5, no. 3.IEEE, pp 576–589, 1 July-Sept. 2017. – reference: Al FaruqueMAVatanparvarKEnergy management-as-a-service over fog computing platformIEEE Internet Things J20163216116910.1109/JIOT.2015.2471260 – reference: Maenhaut P, Moens H, Volckaert B, Ongenae V, Turck FD (2017) Resource allocation in the cloud: from simulation to experimental validation. In: 2017 IEEE 10th international conference on cloud computing (CLOUD). IEEE, Honolulu, CA, 2017, pp 701–704, 25–30 June 2017 – reference: WangDYangYMiZA genetic-based approach to web service composition in geo-distributed cloud environmentComput Electr Eng20154312914110.1016/j.compeleceng.2014.10.008 – reference: Wang X, Wang X, Che H, Li K, Huang M, Gao C (2015) An intelligent economic approach for dynamic resource allocation in cloud services. In: IEEE transactions on cloud computing, vol. 3, no. 3. IEEE, pp 275–289, 1 July–Sept. 2015. https://doi.org/10.1109/TCC.2015.2415776 – reference: Xu X, Dou W, Zhang X, Chen J (2016) EnReal: an energy-aware resource allocation method for scientific workflow executions in cloud environment. In: IEEE transactions on cloud computing, vol. 4, no. 2, pp. 166–179, 1 April–June 2016. – reference: Deng R, Lu R, Lai C, et al. (2015) Towards power consumption-delay tradeoff by workload allocation in cloud-fog computing. In: 2015 IEEE International Conference on Communications (ICC). IEEE, London, UK, pp 3909–3914, 8–12 June 2015 – ident: 436_CR11 doi: 10.1109/TCC.2015.2415776 – ident: 436_CR3 – volume: 43 start-page: 129 year: 2015 ident: 436_CR5 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2014.10.008 – ident: 436_CR12 doi: 10.1109/TCC.2015.2453966 – volume: 2019 start-page: 1 year: 2019 ident: 436_CR8 publication-title: Multim Tools Appl – ident: 436_CR9 doi: 10.1007/s00521-018-3383-7 – ident: 436_CR10 doi: 10.1109/CLOUD.2017.96 – volume: 102 start-page: 1369 issue: 2 year: 2018 ident: 436_CR2 publication-title: Wirel Pers Commun doi: 10.1007/s11277-017-5200-5 – ident: 436_CR13 doi: 10.1109/TCC.2015.2424888 – ident: 436_CR1 doi: 10.1007/978-3-319-13987-6_24 – ident: 436_CR7 doi: 10.1109/ICC.2015.7248934 – volume: 70 start-page: 4 year: 2017 ident: 436_CR4 publication-title: Fut Gen Comput Syst doi: 10.1016/j.future.2016.12.022 – volume: 3 start-page: 161 issue: 2 year: 2016 ident: 436_CR6 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2015.2471260 |
| SSID | ssj0062074 |
| Score | 2.3112915 |
| Snippet | Resource management system helps the enterprises to coordinate the IT resources in connection to the action performed by the key players such as cloud... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 759 |
| SubjectTerms | Ant colony optimization Applications of Mathematics Artificial Intelligence Bioinformatics Control Engineering Genetic algorithms Geographical locations Kernel functions Mathematical and Computational Engineering Mechatronics Resource allocation Resource management Resource scheduling Robotics Schedules Sorting algorithms Special Issue Statistical Physics and Dynamical Systems |
| Title | Non-dominated Sorting Genetic Algorithm (NSGA-III) for effective resource allocation in cloud |
| URI | https://link.springer.com/article/10.1007/s12065-020-00436-2 https://www.proquest.com/docview/2535301078 |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1864-5917 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062074 issn: 1864-5909 databaseCode: AFBBN dateStart: 20080301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1864-5917 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062074 issn: 1864-5909 databaseCode: AGYKE dateStart: 20080101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1864-5917 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062074 issn: 1864-5909 databaseCode: U2A dateStart: 20080301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgjSgveWAAgVHixE4zRohHQXSBSjCgKH6kIEqCSrrw67kkDgUESMy2T4l9j8--82eAXenpjpLKUGlcRX2pUypD5VCteIIRC9uq846rnjjv-xe3_NZeCnttqt2blGTlqSeX3RiGS1pudyredIqOd6bi22rBTHR2d3nSeGDBnIp92e0In_LQCe1lmZ-lfA1IE5T5LTFaxZvTBeg3X1qXmTwdjQt5pN6-kTj-91cWYd4CUBLVGrMEUyZbhoXmcQdibX0Z5j4xFa7AfS_PqM7LuhmEqOQ6L8kHBqQkrUY5JBoO8tFj8fBM9nrXZxHtdrv7BOEwqctF0KOSkc0TkDLTX58TkseMqGE-1qvQPz25OT6n9mUGqtBkC-omgU4SJ2WpkgHG_DQQQjFPidRRGrdkni9dFfI05YhHpeMlIkySQCR-6AvdQZewBq0sz8w6ENSTAGUw4xrfVwoHdhwtTcA5E8Zlog1uszyxsrTl5esZw3hCuFzOZoyzGVezGbM2HHyMealJO_7svdWsemwN-DVm3OPo-xBAteGwWcRJ8-_SNv7XfRNmWVklU53rbEGrGI3NNsKcQu5Yrd6B6T6L3gGEJPIL |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQDMDAo4AoFPDAAAJLiRM7yVghSgttl7ZSFxTFj5RKJUFt-v8550EBARKz7RvufHefz-fPCF0KR_lSSE2EtiVxhYqJCKRFlGQRZCwYy-sdvT5vj9zHMRuXj8IWVbd7dSWZR-rVYzcK6ZKY407Om04g8G4YAivDmD-izSr-cmrl3Mu2z13CAison8r8LONrOlphzG_Xonm2ae2hnRIm4mZh1320ppMa2q2-YMClR9bQ9ic-wQP03E8TolLT3QJAEg9SQxEwwYZaGuTg5mySzqfZyyu-6g8emqTT6VxjAK24aOqAuIfnZTUfm_v4opqHpwmWs3SpDtGodT-8a5Py_wQiwbEyYkeeiiIrprEUHmTm2ONcUkfy2JIKDk6OK2wZsDhmgBqF5UQ8iCKPR27gcuWD4x6h9SRN9DHCYE0PZFBta9eVEhb6lhLaY4xybVNeR3alxlCW5OLmj4tZuKJFNqoPQfVhrvqQ1tHNx5q3glrjz9mNyjph6WaLkDKHQYQCmFNHt5XFVsO_Szv53_QLtNke9rpht9N_OkVb1PS15JWYBlrP5kt9BsAkE-f5PnwH0f7XGg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SQfTgW6xWzcGDosHdbJLtHotarY8i1EIvsmweW4W6K3X7_53sw1ZRwXOSOcxkHpnMfIPQofR0U0lliDSuIkzqmMhAOUQrHoHHgrU833HfFdd9djPgg5ku_rzavfqSLHoaLEpTkp296fhs2vhGwXUS-_TJMdQJGOF5ZoES4Eb3aauyxYI6OQ6z2xSM8MAJyraZn2l8dU3TePPbF2nuedqraLkMGXGrkPEamjPJOlqpxjHgUjvX0dIMtuAGeuqmCdGprXSBoBL3UgsXMMQWZhro4NZomI5fsudXfNTtXbVIp9M5xhDA4qLAA2wgHpeZfWz_5ovMHn5JsBqlE72J-u3Lx_NrUs5SIAqULCNu5OsocmIaK-mDl459IRT1lIgdpeER5THpqoDHMYcIUjpeJIIo8kXEAiZ0E5R4C9WSNDHbCINkfaBBjWsYUwoONh0tjc85Fcaloo7cio2hKoHG7byLUTiFSLasD4H1Yc76kNbRyeeZtwJm48_djUo6Yaly7yHlHgdrBSFPHZ1WEpsu_05t53_bD9DCw0U7vOt0b3fRIrUlLnlSpoFq2Xhi9iBGyeR-fg0_AIdu21Y |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-dominated+Sorting+Genetic+Algorithm+%28NSGA-III%29+for+effective+resource+allocation+in+cloud&rft.jtitle=Evolutionary+intelligence&rft.au=Jemshia%2C+Miriam+A&rft.au=Saminathan%2C+R&rft.au=Chakaravarthi%2C+S&rft.date=2021-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1864-5909&rft.eissn=1864-5917&rft.volume=14&rft.issue=2&rft.spage=759&rft.epage=765&rft_id=info:doi/10.1007%2Fs12065-020-00436-2&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5909&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5909&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5909&client=summon |