A data stream-based approach for anomaly detection in surveillance videos
Anomaly detection is a challenging task in surveillance videos. Nowadays, deep learning-based approaches have been developed for this issue. Although they achieve good performance, the training procedure is time-consuming and expensive due to including many layers. Besides, they have a dependence on...
        Saved in:
      
    
          | Published in | Multimedia tools and applications Vol. 83; no. 21; pp. 60213 - 60241 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.06.2024
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1573-7721 1380-7501 1573-7721  | 
| DOI | 10.1007/s11042-023-17861-x | 
Cover
| Abstract | Anomaly detection is a challenging task in surveillance videos. Nowadays, deep learning-based approaches have been developed for this issue. Although they achieve good performance, the training procedure is time-consuming and expensive due to including many layers. Besides, they have a dependence on the training set, and the structure of the deep networks is not suitable for dynamic events. They require retraining to detect different normal or abnormal events. They cannot adapt to the new event dynamically and instantly without retraining. This paper aims to bring a novel perspective to anomaly detection in surveillance video by tackling the task in a data stream manner to overcome these disadvantages. A novel and simple data stream-based ensemble approach for video anomaly detection is presented in this paper. Initially, fixed-sized temporal segments are created using current frames during streaming. A multiple instance learning-based preprocessing method is applied to the current segment, and a 1-D flow vector is obtained. A fixed-sized chunk is generated by pooling the flow vectors for learning. Afterwards, a streaming data learning algorithm called Unsupervised Feature Representative Online Sequential-Extreme Learning Machines (UFROS-ELM) is applied to the current chunk. UFROS-ELM makes the initial prediction about the current vectors using a concept drift detection mechanism and ELM-based autoencoder. Finally, multiple UFROS-ELM based ensemble learning is employed for the final decision using the majority voting. The results are achieved on the well-known surveillance data sets and compared with state-of-the-art deep learning-based video anomaly detection algorithms. The promising results support further research in this area. | 
    
|---|---|
| AbstractList | Anomaly detection is a challenging task in surveillance videos. Nowadays, deep learning-based approaches have been developed for this issue. Although they achieve good performance, the training procedure is time-consuming and expensive due to including many layers. Besides, they have a dependence on the training set, and the structure of the deep networks is not suitable for dynamic events. They require retraining to detect different normal or abnormal events. They cannot adapt to the new event dynamically and instantly without retraining. This paper aims to bring a novel perspective to anomaly detection in surveillance video by tackling the task in a data stream manner to overcome these disadvantages. A novel and simple data stream-based ensemble approach for video anomaly detection is presented in this paper. Initially, fixed-sized temporal segments are created using current frames during streaming. A multiple instance learning-based preprocessing method is applied to the current segment, and a 1-D flow vector is obtained. A fixed-sized chunk is generated by pooling the flow vectors for learning. Afterwards, a streaming data learning algorithm called Unsupervised Feature Representative Online Sequential-Extreme Learning Machines (UFROS-ELM) is applied to the current chunk. UFROS-ELM makes the initial prediction about the current vectors using a concept drift detection mechanism and ELM-based autoencoder. Finally, multiple UFROS-ELM based ensemble learning is employed for the final decision using the majority voting. The results are achieved on the well-known surveillance data sets and compared with state-of-the-art deep learning-based video anomaly detection algorithms. The promising results support further research in this area. | 
    
| Author | Ekinci, Murat Aydogdu, Ozge  | 
    
| Author_xml | – sequence: 1 givenname: Ozge orcidid: 0000-0001-9386-4390 surname: Aydogdu fullname: Aydogdu, Ozge email: omakul@ktu.edu.tr organization: Department of Computer Engineering, Karadeniz Technical University – sequence: 2 givenname: Murat surname: Ekinci fullname: Ekinci, Murat organization: Department of Computer Engineering, Karadeniz Technical University  | 
    
| BookMark | eNp9kD1PwzAQhi1UJNrCH2CyxBzw2amdjFXFR6VKLDBbF_sCqdKk2GnV_ntSggRiYLob3ufu1TNho6ZtiLFrELcghLmLACKViZAqAZNpSA5nbAwzoxJjJIx-7RdsEuNaCNAzmY7Zcs49dshjFwg3SYGRPMftNrTo3nnZBo5Nu8H6yD115LqqbXjV8LgLe6rqGhtHfF95auMlOy-xjnT1Pafs9eH-ZfGUrJ4fl4v5KnEK8i6BXOeFNjItHZD2Ki-FIldSWqRagXMoC1dIr40q_ayAAsjlmBlfostBIKkpuxnu9h0_dhQ7u253oelfWiW0yvJUSdmnsiHlQhtjoNK6qsNT_S5gVVsQ9iTODuJsL85-ibOHHpV_0G2oNhiO_0NqgGIfbt4o_LT6h_oE-ZOEPQ | 
    
| CitedBy_id | crossref_primary_10_1007_s44196_025_00766_y | 
    
| Cites_doi | 10.1016/j.neucom.2019.08.044 10.1016/j.cviu.2020.102920 10.1109/ACCESS.2019.2960654 10.1016/j.patcog.2017.10.009 10.1016/j.jvcir.2020.102767 10.1016/j.patrec.2019.11.024 10.1007/s11227-019-02861-2 10.1109/TKDE.2012.66 10.1109/ACCESS.2019.2954540 10.1109/TIFS.2019.2900907 10.1016/j.compeleceng.2019.02.017 10.1016/j.cviu.2016.10.010 10.1016/j.eswa.2016.08.052 10.1109/ACCESS.2020.2993373 10.1016/S0004-3702(96)00034-3 10.1109/TNN.2006.880583 10.1109/TMM.2018.2846411 10.1007/s11227-019-03090-3 10.1016/j.neucom.2019.08.059 10.1007/s11042-016-3316-3 10.1016/j.knosys.2016.01.027 10.1016/j.jnca.2015.11.016 10.1016/j.neucom.2005.12.126 10.1007/s10115-014-0808-1 10.1109/TITS.2020.3038250 10.1016/j.neucom.2016.08.156 10.1016/j.neucom.2016.09.063 10.1016/j.imavis.2020.103915 10.7717/peerj-cs.185 10.1016/j.patcog.2014.05.022 10.1109/TII.2019.2938527 10.1109/ICCV.2017.620 10.1007/s11042-019-7543-2 10.1007/978-981-15-4018-9_31 10.1109/CVPR.2019.00133 10.1007/s13042-015-0351-8 10.1007/978-3-642-02788-8_14 10.1155/2020/8876056 10.5244/C.29.8 10.1007/s11042-020-09300-y 10.1109/CVPR.2018.00678 10.1109/ICCV.2015.510 10.1109/CVPR.2010.5539872 10.1109/ICCV.2013.338 10.1109/CVPR.2016.86  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U  | 
    
| DOI | 10.1007/s11042-023-17861-x | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection (via ProQuest) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic  | 
    
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni)  | 
    
| DatabaseTitleList | ABI/INFORM Global (Corporate)  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 1573-7721 | 
    
| EndPage | 60241 | 
    
| ExternalDocumentID | 10_1007_s11042_023_17861_x | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PHGZM PHGZT PKEHL PQEST PQGLB PQUKI Q9U  | 
    
| ID | FETCH-LOGICAL-c319t-1969b6724fc1e6d39f03ecfe4b4631cca2bcb2d673fd5b1b1ec9a87dfac910ae3 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1573-7721 1380-7501  | 
    
| IngestDate | Fri Jul 25 09:35:01 EDT 2025 Wed Oct 01 04:51:41 EDT 2025 Thu Apr 24 23:10:54 EDT 2025 Fri Feb 21 02:42:22 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 21 | 
    
| Keywords | Video surveillance Data stream Incremental learning Concept drift Anomaly detection UFROS-ELM  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c319t-1969b6724fc1e6d39f03ecfe4b4631cca2bcb2d673fd5b1b1ec9a87dfac910ae3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-9386-4390 | 
    
| PQID | 3063894322 | 
    
| PQPubID | 54626 | 
    
| PageCount | 29 | 
    
| ParticipantIDs | proquest_journals_3063894322 crossref_citationtrail_10_1007_s11042_023_17861_x crossref_primary_10_1007_s11042_023_17861_x springer_journals_10_1007_s11042_023_17861_x  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20240600 | 
    
| PublicationDateYYYYMMDD | 2024-06-01 | 
    
| PublicationDate_xml | – month: 6 year: 2024 text: 20240600  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York – name: Dordrecht  | 
    
| PublicationSubtitle | An International Journal | 
    
| PublicationTitle | Multimedia tools and applications | 
    
| PublicationTitleAbbrev | Multimed Tools Appl | 
    
| PublicationYear | 2024 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | Fan, Wen, Li, Qiu, Levine, Xiao (CR16) 2020; 95 Tang, Zhao, Zhang, Gong, Li, Yang (CR40) 2020; 129 Li, Chang (CR27) 2019; 369 Singh, Rajora, Vishwakarma, Tripathi, Kumar, Walia (CR38) 2020; 371 CR39 Liang, Huang, Saratchandran, Sundararajan (CR28) 2006; 17 Abbasi, Tahouri, Rafiee (CR1) 2019; 5 CR13 Zhou, Du, Zhu, Peng, Liu, Goh (CR48) 2019; 14 Kasun, Zhou, Huang (CR24) 2013; 28 CR33 Zeng, Li (CR46) 2014; 47 CR32 Chen, Wang, Yue, Zhang, Jia (CR10) 2020; 98 Chu, Xue, Yao, Cai (CR11) 2018; 21 Fang, Fei, Fang, Lee, Xiong, Shu, Chen (CR18) 2016; 75 CR31 Ahmed, Mahmood, Hu (CR6) 2016; 60 CR30 Nawaratne, Alahakoon, De Silva, Yu (CR35) 2019; 16 Dietterich, Lathrop, Lozano-Pérez (CR12) 1997; 89 Feng, Yuan, Lu (CR19) 2017; 219 Carbonneau, Cheplygina, Granger, Gagnon (CR9) 2018; 77 Abbasi, Najafi, Rafiee, Khosravi, Menon, Muhammad (CR2) 2021; 22 Liu, Yu, Gong, Chen (CR29) 2020; 68 Abbasi, Vesaghati Fazel, Rafiee (CR3) 2020; 76 Wang, Zhu, Yin, Porikli (CR42) 2018; 277 Rutkowski, Pietruczuk, Duda, Jaworski (CR37) 2013; 25 CR5 CR8 CR7 Duman, Erdem (CR15) 2019; 7 Abbasi, Rafiee (CR4) 2019; 75 CR26 Murugan, Elhoseny, Shankar, Uthayakumar (CR34) 2019; 75 CR47 Xu, Wang (CR45) 2016; 65 CR22 CR21 CR43 CR20 Nguyen, Woon, Ng (CR36) 2015; 45 Dong, Zhang, Nie (CR14) 2020; 8 CR41 Xu, Yan, Ricci, Sebe (CR44) 2017; 156 Huang, Zhu, Siew (CR23) 2006; 70 Fanaee, Gama (CR17) 2016; 98 Li, Cai, Liu, Lang, Zhang (CR25) 2019; 7 TG Dietterich (17861_CR12) 1997; 89 R Nawaratne (17861_CR35) 2019; 16 TH Fanaee (17861_CR17) 2016; 98 K Singh (17861_CR38) 2020; 371 D Chen (17861_CR10) 2020; 98 Y Li (17861_CR25) 2019; 7 GB Huang (17861_CR23) 2006; 70 Y Tang (17861_CR40) 2020; 129 XQ Zeng (17861_CR46) 2014; 47 Y Liu (17861_CR29) 2020; 68 L Rutkowski (17861_CR37) 2013; 25 17861_CR39 LLC Kasun (17861_CR24) 2013; 28 17861_CR32 17861_CR33 BS Murugan (17861_CR34) 2019; 75 17861_CR13 W Chu (17861_CR11) 2018; 21 D Xu (17861_CR44) 2017; 156 17861_CR41 17861_CR20 M Abbasi (17861_CR1) 2019; 5 M Abbasi (17861_CR4) 2019; 75 F Dong (17861_CR14) 2020; 8 N Li (17861_CR27) 2019; 369 MA Carbonneau (17861_CR9) 2018; 77 M Ahmed (17861_CR6) 2016; 60 NY Liang (17861_CR28) 2006; 17 S Wang (17861_CR42) 2018; 277 S Xu (17861_CR45) 2016; 65 E Duman (17861_CR15) 2019; 7 Y Fan (17861_CR16) 2020; 95 17861_CR47 M Abbasi (17861_CR2) 2021; 22 17861_CR26 17861_CR8 17861_CR21 17861_CR43 17861_CR7 17861_CR22 HL Nguyen (17861_CR36) 2015; 45 17861_CR5 Z Fang (17861_CR18) 2016; 75 17861_CR30 17861_CR31 Y Feng (17861_CR19) 2017; 219 JT Zhou (17861_CR48) 2019; 14 M Abbasi (17861_CR3) 2020; 76  | 
    
| References_xml | – ident: CR22 – volume: 369 start-page: 92 year: 2019 end-page: 105 ident: CR27 article-title: Video anomaly detection and localization via multivariate Gaussian fully convolution adversarial autoencoder publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.08.044 – volume: 95 start-page: 102920 year: 2020 ident: CR16 article-title: Video anomaly detection and localization via Gaussian mixture fully convolutional variational autoencoder publication-title: Comput Vis Image Understand doi: 10.1016/j.cviu.2020.102920 – ident: CR43 – ident: CR47 – ident: CR39 – volume: 7 start-page: 183914 year: 2019 end-page: 183923 ident: CR15 article-title: Anomaly detection in videos using optical flow and convolutional autoencoder publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2960654 – ident: CR30 – volume: 77 start-page: 329 year: 2018 end-page: 353 ident: CR9 article-title: Multiple instance learning: a survey of problem characteristics and applications publication-title: Pattern Recognit doi: 10.1016/j.patcog.2017.10.009 – ident: CR33 – volume: 68 start-page: 102767 year: 2020 ident: CR29 article-title: A real time expert system for anomaly detection of aerators based on computer vision and surveillance cameras publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2020.102767 – volume: 129 start-page: 123 year: 2020 end-page: 130 ident: CR40 article-title: Integrating prediction and reconstruction for anomaly detection publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2019.11.024 – volume: 75 start-page: 6574 year: 2019 end-page: 6611 ident: CR4 article-title: A calibrated asymptotic framework for analyzing packet classification algorithms on GPUs publication-title: J Supercomput doi: 10.1007/s11227-019-02861-2 – volume: 25 start-page: 1272 issue: 6 year: 2013 end-page: 1279 ident: CR37 article-title: Decision trees for mining data streams based on the McDiarmid’s bound publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2012.66 – ident: CR8 – volume: 7 start-page: 172425 year: 2019 end-page: 172432 ident: CR25 article-title: Spatio-temporal unity networking for video anomaly detection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2954540 – volume: 14 start-page: 2537 issue: 10 year: 2019 end-page: 2550 ident: CR48 article-title: AnomalyNet: an anomaly detection network for video surveillance publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2019.2900907 – volume: 75 start-page: 146 year: 2019 end-page: 160 ident: CR34 article-title: Region-based scalable smart system for anomaly detection in pedestrian walkways publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2019.02.017 – volume: 156 start-page: 117 year: 2017 end-page: 127 ident: CR44 article-title: Detecting anomalous events in videos by learning deep representations of appearance and motion publication-title: Comput Vis Image Understand doi: 10.1016/j.cviu.2016.10.010 – volume: 65 start-page: 332 year: 2016 end-page: 344 ident: CR45 article-title: A fast incremental extreme learning machine algorithm for data streams classification publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.08.052 – ident: CR21 – volume: 8 start-page: 88170 year: 2020 end-page: 88176 ident: CR14 article-title: Dual discriminator generative adversarial network for video anomaly detection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2993373 – volume: 89 start-page: 31 issue: 1 year: 1997 end-page: 71 ident: CR12 article-title: Solving the multiple instance problem with axis-parallel rectangles publication-title: Artif Intell doi: 10.1016/S0004-3702(96)00034-3 – volume: 17 start-page: 1411 issue: 6 year: 2006 end-page: 1423 ident: CR28 article-title: A fast and accurate online sequential learning algorithm for feedforward networks publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2006.880583 – volume: 21 start-page: 246 issue: 1 year: 2018 end-page: 255 ident: CR11 article-title: Sparse coding guided spatiotemporal feature learning for abnormal event detection in large videos publication-title: IEEE Trans Multimedia doi: 10.1109/TMM.2018.2846411 – volume: 76 start-page: 3105 year: 2020 end-page: 3128 ident: CR3 article-title: MBitCuts: optimal bit-level cutting in geometric space packet classification publication-title: J Supercomput doi: 10.1007/s11227-019-03090-3 – volume: 371 start-page: 188 year: 2020 end-page: 198 ident: CR38 article-title: Crowd anomaly detection using aggregation of ensembles of fine-tuned ConvNets publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.08.059 – volume: 75 start-page: 14617 issue: 22 year: 2016 end-page: 14639 ident: CR18 article-title: Abnormal event detection in crowded scenes based on deep learning publication-title: Multimedia Tools Appl doi: 10.1007/s11042-016-3316-3 – volume: 98 start-page: 130 year: 2016 end-page: 147 ident: CR17 article-title: Tensor-based anomaly detection: an interdisciplinary survey publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2016.01.027 – volume: 28 start-page: 31 issue: 6 year: 2013 end-page: 34 ident: CR24 article-title: Representational learning with ELMs for big data publication-title: IEEE Intell Syst – volume: 60 start-page: 19 year: 2016 end-page: 31 ident: CR6 article-title: A survey of network anomaly detection techniques publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2015.11.016 – volume: 70 start-page: 489 issue: 1–3 year: 2006 end-page: 501 ident: CR23 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – ident: CR31 – ident: CR13 – volume: 45 start-page: 535 issue: 3 year: 2015 end-page: 569 ident: CR36 article-title: A survey on data stream clustering and classification publication-title: Knowl Inf Syst doi: 10.1007/s10115-014-0808-1 – volume: 22 start-page: 5283 issue: 8 year: 2021 end-page: 5292 ident: CR2 article-title: Efficient flow processing in 5G-envisioned SDN-based Internet of Vehicles using GPUs publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2020.3038250 – ident: CR32 – volume: 277 start-page: 161 year: 2018 end-page: 175 ident: CR42 article-title: Video anomaly detection and localization by local motion based joint video representation and OCELM publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.08.156 – volume: 219 start-page: 548 year: 2017 end-page: 556 ident: CR19 article-title: Learning deep event models for crowd anomaly detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.09.063 – volume: 98 start-page: 103915 year: 2020 ident: CR10 article-title: Anomaly detection in surveillance video based on bidirectional prediction publication-title: Image Vis Comput doi: 10.1016/j.imavis.2020.103915 – volume: 5 start-page: e185 year: 2019 ident: CR1 article-title: Enhancing the performance of the aggregated bit vector algorithm in network packet classification using GPU publication-title: PeerJ Comput Sci doi: 10.7717/peerj-cs.185 – volume: 47 start-page: 3726 issue: 11 year: 2014 end-page: 3735 ident: CR46 article-title: Incremental partial least squares analysis of big streaming data publication-title: Pattern Recognit doi: 10.1016/j.patcog.2014.05.022 – ident: CR5 – ident: CR7 – ident: CR41 – ident: CR26 – volume: 16 start-page: 393 issue: 1 year: 2019 end-page: 402 ident: CR35 article-title: Spatiotemporal anomaly detection using deep learning for real-time video surveillance publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2019.2938527 – ident: CR20 – volume: 75 start-page: 6574 year: 2019 ident: 17861_CR4 publication-title: J Supercomput doi: 10.1007/s11227-019-02861-2 – ident: 17861_CR22 doi: 10.1109/ICCV.2017.620 – volume: 98 start-page: 130 year: 2016 ident: 17861_CR17 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2016.01.027 – volume: 277 start-page: 161 year: 2018 ident: 17861_CR42 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.08.156 – volume: 76 start-page: 3105 year: 2020 ident: 17861_CR3 publication-title: J Supercomput doi: 10.1007/s11227-019-03090-3 – volume: 14 start-page: 2537 issue: 10 year: 2019 ident: 17861_CR48 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2019.2900907 – volume: 8 start-page: 88170 year: 2020 ident: 17861_CR14 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2993373 – volume: 60 start-page: 19 year: 2016 ident: 17861_CR6 publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2015.11.016 – volume: 70 start-page: 489 issue: 1–3 year: 2006 ident: 17861_CR23 publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – ident: 17861_CR26 doi: 10.1007/s11042-019-7543-2 – ident: 17861_CR33 – volume: 75 start-page: 146 year: 2019 ident: 17861_CR34 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2019.02.017 – volume: 98 start-page: 103915 year: 2020 ident: 17861_CR10 publication-title: Image Vis Comput doi: 10.1016/j.imavis.2020.103915 – ident: 17861_CR32 doi: 10.1007/978-981-15-4018-9_31 – ident: 17861_CR47 doi: 10.1109/CVPR.2019.00133 – volume: 129 start-page: 123 year: 2020 ident: 17861_CR40 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2019.11.024 – ident: 17861_CR7 – volume: 47 start-page: 3726 issue: 11 year: 2014 ident: 17861_CR46 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2014.05.022 – volume: 17 start-page: 1411 issue: 6 year: 2006 ident: 17861_CR28 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2006.880583 – volume: 25 start-page: 1272 issue: 6 year: 2013 ident: 17861_CR37 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2012.66 – volume: 77 start-page: 329 year: 2018 ident: 17861_CR9 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2017.10.009 – volume: 7 start-page: 183914 year: 2019 ident: 17861_CR15 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2960654 – volume: 75 start-page: 14617 issue: 22 year: 2016 ident: 17861_CR18 publication-title: Multimedia Tools Appl doi: 10.1007/s11042-016-3316-3 – ident: 17861_CR13 doi: 10.1007/s13042-015-0351-8 – volume: 95 start-page: 102920 year: 2020 ident: 17861_CR16 publication-title: Comput Vis Image Understand doi: 10.1016/j.cviu.2020.102920 – ident: 17861_CR5 doi: 10.1007/978-3-642-02788-8_14 – ident: 17861_CR20 doi: 10.1155/2020/8876056 – ident: 17861_CR43 doi: 10.5244/C.29.8 – volume: 89 start-page: 31 issue: 1 year: 1997 ident: 17861_CR12 publication-title: Artif Intell doi: 10.1016/S0004-3702(96)00034-3 – volume: 68 start-page: 102767 year: 2020 ident: 17861_CR29 publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2020.102767 – ident: 17861_CR8 doi: 10.1007/s11042-020-09300-y – volume: 369 start-page: 92 year: 2019 ident: 17861_CR27 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.08.044 – ident: 17861_CR39 doi: 10.1109/CVPR.2018.00678 – volume: 65 start-page: 332 year: 2016 ident: 17861_CR45 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.08.052 – ident: 17861_CR41 doi: 10.1109/ICCV.2015.510 – volume: 16 start-page: 393 issue: 1 year: 2019 ident: 17861_CR35 publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2019.2938527 – volume: 371 start-page: 188 year: 2020 ident: 17861_CR38 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.08.059 – volume: 21 start-page: 246 issue: 1 year: 2018 ident: 17861_CR11 publication-title: IEEE Trans Multimedia doi: 10.1109/TMM.2018.2846411 – volume: 156 start-page: 117 year: 2017 ident: 17861_CR44 publication-title: Comput Vis Image Understand doi: 10.1016/j.cviu.2016.10.010 – volume: 5 start-page: e185 year: 2019 ident: 17861_CR1 publication-title: PeerJ Comput Sci doi: 10.7717/peerj-cs.185 – volume: 22 start-page: 5283 issue: 8 year: 2021 ident: 17861_CR2 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2020.3038250 – volume: 219 start-page: 548 year: 2017 ident: 17861_CR19 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.09.063 – ident: 17861_CR31 doi: 10.1109/CVPR.2010.5539872 – ident: 17861_CR30 doi: 10.1109/ICCV.2013.338 – ident: 17861_CR21 doi: 10.1109/CVPR.2016.86 – volume: 28 start-page: 31 issue: 6 year: 2013 ident: 17861_CR24 publication-title: IEEE Intell Syst – volume: 7 start-page: 172425 year: 2019 ident: 17861_CR25 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2954540 – volume: 45 start-page: 535 issue: 3 year: 2015 ident: 17861_CR36 publication-title: Knowl Inf Syst doi: 10.1007/s10115-014-0808-1  | 
    
| SSID | ssj0016524 | 
    
| Score | 2.3782852 | 
    
| Snippet | Anomaly detection is a challenging task in surveillance videos. Nowadays, deep learning-based approaches have been developed for this issue. Although they... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 60213 | 
    
| SubjectTerms | Algorithms Anomalies Artificial neural networks Computer Communication Networks Computer Science Data Structures and Information Theory Data transmission Deep learning Ensemble learning Machine learning Multimedia Information Systems Segments Special Purpose and Application-Based Systems Surveillance Video  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60vejBt1itkoM3DW72mT2IVGmpgkXEQm9LniDotvYh9d-b7GZbFex5sznMTDJDZr7vAzhnka9l6imsQs5wKGiMKUsi7CWCCu5pWr5DPvbibj98GESDNehVWBg7VlndicVFLYfCvpFfBUVuDU383Yw-sFWNst3VSkKDOWkFeV1QjK1D3bfMWDWo37Z7T8-LvkIcOZlb6mGTK4mD0ZRgOmKhKiaHYZLQmOD571S1rD__tEyLTNTZgS1XQqJW6fNdWFP5HmxX8gzIndY92PzBNbgP9y1kp0GRBYewd2yzl0QVozgypSti-fCdvX0hqabFfFaOXnM0mY0_lVUmMlsii9kbTg6g32m_3HWx01HAwhywKbYMODxO_FALomIZpNoLlNDGO2EcEONCnwvuyzgJtIw44USJlNFEaiZMMcFUcAi1fJirI0ABpZJyqbUMVegxi3JlwiqJRzqlaZQ0gFQmy4QjGbdaF2_Zkh7ZmjkzZs4KM2fzBlws_hmVFBsrVzcrT2TuuE2yZXA04LLyzvLz_7sdr97tBDZ8U8SUo2FNqE3HM3VqipApP3OR9Q1TCtjK priority: 102 providerName: ProQuest  | 
    
| Title | A data stream-based approach for anomaly detection in surveillance videos | 
    
| URI | https://link.springer.com/article/10.1007/s11042-023-17861-x https://www.proquest.com/docview/3063894322  | 
    
| Volume | 83 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-7721 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: ADMLS dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-7721 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7721 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60vejBR1Ws1pKDNw3sI7ubPVZprYpFxEI9LXmC0G6l24r-e5N9tCoqeNpDHoeZTOZjM983AKcs8LSMHYUV4QwTQUNMWRRgJxJUcEfT4j_k3SDsD8nNKBiVpLCsqnavniTzm3pFdnMtlcTkGOxGNHSxQY71wMp5mVM89DrLt4Mw8EhJj_l53dcUtMKV355C8wzT24GtEhqiTuHLXVhTaQO2q7YLqIzCBmx-0hDcg-sOslWeyJI-2ATbrCRRpRSODCRFLJ1O2PgdSTXP665S9JyibDF7VbbjkNkSWS7eNNuHYa_7eNnHZX8ELEzgzLFVtuFh5BEtXBVKP9aOr4Q2Vieh7xrXeFxwT4aRr2XAXe4qETMaSc2EAQlM-QdQS6epOgTkUyopl1pLoojDLHuVCdshPNAxjYOoCW5lskSU4uG2h8U4WckeWzMnxsxJbubkrQlnyzUvhXTGn7NblSeSMoyyxM8BFTGXThPOK--shn_f7eh_049hwzNgpSgBa0FtPluoEwM25rwN67R31YZ65-rptmu-F93B_UM7P3EftTnR7w | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEB1RcqAcKKWtCAS6Bzi1q3rttb0-oCp8KSkhQhVI3Nz9lCoRJ5AEwp_jt7FrrwlFKjfOtkf27HhndnfeewA7PA6NygKNNRUcU8kSzHga4yCVTIrAsGof8rSfdC7or8v4cgEeaiyMa6us58RyolZD6fbIf0RlbqU2_n6OrrFTjXKnq7WEBvfSCmqvpBjzwI4TfX9nl3Djve6hHe_dMDw-Oj_oYK8ygKUNvwl2_DAiSUNqJNGJijITRFoa--40iYj9wFBIEaokjYyKBRFEy4yzVBkubarlOrJ230GDRjSzi7_G_lH_7PfTOUYSe1ldFmCbm4mH7VTgPeKgMTZnYpKyhODZv6lxXu--OKItM9_xKqz4khW1qxj7CAu6WIMPtRwE8rPDGiw_4zb8BN02ct2nyIFR-AC7bKlQzWCObKmMeDEc8Kt7pPSk7Acr0N8Cjac3t9opIVmTyGEEh-PPcPEmHv0Ci8Ww0OuAIsYUE8oYRTUNuEPVcumUy2OTsSxOm0Bql-XSk5o7bY2rfE7H7NycWzfnpZvzWRO-PT0zqig9Xr27VY9E7n_vcT4PxiZ8r0dnfvn_1jZet_YVljrnp7281-2fbML70BZQVVtaCxYnN1O9ZQugidj2UYbgz1sH9iPfFhgp | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3HTsQwEB1RJAQHOmKpPsAJLOJU54AQAhaWJg4gcQuuEtKSBXZpv8bX4UlhAQlunJOMkvGzZ2LPmwewJiLf6tQz1IRS0FDxmHKRRNRLFFfSs7zchzw7j4-uwuPr6HoA3msuDJZV1mtisVDrjsI98q2giK2hw9-WrcoiLvabO_cPFBWk8KS1ltMoIXJi3l7c71t3u7Xvxnrd95sHl3tHtFIYoMpBr0exN4yMEz-0iplYB6n1AqOse-8wDpj7OF8q6es4CayOJJPMqFTwRFuhXJgVJnB2B2E4wS7uyFJvHn6eYMRRJajLPeqiMqsIOyVtjyEpxkVLyhIeM_r6PSj2M90fh7NFzGtOwniVrJLdEl1TMGDyaZiohSBItS5Mw9iXroYz0NolWHdKkIYi7ijGSU3q3uXEJclE5J070X4j2vSKSrCc3Oak-_T4bFADyZkkyA7sdGfh6l_8OQdDeSc380ACzjWX2lodmtATyKcVCjXLI5vyNEoawGqXZapqZ46qGu2s34gZ3Zw5N2eFm7PXBmx8PnNfNvP48-6leiSyamJ3sz4MG7BZj07_8u_WFv62tgojDs7Zaev8ZBFGfZc5lfVoSzDUe3wyyy7z6cmVAmIEbv4b0x82BBXD | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data+stream-based+approach+for+anomaly+detection+in+surveillance+videos&rft.jtitle=Multimedia+tools+and+applications&rft.au=Aydogdu%2C+Ozge&rft.au=Ekinci%2C+Murat&rft.date=2024-06-01&rft.pub=Springer+US&rft.eissn=1573-7721&rft.volume=83&rft.issue=21&rft.spage=60213&rft.epage=60241&rft_id=info:doi/10.1007%2Fs11042-023-17861-x&rft.externalDocID=10_1007_s11042_023_17861_x | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon |