Vibration analysis of a high-speed rotating GPLRC nanostructure coupled with a piezoelectric actuator

. In this article, the vibration characteristics of high-speed rotating graphene-nanoplatelets (GNP)-reinforced composite cylindrical nanoshell coupled with a piezoelectric actuator (PIAC) are investigated. This composite nanostructure rotates around the axial direction, and the Coriolis and centrif...

Full description

Saved in:
Bibliographic Details
Published inEuropean physical journal plus Vol. 134; no. 6; p. 307
Main Authors Habibi, Mostafa, Hashemabadi, Davoud, Safarpour, Hamed
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2190-5444
2190-5444
DOI10.1140/epjp/i2019-12742-7

Cover

Abstract . In this article, the vibration characteristics of high-speed rotating graphene-nanoplatelets (GNP)-reinforced composite cylindrical nanoshell coupled with a piezoelectric actuator (PIAC) are investigated. This composite nanostructure rotates around the axial direction, and the Coriolis and centrifugal effects are considered in the formulation. The material properties of piecewise graphene-reinforced composites (GNPRCs) are assumed to be graded in the thickness direction of the cylindrical nanoshell and estimated through a nanomechanical model. In the current study, the effects of angular velocity, piezoelectric layer, GNPRC and size-effects on the frequency of the spinning GNPRC cylindrical nanoshell coupled with PIAC are studied for the first time. The governing equations and boundary conditions are developed using the minimum potential energy and solved with the aid of generalized differential quadrature (GDQM). In addition, due to existence of piezoelectric layer, Maxwell’s equation is derived. The results show that angular velocity, piezoelectric layer, GNP distribution pattern, length scale parameter and GNP weight function play an important role in the vibrational characteristics of the spinning GNP cylindrical nanoshell coupled with PIAC. The results of the current study are useful for design of materials science, micro-electro-mechanical systems and nanoelectromechanical systems such as nanoactuators and nanosensors.
AbstractList In this article, the vibration characteristics of high-speed rotating graphene-nanoplatelets (GNP)-reinforced composite cylindrical nanoshell coupled with a piezoelectric actuator (PIAC) are investigated. This composite nanostructure rotates around the axial direction, and the Coriolis and centrifugal effects are considered in the formulation. The material properties of piecewise graphene-reinforced composites (GNPRCs) are assumed to be graded in the thickness direction of the cylindrical nanoshell and estimated through a nanomechanical model. In the current study, the effects of angular velocity, piezoelectric layer, GNPRC and size-effects on the frequency of the spinning GNPRC cylindrical nanoshell coupled with PIAC are studied for the first time. The governing equations and boundary conditions are developed using the minimum potential energy and solved with the aid of generalized differential quadrature (GDQM). In addition, due to existence of piezoelectric layer, Maxwell’s equation is derived. The results show that angular velocity, piezoelectric layer, GNP distribution pattern, length scale parameter and GNP weight function play an important role in the vibrational characteristics of the spinning GNP cylindrical nanoshell coupled with PIAC. The results of the current study are useful for design of materials science, micro-electro-mechanical systems and nanoelectromechanical systems such as nanoactuators and nanosensors.
. In this article, the vibration characteristics of high-speed rotating graphene-nanoplatelets (GNP)-reinforced composite cylindrical nanoshell coupled with a piezoelectric actuator (PIAC) are investigated. This composite nanostructure rotates around the axial direction, and the Coriolis and centrifugal effects are considered in the formulation. The material properties of piecewise graphene-reinforced composites (GNPRCs) are assumed to be graded in the thickness direction of the cylindrical nanoshell and estimated through a nanomechanical model. In the current study, the effects of angular velocity, piezoelectric layer, GNPRC and size-effects on the frequency of the spinning GNPRC cylindrical nanoshell coupled with PIAC are studied for the first time. The governing equations and boundary conditions are developed using the minimum potential energy and solved with the aid of generalized differential quadrature (GDQM). In addition, due to existence of piezoelectric layer, Maxwell’s equation is derived. The results show that angular velocity, piezoelectric layer, GNP distribution pattern, length scale parameter and GNP weight function play an important role in the vibrational characteristics of the spinning GNP cylindrical nanoshell coupled with PIAC. The results of the current study are useful for design of materials science, micro-electro-mechanical systems and nanoelectromechanical systems such as nanoactuators and nanosensors.
ArticleNumber 307
Author Safarpour, Hamed
Hashemabadi, Davoud
Habibi, Mostafa
Author_xml – sequence: 1
  givenname: Mostafa
  surname: Habibi
  fullname: Habibi, Mostafa
  organization: Center of Excellence in Design, Robotics and Automation, School of Mechanical Engineering, Sharif University of technology
– sequence: 2
  givenname: Davoud
  surname: Hashemabadi
  fullname: Hashemabadi, Davoud
  organization: Faculty of Engineering, Department of Mechanics, Islamic Azad University of South Tehran Branch
– sequence: 3
  givenname: Hamed
  orcidid: 0000-0001-7562-0704
  surname: Safarpour
  fullname: Safarpour, Hamed
  email: hamed_safarpor@yahoo.com
  organization: Faculty of Engineering, Department of Mechanics, Imam Khomeini International University
BookMark eNp9kMFKAzEQQINUsNb-gKeA57WZbLbbHKVoFQqKqNeQZqdtyrpZkyxSv960FRQPzSU5vDdM3jnpNa5BQi6BXQMINsJ2044sZyAz4KXgWXlC-hwkywohRO_P-4wMQ9iwdIQEIUWf4JtdeB2ta6hudL0NNlC3pJqu7WqdhRaxot7FRDQrOnuaP09poxsXou9M7DxS47q2TtCnjeuktRa_HNZooreG6sTo6PwFOV3qOuDw5x6Q17vbl-l9Nn-cPUxv5pnJQcYMdGmY4chyLCtusDJ5AYUAWYHWCw2skDkvWGXGfLLMBYwZSrlgCzMByCe6ygfk6jC39e6jwxDVxnU-_SsoLkFKVsCYJ2pyoIx3IXhcKmPjvkH02tYKmNp1Vbuuat9V7buqMqn8n9p6-6799riUH6SQ4GaF_nerI9Y3p7KQiQ
CitedBy_id crossref_primary_10_1080_15376494_2023_2192711
crossref_primary_10_1080_17455030_2022_2086320
crossref_primary_10_1007_s00366_020_01024_9
crossref_primary_10_1007_s00366_021_01445_0
crossref_primary_10_1016_j_jmbbm_2023_106321
crossref_primary_10_1016_j_ijmecsci_2021_106873
crossref_primary_10_1080_17455030_2022_2067373
crossref_primary_10_1080_07391102_2020_1751297
crossref_primary_10_1080_15376494_2023_2187492
crossref_primary_10_1080_15397734_2019_1701491
crossref_primary_10_1080_17455030_2022_2106387
crossref_primary_10_1038_s41598_020_61855_w
crossref_primary_10_1080_15376494_2023_2254290
crossref_primary_10_1016_j_enganabound_2022_08_018
crossref_primary_10_1016_j_engstruct_2023_117240
crossref_primary_10_1016_j_tws_2020_106840
crossref_primary_10_1016_j_tws_2020_106683
crossref_primary_10_1177_1077546320923930
crossref_primary_10_1007_s00366_020_01167_9
crossref_primary_10_1080_15397734_2020_1748052
crossref_primary_10_1080_17455030_2022_2038808
crossref_primary_10_1080_17455030_2022_2128223
crossref_primary_10_1016_j_cherd_2024_08_033
crossref_primary_10_1016_j_istruc_2023_06_105
crossref_primary_10_1016_j_ssc_2022_114916
crossref_primary_10_1080_15397734_2021_1919526
crossref_primary_10_1080_17455030_2022_2035015
crossref_primary_10_1016_j_compstruct_2020_112737
crossref_primary_10_1142_S1758825120500192
crossref_primary_10_1080_17455030_2023_2172963
crossref_primary_10_1080_17455030_2022_2105985
crossref_primary_10_1016_j_compstruct_2021_114438
crossref_primary_10_1080_15397734_2021_1907758
crossref_primary_10_1177_1099636220909751
crossref_primary_10_1007_s00366_020_01002_1
crossref_primary_10_1016_j_compstruct_2020_113150
crossref_primary_10_1142_S1758825120500106
crossref_primary_10_1016_j_istruc_2023_04_024
crossref_primary_10_1080_17455030_2022_2076176
crossref_primary_10_1016_j_engstruct_2021_113433
crossref_primary_10_1177_10775463231172051
crossref_primary_10_1080_15397734_2020_1719509
crossref_primary_10_3390_gels8050299
crossref_primary_10_3390_app10041412
crossref_primary_10_1016_j_enganabound_2022_08_021
crossref_primary_10_1080_15397734_2019_1697932
crossref_primary_10_1080_17455030_2019_1662968
crossref_primary_10_1080_17455030_2023_2175169
crossref_primary_10_1016_j_enganabound_2022_03_013
crossref_primary_10_1016_j_compstruct_2021_115003
crossref_primary_10_1007_s00707_023_03809_7
crossref_primary_10_1080_15502287_2021_1949408
crossref_primary_10_1007_s00366_021_01391_x
crossref_primary_10_1080_15397734_2023_2182319
crossref_primary_10_1007_s00366_020_01004_z
crossref_primary_10_1142_S1758825121500289
crossref_primary_10_1142_S0219455423500347
crossref_primary_10_1080_17455030_2022_2061745
crossref_primary_10_1140_epjp_s13360_020_00217_x
crossref_primary_10_1007_s00707_024_04169_6
crossref_primary_10_1016_j_euromechsol_2022_104638
crossref_primary_10_1007_s00366_020_01177_7
crossref_primary_10_3390_sym14112342
crossref_primary_10_1080_17455030_2022_2162154
crossref_primary_10_1007_s00366_020_00949_5
crossref_primary_10_1080_15376494_2023_2206835
crossref_primary_10_1080_07391102_2020_1760939
crossref_primary_10_1080_17455030_2022_2040756
crossref_primary_10_1177_03093247231160617
crossref_primary_10_1177_0954406219883312
crossref_primary_10_1007_s10668_021_01574_y
crossref_primary_10_1080_07391102_2020_1758211
crossref_primary_10_1080_17455030_2022_2048123
crossref_primary_10_1140_epjp_s13360_021_02193_2
crossref_primary_10_3390_nano13050852
crossref_primary_10_1007_s00707_022_03409_x
crossref_primary_10_1007_s00366_021_01399_3
crossref_primary_10_1080_17455030_2022_2050438
crossref_primary_10_1007_s00366_021_01440_5
crossref_primary_10_3390_app10093251
crossref_primary_10_1007_s00366_020_01088_7
crossref_primary_10_1177_10775463231209388
crossref_primary_10_1039_D4CP03320E
crossref_primary_10_1080_17455030_2019_1694729
crossref_primary_10_1142_S1758825120500660
crossref_primary_10_1016_j_ssc_2024_115638
crossref_primary_10_1080_17455030_2021_1948627
crossref_primary_10_1007_s00366_021_01433_4
crossref_primary_10_1080_15397734_2019_1662310
crossref_primary_10_1080_07391102_2020_1747549
crossref_primary_10_1080_15376494_2024_2341267
crossref_primary_10_1016_j_compstruct_2022_115464
crossref_primary_10_1016_j_enganabound_2022_04_016
crossref_primary_10_1080_15376494_2023_2263005
crossref_primary_10_1016_j_euromechsol_2022_104726
crossref_primary_10_1080_17455030_2022_2053607
crossref_primary_10_1016_j_mechmachtheory_2022_104997
crossref_primary_10_1016_j_compstruc_2024_107596
crossref_primary_10_1080_17455030_2022_2091806
crossref_primary_10_1016_j_enganabound_2022_06_003
Cites_doi 10.1007/s00542-016-2822-6
10.1533/9781845695736
10.1016/j.compositesb.2016.11.024
10.1016/j.physe.2016.04.011
10.1002/pc.22972
10.1016/j.commatsci.2018.02.036
10.1140/epjp/i2018-12385-2
10.1016/j.carbon.2013.04.048
10.1007/s10999-018-9431-8
10.1016/j.compstruct.2016.10.056
10.1016/j.ymssp.2017.07.041
10.1007/s40430-019-1591-4
10.1016/j.ijmecsci.2017.04.004
10.1080/01495739.2016.1229145
10.1177/1687814017711811
10.1016/S0032-3861(03)00539-1
10.1177/0954406219832323
10.1016/j.matdes.2017.07.025
10.1080/15397734.2019.1566743
10.1016/j.ast.2018.04.008
10.1016/j.camwa.2018.12.041
10.1016/j.compstruct.2016.11.008
10.1016/0021-9991(72)90089-7
10.1016/j.euromechsol.2018.02.012
10.1016/j.euromechsol.2012.01.003
10.1177/1077546316664022
10.1063/1.3269637
10.1016/j.apm.2018.08.028
10.1016/j.ijmecsci.2017.06.052
10.1016/j.physleta.2011.08.073
10.1177/1077546319828465
10.1021/nn9010472
10.1088/0964-1726/23/12/125036
10.1007/s00366-018-0669-4
10.1080/15376494.2016.1231356
10.1140/epjp/i2017-11551-4
10.1016/j.tej.2018.01.009
10.1007/s11665-016-1882-1
10.1016/j.ijmecsci.2017.12.028
10.1016/j.compstruct.2016.09.070
10.1017/S1727719100002823
10.1126/science.1060928
10.1016/j.apm.2018.04.015
10.1002/smll.200901480
10.1016/j.msea.2018.03.040
10.1016/j.memsci.2014.03.065
10.1002/fld.1650150704
10.1021/ma060733p
10.1016/S0141-0296(01)00088-8
10.1016/j.compstruct.2014.05.048
10.1140/epjp/i2017-11395-x
10.1016/j.compstruct.2017.06.062
10.1140/epjp/i2017-11275-5
10.1016/j.polymer.2010.11.042
10.1016/j.compstruct.2016.11.048
10.1109/TSG.2017.2738444
10.1590/1679-78253410
10.1515/jmbm-2017-0010
10.1166/jnn.2006.903
10.1016/j.msea.2013.06.006
10.1177/1077546315609988
10.1016/j.matdes.2009.06.032
10.1007/s00339-016-0365-4
10.1016/S0020-7683(02)00152-X
10.1002/adfm.201706705
10.1016/j.matdes.2016.10.041
10.1016/j.euromechsol.2017.08.001
10.1016/j.jmapro.2017.11.009
10.1016/0022-247X(71)90110-7
ContentType Journal Article
Copyright Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019.
Copyright_xml – notice: Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019.
DBID AAYXX
CITATION
8FE
8FG
AEUYN
AFKRA
ARAPS
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
HCIFZ
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1140/epjp/i2019-12742-7
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2190-5444
ExternalDocumentID 10_1140_epjp_i2019_12742_7
GroupedDBID -5F
-5G
-BR
-EM
-~C
06D
0R~
203
29~
2JN
2KG
30V
4.4
406
408
8UJ
95.
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
ARMRJ
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
CCPQU
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HCIFZ
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O93
O9J
P9T
PCBAR
PT4
RID
RLLFE
ROL
RSV
S27
S3B
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z7S
Z7Y
ZMTXR
~A9
2VQ
AAAVM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADQRH
AEBTG
AEKMD
AEZWR
AFDZB
AFHIU
AFOHR
AGJBK
AHPBZ
AHSBF
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
CITATION
O9-
PHGZM
PHGZT
S1Z
8FE
8FG
ABRTQ
DWQXO
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c319t-1a7c0c2e03e7d2cedc3515419d1aaba10593250dc628f34160e99b0bc81138ad3
IEDL.DBID U2A
ISSN 2190-5444
IngestDate Sun Sep 07 07:10:37 EDT 2025
Thu Apr 24 23:12:12 EDT 2025
Tue Jul 01 02:42:16 EDT 2025
Fri Feb 21 02:31:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-1a7c0c2e03e7d2cedc3515419d1aaba10593250dc628f34160e99b0bc81138ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7562-0704
PQID 2919905162
PQPubID 2044220
ParticipantIDs proquest_journals_2919905162
crossref_citationtrail_10_1140_epjp_i2019_12742_7
crossref_primary_10_1140_epjp_i2019_12742_7
springer_journals_10_1140_epjp_i2019_12742_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle European physical journal plus
PublicationTitleAbbrev Eur. Phys. J. Plus
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References HabibiM.HashemiR.SadeghiE.FazaeliA.GhazanfariA.LashiniH.J. Mater. Eng. Perform.20162538210.1007/s11665-016-1882-1
HabibiM.HashemiR.GhazanfariA.NaghdabadiR.AssempourA.Proc. Inst. Mech. Eng. Part L2018232625
SafarpourH.GhanbariB.GhadiriM.Appl. Math. Model.201965428388093910.1016/j.apm.2018.08.028
PourjabariA.HajilakZ.E.MohammadiA.HabibiM.SafarpourH.Comput. Math. Appl.2019772608394507810.1016/j.camwa.2018.12.041
FangX.-Q.ZhuC.-S.Comput. Struct.2017160119110.1016/j.compstruct.2016.11.008
FanJ.HuangJ.DingJ.ZhangJ.Adv. Mech. Eng.201791687814017711811
FangJ.GuJ.WangH.Int. J. Mech. Sci.201813618810.1016/j.ijmecsci.2017.12.028
SafarpourH.GhanizadehS.A.HabibiM.Eur. Phys. J. Plus201813353210.1140/epjp/i2018-12385-2
WangY.YuJ.DaiW.SongY.WangD.ZengL.Polym. Compos.20153655610.1002/pc.22972
SinghV.K.PandaS.K.J. Vibrat. Control201723207810.1177/1077546315609988
SahmaniS.AghdamM.Comput. Struct.20171789710.1016/j.compstruct.2017.06.062
KheibariF.BeniY.T.Mater. Design201711457210.1016/j.matdes.2016.10.041
FengC.KitipornchaiS.YangJ.Composites Part B201711013210.1016/j.compositesb.2016.11.024
MontazeriA.Rafii-TabarH.Phys. Lett. A201137540342011PhLA..375.4034M10.1016/j.physleta.2011.08.073
N.K. Kothurkar, Solid State, Transparent, Cadmium Sulfide-polymer Nanocomposites, University of Florida, 2004
EftekharH.ZeynaliH.NasihatgozarM.Mech. Adv. Mater. Struct.201825110.1080/15376494.2016.1231356
RazaviH.BabadiA.F.BeniY.T.Comput. Struct.2017160129910.1016/j.compstruct.2016.10.056
ShiG.ArabyS.GibsonC.T.MengQ.ZhuS.MaJ.Adv. Funct. Mater.201828170670510.1002/adfm.201706705
MortazaviB.BenzeraraO.MeyerH.BardonJ.AhziS.Carbon20136035610.1016/j.carbon.2013.04.048
GhadiriM.SafarpourH.J. Therm. Stresses2016405510.1080/01495739.2016.1229145
PourmoayedA.FardK.M.ShahraviM.Latin Am. J. Solids Struct.20171471410.1590/1679-78253410
RafieeM.A.RafieeJ.SrivastavaI.WangZ.SongH.YuZ.Z.Small2010617910.1002/smll.200901480
BaughmanR.H.ZakhidovA.A.De HeerW.A.Science20022977872002Sci...297..787B10.1126/science.1060928
SafarpourH.PourghaderJ.HabibiM.J. Vibrat. Control201925154310.1177/1077546319828465
SafarpourH.MohammadiK.GhadiriM.RajabpourA.Eur. Phys. J. Plus201713228110.1140/epjp/i2017-11551-4
GhadiriM.ShafieiN.SafarpourH.Microsys. Technol.201723104510.1007/s00542-016-2822-6
YangF.ChongA.LamD.TongP.Int. J. Solids Struct.200239273110.1016/S0020-7683(02)00152-X
EbrahimiF.SafarpourH.Wind Struct.201827431
KeL.WangY.ReddyJ.Comput. Struct.201411662610.1016/j.compstruct.2014.05.048
MohammadiK.RajabpourA.GhadiriM.Comput. Mater. Sci.201814810410.1016/j.commatsci.2018.02.036
Z. Esmailpoor Hajilak, J. Pourghader, D. Hashemabadi, F. Sharifi Bagh, M. Habibi, H. Safarpour, Mech. Based Design Struct. Machines, https://doi.org/10.1080/15397734.2019.1566743
MohammadiK.BaroutiM.M.SafarpourH.GhadiriM.J. Braz. Soc. Mech. Sci. Eng.2019419310.1007/s40430-019-1591-4
SongM.KitipornchaiS.YangJ.Comput. Struct.201715957910.1016/j.compstruct.2016.09.070
Shayan-AminS.DalirH.FarshidianfarA.J. Mech.20092533710.1017/S1727719100002823
EbrahimiF.HajilakZ.E.HabibiM.SafarpourH.Proc. Inst. Mech. Eng. Part C2019233459010.1177/0954406219832323
ArefiM.Eur. J. Mech.-A2018702262018EPJB...91..226A379504910.1016/j.euromechsol.2018.02.012
ShojaeefardM.MahinzareM.SafarpourH.GoogarchinH.S.GhadiriM.Appl. Math. Model.201861255381820410.1016/j.apm.2018.04.015
ShafieiN.KazemiM.GhadiriM.Physica E201683742016PhyE...83...74S10.1016/j.physe.2016.04.011
ZhuC.-S.FangX.-Q.LiuJ.-X.LiH.-Y.Eur. J. Mech.-A20176642310.1016/j.euromechsol.2017.08.001
SunJ.ZhaoJ.Mater. Sci. Eng. A2018723110.1016/j.msea.2018.03.040
YangJ.WuH.KitipornchaiS.Comput. Struct.201716111110.1016/j.compstruct.2016.11.048
HosseiniS.M.R.HabibiM.AssempourA.Modares Mech. Eng.201818174
HabibiM.HashemiR.TaftiM.F.AssempourA.J. Manufact. Proc.20183131010.1016/j.jmapro.2017.11.009
GhadiriM.SafarpourH.Appl. Phys. A20161228332016ApPhA.122..833G10.1007/s00339-016-0365-4
MohammadimehrM.OkhraviS.Akhavan AlaviS.J. Vibrat. Control201824155110.1177/1077546316664022
ChecchettoR.MiotelloA.NicolaisL.CarotenutoG.J. Membrane Sci.201446319610.1016/j.memsci.2014.03.065
A. Vafamehr, M.E. Khodayar, S.D. Manshadi, I. Ahmad, J. Lin, IEEE Trans. Smart Grid103052017
F. Ebrahimi, M. Habibi, H. Safarpour, Eng. Comput. (2018) https://doi.org/10.1007/s00366-018-0669-4
NasihatgozarM.KhaliliS.J. Appl. Comput. Mech.2017316
SafarpourH.MohammadiK.GhadiriM.J. Mech. Behav. Mater.201726910.1515/jmbm-2017-0010
KhaliliS.MohammadiY.Eur. J. Mech.-A2012356110.1016/j.euromechsol.2012.01.003
WangQ.Eng. Struct.20022419910.1016/S0141-0296(01)00088-8
SahmaniS.AghdamM.Int. J. Mech. Sci.20171319510.1016/j.ijmecsci.2017.06.052
KeL.-L.WangY.-S.YangJ.KitipornchaiS.Smart Mater. Struct.20142312503610.1088/0964-1726/23/12/125036
BellmanR.KashefB.CastiJ.J. Comput. Phys.197210401972JCoPh..10...40B10.1016/0021-9991(72)90089-7
HabibiM.GhazanfariA.AssempourA.NaghdabadiR.HashemiR.Mech. Eng.201748379
WuH.KitipornchaiS.YangJ.Mater. Design201713243010.1016/j.matdes.2017.07.025
PottsJ.R.DreyerD.R.BielawskiC.W.RuoffR.S.Polymer201152510.1016/j.polymer.2010.11.042
BellmanR.CastiJ.J. Math. Anal. Appl.19713423527851410.1016/0022-247X(71)90110-7
MoniruzzamanM.WineyK.I.Macromolecules20063951942006MaMol..39.5194M10.1021/ma060733p
BaibaracM.Gómez-RomeroP.J. Nanosci. Nanotechnol.2006628910.1166/jnn.2006.903
RafieeM.A.RafieeJ.WangZ.SongH.YuZ.-Z.KoratkarN.ACS Nano20093388410.1021/nn9010472
H. Safarpour, Z.E. Hajilak, M. Habibi, Int. J. Mech. Mater. Design, https://doi.org/10.1007/s10999-018-9431-8
VafamehrA.KhodayarM.E.Electr. J.2018314010.1016/j.tej.2018.01.009
GhadiriM.ShafieiN.SafarpourH.Microsyst. Technol.201723104510.1007/s00542-016-2822-6
MahinzareM.RanjbarpurH.GhadiriM.Mech. Syst. Signal Proc.20181001882018MSSP..100..188M10.1016/j.ymssp.2017.07.041
S. Rajasekaran, Structural dynamics of earthquake engineering: theory and application using MATHEMATICA and MATLAB (Elsevier, 2009)
SandlerJ.KirkJ.KinlochI.ShafferM.WindleA.Polymer200344589310.1016/S0032-3861(03)00539-1
ShuC.RichardsB.E.Int. J. Numer. Methods Fluids1992157911992IJNMF..15..791S10.1002/fld.1650150704
RafieeM.RafieeJ.YuZ.-Z.KoratkarN.Appl. Phys. Lett.2009952231032009ApPhL..95v3103R10.1063/1.3269637
DehkordiS.F.BeniY.T.Int. J. Mech. Sci.201712812510.1016/j.ijmecsci.2017.04.004
NinhD.G.BichD.H.Aerospace Sci. Technol.20187759510.1016/j.ast.2018.04.008
VafamehrA.KhodayarM.E.AbdelghanyK.IEEE Trans. Smart Grid20191030510.1109/TSG.2017.2738444
TsaiJ.-L.TuJ.-F.Mater. & Design20103119410.1016/j.matdes.2009.06.032
BarootiM.M.SafarpourH.GhadiriM.Eur. Phys. J. Plus2017132610.1140/epjp/i2017-11275-5
NietoA.LahiriD.AgarwalA.Mater. Sci. Eng. A201358233810.1016/j.msea.2013.06.006
FazaeliA.HabibiM.EkramiA.Metall. Eng.20161984
GhazanfariA.AssempuorA.HabibiM.HashemiR.Modares Mech. Eng.201616137
MohammadiK.MahinzareM.RajabpourA.GhadiriM.Eur. Phys. J. Plus201713211510.1140/epjp/i2017-11395-x
C. Shu, Differential quadrature and its application in engineering (Springer Science & Business Media, 2012)
H. Wu (12742_CR80) 2017; 132
12742_CR37
R. Bellman (12742_CR73) 1972; 10
K. Mohammadi (12742_CR33) 2017; 132
12742_CR76
J.R. Potts (12742_CR8) 2011; 52
M. Rafiee (12742_CR6) 2009; 95
A. Montazeri (12742_CR9) 2011; 375
H. Safarpour (12742_CR77) 2019; 25
12742_CR74
M. Ghadiri (12742_CR40) 2016; 122
S. Sahmani (12742_CR49) 2017; 178
H. Razavi (12742_CR55) 2017; 160
C. Feng (12742_CR21) 2017; 110
M. Habibi (12742_CR23) 2018; 31
C. Shu (12742_CR75) 1992; 15
M. Ghadiri (12742_CR36) 2017; 23
R. Bellman (12742_CR72) 1971; 34
Y. Wang (12742_CR11) 2015; 36
F. Kheibari (12742_CR53) 2017; 114
M. Baibarac (12742_CR15) 2006; 6
V.K. Singh (12742_CR61) 2017; 23
H. Eftekhar (12742_CR58) 2018; 25
M. Ghadiri (12742_CR30) 2016; 40
G. Shi (12742_CR1) 2018; 28
F. Ebrahimi (12742_CR35) 2019; 233
M. Habibi (12742_CR24) 2016; 25
A. Pourjabari (12742_CR38) 2019; 77
F. Yang (12742_CR70) 2002; 39
M. Habibi (12742_CR22) 2018; 232
M. Ghadiri (12742_CR29) 2017; 23
M. Habibi (12742_CR25) 2017; 48
X.-Q. Fang (12742_CR57) 2017; 160
R. Checchetto (12742_CR3) 2014; 463
M. Mohammadimehr (12742_CR59) 2018; 24
M. Moniruzzaman (12742_CR18) 2006; 39
H. Safarpour (12742_CR47) 2018; 133
M.A. Rafiee (12742_CR7) 2010; 6
J.-L. Tsai (12742_CR32) 2010; 31
S. Khalili (12742_CR68) 2012; 35
L. Ke (12742_CR71) 2014; 116
A. Pourmoayed (12742_CR69) 2017; 14
M. Mahinzare (12742_CR63) 2018; 100
M. Song (12742_CR65) 2017; 159
A. Fazaeli (12742_CR27) 2016; 19
S.M.R. Hosseini (12742_CR28) 2018; 18
M.A. Rafiee (12742_CR5) 2009; 3
M. Nasihatgozar (12742_CR67) 2017; 3
S. Sahmani (12742_CR50) 2017; 131
12742_CR19
12742_CR13
M. Arefi (12742_CR54) 2018; 70
A. Nieto (12742_CR4) 2013; 582
J. Sandler (12742_CR17) 2003; 44
K. Mohammadi (12742_CR34) 2018; 148
A. Vafamehr (12742_CR12) 2018; 31
A. Ghazanfari (12742_CR26) 2016; 16
J. Fan (12742_CR62) 2017; 9
R.H. Baughman (12742_CR16) 2002; 297
A. Vafamehr (12742_CR14) 2019; 10
J. Fang (12742_CR64) 2018; 136
S.F. Dehkordi (12742_CR52) 2017; 128
J. Yang (12742_CR20) 2017; 161
C.-S. Zhu (12742_CR60) 2017; 66
L.-L. Ke (12742_CR79) 2014; 23
H. Safarpour (12742_CR42) 2017; 26
12742_CR48
K. Mohammadi (12742_CR45) 2019; 41
F. Ebrahimi (12742_CR46) 2018; 27
B. Mortazavi (12742_CR10) 2013; 60
N. Shafiei (12742_CR78) 2016; 83
H. Safarpour (12742_CR41) 2017; 132
J. Sun (12742_CR2) 2018; 723
D.G. Ninh (12742_CR56) 2018; 77
S. Shayan-Amin (12742_CR31) 2009; 25
H. Safarpour (12742_CR44) 2019; 65
M. Shojaeefard (12742_CR43) 2018; 61
M.M. Barooti (12742_CR51) 2017; 132
12742_CR39
Q. Wang (12742_CR66) 2002; 24
References_xml – reference: SafarpourH.MohammadiK.GhadiriM.J. Mech. Behav. Mater.201726910.1515/jmbm-2017-0010
– reference: WangY.YuJ.DaiW.SongY.WangD.ZengL.Polym. Compos.20153655610.1002/pc.22972
– reference: YangJ.WuH.KitipornchaiS.Comput. Struct.201716111110.1016/j.compstruct.2016.11.048
– reference: SafarpourH.GhanizadehS.A.HabibiM.Eur. Phys. J. Plus201813353210.1140/epjp/i2018-12385-2
– reference: A. Vafamehr, M.E. Khodayar, S.D. Manshadi, I. Ahmad, J. Lin, IEEE Trans. Smart Grid103052017
– reference: SafarpourH.GhanbariB.GhadiriM.Appl. Math. Model.201965428388093910.1016/j.apm.2018.08.028
– reference: RafieeM.A.RafieeJ.WangZ.SongH.YuZ.-Z.KoratkarN.ACS Nano20093388410.1021/nn9010472
– reference: SafarpourH.PourghaderJ.HabibiM.J. Vibrat. Control201925154310.1177/1077546319828465
– reference: SinghV.K.PandaS.K.J. Vibrat. Control201723207810.1177/1077546315609988
– reference: EftekharH.ZeynaliH.NasihatgozarM.Mech. Adv. Mater. Struct.201825110.1080/15376494.2016.1231356
– reference: MortazaviB.BenzeraraO.MeyerH.BardonJ.AhziS.Carbon20136035610.1016/j.carbon.2013.04.048
– reference: SandlerJ.KirkJ.KinlochI.ShafferM.WindleA.Polymer200344589310.1016/S0032-3861(03)00539-1
– reference: GhadiriM.SafarpourH.J. Therm. Stresses2016405510.1080/01495739.2016.1229145
– reference: FengC.KitipornchaiS.YangJ.Composites Part B201711013210.1016/j.compositesb.2016.11.024
– reference: GhadiriM.ShafieiN.SafarpourH.Microsyst. Technol.201723104510.1007/s00542-016-2822-6
– reference: ShojaeefardM.MahinzareM.SafarpourH.GoogarchinH.S.GhadiriM.Appl. Math. Model.201861255381820410.1016/j.apm.2018.04.015
– reference: WuH.KitipornchaiS.YangJ.Mater. Design201713243010.1016/j.matdes.2017.07.025
– reference: ZhuC.-S.FangX.-Q.LiuJ.-X.LiH.-Y.Eur. J. Mech.-A20176642310.1016/j.euromechsol.2017.08.001
– reference: HabibiM.HashemiR.TaftiM.F.AssempourA.J. Manufact. Proc.20183131010.1016/j.jmapro.2017.11.009
– reference: EbrahimiF.SafarpourH.Wind Struct.201827431
– reference: SahmaniS.AghdamM.Int. J. Mech. Sci.20171319510.1016/j.ijmecsci.2017.06.052
– reference: GhadiriM.ShafieiN.SafarpourH.Microsys. Technol.201723104510.1007/s00542-016-2822-6
– reference: NietoA.LahiriD.AgarwalA.Mater. Sci. Eng. A201358233810.1016/j.msea.2013.06.006
– reference: PottsJ.R.DreyerD.R.BielawskiC.W.RuoffR.S.Polymer201152510.1016/j.polymer.2010.11.042
– reference: KeL.WangY.ReddyJ.Comput. Struct.201411662610.1016/j.compstruct.2014.05.048
– reference: C. Shu, Differential quadrature and its application in engineering (Springer Science & Business Media, 2012)
– reference: ShuC.RichardsB.E.Int. J. Numer. Methods Fluids1992157911992IJNMF..15..791S10.1002/fld.1650150704
– reference: NasihatgozarM.KhaliliS.J. Appl. Comput. Mech.2017316
– reference: ShafieiN.KazemiM.GhadiriM.Physica E201683742016PhyE...83...74S10.1016/j.physe.2016.04.011
– reference: SafarpourH.MohammadiK.GhadiriM.RajabpourA.Eur. Phys. J. Plus201713228110.1140/epjp/i2017-11551-4
– reference: MohammadiK.RajabpourA.GhadiriM.Comput. Mater. Sci.201814810410.1016/j.commatsci.2018.02.036
– reference: F. Ebrahimi, M. Habibi, H. Safarpour, Eng. Comput. (2018) https://doi.org/10.1007/s00366-018-0669-4
– reference: BellmanR.CastiJ.J. Math. Anal. Appl.19713423527851410.1016/0022-247X(71)90110-7
– reference: Z. Esmailpoor Hajilak, J. Pourghader, D. Hashemabadi, F. Sharifi Bagh, M. Habibi, H. Safarpour, Mech. Based Design Struct. Machines, https://doi.org/10.1080/15397734.2019.1566743
– reference: MohammadiK.MahinzareM.RajabpourA.GhadiriM.Eur. Phys. J. Plus201713211510.1140/epjp/i2017-11395-x
– reference: BaibaracM.Gómez-RomeroP.J. Nanosci. Nanotechnol.2006628910.1166/jnn.2006.903
– reference: BaughmanR.H.ZakhidovA.A.De HeerW.A.Science20022977872002Sci...297..787B10.1126/science.1060928
– reference: KeL.-L.WangY.-S.YangJ.KitipornchaiS.Smart Mater. Struct.20142312503610.1088/0964-1726/23/12/125036
– reference: PourjabariA.HajilakZ.E.MohammadiA.HabibiM.SafarpourH.Comput. Math. Appl.2019772608394507810.1016/j.camwa.2018.12.041
– reference: FanJ.HuangJ.DingJ.ZhangJ.Adv. Mech. Eng.201791687814017711811
– reference: BellmanR.KashefB.CastiJ.J. Comput. Phys.197210401972JCoPh..10...40B10.1016/0021-9991(72)90089-7
– reference: KhaliliS.MohammadiY.Eur. J. Mech.-A2012356110.1016/j.euromechsol.2012.01.003
– reference: FazaeliA.HabibiM.EkramiA.Metall. Eng.20161984
– reference: N.K. Kothurkar, Solid State, Transparent, Cadmium Sulfide-polymer Nanocomposites, University of Florida, 2004
– reference: NinhD.G.BichD.H.Aerospace Sci. Technol.20187759510.1016/j.ast.2018.04.008
– reference: SongM.KitipornchaiS.YangJ.Comput. Struct.201715957910.1016/j.compstruct.2016.09.070
– reference: FangJ.GuJ.WangH.Int. J. Mech. Sci.201813618810.1016/j.ijmecsci.2017.12.028
– reference: YangF.ChongA.LamD.TongP.Int. J. Solids Struct.200239273110.1016/S0020-7683(02)00152-X
– reference: FangX.-Q.ZhuC.-S.Comput. Struct.2017160119110.1016/j.compstruct.2016.11.008
– reference: RafieeM.A.RafieeJ.SrivastavaI.WangZ.SongH.YuZ.Z.Small2010617910.1002/smll.200901480
– reference: GhazanfariA.AssempuorA.HabibiM.HashemiR.Modares Mech. Eng.201616137
– reference: MohammadiK.BaroutiM.M.SafarpourH.GhadiriM.J. Braz. Soc. Mech. Sci. Eng.2019419310.1007/s40430-019-1591-4
– reference: PourmoayedA.FardK.M.ShahraviM.Latin Am. J. Solids Struct.20171471410.1590/1679-78253410
– reference: TsaiJ.-L.TuJ.-F.Mater. & Design20103119410.1016/j.matdes.2009.06.032
– reference: HabibiM.GhazanfariA.AssempourA.NaghdabadiR.HashemiR.Mech. Eng.201748379
– reference: MontazeriA.Rafii-TabarH.Phys. Lett. A201137540342011PhLA..375.4034M10.1016/j.physleta.2011.08.073
– reference: MoniruzzamanM.WineyK.I.Macromolecules20063951942006MaMol..39.5194M10.1021/ma060733p
– reference: EbrahimiF.HajilakZ.E.HabibiM.SafarpourH.Proc. Inst. Mech. Eng. Part C2019233459010.1177/0954406219832323
– reference: RazaviH.BabadiA.F.BeniY.T.Comput. Struct.2017160129910.1016/j.compstruct.2016.10.056
– reference: S. Rajasekaran, Structural dynamics of earthquake engineering: theory and application using MATHEMATICA and MATLAB (Elsevier, 2009)
– reference: ChecchettoR.MiotelloA.NicolaisL.CarotenutoG.J. Membrane Sci.201446319610.1016/j.memsci.2014.03.065
– reference: GhadiriM.SafarpourH.Appl. Phys. A20161228332016ApPhA.122..833G10.1007/s00339-016-0365-4
– reference: VafamehrA.KhodayarM.E.Electr. J.2018314010.1016/j.tej.2018.01.009
– reference: WangQ.Eng. Struct.20022419910.1016/S0141-0296(01)00088-8
– reference: RafieeM.RafieeJ.YuZ.-Z.KoratkarN.Appl. Phys. Lett.2009952231032009ApPhL..95v3103R10.1063/1.3269637
– reference: HosseiniS.M.R.HabibiM.AssempourA.Modares Mech. Eng.201818174
– reference: MahinzareM.RanjbarpurH.GhadiriM.Mech. Syst. Signal Proc.20181001882018MSSP..100..188M10.1016/j.ymssp.2017.07.041
– reference: VafamehrA.KhodayarM.E.AbdelghanyK.IEEE Trans. Smart Grid20191030510.1109/TSG.2017.2738444
– reference: SahmaniS.AghdamM.Comput. Struct.20171789710.1016/j.compstruct.2017.06.062
– reference: KheibariF.BeniY.T.Mater. Design201711457210.1016/j.matdes.2016.10.041
– reference: HabibiM.HashemiR.SadeghiE.FazaeliA.GhazanfariA.LashiniH.J. Mater. Eng. Perform.20162538210.1007/s11665-016-1882-1
– reference: SunJ.ZhaoJ.Mater. Sci. Eng. A2018723110.1016/j.msea.2018.03.040
– reference: ArefiM.Eur. J. Mech.-A2018702262018EPJB...91..226A379504910.1016/j.euromechsol.2018.02.012
– reference: ShiG.ArabyS.GibsonC.T.MengQ.ZhuS.MaJ.Adv. Funct. Mater.201828170670510.1002/adfm.201706705
– reference: MohammadimehrM.OkhraviS.Akhavan AlaviS.J. Vibrat. Control201824155110.1177/1077546316664022
– reference: Shayan-AminS.DalirH.FarshidianfarA.J. Mech.20092533710.1017/S1727719100002823
– reference: DehkordiS.F.BeniY.T.Int. J. Mech. Sci.201712812510.1016/j.ijmecsci.2017.04.004
– reference: HabibiM.HashemiR.GhazanfariA.NaghdabadiR.AssempourA.Proc. Inst. Mech. Eng. Part L2018232625
– reference: H. Safarpour, Z.E. Hajilak, M. Habibi, Int. J. Mech. Mater. Design, https://doi.org/10.1007/s10999-018-9431-8
– reference: BarootiM.M.SafarpourH.GhadiriM.Eur. Phys. J. Plus2017132610.1140/epjp/i2017-11275-5
– volume: 23
  start-page: 1045
  year: 2017
  ident: 12742_CR29
  publication-title: Microsys. Technol.
  doi: 10.1007/s00542-016-2822-6
– ident: 12742_CR76
  doi: 10.1533/9781845695736
– volume: 110
  start-page: 132
  year: 2017
  ident: 12742_CR21
  publication-title: Composites Part B
  doi: 10.1016/j.compositesb.2016.11.024
– volume: 83
  start-page: 74
  year: 2016
  ident: 12742_CR78
  publication-title: Physica E
  doi: 10.1016/j.physe.2016.04.011
– volume: 36
  start-page: 556
  year: 2015
  ident: 12742_CR11
  publication-title: Polym. Compos.
  doi: 10.1002/pc.22972
– volume: 148
  start-page: 104
  year: 2018
  ident: 12742_CR34
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2018.02.036
– volume: 133
  start-page: 532
  year: 2018
  ident: 12742_CR47
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2018-12385-2
– volume: 60
  start-page: 356
  year: 2013
  ident: 12742_CR10
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.04.048
– ident: 12742_CR39
  doi: 10.1007/s10999-018-9431-8
– volume: 160
  start-page: 1299
  year: 2017
  ident: 12742_CR55
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruct.2016.10.056
– volume: 100
  start-page: 188
  year: 2018
  ident: 12742_CR63
  publication-title: Mech. Syst. Signal Proc.
  doi: 10.1016/j.ymssp.2017.07.041
– volume: 18
  start-page: 174
  year: 2018
  ident: 12742_CR28
  publication-title: Modares Mech. Eng.
– volume: 41
  start-page: 93
  year: 2019
  ident: 12742_CR45
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-019-1591-4
– volume: 128
  start-page: 125
  year: 2017
  ident: 12742_CR52
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2017.04.004
– volume: 40
  start-page: 55
  year: 2016
  ident: 12742_CR30
  publication-title: J. Therm. Stresses
  doi: 10.1080/01495739.2016.1229145
– volume: 9
  start-page: 168781401771181
  year: 2017
  ident: 12742_CR62
  publication-title: Adv. Mech. Eng.
  doi: 10.1177/1687814017711811
– volume: 44
  start-page: 5893
  year: 2003
  ident: 12742_CR17
  publication-title: Polymer
  doi: 10.1016/S0032-3861(03)00539-1
– volume: 233
  start-page: 4590
  year: 2019
  ident: 12742_CR35
  publication-title: Proc. Inst. Mech. Eng. Part C
  doi: 10.1177/0954406219832323
– volume: 132
  start-page: 430
  year: 2017
  ident: 12742_CR80
  publication-title: Mater. Design
  doi: 10.1016/j.matdes.2017.07.025
– ident: 12742_CR37
  doi: 10.1080/15397734.2019.1566743
– volume: 77
  start-page: 595
  year: 2018
  ident: 12742_CR56
  publication-title: Aerospace Sci. Technol.
  doi: 10.1016/j.ast.2018.04.008
– volume: 77
  start-page: 2608
  year: 2019
  ident: 12742_CR38
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2018.12.041
– volume: 160
  start-page: 1191
  year: 2017
  ident: 12742_CR57
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruct.2016.11.008
– volume: 10
  start-page: 40
  year: 1972
  ident: 12742_CR73
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(72)90089-7
– volume: 70
  start-page: 226
  year: 2018
  ident: 12742_CR54
  publication-title: Eur. J. Mech.-A
  doi: 10.1016/j.euromechsol.2018.02.012
– volume: 35
  start-page: 61
  year: 2012
  ident: 12742_CR68
  publication-title: Eur. J. Mech.-A
  doi: 10.1016/j.euromechsol.2012.01.003
– volume: 3
  start-page: 16
  year: 2017
  ident: 12742_CR67
  publication-title: J. Appl. Comput. Mech.
– ident: 12742_CR19
– volume: 24
  start-page: 1551
  year: 2018
  ident: 12742_CR59
  publication-title: J. Vibrat. Control
  doi: 10.1177/1077546316664022
– volume: 95
  start-page: 223103
  year: 2009
  ident: 12742_CR6
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3269637
– volume: 65
  start-page: 428
  year: 2019
  ident: 12742_CR44
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2018.08.028
– volume: 131
  start-page: 95
  year: 2017
  ident: 12742_CR50
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2017.06.052
– volume: 375
  start-page: 4034
  year: 2011
  ident: 12742_CR9
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2011.08.073
– volume: 25
  start-page: 1543
  year: 2019
  ident: 12742_CR77
  publication-title: J. Vibrat. Control
  doi: 10.1177/1077546319828465
– volume: 3
  start-page: 3884
  year: 2009
  ident: 12742_CR5
  publication-title: ACS Nano
  doi: 10.1021/nn9010472
– volume: 23
  start-page: 1045
  year: 2017
  ident: 12742_CR36
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-016-2822-6
– volume: 23
  start-page: 125036
  year: 2014
  ident: 12742_CR79
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/23/12/125036
– ident: 12742_CR48
  doi: 10.1007/s00366-018-0669-4
– volume: 25
  start-page: 1
  year: 2018
  ident: 12742_CR58
  publication-title: Mech. Adv. Mater. Struct.
  doi: 10.1080/15376494.2016.1231356
– volume: 132
  start-page: 281
  year: 2017
  ident: 12742_CR41
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2017-11551-4
– ident: 12742_CR74
– volume: 31
  start-page: 40
  year: 2018
  ident: 12742_CR12
  publication-title: Electr. J.
  doi: 10.1016/j.tej.2018.01.009
– volume: 232
  start-page: 625
  year: 2018
  ident: 12742_CR22
  publication-title: Proc. Inst. Mech. Eng. Part L
– volume: 25
  start-page: 382
  year: 2016
  ident: 12742_CR24
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-016-1882-1
– volume: 27
  start-page: 431
  year: 2018
  ident: 12742_CR46
  publication-title: Wind Struct.
– volume: 136
  start-page: 188
  year: 2018
  ident: 12742_CR64
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2017.12.028
– volume: 159
  start-page: 579
  year: 2017
  ident: 12742_CR65
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruct.2016.09.070
– volume: 25
  start-page: 337
  year: 2009
  ident: 12742_CR31
  publication-title: J. Mech.
  doi: 10.1017/S1727719100002823
– volume: 297
  start-page: 787
  year: 2002
  ident: 12742_CR16
  publication-title: Science
  doi: 10.1126/science.1060928
– volume: 61
  start-page: 255
  year: 2018
  ident: 12742_CR43
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2018.04.015
– volume: 6
  start-page: 179
  year: 2010
  ident: 12742_CR7
  publication-title: Small
  doi: 10.1002/smll.200901480
– volume: 723
  start-page: 1
  year: 2018
  ident: 12742_CR2
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2018.03.040
– volume: 16
  start-page: 137
  year: 2016
  ident: 12742_CR26
  publication-title: Modares Mech. Eng.
– volume: 463
  start-page: 196
  year: 2014
  ident: 12742_CR3
  publication-title: J. Membrane Sci.
  doi: 10.1016/j.memsci.2014.03.065
– volume: 15
  start-page: 791
  year: 1992
  ident: 12742_CR75
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.1650150704
– volume: 39
  start-page: 5194
  year: 2006
  ident: 12742_CR18
  publication-title: Macromolecules
  doi: 10.1021/ma060733p
– volume: 24
  start-page: 199
  year: 2002
  ident: 12742_CR66
  publication-title: Eng. Struct.
  doi: 10.1016/S0141-0296(01)00088-8
– volume: 116
  start-page: 626
  year: 2014
  ident: 12742_CR71
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruct.2014.05.048
– volume: 132
  start-page: 115
  year: 2017
  ident: 12742_CR33
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2017-11395-x
– volume: 178
  start-page: 97
  year: 2017
  ident: 12742_CR49
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruct.2017.06.062
– volume: 132
  start-page: 6
  year: 2017
  ident: 12742_CR51
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2017-11275-5
– volume: 52
  start-page: 5
  year: 2011
  ident: 12742_CR8
  publication-title: Polymer
  doi: 10.1016/j.polymer.2010.11.042
– volume: 161
  start-page: 111
  year: 2017
  ident: 12742_CR20
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruct.2016.11.048
– volume: 10
  start-page: 305
  year: 2019
  ident: 12742_CR14
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2017.2738444
– volume: 14
  start-page: 714
  year: 2017
  ident: 12742_CR69
  publication-title: Latin Am. J. Solids Struct.
  doi: 10.1590/1679-78253410
– volume: 26
  start-page: 9
  year: 2017
  ident: 12742_CR42
  publication-title: J. Mech. Behav. Mater.
  doi: 10.1515/jmbm-2017-0010
– volume: 19
  start-page: 84
  year: 2016
  ident: 12742_CR27
  publication-title: Metall. Eng.
– volume: 6
  start-page: 289
  year: 2006
  ident: 12742_CR15
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2006.903
– volume: 582
  start-page: 338
  year: 2013
  ident: 12742_CR4
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2013.06.006
– volume: 23
  start-page: 2078
  year: 2017
  ident: 12742_CR61
  publication-title: J. Vibrat. Control
  doi: 10.1177/1077546315609988
– volume: 48
  start-page: 379
  year: 2017
  ident: 12742_CR25
  publication-title: Mech. Eng.
– volume: 31
  start-page: 194
  year: 2010
  ident: 12742_CR32
  publication-title: Mater. & Design
  doi: 10.1016/j.matdes.2009.06.032
– ident: 12742_CR13
– volume: 122
  start-page: 833
  year: 2016
  ident: 12742_CR40
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-016-0365-4
– volume: 39
  start-page: 2731
  year: 2002
  ident: 12742_CR70
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/S0020-7683(02)00152-X
– volume: 28
  start-page: 1706705
  year: 2018
  ident: 12742_CR1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201706705
– volume: 114
  start-page: 572
  year: 2017
  ident: 12742_CR53
  publication-title: Mater. Design
  doi: 10.1016/j.matdes.2016.10.041
– volume: 66
  start-page: 423
  year: 2017
  ident: 12742_CR60
  publication-title: Eur. J. Mech.-A
  doi: 10.1016/j.euromechsol.2017.08.001
– volume: 31
  start-page: 310
  year: 2018
  ident: 12742_CR23
  publication-title: J. Manufact. Proc.
  doi: 10.1016/j.jmapro.2017.11.009
– volume: 34
  start-page: 235
  year: 1971
  ident: 12742_CR72
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(71)90110-7
SSID ssj0000491494
Score 2.5591803
Snippet . In this article, the vibration characteristics of high-speed rotating graphene-nanoplatelets (GNP)-reinforced composite cylindrical nanoshell coupled with a...
In this article, the vibration characteristics of high-speed rotating graphene-nanoplatelets (GNP)-reinforced composite cylindrical nanoshell coupled with a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 307
SubjectTerms Angular velocity
Applied and Technical Physics
Atomic
Boundary conditions
Complex Systems
Condensed Matter Physics
Graphene
High speed
Material properties
Materials science
Mathematical and Computational Physics
Maxwell's equations
Microelectromechanical systems
Molecular
Nanoelectromechanical systems
Nanosensors
Nanostructure
Optical and Plasma Physics
Physics
Physics and Astronomy
Piezoelectric actuators
Potential energy
Quadratures
Regular Article
Rotation
Spinning (materials)
Theoretical
Velocity
Vibration analysis
Weighting functions
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA66IngRn7i-yMGbhm3S2CYnEXEVURFxZW8lTRNZWdpq14u_3pk-XBT03DSHmUnmm5nMfIQcKaM991jV1d4zqaxiyknBHBiAyaRxscbm5Lv76Hokb8an4zbhVrXPKrs7sb6os8JijnwgNNc4SyoSZ-UbQ9YorK62FBqLZIkL8LXYKT68-s6xAPqFAEB2vTIyGLjytRxMwOkhBwBEhSz-6Y_mIPNXXbR2N8M1striRHreKHadLLh8gyzX7zVttUncM4a5KFRq2rEitPDUUBw_zKoSfBJ9L7DMnr_Qq4fbxwuam7xopsV-vDtqi49yCoswDwu_lRP3WTSUOBNLDXaVQDC-RUbDy6eLa9YyJjALR2nGuIltYIULQhdnwrrMhoBXJNcZNyY1iKVCwDyZjYTy4L-iwGmdBqlVnIfKZOE26eVF7nYIFV7aNM2iMIUAUFtuQu9inkoRR9Yrr_uEd3JLbDtOHFktpknT6hwkKOuklnVSyzqJ--T4-5-yGabx7-r9Th1Je7CqZG4GfXLSqWj--e_ddv_fbY-s1FZR51f2SQ_U4Q4AbszSw9qmvgDHmtWF
  priority: 102
  providerName: ProQuest
Title Vibration analysis of a high-speed rotating GPLRC nanostructure coupled with a piezoelectric actuator
URI https://link.springer.com/article/10.1140/epjp/i2019-12742-7
https://www.proquest.com/docview/2919905162
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgCIkL4ikGY8qBG1Rr0q5NjgPtIV5CE0PjVKVpgoZQW7Htwq_H6QMEAiROPdTpwXbqz3b8BeCES2GosV1dYYzjc8Udrn3maHQAmfhSh8IOJ9_cBqOJfzntTquhsHl92r1uSRZ_6pLP1u3o_DnvzDBeWfp-TOiccBXWupZPCr14wnoflRXEvAj7_XpC5selX6PQJ7T81g0tgsxgCzYrdEh6pTm3YUWnO7BenNJU813QDza5taoksiITIZkhkljSYWeeYyQir5ltrqdPZHh3Pb4gqUyzkiN2-aqJypb5CwrZ6isuy2f6LSsvwpkpIu0sCabgezAZ9O8vRk51T4KjcAMtHCpD5SqmXU-HCVM6UR6iFJ-KhEoZS4ugPEQ6iQoYNxi1AlcLEbux4pR6XCbePjTSLNUHQJjxVRwngRdj2icUlZ7RIY19FgbKcCOaQGu9RaoiEbd3WbxE5YCzG1ldR4Wuo0LXUdiE0481eUmh8ad0qzZHVG2necQEFZZILGBNOKtN9Pn6968d_k_8CDYKLymqLC1ooHn0MYKORdyGVT4YtmGtN3y86uPzvH97N24XnvcO5UHYPg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRC9VDzF0gI-wAmijR2TxIcKQWnZ0u2qqlrUm3H8qBZVSdhdhODH8duYyaMrkOit59g-zHzxvDzzAbzIjQo8UFVXhRDJ3OZR7qWIPALAOGl8pqg5-Wiajs_kp_M352vwu--FoWeV_Z3YXNSuspQjHwnFFc2SSsXb-ltErFFUXe0pNExHreB2mhFjXWPHof_5A0O4xc7BB9T3SyH29053x1HHMhBZhN8y4iazsRU-TnzmhPXOJmjjJVeOG1MY8j8S9BOcTUUe8M5PY69UERc25zzJjUvw3FuwLimBMoD193vT45OrLA_63xiCyL5bR8YjX3-tRzM0u8RCgHFplP1tEVdu7j-V2cbg7d-Fzc5TZe9aaN2DNV_eh9vNi1G7eAD-MwXapFZmusEmrArMMBqAHC1qtIpsXlGhv7xgH48nJ7usNGXVzqv9PvcMRVlf4iLKBOO2euZ_VS0pz8wyQ30ty2r-EM5uRJqPYFBWpX8MTARpi8KlSYEhqLLcJMFnvJAiS23IgxoC7-WmbTfQnHg1LnXbbB1rkrVuZK0bWetsCK-u9tTtOI9rV2_36tDdr73QKyAO4XWvotXn_5_25PrTnsOd8enRRE8OpodbsNEgpMn2bMMAVeOfovOzLJ51CGPw5aZB_Qc3kBiB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgCMSFN2I8c-AGZU0b2uaIgPGeJgQITlGSJmgwtdUel_16kj4YIEBCnBtXbezIn-34M8BuxKnG2lZ1qdYOiWTkRIp4jjIGwGPCVUhtc_JNKzi_J5ePh48fuvjz2-5VSbLoabAsTcmgkcW65LZ1Gyp7yRod47sslb8J7pxwEqaInSFRg6mjs6ercZ7FIGATBJCqX-Zb4c8-aQw0v9RGc5fTnAdefWxx0-T1YDgQB3L0hcfxP3-zAHMlHkVHhQEtwoRKlmA6vxcq-8ugHmw4bZWHeElfglKNOLI0x04_M74P9VJbzk-e0Vn7-vYYJTxJC1baYU8hmQ6zrllk871GLOuoUVqM3ulIxG33ign6V-C-eXp3fO6UkxkcaY7swME8lK70lOurMPakiqVvcBHBNMacC24xm2-wVSwDL9LGTwauolS4QkYY-xGP_VWoJWmi1gB5mkgh4sAXJtCkEnNfqxAL4oWB1JGmdcCVbpgsacvt9IwuK1qqXWa3j-Xbx_LtY2Ed9t5lsoK049fVm5XKWXmA-8yjmFrqssCrw36lwfHjn9-2_rflOzDTPmmy64vW1QbM5jaQp3g2oWY0pbYM4hmI7dKo3wDQZ_3B
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vibration+analysis+of+a+high-speed+rotating+GPLRC+nanostructure+coupled+with+a+piezoelectric+actuator&rft.jtitle=European+physical+journal+plus&rft.au=Habibi%2C+Mostafa&rft.au=Hashemabadi%2C+Davoud&rft.au=Safarpour%2C+Hamed&rft.date=2019-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=2190-5444&rft.volume=134&rft.issue=6&rft_id=info:doi/10.1140%2Fepjp%2Fi2019-12742-7&rft.externalDocID=10_1140_epjp_i2019_12742_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-5444&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-5444&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-5444&client=summon