Vibration analysis of a high-speed rotating GPLRC nanostructure coupled with a piezoelectric actuator
. In this article, the vibration characteristics of high-speed rotating graphene-nanoplatelets (GNP)-reinforced composite cylindrical nanoshell coupled with a piezoelectric actuator (PIAC) are investigated. This composite nanostructure rotates around the axial direction, and the Coriolis and centrif...
Saved in:
Published in | European physical journal plus Vol. 134; no. 6; p. 307 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2190-5444 2190-5444 |
DOI | 10.1140/epjp/i2019-12742-7 |
Cover
Abstract | .
In this article, the vibration characteristics of high-speed rotating graphene-nanoplatelets (GNP)-reinforced composite cylindrical nanoshell coupled with a piezoelectric actuator (PIAC) are investigated. This composite nanostructure rotates around the axial direction, and the Coriolis and centrifugal effects are considered in the formulation. The material properties of piecewise graphene-reinforced composites (GNPRCs) are assumed to be graded in the thickness direction of the cylindrical nanoshell and estimated through a nanomechanical model. In the current study, the effects of angular velocity, piezoelectric layer, GNPRC and size-effects on the frequency of the spinning GNPRC cylindrical nanoshell coupled with PIAC are studied for the first time. The governing equations and boundary conditions are developed using the minimum potential energy and solved with the aid of generalized differential quadrature (GDQM). In addition, due to existence of piezoelectric layer, Maxwell’s equation is derived. The results show that angular velocity, piezoelectric layer, GNP distribution pattern, length scale parameter and GNP weight function play an important role in the vibrational characteristics of the spinning GNP cylindrical nanoshell coupled with PIAC. The results of the current study are useful for design of materials science, micro-electro-mechanical systems and nanoelectromechanical systems such as nanoactuators and nanosensors. |
---|---|
AbstractList | In this article, the vibration characteristics of high-speed rotating graphene-nanoplatelets (GNP)-reinforced composite cylindrical nanoshell coupled with a piezoelectric actuator (PIAC) are investigated. This composite nanostructure rotates around the axial direction, and the Coriolis and centrifugal effects are considered in the formulation. The material properties of piecewise graphene-reinforced composites (GNPRCs) are assumed to be graded in the thickness direction of the cylindrical nanoshell and estimated through a nanomechanical model. In the current study, the effects of angular velocity, piezoelectric layer, GNPRC and size-effects on the frequency of the spinning GNPRC cylindrical nanoshell coupled with PIAC are studied for the first time. The governing equations and boundary conditions are developed using the minimum potential energy and solved with the aid of generalized differential quadrature (GDQM). In addition, due to existence of piezoelectric layer, Maxwell’s equation is derived. The results show that angular velocity, piezoelectric layer, GNP distribution pattern, length scale parameter and GNP weight function play an important role in the vibrational characteristics of the spinning GNP cylindrical nanoshell coupled with PIAC. The results of the current study are useful for design of materials science, micro-electro-mechanical systems and nanoelectromechanical systems such as nanoactuators and nanosensors. . In this article, the vibration characteristics of high-speed rotating graphene-nanoplatelets (GNP)-reinforced composite cylindrical nanoshell coupled with a piezoelectric actuator (PIAC) are investigated. This composite nanostructure rotates around the axial direction, and the Coriolis and centrifugal effects are considered in the formulation. The material properties of piecewise graphene-reinforced composites (GNPRCs) are assumed to be graded in the thickness direction of the cylindrical nanoshell and estimated through a nanomechanical model. In the current study, the effects of angular velocity, piezoelectric layer, GNPRC and size-effects on the frequency of the spinning GNPRC cylindrical nanoshell coupled with PIAC are studied for the first time. The governing equations and boundary conditions are developed using the minimum potential energy and solved with the aid of generalized differential quadrature (GDQM). In addition, due to existence of piezoelectric layer, Maxwell’s equation is derived. The results show that angular velocity, piezoelectric layer, GNP distribution pattern, length scale parameter and GNP weight function play an important role in the vibrational characteristics of the spinning GNP cylindrical nanoshell coupled with PIAC. The results of the current study are useful for design of materials science, micro-electro-mechanical systems and nanoelectromechanical systems such as nanoactuators and nanosensors. |
ArticleNumber | 307 |
Author | Safarpour, Hamed Hashemabadi, Davoud Habibi, Mostafa |
Author_xml | – sequence: 1 givenname: Mostafa surname: Habibi fullname: Habibi, Mostafa organization: Center of Excellence in Design, Robotics and Automation, School of Mechanical Engineering, Sharif University of technology – sequence: 2 givenname: Davoud surname: Hashemabadi fullname: Hashemabadi, Davoud organization: Faculty of Engineering, Department of Mechanics, Islamic Azad University of South Tehran Branch – sequence: 3 givenname: Hamed orcidid: 0000-0001-7562-0704 surname: Safarpour fullname: Safarpour, Hamed email: hamed_safarpor@yahoo.com organization: Faculty of Engineering, Department of Mechanics, Imam Khomeini International University |
BookMark | eNp9kMFKAzEQQINUsNb-gKeA57WZbLbbHKVoFQqKqNeQZqdtyrpZkyxSv960FRQPzSU5vDdM3jnpNa5BQi6BXQMINsJ2044sZyAz4KXgWXlC-hwkywohRO_P-4wMQ9iwdIQEIUWf4JtdeB2ta6hudL0NNlC3pJqu7WqdhRaxot7FRDQrOnuaP09poxsXou9M7DxS47q2TtCnjeuktRa_HNZooreG6sTo6PwFOV3qOuDw5x6Q17vbl-l9Nn-cPUxv5pnJQcYMdGmY4chyLCtusDJ5AYUAWYHWCw2skDkvWGXGfLLMBYwZSrlgCzMByCe6ygfk6jC39e6jwxDVxnU-_SsoLkFKVsCYJ2pyoIx3IXhcKmPjvkH02tYKmNp1Vbuuat9V7buqMqn8n9p6-6799riUH6SQ4GaF_nerI9Y3p7KQiQ |
CitedBy_id | crossref_primary_10_1080_15376494_2023_2192711 crossref_primary_10_1080_17455030_2022_2086320 crossref_primary_10_1007_s00366_020_01024_9 crossref_primary_10_1007_s00366_021_01445_0 crossref_primary_10_1016_j_jmbbm_2023_106321 crossref_primary_10_1016_j_ijmecsci_2021_106873 crossref_primary_10_1080_17455030_2022_2067373 crossref_primary_10_1080_07391102_2020_1751297 crossref_primary_10_1080_15376494_2023_2187492 crossref_primary_10_1080_15397734_2019_1701491 crossref_primary_10_1080_17455030_2022_2106387 crossref_primary_10_1038_s41598_020_61855_w crossref_primary_10_1080_15376494_2023_2254290 crossref_primary_10_1016_j_enganabound_2022_08_018 crossref_primary_10_1016_j_engstruct_2023_117240 crossref_primary_10_1016_j_tws_2020_106840 crossref_primary_10_1016_j_tws_2020_106683 crossref_primary_10_1177_1077546320923930 crossref_primary_10_1007_s00366_020_01167_9 crossref_primary_10_1080_15397734_2020_1748052 crossref_primary_10_1080_17455030_2022_2038808 crossref_primary_10_1080_17455030_2022_2128223 crossref_primary_10_1016_j_cherd_2024_08_033 crossref_primary_10_1016_j_istruc_2023_06_105 crossref_primary_10_1016_j_ssc_2022_114916 crossref_primary_10_1080_15397734_2021_1919526 crossref_primary_10_1080_17455030_2022_2035015 crossref_primary_10_1016_j_compstruct_2020_112737 crossref_primary_10_1142_S1758825120500192 crossref_primary_10_1080_17455030_2023_2172963 crossref_primary_10_1080_17455030_2022_2105985 crossref_primary_10_1016_j_compstruct_2021_114438 crossref_primary_10_1080_15397734_2021_1907758 crossref_primary_10_1177_1099636220909751 crossref_primary_10_1007_s00366_020_01002_1 crossref_primary_10_1016_j_compstruct_2020_113150 crossref_primary_10_1142_S1758825120500106 crossref_primary_10_1016_j_istruc_2023_04_024 crossref_primary_10_1080_17455030_2022_2076176 crossref_primary_10_1016_j_engstruct_2021_113433 crossref_primary_10_1177_10775463231172051 crossref_primary_10_1080_15397734_2020_1719509 crossref_primary_10_3390_gels8050299 crossref_primary_10_3390_app10041412 crossref_primary_10_1016_j_enganabound_2022_08_021 crossref_primary_10_1080_15397734_2019_1697932 crossref_primary_10_1080_17455030_2019_1662968 crossref_primary_10_1080_17455030_2023_2175169 crossref_primary_10_1016_j_enganabound_2022_03_013 crossref_primary_10_1016_j_compstruct_2021_115003 crossref_primary_10_1007_s00707_023_03809_7 crossref_primary_10_1080_15502287_2021_1949408 crossref_primary_10_1007_s00366_021_01391_x crossref_primary_10_1080_15397734_2023_2182319 crossref_primary_10_1007_s00366_020_01004_z crossref_primary_10_1142_S1758825121500289 crossref_primary_10_1142_S0219455423500347 crossref_primary_10_1080_17455030_2022_2061745 crossref_primary_10_1140_epjp_s13360_020_00217_x crossref_primary_10_1007_s00707_024_04169_6 crossref_primary_10_1016_j_euromechsol_2022_104638 crossref_primary_10_1007_s00366_020_01177_7 crossref_primary_10_3390_sym14112342 crossref_primary_10_1080_17455030_2022_2162154 crossref_primary_10_1007_s00366_020_00949_5 crossref_primary_10_1080_15376494_2023_2206835 crossref_primary_10_1080_07391102_2020_1760939 crossref_primary_10_1080_17455030_2022_2040756 crossref_primary_10_1177_03093247231160617 crossref_primary_10_1177_0954406219883312 crossref_primary_10_1007_s10668_021_01574_y crossref_primary_10_1080_07391102_2020_1758211 crossref_primary_10_1080_17455030_2022_2048123 crossref_primary_10_1140_epjp_s13360_021_02193_2 crossref_primary_10_3390_nano13050852 crossref_primary_10_1007_s00707_022_03409_x crossref_primary_10_1007_s00366_021_01399_3 crossref_primary_10_1080_17455030_2022_2050438 crossref_primary_10_1007_s00366_021_01440_5 crossref_primary_10_3390_app10093251 crossref_primary_10_1007_s00366_020_01088_7 crossref_primary_10_1177_10775463231209388 crossref_primary_10_1039_D4CP03320E crossref_primary_10_1080_17455030_2019_1694729 crossref_primary_10_1142_S1758825120500660 crossref_primary_10_1016_j_ssc_2024_115638 crossref_primary_10_1080_17455030_2021_1948627 crossref_primary_10_1007_s00366_021_01433_4 crossref_primary_10_1080_15397734_2019_1662310 crossref_primary_10_1080_07391102_2020_1747549 crossref_primary_10_1080_15376494_2024_2341267 crossref_primary_10_1016_j_compstruct_2022_115464 crossref_primary_10_1016_j_enganabound_2022_04_016 crossref_primary_10_1080_15376494_2023_2263005 crossref_primary_10_1016_j_euromechsol_2022_104726 crossref_primary_10_1080_17455030_2022_2053607 crossref_primary_10_1016_j_mechmachtheory_2022_104997 crossref_primary_10_1016_j_compstruc_2024_107596 crossref_primary_10_1080_17455030_2022_2091806 crossref_primary_10_1016_j_enganabound_2022_06_003 |
Cites_doi | 10.1007/s00542-016-2822-6 10.1533/9781845695736 10.1016/j.compositesb.2016.11.024 10.1016/j.physe.2016.04.011 10.1002/pc.22972 10.1016/j.commatsci.2018.02.036 10.1140/epjp/i2018-12385-2 10.1016/j.carbon.2013.04.048 10.1007/s10999-018-9431-8 10.1016/j.compstruct.2016.10.056 10.1016/j.ymssp.2017.07.041 10.1007/s40430-019-1591-4 10.1016/j.ijmecsci.2017.04.004 10.1080/01495739.2016.1229145 10.1177/1687814017711811 10.1016/S0032-3861(03)00539-1 10.1177/0954406219832323 10.1016/j.matdes.2017.07.025 10.1080/15397734.2019.1566743 10.1016/j.ast.2018.04.008 10.1016/j.camwa.2018.12.041 10.1016/j.compstruct.2016.11.008 10.1016/0021-9991(72)90089-7 10.1016/j.euromechsol.2018.02.012 10.1016/j.euromechsol.2012.01.003 10.1177/1077546316664022 10.1063/1.3269637 10.1016/j.apm.2018.08.028 10.1016/j.ijmecsci.2017.06.052 10.1016/j.physleta.2011.08.073 10.1177/1077546319828465 10.1021/nn9010472 10.1088/0964-1726/23/12/125036 10.1007/s00366-018-0669-4 10.1080/15376494.2016.1231356 10.1140/epjp/i2017-11551-4 10.1016/j.tej.2018.01.009 10.1007/s11665-016-1882-1 10.1016/j.ijmecsci.2017.12.028 10.1016/j.compstruct.2016.09.070 10.1017/S1727719100002823 10.1126/science.1060928 10.1016/j.apm.2018.04.015 10.1002/smll.200901480 10.1016/j.msea.2018.03.040 10.1016/j.memsci.2014.03.065 10.1002/fld.1650150704 10.1021/ma060733p 10.1016/S0141-0296(01)00088-8 10.1016/j.compstruct.2014.05.048 10.1140/epjp/i2017-11395-x 10.1016/j.compstruct.2017.06.062 10.1140/epjp/i2017-11275-5 10.1016/j.polymer.2010.11.042 10.1016/j.compstruct.2016.11.048 10.1109/TSG.2017.2738444 10.1590/1679-78253410 10.1515/jmbm-2017-0010 10.1166/jnn.2006.903 10.1016/j.msea.2013.06.006 10.1177/1077546315609988 10.1016/j.matdes.2009.06.032 10.1007/s00339-016-0365-4 10.1016/S0020-7683(02)00152-X 10.1002/adfm.201706705 10.1016/j.matdes.2016.10.041 10.1016/j.euromechsol.2017.08.001 10.1016/j.jmapro.2017.11.009 10.1016/0022-247X(71)90110-7 |
ContentType | Journal Article |
Copyright | Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019 Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019. |
Copyright_xml | – notice: Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019 – notice: Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019. |
DBID | AAYXX CITATION 8FE 8FG AEUYN AFKRA ARAPS BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO HCIFZ P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1140/epjp/i2019-12742-7 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Database ProQuest One Community College ProQuest Central Korea SciTech Premium Collection AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection Earth, Atmospheric & Aquatic Science Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2190-5444 |
ExternalDocumentID | 10_1140_epjp_i2019_12742_7 |
GroupedDBID | -5F -5G -BR -EM -~C 06D 0R~ 203 29~ 2JN 2KG 30V 4.4 406 408 8UJ 95. 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABHLI ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACREN ACZOJ ADHHG ADINQ ADKNI ADKPE ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEUYN AEVLU AEXYK AFBBN AFKRA AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS ARMRJ AXYYD AYJHY BENPR BGLVJ BGNMA BHPHI BKSAR CCPQU CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HCIFZ HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O93 O9J P9T PCBAR PT4 RID RLLFE ROL RSV S27 S3B SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z7S Z7Y ZMTXR ~A9 2VQ AAAVM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADQRH AEBTG AEKMD AEZWR AFDZB AFHIU AFOHR AGJBK AHPBZ AHSBF AHWEU AIXLP AJBLW ATHPR AYFIA CITATION O9- PHGZM PHGZT S1Z 8FE 8FG ABRTQ DWQXO P62 PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c319t-1a7c0c2e03e7d2cedc3515419d1aaba10593250dc628f34160e99b0bc81138ad3 |
IEDL.DBID | U2A |
ISSN | 2190-5444 |
IngestDate | Sun Sep 07 07:10:37 EDT 2025 Thu Apr 24 23:12:12 EDT 2025 Tue Jul 01 02:42:16 EDT 2025 Fri Feb 21 02:31:30 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-1a7c0c2e03e7d2cedc3515419d1aaba10593250dc628f34160e99b0bc81138ad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7562-0704 |
PQID | 2919905162 |
PQPubID | 2044220 |
ParticipantIDs | proquest_journals_2919905162 crossref_citationtrail_10_1140_epjp_i2019_12742_7 crossref_primary_10_1140_epjp_i2019_12742_7 springer_journals_10_1140_epjp_i2019_12742_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-01 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | European physical journal plus |
PublicationTitleAbbrev | Eur. Phys. J. Plus |
PublicationYear | 2019 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | HabibiM.HashemiR.SadeghiE.FazaeliA.GhazanfariA.LashiniH.J. Mater. Eng. Perform.20162538210.1007/s11665-016-1882-1 HabibiM.HashemiR.GhazanfariA.NaghdabadiR.AssempourA.Proc. Inst. Mech. Eng. Part L2018232625 SafarpourH.GhanbariB.GhadiriM.Appl. Math. Model.201965428388093910.1016/j.apm.2018.08.028 PourjabariA.HajilakZ.E.MohammadiA.HabibiM.SafarpourH.Comput. Math. Appl.2019772608394507810.1016/j.camwa.2018.12.041 FangX.-Q.ZhuC.-S.Comput. Struct.2017160119110.1016/j.compstruct.2016.11.008 FanJ.HuangJ.DingJ.ZhangJ.Adv. Mech. Eng.201791687814017711811 FangJ.GuJ.WangH.Int. J. Mech. Sci.201813618810.1016/j.ijmecsci.2017.12.028 SafarpourH.GhanizadehS.A.HabibiM.Eur. Phys. J. Plus201813353210.1140/epjp/i2018-12385-2 WangY.YuJ.DaiW.SongY.WangD.ZengL.Polym. Compos.20153655610.1002/pc.22972 SinghV.K.PandaS.K.J. Vibrat. Control201723207810.1177/1077546315609988 SahmaniS.AghdamM.Comput. Struct.20171789710.1016/j.compstruct.2017.06.062 KheibariF.BeniY.T.Mater. Design201711457210.1016/j.matdes.2016.10.041 FengC.KitipornchaiS.YangJ.Composites Part B201711013210.1016/j.compositesb.2016.11.024 MontazeriA.Rafii-TabarH.Phys. Lett. A201137540342011PhLA..375.4034M10.1016/j.physleta.2011.08.073 N.K. Kothurkar, Solid State, Transparent, Cadmium Sulfide-polymer Nanocomposites, University of Florida, 2004 EftekharH.ZeynaliH.NasihatgozarM.Mech. Adv. Mater. Struct.201825110.1080/15376494.2016.1231356 RazaviH.BabadiA.F.BeniY.T.Comput. Struct.2017160129910.1016/j.compstruct.2016.10.056 ShiG.ArabyS.GibsonC.T.MengQ.ZhuS.MaJ.Adv. Funct. Mater.201828170670510.1002/adfm.201706705 MortazaviB.BenzeraraO.MeyerH.BardonJ.AhziS.Carbon20136035610.1016/j.carbon.2013.04.048 GhadiriM.SafarpourH.J. Therm. Stresses2016405510.1080/01495739.2016.1229145 PourmoayedA.FardK.M.ShahraviM.Latin Am. J. Solids Struct.20171471410.1590/1679-78253410 RafieeM.A.RafieeJ.SrivastavaI.WangZ.SongH.YuZ.Z.Small2010617910.1002/smll.200901480 BaughmanR.H.ZakhidovA.A.De HeerW.A.Science20022977872002Sci...297..787B10.1126/science.1060928 SafarpourH.PourghaderJ.HabibiM.J. Vibrat. Control201925154310.1177/1077546319828465 SafarpourH.MohammadiK.GhadiriM.RajabpourA.Eur. Phys. J. Plus201713228110.1140/epjp/i2017-11551-4 GhadiriM.ShafieiN.SafarpourH.Microsys. Technol.201723104510.1007/s00542-016-2822-6 YangF.ChongA.LamD.TongP.Int. J. Solids Struct.200239273110.1016/S0020-7683(02)00152-X EbrahimiF.SafarpourH.Wind Struct.201827431 KeL.WangY.ReddyJ.Comput. Struct.201411662610.1016/j.compstruct.2014.05.048 MohammadiK.RajabpourA.GhadiriM.Comput. Mater. Sci.201814810410.1016/j.commatsci.2018.02.036 Z. Esmailpoor Hajilak, J. Pourghader, D. Hashemabadi, F. Sharifi Bagh, M. Habibi, H. Safarpour, Mech. Based Design Struct. Machines, https://doi.org/10.1080/15397734.2019.1566743 MohammadiK.BaroutiM.M.SafarpourH.GhadiriM.J. Braz. Soc. Mech. Sci. Eng.2019419310.1007/s40430-019-1591-4 SongM.KitipornchaiS.YangJ.Comput. Struct.201715957910.1016/j.compstruct.2016.09.070 Shayan-AminS.DalirH.FarshidianfarA.J. Mech.20092533710.1017/S1727719100002823 EbrahimiF.HajilakZ.E.HabibiM.SafarpourH.Proc. Inst. Mech. Eng. Part C2019233459010.1177/0954406219832323 ArefiM.Eur. J. Mech.-A2018702262018EPJB...91..226A379504910.1016/j.euromechsol.2018.02.012 ShojaeefardM.MahinzareM.SafarpourH.GoogarchinH.S.GhadiriM.Appl. Math. Model.201861255381820410.1016/j.apm.2018.04.015 ShafieiN.KazemiM.GhadiriM.Physica E201683742016PhyE...83...74S10.1016/j.physe.2016.04.011 ZhuC.-S.FangX.-Q.LiuJ.-X.LiH.-Y.Eur. J. Mech.-A20176642310.1016/j.euromechsol.2017.08.001 SunJ.ZhaoJ.Mater. Sci. Eng. A2018723110.1016/j.msea.2018.03.040 YangJ.WuH.KitipornchaiS.Comput. Struct.201716111110.1016/j.compstruct.2016.11.048 HosseiniS.M.R.HabibiM.AssempourA.Modares Mech. Eng.201818174 HabibiM.HashemiR.TaftiM.F.AssempourA.J. Manufact. Proc.20183131010.1016/j.jmapro.2017.11.009 GhadiriM.SafarpourH.Appl. Phys. A20161228332016ApPhA.122..833G10.1007/s00339-016-0365-4 MohammadimehrM.OkhraviS.Akhavan AlaviS.J. Vibrat. Control201824155110.1177/1077546316664022 ChecchettoR.MiotelloA.NicolaisL.CarotenutoG.J. Membrane Sci.201446319610.1016/j.memsci.2014.03.065 A. Vafamehr, M.E. Khodayar, S.D. Manshadi, I. Ahmad, J. Lin, IEEE Trans. Smart Grid103052017 F. Ebrahimi, M. Habibi, H. Safarpour, Eng. Comput. (2018) https://doi.org/10.1007/s00366-018-0669-4 NasihatgozarM.KhaliliS.J. Appl. Comput. Mech.2017316 SafarpourH.MohammadiK.GhadiriM.J. Mech. Behav. Mater.201726910.1515/jmbm-2017-0010 KhaliliS.MohammadiY.Eur. J. Mech.-A2012356110.1016/j.euromechsol.2012.01.003 WangQ.Eng. Struct.20022419910.1016/S0141-0296(01)00088-8 SahmaniS.AghdamM.Int. J. Mech. Sci.20171319510.1016/j.ijmecsci.2017.06.052 KeL.-L.WangY.-S.YangJ.KitipornchaiS.Smart Mater. Struct.20142312503610.1088/0964-1726/23/12/125036 BellmanR.KashefB.CastiJ.J. Comput. Phys.197210401972JCoPh..10...40B10.1016/0021-9991(72)90089-7 HabibiM.GhazanfariA.AssempourA.NaghdabadiR.HashemiR.Mech. Eng.201748379 WuH.KitipornchaiS.YangJ.Mater. Design201713243010.1016/j.matdes.2017.07.025 PottsJ.R.DreyerD.R.BielawskiC.W.RuoffR.S.Polymer201152510.1016/j.polymer.2010.11.042 BellmanR.CastiJ.J. Math. Anal. Appl.19713423527851410.1016/0022-247X(71)90110-7 MoniruzzamanM.WineyK.I.Macromolecules20063951942006MaMol..39.5194M10.1021/ma060733p BaibaracM.Gómez-RomeroP.J. Nanosci. Nanotechnol.2006628910.1166/jnn.2006.903 RafieeM.A.RafieeJ.WangZ.SongH.YuZ.-Z.KoratkarN.ACS Nano20093388410.1021/nn9010472 H. Safarpour, Z.E. Hajilak, M. Habibi, Int. J. Mech. Mater. Design, https://doi.org/10.1007/s10999-018-9431-8 VafamehrA.KhodayarM.E.Electr. J.2018314010.1016/j.tej.2018.01.009 GhadiriM.ShafieiN.SafarpourH.Microsyst. Technol.201723104510.1007/s00542-016-2822-6 MahinzareM.RanjbarpurH.GhadiriM.Mech. Syst. Signal Proc.20181001882018MSSP..100..188M10.1016/j.ymssp.2017.07.041 S. Rajasekaran, Structural dynamics of earthquake engineering: theory and application using MATHEMATICA and MATLAB (Elsevier, 2009) SandlerJ.KirkJ.KinlochI.ShafferM.WindleA.Polymer200344589310.1016/S0032-3861(03)00539-1 ShuC.RichardsB.E.Int. J. Numer. Methods Fluids1992157911992IJNMF..15..791S10.1002/fld.1650150704 RafieeM.RafieeJ.YuZ.-Z.KoratkarN.Appl. Phys. Lett.2009952231032009ApPhL..95v3103R10.1063/1.3269637 DehkordiS.F.BeniY.T.Int. J. Mech. Sci.201712812510.1016/j.ijmecsci.2017.04.004 NinhD.G.BichD.H.Aerospace Sci. Technol.20187759510.1016/j.ast.2018.04.008 VafamehrA.KhodayarM.E.AbdelghanyK.IEEE Trans. Smart Grid20191030510.1109/TSG.2017.2738444 TsaiJ.-L.TuJ.-F.Mater. & Design20103119410.1016/j.matdes.2009.06.032 BarootiM.M.SafarpourH.GhadiriM.Eur. Phys. J. Plus2017132610.1140/epjp/i2017-11275-5 NietoA.LahiriD.AgarwalA.Mater. Sci. Eng. A201358233810.1016/j.msea.2013.06.006 FazaeliA.HabibiM.EkramiA.Metall. Eng.20161984 GhazanfariA.AssempuorA.HabibiM.HashemiR.Modares Mech. Eng.201616137 MohammadiK.MahinzareM.RajabpourA.GhadiriM.Eur. Phys. J. Plus201713211510.1140/epjp/i2017-11395-x C. Shu, Differential quadrature and its application in engineering (Springer Science & Business Media, 2012) H. Wu (12742_CR80) 2017; 132 12742_CR37 R. Bellman (12742_CR73) 1972; 10 K. Mohammadi (12742_CR33) 2017; 132 12742_CR76 J.R. Potts (12742_CR8) 2011; 52 M. Rafiee (12742_CR6) 2009; 95 A. Montazeri (12742_CR9) 2011; 375 H. Safarpour (12742_CR77) 2019; 25 12742_CR74 M. Ghadiri (12742_CR40) 2016; 122 S. Sahmani (12742_CR49) 2017; 178 H. Razavi (12742_CR55) 2017; 160 C. Feng (12742_CR21) 2017; 110 M. Habibi (12742_CR23) 2018; 31 C. Shu (12742_CR75) 1992; 15 M. Ghadiri (12742_CR36) 2017; 23 R. Bellman (12742_CR72) 1971; 34 Y. Wang (12742_CR11) 2015; 36 F. Kheibari (12742_CR53) 2017; 114 M. Baibarac (12742_CR15) 2006; 6 V.K. Singh (12742_CR61) 2017; 23 H. Eftekhar (12742_CR58) 2018; 25 M. Ghadiri (12742_CR30) 2016; 40 G. Shi (12742_CR1) 2018; 28 F. Ebrahimi (12742_CR35) 2019; 233 M. Habibi (12742_CR24) 2016; 25 A. Pourjabari (12742_CR38) 2019; 77 F. Yang (12742_CR70) 2002; 39 M. Habibi (12742_CR22) 2018; 232 M. Ghadiri (12742_CR29) 2017; 23 M. Habibi (12742_CR25) 2017; 48 X.-Q. Fang (12742_CR57) 2017; 160 R. Checchetto (12742_CR3) 2014; 463 M. Mohammadimehr (12742_CR59) 2018; 24 M. Moniruzzaman (12742_CR18) 2006; 39 H. Safarpour (12742_CR47) 2018; 133 M.A. Rafiee (12742_CR7) 2010; 6 J.-L. Tsai (12742_CR32) 2010; 31 S. Khalili (12742_CR68) 2012; 35 L. Ke (12742_CR71) 2014; 116 A. Pourmoayed (12742_CR69) 2017; 14 M. Mahinzare (12742_CR63) 2018; 100 M. Song (12742_CR65) 2017; 159 A. Fazaeli (12742_CR27) 2016; 19 S.M.R. Hosseini (12742_CR28) 2018; 18 M.A. Rafiee (12742_CR5) 2009; 3 M. Nasihatgozar (12742_CR67) 2017; 3 S. Sahmani (12742_CR50) 2017; 131 12742_CR19 12742_CR13 M. Arefi (12742_CR54) 2018; 70 A. Nieto (12742_CR4) 2013; 582 J. Sandler (12742_CR17) 2003; 44 K. Mohammadi (12742_CR34) 2018; 148 A. Vafamehr (12742_CR12) 2018; 31 A. Ghazanfari (12742_CR26) 2016; 16 J. Fan (12742_CR62) 2017; 9 R.H. Baughman (12742_CR16) 2002; 297 A. Vafamehr (12742_CR14) 2019; 10 J. Fang (12742_CR64) 2018; 136 S.F. Dehkordi (12742_CR52) 2017; 128 J. Yang (12742_CR20) 2017; 161 C.-S. Zhu (12742_CR60) 2017; 66 L.-L. Ke (12742_CR79) 2014; 23 H. Safarpour (12742_CR42) 2017; 26 12742_CR48 K. Mohammadi (12742_CR45) 2019; 41 F. Ebrahimi (12742_CR46) 2018; 27 B. Mortazavi (12742_CR10) 2013; 60 N. Shafiei (12742_CR78) 2016; 83 H. Safarpour (12742_CR41) 2017; 132 J. Sun (12742_CR2) 2018; 723 D.G. Ninh (12742_CR56) 2018; 77 S. Shayan-Amin (12742_CR31) 2009; 25 H. Safarpour (12742_CR44) 2019; 65 M. Shojaeefard (12742_CR43) 2018; 61 M.M. Barooti (12742_CR51) 2017; 132 12742_CR39 Q. Wang (12742_CR66) 2002; 24 |
References_xml | – reference: SafarpourH.MohammadiK.GhadiriM.J. Mech. Behav. Mater.201726910.1515/jmbm-2017-0010 – reference: WangY.YuJ.DaiW.SongY.WangD.ZengL.Polym. Compos.20153655610.1002/pc.22972 – reference: YangJ.WuH.KitipornchaiS.Comput. Struct.201716111110.1016/j.compstruct.2016.11.048 – reference: SafarpourH.GhanizadehS.A.HabibiM.Eur. Phys. J. Plus201813353210.1140/epjp/i2018-12385-2 – reference: A. Vafamehr, M.E. Khodayar, S.D. Manshadi, I. Ahmad, J. Lin, IEEE Trans. Smart Grid103052017 – reference: SafarpourH.GhanbariB.GhadiriM.Appl. Math. Model.201965428388093910.1016/j.apm.2018.08.028 – reference: RafieeM.A.RafieeJ.WangZ.SongH.YuZ.-Z.KoratkarN.ACS Nano20093388410.1021/nn9010472 – reference: SafarpourH.PourghaderJ.HabibiM.J. Vibrat. Control201925154310.1177/1077546319828465 – reference: SinghV.K.PandaS.K.J. Vibrat. Control201723207810.1177/1077546315609988 – reference: EftekharH.ZeynaliH.NasihatgozarM.Mech. Adv. Mater. Struct.201825110.1080/15376494.2016.1231356 – reference: MortazaviB.BenzeraraO.MeyerH.BardonJ.AhziS.Carbon20136035610.1016/j.carbon.2013.04.048 – reference: SandlerJ.KirkJ.KinlochI.ShafferM.WindleA.Polymer200344589310.1016/S0032-3861(03)00539-1 – reference: GhadiriM.SafarpourH.J. Therm. Stresses2016405510.1080/01495739.2016.1229145 – reference: FengC.KitipornchaiS.YangJ.Composites Part B201711013210.1016/j.compositesb.2016.11.024 – reference: GhadiriM.ShafieiN.SafarpourH.Microsyst. Technol.201723104510.1007/s00542-016-2822-6 – reference: ShojaeefardM.MahinzareM.SafarpourH.GoogarchinH.S.GhadiriM.Appl. Math. Model.201861255381820410.1016/j.apm.2018.04.015 – reference: WuH.KitipornchaiS.YangJ.Mater. Design201713243010.1016/j.matdes.2017.07.025 – reference: ZhuC.-S.FangX.-Q.LiuJ.-X.LiH.-Y.Eur. J. Mech.-A20176642310.1016/j.euromechsol.2017.08.001 – reference: HabibiM.HashemiR.TaftiM.F.AssempourA.J. Manufact. Proc.20183131010.1016/j.jmapro.2017.11.009 – reference: EbrahimiF.SafarpourH.Wind Struct.201827431 – reference: SahmaniS.AghdamM.Int. J. Mech. Sci.20171319510.1016/j.ijmecsci.2017.06.052 – reference: GhadiriM.ShafieiN.SafarpourH.Microsys. Technol.201723104510.1007/s00542-016-2822-6 – reference: NietoA.LahiriD.AgarwalA.Mater. Sci. Eng. A201358233810.1016/j.msea.2013.06.006 – reference: PottsJ.R.DreyerD.R.BielawskiC.W.RuoffR.S.Polymer201152510.1016/j.polymer.2010.11.042 – reference: KeL.WangY.ReddyJ.Comput. Struct.201411662610.1016/j.compstruct.2014.05.048 – reference: C. Shu, Differential quadrature and its application in engineering (Springer Science & Business Media, 2012) – reference: ShuC.RichardsB.E.Int. J. Numer. Methods Fluids1992157911992IJNMF..15..791S10.1002/fld.1650150704 – reference: NasihatgozarM.KhaliliS.J. Appl. Comput. Mech.2017316 – reference: ShafieiN.KazemiM.GhadiriM.Physica E201683742016PhyE...83...74S10.1016/j.physe.2016.04.011 – reference: SafarpourH.MohammadiK.GhadiriM.RajabpourA.Eur. Phys. J. Plus201713228110.1140/epjp/i2017-11551-4 – reference: MohammadiK.RajabpourA.GhadiriM.Comput. Mater. Sci.201814810410.1016/j.commatsci.2018.02.036 – reference: F. Ebrahimi, M. Habibi, H. Safarpour, Eng. Comput. (2018) https://doi.org/10.1007/s00366-018-0669-4 – reference: BellmanR.CastiJ.J. Math. Anal. Appl.19713423527851410.1016/0022-247X(71)90110-7 – reference: Z. Esmailpoor Hajilak, J. Pourghader, D. Hashemabadi, F. Sharifi Bagh, M. Habibi, H. Safarpour, Mech. Based Design Struct. Machines, https://doi.org/10.1080/15397734.2019.1566743 – reference: MohammadiK.MahinzareM.RajabpourA.GhadiriM.Eur. Phys. J. Plus201713211510.1140/epjp/i2017-11395-x – reference: BaibaracM.Gómez-RomeroP.J. Nanosci. Nanotechnol.2006628910.1166/jnn.2006.903 – reference: BaughmanR.H.ZakhidovA.A.De HeerW.A.Science20022977872002Sci...297..787B10.1126/science.1060928 – reference: KeL.-L.WangY.-S.YangJ.KitipornchaiS.Smart Mater. Struct.20142312503610.1088/0964-1726/23/12/125036 – reference: PourjabariA.HajilakZ.E.MohammadiA.HabibiM.SafarpourH.Comput. Math. Appl.2019772608394507810.1016/j.camwa.2018.12.041 – reference: FanJ.HuangJ.DingJ.ZhangJ.Adv. Mech. Eng.201791687814017711811 – reference: BellmanR.KashefB.CastiJ.J. Comput. Phys.197210401972JCoPh..10...40B10.1016/0021-9991(72)90089-7 – reference: KhaliliS.MohammadiY.Eur. J. Mech.-A2012356110.1016/j.euromechsol.2012.01.003 – reference: FazaeliA.HabibiM.EkramiA.Metall. Eng.20161984 – reference: N.K. Kothurkar, Solid State, Transparent, Cadmium Sulfide-polymer Nanocomposites, University of Florida, 2004 – reference: NinhD.G.BichD.H.Aerospace Sci. Technol.20187759510.1016/j.ast.2018.04.008 – reference: SongM.KitipornchaiS.YangJ.Comput. Struct.201715957910.1016/j.compstruct.2016.09.070 – reference: FangJ.GuJ.WangH.Int. J. Mech. Sci.201813618810.1016/j.ijmecsci.2017.12.028 – reference: YangF.ChongA.LamD.TongP.Int. J. Solids Struct.200239273110.1016/S0020-7683(02)00152-X – reference: FangX.-Q.ZhuC.-S.Comput. Struct.2017160119110.1016/j.compstruct.2016.11.008 – reference: RafieeM.A.RafieeJ.SrivastavaI.WangZ.SongH.YuZ.Z.Small2010617910.1002/smll.200901480 – reference: GhazanfariA.AssempuorA.HabibiM.HashemiR.Modares Mech. Eng.201616137 – reference: MohammadiK.BaroutiM.M.SafarpourH.GhadiriM.J. Braz. Soc. Mech. Sci. Eng.2019419310.1007/s40430-019-1591-4 – reference: PourmoayedA.FardK.M.ShahraviM.Latin Am. J. Solids Struct.20171471410.1590/1679-78253410 – reference: TsaiJ.-L.TuJ.-F.Mater. & Design20103119410.1016/j.matdes.2009.06.032 – reference: HabibiM.GhazanfariA.AssempourA.NaghdabadiR.HashemiR.Mech. Eng.201748379 – reference: MontazeriA.Rafii-TabarH.Phys. Lett. A201137540342011PhLA..375.4034M10.1016/j.physleta.2011.08.073 – reference: MoniruzzamanM.WineyK.I.Macromolecules20063951942006MaMol..39.5194M10.1021/ma060733p – reference: EbrahimiF.HajilakZ.E.HabibiM.SafarpourH.Proc. Inst. Mech. Eng. Part C2019233459010.1177/0954406219832323 – reference: RazaviH.BabadiA.F.BeniY.T.Comput. Struct.2017160129910.1016/j.compstruct.2016.10.056 – reference: S. Rajasekaran, Structural dynamics of earthquake engineering: theory and application using MATHEMATICA and MATLAB (Elsevier, 2009) – reference: ChecchettoR.MiotelloA.NicolaisL.CarotenutoG.J. Membrane Sci.201446319610.1016/j.memsci.2014.03.065 – reference: GhadiriM.SafarpourH.Appl. Phys. A20161228332016ApPhA.122..833G10.1007/s00339-016-0365-4 – reference: VafamehrA.KhodayarM.E.Electr. J.2018314010.1016/j.tej.2018.01.009 – reference: WangQ.Eng. Struct.20022419910.1016/S0141-0296(01)00088-8 – reference: RafieeM.RafieeJ.YuZ.-Z.KoratkarN.Appl. Phys. Lett.2009952231032009ApPhL..95v3103R10.1063/1.3269637 – reference: HosseiniS.M.R.HabibiM.AssempourA.Modares Mech. Eng.201818174 – reference: MahinzareM.RanjbarpurH.GhadiriM.Mech. Syst. Signal Proc.20181001882018MSSP..100..188M10.1016/j.ymssp.2017.07.041 – reference: VafamehrA.KhodayarM.E.AbdelghanyK.IEEE Trans. Smart Grid20191030510.1109/TSG.2017.2738444 – reference: SahmaniS.AghdamM.Comput. Struct.20171789710.1016/j.compstruct.2017.06.062 – reference: KheibariF.BeniY.T.Mater. Design201711457210.1016/j.matdes.2016.10.041 – reference: HabibiM.HashemiR.SadeghiE.FazaeliA.GhazanfariA.LashiniH.J. Mater. Eng. Perform.20162538210.1007/s11665-016-1882-1 – reference: SunJ.ZhaoJ.Mater. Sci. Eng. A2018723110.1016/j.msea.2018.03.040 – reference: ArefiM.Eur. J. Mech.-A2018702262018EPJB...91..226A379504910.1016/j.euromechsol.2018.02.012 – reference: ShiG.ArabyS.GibsonC.T.MengQ.ZhuS.MaJ.Adv. Funct. Mater.201828170670510.1002/adfm.201706705 – reference: MohammadimehrM.OkhraviS.Akhavan AlaviS.J. Vibrat. Control201824155110.1177/1077546316664022 – reference: Shayan-AminS.DalirH.FarshidianfarA.J. Mech.20092533710.1017/S1727719100002823 – reference: DehkordiS.F.BeniY.T.Int. J. Mech. Sci.201712812510.1016/j.ijmecsci.2017.04.004 – reference: HabibiM.HashemiR.GhazanfariA.NaghdabadiR.AssempourA.Proc. Inst. Mech. Eng. Part L2018232625 – reference: H. Safarpour, Z.E. Hajilak, M. Habibi, Int. J. Mech. Mater. Design, https://doi.org/10.1007/s10999-018-9431-8 – reference: BarootiM.M.SafarpourH.GhadiriM.Eur. Phys. J. Plus2017132610.1140/epjp/i2017-11275-5 – volume: 23 start-page: 1045 year: 2017 ident: 12742_CR29 publication-title: Microsys. Technol. doi: 10.1007/s00542-016-2822-6 – ident: 12742_CR76 doi: 10.1533/9781845695736 – volume: 110 start-page: 132 year: 2017 ident: 12742_CR21 publication-title: Composites Part B doi: 10.1016/j.compositesb.2016.11.024 – volume: 83 start-page: 74 year: 2016 ident: 12742_CR78 publication-title: Physica E doi: 10.1016/j.physe.2016.04.011 – volume: 36 start-page: 556 year: 2015 ident: 12742_CR11 publication-title: Polym. Compos. doi: 10.1002/pc.22972 – volume: 148 start-page: 104 year: 2018 ident: 12742_CR34 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2018.02.036 – volume: 133 start-page: 532 year: 2018 ident: 12742_CR47 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2018-12385-2 – volume: 60 start-page: 356 year: 2013 ident: 12742_CR10 publication-title: Carbon doi: 10.1016/j.carbon.2013.04.048 – ident: 12742_CR39 doi: 10.1007/s10999-018-9431-8 – volume: 160 start-page: 1299 year: 2017 ident: 12742_CR55 publication-title: Comput. Struct. doi: 10.1016/j.compstruct.2016.10.056 – volume: 100 start-page: 188 year: 2018 ident: 12742_CR63 publication-title: Mech. Syst. Signal Proc. doi: 10.1016/j.ymssp.2017.07.041 – volume: 18 start-page: 174 year: 2018 ident: 12742_CR28 publication-title: Modares Mech. Eng. – volume: 41 start-page: 93 year: 2019 ident: 12742_CR45 publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-019-1591-4 – volume: 128 start-page: 125 year: 2017 ident: 12742_CR52 publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2017.04.004 – volume: 40 start-page: 55 year: 2016 ident: 12742_CR30 publication-title: J. Therm. Stresses doi: 10.1080/01495739.2016.1229145 – volume: 9 start-page: 168781401771181 year: 2017 ident: 12742_CR62 publication-title: Adv. Mech. Eng. doi: 10.1177/1687814017711811 – volume: 44 start-page: 5893 year: 2003 ident: 12742_CR17 publication-title: Polymer doi: 10.1016/S0032-3861(03)00539-1 – volume: 233 start-page: 4590 year: 2019 ident: 12742_CR35 publication-title: Proc. Inst. Mech. Eng. Part C doi: 10.1177/0954406219832323 – volume: 132 start-page: 430 year: 2017 ident: 12742_CR80 publication-title: Mater. Design doi: 10.1016/j.matdes.2017.07.025 – ident: 12742_CR37 doi: 10.1080/15397734.2019.1566743 – volume: 77 start-page: 595 year: 2018 ident: 12742_CR56 publication-title: Aerospace Sci. Technol. doi: 10.1016/j.ast.2018.04.008 – volume: 77 start-page: 2608 year: 2019 ident: 12742_CR38 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2018.12.041 – volume: 160 start-page: 1191 year: 2017 ident: 12742_CR57 publication-title: Comput. Struct. doi: 10.1016/j.compstruct.2016.11.008 – volume: 10 start-page: 40 year: 1972 ident: 12742_CR73 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(72)90089-7 – volume: 70 start-page: 226 year: 2018 ident: 12742_CR54 publication-title: Eur. J. Mech.-A doi: 10.1016/j.euromechsol.2018.02.012 – volume: 35 start-page: 61 year: 2012 ident: 12742_CR68 publication-title: Eur. J. Mech.-A doi: 10.1016/j.euromechsol.2012.01.003 – volume: 3 start-page: 16 year: 2017 ident: 12742_CR67 publication-title: J. Appl. Comput. Mech. – ident: 12742_CR19 – volume: 24 start-page: 1551 year: 2018 ident: 12742_CR59 publication-title: J. Vibrat. Control doi: 10.1177/1077546316664022 – volume: 95 start-page: 223103 year: 2009 ident: 12742_CR6 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3269637 – volume: 65 start-page: 428 year: 2019 ident: 12742_CR44 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2018.08.028 – volume: 131 start-page: 95 year: 2017 ident: 12742_CR50 publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2017.06.052 – volume: 375 start-page: 4034 year: 2011 ident: 12742_CR9 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2011.08.073 – volume: 25 start-page: 1543 year: 2019 ident: 12742_CR77 publication-title: J. Vibrat. Control doi: 10.1177/1077546319828465 – volume: 3 start-page: 3884 year: 2009 ident: 12742_CR5 publication-title: ACS Nano doi: 10.1021/nn9010472 – volume: 23 start-page: 1045 year: 2017 ident: 12742_CR36 publication-title: Microsyst. Technol. doi: 10.1007/s00542-016-2822-6 – volume: 23 start-page: 125036 year: 2014 ident: 12742_CR79 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/23/12/125036 – ident: 12742_CR48 doi: 10.1007/s00366-018-0669-4 – volume: 25 start-page: 1 year: 2018 ident: 12742_CR58 publication-title: Mech. Adv. Mater. Struct. doi: 10.1080/15376494.2016.1231356 – volume: 132 start-page: 281 year: 2017 ident: 12742_CR41 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2017-11551-4 – ident: 12742_CR74 – volume: 31 start-page: 40 year: 2018 ident: 12742_CR12 publication-title: Electr. J. doi: 10.1016/j.tej.2018.01.009 – volume: 232 start-page: 625 year: 2018 ident: 12742_CR22 publication-title: Proc. Inst. Mech. Eng. Part L – volume: 25 start-page: 382 year: 2016 ident: 12742_CR24 publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-016-1882-1 – volume: 27 start-page: 431 year: 2018 ident: 12742_CR46 publication-title: Wind Struct. – volume: 136 start-page: 188 year: 2018 ident: 12742_CR64 publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2017.12.028 – volume: 159 start-page: 579 year: 2017 ident: 12742_CR65 publication-title: Comput. Struct. doi: 10.1016/j.compstruct.2016.09.070 – volume: 25 start-page: 337 year: 2009 ident: 12742_CR31 publication-title: J. Mech. doi: 10.1017/S1727719100002823 – volume: 297 start-page: 787 year: 2002 ident: 12742_CR16 publication-title: Science doi: 10.1126/science.1060928 – volume: 61 start-page: 255 year: 2018 ident: 12742_CR43 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2018.04.015 – volume: 6 start-page: 179 year: 2010 ident: 12742_CR7 publication-title: Small doi: 10.1002/smll.200901480 – volume: 723 start-page: 1 year: 2018 ident: 12742_CR2 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2018.03.040 – volume: 16 start-page: 137 year: 2016 ident: 12742_CR26 publication-title: Modares Mech. Eng. – volume: 463 start-page: 196 year: 2014 ident: 12742_CR3 publication-title: J. Membrane Sci. doi: 10.1016/j.memsci.2014.03.065 – volume: 15 start-page: 791 year: 1992 ident: 12742_CR75 publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.1650150704 – volume: 39 start-page: 5194 year: 2006 ident: 12742_CR18 publication-title: Macromolecules doi: 10.1021/ma060733p – volume: 24 start-page: 199 year: 2002 ident: 12742_CR66 publication-title: Eng. Struct. doi: 10.1016/S0141-0296(01)00088-8 – volume: 116 start-page: 626 year: 2014 ident: 12742_CR71 publication-title: Comput. Struct. doi: 10.1016/j.compstruct.2014.05.048 – volume: 132 start-page: 115 year: 2017 ident: 12742_CR33 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2017-11395-x – volume: 178 start-page: 97 year: 2017 ident: 12742_CR49 publication-title: Comput. Struct. doi: 10.1016/j.compstruct.2017.06.062 – volume: 132 start-page: 6 year: 2017 ident: 12742_CR51 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2017-11275-5 – volume: 52 start-page: 5 year: 2011 ident: 12742_CR8 publication-title: Polymer doi: 10.1016/j.polymer.2010.11.042 – volume: 161 start-page: 111 year: 2017 ident: 12742_CR20 publication-title: Comput. Struct. doi: 10.1016/j.compstruct.2016.11.048 – volume: 10 start-page: 305 year: 2019 ident: 12742_CR14 publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2017.2738444 – volume: 14 start-page: 714 year: 2017 ident: 12742_CR69 publication-title: Latin Am. J. Solids Struct. doi: 10.1590/1679-78253410 – volume: 26 start-page: 9 year: 2017 ident: 12742_CR42 publication-title: J. Mech. Behav. Mater. doi: 10.1515/jmbm-2017-0010 – volume: 19 start-page: 84 year: 2016 ident: 12742_CR27 publication-title: Metall. Eng. – volume: 6 start-page: 289 year: 2006 ident: 12742_CR15 publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2006.903 – volume: 582 start-page: 338 year: 2013 ident: 12742_CR4 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2013.06.006 – volume: 23 start-page: 2078 year: 2017 ident: 12742_CR61 publication-title: J. Vibrat. Control doi: 10.1177/1077546315609988 – volume: 48 start-page: 379 year: 2017 ident: 12742_CR25 publication-title: Mech. Eng. – volume: 31 start-page: 194 year: 2010 ident: 12742_CR32 publication-title: Mater. & Design doi: 10.1016/j.matdes.2009.06.032 – ident: 12742_CR13 – volume: 122 start-page: 833 year: 2016 ident: 12742_CR40 publication-title: Appl. Phys. A doi: 10.1007/s00339-016-0365-4 – volume: 39 start-page: 2731 year: 2002 ident: 12742_CR70 publication-title: Int. J. Solids Struct. doi: 10.1016/S0020-7683(02)00152-X – volume: 28 start-page: 1706705 year: 2018 ident: 12742_CR1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201706705 – volume: 114 start-page: 572 year: 2017 ident: 12742_CR53 publication-title: Mater. Design doi: 10.1016/j.matdes.2016.10.041 – volume: 66 start-page: 423 year: 2017 ident: 12742_CR60 publication-title: Eur. J. Mech.-A doi: 10.1016/j.euromechsol.2017.08.001 – volume: 31 start-page: 310 year: 2018 ident: 12742_CR23 publication-title: J. Manufact. Proc. doi: 10.1016/j.jmapro.2017.11.009 – volume: 34 start-page: 235 year: 1971 ident: 12742_CR72 publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(71)90110-7 |
SSID | ssj0000491494 |
Score | 2.5591803 |
Snippet | .
In this article, the vibration characteristics of high-speed rotating graphene-nanoplatelets (GNP)-reinforced composite cylindrical nanoshell coupled with a... In this article, the vibration characteristics of high-speed rotating graphene-nanoplatelets (GNP)-reinforced composite cylindrical nanoshell coupled with a... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 307 |
SubjectTerms | Angular velocity Applied and Technical Physics Atomic Boundary conditions Complex Systems Condensed Matter Physics Graphene High speed Material properties Materials science Mathematical and Computational Physics Maxwell's equations Microelectromechanical systems Molecular Nanoelectromechanical systems Nanosensors Nanostructure Optical and Plasma Physics Physics Physics and Astronomy Piezoelectric actuators Potential energy Quadratures Regular Article Rotation Spinning (materials) Theoretical Velocity Vibration analysis Weighting functions |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA66IngRn7i-yMGbhm3S2CYnEXEVURFxZW8lTRNZWdpq14u_3pk-XBT03DSHmUnmm5nMfIQcKaM991jV1d4zqaxiyknBHBiAyaRxscbm5Lv76Hokb8an4zbhVrXPKrs7sb6os8JijnwgNNc4SyoSZ-UbQ9YorK62FBqLZIkL8LXYKT68-s6xAPqFAEB2vTIyGLjytRxMwOkhBwBEhSz-6Y_mIPNXXbR2N8M1striRHreKHadLLh8gyzX7zVttUncM4a5KFRq2rEitPDUUBw_zKoSfBJ9L7DMnr_Qq4fbxwuam7xopsV-vDtqi49yCoswDwu_lRP3WTSUOBNLDXaVQDC-RUbDy6eLa9YyJjALR2nGuIltYIULQhdnwrrMhoBXJNcZNyY1iKVCwDyZjYTy4L-iwGmdBqlVnIfKZOE26eVF7nYIFV7aNM2iMIUAUFtuQu9inkoRR9Yrr_uEd3JLbDtOHFktpknT6hwkKOuklnVSyzqJ--T4-5-yGabx7-r9Th1Je7CqZG4GfXLSqWj--e_ddv_fbY-s1FZR51f2SQ_U4Q4AbszSw9qmvgDHmtWF priority: 102 providerName: ProQuest |
Title | Vibration analysis of a high-speed rotating GPLRC nanostructure coupled with a piezoelectric actuator |
URI | https://link.springer.com/article/10.1140/epjp/i2019-12742-7 https://www.proquest.com/docview/2919905162 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgCIkL4ikGY8qBG1Rr0q5NjgPtIV5CE0PjVKVpgoZQW7Htwq_H6QMEAiROPdTpwXbqz3b8BeCES2GosV1dYYzjc8Udrn3maHQAmfhSh8IOJ9_cBqOJfzntTquhsHl92r1uSRZ_6pLP1u3o_DnvzDBeWfp-TOiccBXWupZPCr14wnoflRXEvAj7_XpC5selX6PQJ7T81g0tgsxgCzYrdEh6pTm3YUWnO7BenNJU813QDza5taoksiITIZkhkljSYWeeYyQir5ltrqdPZHh3Pb4gqUyzkiN2-aqJypb5CwrZ6isuy2f6LSsvwpkpIu0sCabgezAZ9O8vRk51T4KjcAMtHCpD5SqmXU-HCVM6UR6iFJ-KhEoZS4ugPEQ6iQoYNxi1AlcLEbux4pR6XCbePjTSLNUHQJjxVRwngRdj2icUlZ7RIY19FgbKcCOaQGu9RaoiEbd3WbxE5YCzG1ldR4Wuo0LXUdiE0481eUmh8ad0qzZHVG2necQEFZZILGBNOKtN9Pn6968d_k_8CDYKLymqLC1ooHn0MYKORdyGVT4YtmGtN3y86uPzvH97N24XnvcO5UHYPg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRC9VDzF0gI-wAmijR2TxIcKQWnZ0u2qqlrUm3H8qBZVSdhdhODH8duYyaMrkOit59g-zHzxvDzzAbzIjQo8UFVXhRDJ3OZR7qWIPALAOGl8pqg5-Wiajs_kp_M352vwu--FoWeV_Z3YXNSuspQjHwnFFc2SSsXb-ltErFFUXe0pNExHreB2mhFjXWPHof_5A0O4xc7BB9T3SyH29053x1HHMhBZhN8y4iazsRU-TnzmhPXOJmjjJVeOG1MY8j8S9BOcTUUe8M5PY69UERc25zzJjUvw3FuwLimBMoD193vT45OrLA_63xiCyL5bR8YjX3-tRzM0u8RCgHFplP1tEVdu7j-V2cbg7d-Fzc5TZe9aaN2DNV_eh9vNi1G7eAD-MwXapFZmusEmrArMMBqAHC1qtIpsXlGhv7xgH48nJ7usNGXVzqv9PvcMRVlf4iLKBOO2euZ_VS0pz8wyQ30ty2r-EM5uRJqPYFBWpX8MTARpi8KlSYEhqLLcJMFnvJAiS23IgxoC7-WmbTfQnHg1LnXbbB1rkrVuZK0bWetsCK-u9tTtOI9rV2_36tDdr73QKyAO4XWvotXn_5_25PrTnsOd8enRRE8OpodbsNEgpMn2bMMAVeOfovOzLJ51CGPw5aZB_Qc3kBiB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgCMSFN2I8c-AGZU0b2uaIgPGeJgQITlGSJmgwtdUel_16kj4YIEBCnBtXbezIn-34M8BuxKnG2lZ1qdYOiWTkRIp4jjIGwGPCVUhtc_JNKzi_J5ePh48fuvjz2-5VSbLoabAsTcmgkcW65LZ1Gyp7yRod47sslb8J7pxwEqaInSFRg6mjs6ercZ7FIGATBJCqX-Zb4c8-aQw0v9RGc5fTnAdefWxx0-T1YDgQB3L0hcfxP3-zAHMlHkVHhQEtwoRKlmA6vxcq-8ugHmw4bZWHeElfglKNOLI0x04_M74P9VJbzk-e0Vn7-vYYJTxJC1baYU8hmQ6zrllk871GLOuoUVqM3ulIxG33ign6V-C-eXp3fO6UkxkcaY7swME8lK70lOurMPakiqVvcBHBNMacC24xm2-wVSwDL9LGTwauolS4QkYY-xGP_VWoJWmi1gB5mkgh4sAXJtCkEnNfqxAL4oWB1JGmdcCVbpgsacvt9IwuK1qqXWa3j-Xbx_LtY2Ed9t5lsoK049fVm5XKWXmA-8yjmFrqssCrw36lwfHjn9-2_rflOzDTPmmy64vW1QbM5jaQp3g2oWY0pbYM4hmI7dKo3wDQZ_3B |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vibration+analysis+of+a+high-speed+rotating+GPLRC+nanostructure+coupled+with+a+piezoelectric+actuator&rft.jtitle=European+physical+journal+plus&rft.au=Habibi%2C+Mostafa&rft.au=Hashemabadi%2C+Davoud&rft.au=Safarpour%2C+Hamed&rft.date=2019-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=2190-5444&rft.volume=134&rft.issue=6&rft_id=info:doi/10.1140%2Fepjp%2Fi2019-12742-7&rft.externalDocID=10_1140_epjp_i2019_12742_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-5444&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-5444&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-5444&client=summon |