Non-dominated Sorting Genetic Algorithm (NSGA-III) for effective resource allocation in cloud

Resource management system helps the enterprises to coordinate the IT resources in connection to the action performed by the key players such as cloud customers and service providers. Present day cloud resource and service providers use a heterogeneous allocation strategy for resources allocation ac...

Full description

Saved in:
Bibliographic Details
Published inEvolutionary intelligence Vol. 14; no. 2; pp. 759 - 765
Main Authors Miriam, A. Jemshia, Saminathan, R., Chakaravarthi, S.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1864-5909
1864-5917
DOI10.1007/s12065-020-00436-2

Cover

Abstract Resource management system helps the enterprises to coordinate the IT resources in connection to the action performed by the key players such as cloud customers and service providers. Present day cloud resource and service providers use a heterogeneous allocation strategy for resources allocation across various geographical locations. Further, these allocations are completely in need of secure transactions, effective scheduling and dynamic resource allocation strategies. To overcome the above mentioned issues, this paper proposes a novel resource allocation framework for the cloud service providers to schedule and effective resource allocation. The key idea of the proposed resource allocation scheme is to utilize Non dominated Sorting Genetic Algorithm (NSGA-III) to effectively allocate resources. Furthermore, the proposed NSGA-III is modified to support any interim data sources (any middle wares). The proposed model is experimentally validated in the test bed with multi-node Hadoop cluster. The experimental results confirm that the proposed model outperforms the existing state of the art models such as Lion optimization, Traditional ACO and Particle based Kernel function algorithms with more than 95% in accuracy.
AbstractList Resource management system helps the enterprises to coordinate the IT resources in connection to the action performed by the key players such as cloud customers and service providers. Present day cloud resource and service providers use a heterogeneous allocation strategy for resources allocation across various geographical locations. Further, these allocations are completely in need of secure transactions, effective scheduling and dynamic resource allocation strategies. To overcome the above mentioned issues, this paper proposes a novel resource allocation framework for the cloud service providers to schedule and effective resource allocation. The key idea of the proposed resource allocation scheme is to utilize Non dominated Sorting Genetic Algorithm (NSGA-III) to effectively allocate resources. Furthermore, the proposed NSGA-III is modified to support any interim data sources (any middle wares). The proposed model is experimentally validated in the test bed with multi-node Hadoop cluster. The experimental results confirm that the proposed model outperforms the existing state of the art models such as Lion optimization, Traditional ACO and Particle based Kernel function algorithms with more than 95% in accuracy.
Author Chakaravarthi, S.
Miriam, A. Jemshia
Saminathan, R.
Author_xml – sequence: 1
  givenname: A. Jemshia
  orcidid: 0000-0002-2846-5729
  surname: Miriam
  fullname: Miriam, A. Jemshia
  email: jemshiamiriamajs@gmail.com
  organization: Department of Computer Science and Engineering, Annamalai University, Tamil Nadu
– sequence: 2
  givenname: R.
  surname: Saminathan
  fullname: Saminathan, R.
  organization: Department of Computer Science and Engineering, Annamalai University, Tamil Nadu
– sequence: 3
  givenname: S.
  surname: Chakaravarthi
  fullname: Chakaravarthi, S.
  organization: Department of Computer Science and Engineering, Velammal Engineering College, Tamil Nadu
BookMark eNp9kE1LAzEQhoMo-PkHPAW86CE6SXaT3WMRrQWpB_UoIc0mNbJNapIK_nvXVhQ89DRzeJ-Zl-cQ7YYYLEKnFC4pgLzKlIGoCTAgABUXhO2gA9qIitQtlbu_O7T76DDnNwDBQFYH6GUaA-niwgddbIcfYyo-zPHYBlu8waN-HpMvrwt8Pn0cj8hkMrnALiZsnbOm-A-Lk81xlYzFuu-j0cXHgH3Apo-r7hjtOd1ne_Izj9Dz7c3T9R25fxhPrkf3xHDaFkK17LQGx5yZSd5QJ4UwjBvhwHSCtryaUdPWztUNwAy4Fq3WUuiqrUTXyJYfobPN3WWK7yubi3obOoXhpWI1rzlQkM2QajYpk2LOyTplfFkXLkn7XlFQ3zLVRqYaZKq1TMUGlP1Dl8kvdPrcDvENlIdwmNv012oL9QU6vIgN
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3520701
crossref_primary_10_3390_computers10110147
crossref_primary_10_18400_tekderg_981601
crossref_primary_10_1016_j_asoc_2023_110027
crossref_primary_10_1108_IJICC_04_2022_0118
crossref_primary_10_1016_j_ceja_2024_100702
crossref_primary_10_1016_j_comnet_2023_109986
crossref_primary_10_7717_peerj_cs_2023
crossref_primary_10_1016_j_swevo_2024_101575
crossref_primary_10_1016_j_autcon_2022_104587
Cites_doi 10.1109/TCC.2015.2415776
10.1016/j.compeleceng.2014.10.008
10.1109/TCC.2015.2453966
10.1007/s00521-018-3383-7
10.1109/CLOUD.2017.96
10.1007/s11277-017-5200-5
10.1109/TCC.2015.2424888
10.1007/978-3-319-13987-6_24
10.1109/ICC.2015.7248934
10.1016/j.future.2016.12.022
10.1109/JIOT.2015.2471260
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s12065-020-00436-2
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1864-5917
EndPage 765
ExternalDocumentID 10_1007_s12065_020_00436_2
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
06D
0R~
0VY
1N0
203
29G
29~
2JN
2JY
2KG
2VQ
2~H
30V
4.4
406
408
409
40D
5GY
5VS
67Z
6NX
875
8TC
8UJ
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AUKKA
AXYYD
AYJHY
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PT4
QOS
R89
RLLFE
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
TSK
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c319t-1a7daa0f2fcb7381f766c23c6f0cd61934b1c95ff5800b03a69aa76a4946d8793
IEDL.DBID AGYKE
ISSN 1864-5909
IngestDate Wed Sep 17 23:58:28 EDT 2025
Wed Oct 01 04:42:24 EDT 2025
Thu Apr 24 23:02:07 EDT 2025
Fri Feb 21 02:49:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords NSGA-II
Ant colony optimization
NSGA-III
NSGA
Ant colony optimization algorithm
Cloud resource allocation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-1a7daa0f2fcb7381f766c23c6f0cd61934b1c95ff5800b03a69aa76a4946d8793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2846-5729
PQID 2535301078
PQPubID 2043920
PageCount 7
ParticipantIDs proquest_journals_2535301078
crossref_citationtrail_10_1007_s12065_020_00436_2
crossref_primary_10_1007_s12065_020_00436_2
springer_journals_10_1007_s12065_020_00436_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Evolutionary intelligence
PublicationTitleAbbrev Evol. Intel
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References B Tan, H Ma, Y Mei (2017) A NSGA-II-based approach for service resource allocation in Cloud. In: 2017 IEEE congress on evolutionary computation (CEC). IEEE, San Sebastian, pp 2574–2581, 5–8 June 2017
Al FaruqueMAVatanparvarKEnergy management-as-a-service over fog computing platformIEEE Internet Things J20163216116910.1109/JIOT.2015.2471260
Deng R, Lu R, Lai C, et al. (2015) Towards power consumption-delay tradeoff by workload allocation in cloud-fog computing. In: 2015 IEEE International Conference on Communications (ICC). IEEE, London, UK, pp 3909–3914, 8–12 June 2015
Lin H, et al (2014) Hybridizing infeasibility driven and constrained-domination principle with MOEA/D for constrained multiobjective evolutionary optimization. In: Cheng SM, Day MY (eds) Technologies and applications of artificial intelligence, TAAI 2014. lecture notes in computer science, vol 8916. Springer, Cham.
SunYLinFHaitaoXuMulti-objective optimization of resource scheduling in Fog computing using an improved NSGA-IIWirel Pers Commun201810221369138510.1007/s11277-017-5200-5
MazumdarSPranzoMPower efficient server consolidation for cloud data centerFut Gen Comput Syst20177041610.1016/j.future.2016.12.022
Xu X, Dou W, Zhang X, Chen J (2016) EnReal: an energy-aware resource allocation method for scientific workflow executions in cloud environment. In: IEEE transactions on cloud computing, vol. 4, no. 2, pp. 166–179, 1 April–June 2016.
Maenhaut P, Moens H, Volckaert B, Ongenae V, Turck FD (2017) Resource allocation in the cloud: from simulation to experimental validation. In: 2017 IEEE 10th international conference on cloud computing (CLOUD). IEEE, Honolulu, CA, 2017, pp 701–704, 25–30 June 2017
WangDYangYMiZA genetic-based approach to web service composition in geo-distributed cloud environmentComput Electr Eng20154312914110.1016/j.compeleceng.2014.10.008
JoshanAJSibi ChakkaravarthySVasuhiSVaidehiVTrajectory based abnormal event detection in video traffic surveillance using general potential data field with spectral clusteringMultim Tools Appl20192019127
Khasnabish JN, Mithani MF, Rao S (2017) Tier-centric resource allocation in multi-tier cloud systems. In: IEEE transactions on cloud computing, vol. 5, no. 3.IEEE, pp 576–589, 1 July-Sept. 2017.
Arivudainambi D, Varun Kumar KA, Sibi Chakkaravarthy S (2019) LION IDS: a meta-heuristic approach to detect DDoS attacks against software defined networks, neural computing and applications, vol. 31, issue 5, May 2019, Springer. https://doi.org/10.1007/s00521-018-3383-7
Wang X, Wang X, Che H, Li K, Huang M, Gao C (2015) An intelligent economic approach for dynamic resource allocation in cloud services. In: IEEE transactions on cloud computing, vol. 3, no. 3. IEEE, pp 275–289, 1 July–Sept. 2015. https://doi.org/10.1109/TCC.2015.2415776
436_CR13
436_CR12
436_CR1
436_CR3
436_CR11
436_CR10
436_CR7
436_CR9
S Mazumdar (436_CR4) 2017; 70
D Wang (436_CR5) 2015; 43
AJ Joshan (436_CR8) 2019; 2019
Y Sun (436_CR2) 2018; 102
MA Al Faruque (436_CR6) 2016; 3
References_xml – reference: JoshanAJSibi ChakkaravarthySVasuhiSVaidehiVTrajectory based abnormal event detection in video traffic surveillance using general potential data field with spectral clusteringMultim Tools Appl20192019127
– reference: MazumdarSPranzoMPower efficient server consolidation for cloud data centerFut Gen Comput Syst20177041610.1016/j.future.2016.12.022
– reference: B Tan, H Ma, Y Mei (2017) A NSGA-II-based approach for service resource allocation in Cloud. In: 2017 IEEE congress on evolutionary computation (CEC). IEEE, San Sebastian, pp 2574–2581, 5–8 June 2017
– reference: Arivudainambi D, Varun Kumar KA, Sibi Chakkaravarthy S (2019) LION IDS: a meta-heuristic approach to detect DDoS attacks against software defined networks, neural computing and applications, vol. 31, issue 5, May 2019, Springer. https://doi.org/10.1007/s00521-018-3383-7
– reference: Lin H, et al (2014) Hybridizing infeasibility driven and constrained-domination principle with MOEA/D for constrained multiobjective evolutionary optimization. In: Cheng SM, Day MY (eds) Technologies and applications of artificial intelligence, TAAI 2014. lecture notes in computer science, vol 8916. Springer, Cham.
– reference: SunYLinFHaitaoXuMulti-objective optimization of resource scheduling in Fog computing using an improved NSGA-IIWirel Pers Commun201810221369138510.1007/s11277-017-5200-5
– reference: Khasnabish JN, Mithani MF, Rao S (2017) Tier-centric resource allocation in multi-tier cloud systems. In: IEEE transactions on cloud computing, vol. 5, no. 3.IEEE, pp 576–589, 1 July-Sept. 2017.
– reference: Al FaruqueMAVatanparvarKEnergy management-as-a-service over fog computing platformIEEE Internet Things J20163216116910.1109/JIOT.2015.2471260
– reference: Maenhaut P, Moens H, Volckaert B, Ongenae V, Turck FD (2017) Resource allocation in the cloud: from simulation to experimental validation. In: 2017 IEEE 10th international conference on cloud computing (CLOUD). IEEE, Honolulu, CA, 2017, pp 701–704, 25–30 June 2017
– reference: WangDYangYMiZA genetic-based approach to web service composition in geo-distributed cloud environmentComput Electr Eng20154312914110.1016/j.compeleceng.2014.10.008
– reference: Wang X, Wang X, Che H, Li K, Huang M, Gao C (2015) An intelligent economic approach for dynamic resource allocation in cloud services. In: IEEE transactions on cloud computing, vol. 3, no. 3. IEEE, pp 275–289, 1 July–Sept. 2015. https://doi.org/10.1109/TCC.2015.2415776
– reference: Xu X, Dou W, Zhang X, Chen J (2016) EnReal: an energy-aware resource allocation method for scientific workflow executions in cloud environment. In: IEEE transactions on cloud computing, vol. 4, no. 2, pp. 166–179, 1 April–June 2016.
– reference: Deng R, Lu R, Lai C, et al. (2015) Towards power consumption-delay tradeoff by workload allocation in cloud-fog computing. In: 2015 IEEE International Conference on Communications (ICC). IEEE, London, UK, pp 3909–3914, 8–12 June 2015
– ident: 436_CR11
  doi: 10.1109/TCC.2015.2415776
– ident: 436_CR3
– volume: 43
  start-page: 129
  year: 2015
  ident: 436_CR5
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2014.10.008
– ident: 436_CR12
  doi: 10.1109/TCC.2015.2453966
– volume: 2019
  start-page: 1
  year: 2019
  ident: 436_CR8
  publication-title: Multim Tools Appl
– ident: 436_CR9
  doi: 10.1007/s00521-018-3383-7
– ident: 436_CR10
  doi: 10.1109/CLOUD.2017.96
– volume: 102
  start-page: 1369
  issue: 2
  year: 2018
  ident: 436_CR2
  publication-title: Wirel Pers Commun
  doi: 10.1007/s11277-017-5200-5
– ident: 436_CR13
  doi: 10.1109/TCC.2015.2424888
– ident: 436_CR1
  doi: 10.1007/978-3-319-13987-6_24
– ident: 436_CR7
  doi: 10.1109/ICC.2015.7248934
– volume: 70
  start-page: 4
  year: 2017
  ident: 436_CR4
  publication-title: Fut Gen Comput Syst
  doi: 10.1016/j.future.2016.12.022
– volume: 3
  start-page: 161
  issue: 2
  year: 2016
  ident: 436_CR6
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2015.2471260
SSID ssj0062074
Score 2.3112915
Snippet Resource management system helps the enterprises to coordinate the IT resources in connection to the action performed by the key players such as cloud...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 759
SubjectTerms Ant colony optimization
Applications of Mathematics
Artificial Intelligence
Bioinformatics
Control
Engineering
Genetic algorithms
Geographical locations
Kernel functions
Mathematical and Computational Engineering
Mechatronics
Resource allocation
Resource management
Resource scheduling
Robotics
Schedules
Sorting algorithms
Special Issue
Statistical Physics and Dynamical Systems
Title Non-dominated Sorting Genetic Algorithm (NSGA-III) for effective resource allocation in cloud
URI https://link.springer.com/article/10.1007/s12065-020-00436-2
https://www.proquest.com/docview/2535301078
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1864-5917
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062074
  issn: 1864-5909
  databaseCode: AFBBN
  dateStart: 20080301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1864-5917
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062074
  issn: 1864-5909
  databaseCode: AGYKE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1864-5917
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062074
  issn: 1864-5909
  databaseCode: U2A
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgjSgveWAAgVHixE4zRohHQXSBSjCgKH6kIEqCSrrw67kkDgUESMy2T4l9j8--82eAXenpjpLKUGlcRX2pUypD5VCteIIRC9uq846rnjjv-xe3_NZeCnttqt2blGTlqSeX3RiGS1pudyredIqOd6bi22rBTHR2d3nSeGDBnIp92e0In_LQCe1lmZ-lfA1IE5T5LTFaxZvTBeg3X1qXmTwdjQt5pN6-kTj-91cWYd4CUBLVGrMEUyZbhoXmcQdibX0Z5j4xFa7AfS_PqM7LuhmEqOQ6L8kHBqQkrUY5JBoO8tFj8fBM9nrXZxHtdrv7BOEwqctF0KOSkc0TkDLTX58TkseMqGE-1qvQPz25OT6n9mUGqtBkC-omgU4SJ2WpkgHG_DQQQjFPidRRGrdkni9dFfI05YhHpeMlIkySQCR-6AvdQZewBq0sz8w6ENSTAGUw4xrfVwoHdhwtTcA5E8Zlog1uszyxsrTl5esZw3hCuFzOZoyzGVezGbM2HHyMealJO_7svdWsemwN-DVm3OPo-xBAteGwWcRJ8-_SNv7XfRNmWVklU53rbEGrGI3NNsKcQu5Yrd6B6T6L3gGEJPIL
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQDMDAo4AoFPDAAAJLiRM7yVghSgttl7ZSFxTFj5RKJUFt-v8550EBARKz7RvufHefz-fPCF0KR_lSSE2EtiVxhYqJCKRFlGQRZCwYy-sdvT5vj9zHMRuXj8IWVbd7dSWZR-rVYzcK6ZKY407Om04g8G4YAivDmD-izSr-cmrl3Mu2z13CAison8r8LONrOlphzG_Xonm2ae2hnRIm4mZh1320ppMa2q2-YMClR9bQ9ic-wQP03E8TolLT3QJAEg9SQxEwwYZaGuTg5mySzqfZyyu-6g8emqTT6VxjAK24aOqAuIfnZTUfm_v4opqHpwmWs3SpDtGodT-8a5Py_wQiwbEyYkeeiiIrprEUHmTm2ONcUkfy2JIKDk6OK2wZsDhmgBqF5UQ8iCKPR27gcuWD4x6h9SRN9DHCYE0PZFBta9eVEhb6lhLaY4xybVNeR3alxlCW5OLmj4tZuKJFNqoPQfVhrvqQ1tHNx5q3glrjz9mNyjph6WaLkDKHQYQCmFNHt5XFVsO_Szv53_QLtNke9rpht9N_OkVb1PS15JWYBlrP5kt9BsAkE-f5PnwH0f7XGg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SQfTgW6xWzcGDosHdbJLtHotarY8i1EIvsmweW4W6K3X7_53sw1ZRwXOSOcxkHpnMfIPQofR0U0lliDSuIkzqmMhAOUQrHoHHgrU833HfFdd9djPgg5ku_rzavfqSLHoaLEpTkp296fhs2vhGwXUS-_TJMdQJGOF5ZoES4Eb3aauyxYI6OQ6z2xSM8MAJyraZn2l8dU3TePPbF2nuedqraLkMGXGrkPEamjPJOlqpxjHgUjvX0dIMtuAGeuqmCdGprXSBoBL3UgsXMMQWZhro4NZomI5fsudXfNTtXbVIp9M5xhDA4qLAA2wgHpeZfWz_5ovMHn5JsBqlE72J-u3Lx_NrUs5SIAqULCNu5OsocmIaK-mDl459IRT1lIgdpeER5THpqoDHMYcIUjpeJIIo8kXEAiZ0E5R4C9WSNDHbCINkfaBBjWsYUwoONh0tjc85Fcaloo7cio2hKoHG7byLUTiFSLasD4H1Yc76kNbRyeeZtwJm48_djUo6Yaly7yHlHgdrBSFPHZ1WEpsu_05t53_bD9DCw0U7vOt0b3fRIrUlLnlSpoFq2Xhi9iBGyeR-fg0_AIdu21Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-dominated+Sorting+Genetic+Algorithm+%28NSGA-III%29+for+effective+resource+allocation+in+cloud&rft.jtitle=Evolutionary+intelligence&rft.au=Jemshia%2C+Miriam+A&rft.au=Saminathan%2C+R&rft.au=Chakaravarthi%2C+S&rft.date=2021-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1864-5909&rft.eissn=1864-5917&rft.volume=14&rft.issue=2&rft.spage=759&rft.epage=765&rft_id=info:doi/10.1007%2Fs12065-020-00436-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5909&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5909&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5909&client=summon