A data stream-based approach for anomaly detection in surveillance videos

Anomaly detection is a challenging task in surveillance videos. Nowadays, deep learning-based approaches have been developed for this issue. Although they achieve good performance, the training procedure is time-consuming and expensive due to including many layers. Besides, they have a dependence on...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 83; no. 21; pp. 60213 - 60241
Main Authors Aydogdu, Ozge, Ekinci, Murat
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1573-7721
1380-7501
1573-7721
DOI10.1007/s11042-023-17861-x

Cover

Abstract Anomaly detection is a challenging task in surveillance videos. Nowadays, deep learning-based approaches have been developed for this issue. Although they achieve good performance, the training procedure is time-consuming and expensive due to including many layers. Besides, they have a dependence on the training set, and the structure of the deep networks is not suitable for dynamic events. They require retraining to detect different normal or abnormal events. They cannot adapt to the new event dynamically and instantly without retraining. This paper aims to bring a novel perspective to anomaly detection in surveillance video by tackling the task in a data stream manner to overcome these disadvantages. A novel and simple data stream-based ensemble approach for video anomaly detection is presented in this paper. Initially, fixed-sized temporal segments are created using current frames during streaming. A multiple instance learning-based preprocessing method is applied to the current segment, and a 1-D flow vector is obtained. A fixed-sized chunk is generated by pooling the flow vectors for learning. Afterwards, a streaming data learning algorithm called Unsupervised Feature Representative Online Sequential-Extreme Learning Machines (UFROS-ELM) is applied to the current chunk. UFROS-ELM makes the initial prediction about the current vectors using a concept drift detection mechanism and ELM-based autoencoder. Finally, multiple UFROS-ELM based ensemble learning is employed for the final decision using the majority voting. The results are achieved on the well-known surveillance data sets and compared with state-of-the-art deep learning-based video anomaly detection algorithms. The promising results support further research in this area.
AbstractList Anomaly detection is a challenging task in surveillance videos. Nowadays, deep learning-based approaches have been developed for this issue. Although they achieve good performance, the training procedure is time-consuming and expensive due to including many layers. Besides, they have a dependence on the training set, and the structure of the deep networks is not suitable for dynamic events. They require retraining to detect different normal or abnormal events. They cannot adapt to the new event dynamically and instantly without retraining. This paper aims to bring a novel perspective to anomaly detection in surveillance video by tackling the task in a data stream manner to overcome these disadvantages. A novel and simple data stream-based ensemble approach for video anomaly detection is presented in this paper. Initially, fixed-sized temporal segments are created using current frames during streaming. A multiple instance learning-based preprocessing method is applied to the current segment, and a 1-D flow vector is obtained. A fixed-sized chunk is generated by pooling the flow vectors for learning. Afterwards, a streaming data learning algorithm called Unsupervised Feature Representative Online Sequential-Extreme Learning Machines (UFROS-ELM) is applied to the current chunk. UFROS-ELM makes the initial prediction about the current vectors using a concept drift detection mechanism and ELM-based autoencoder. Finally, multiple UFROS-ELM based ensemble learning is employed for the final decision using the majority voting. The results are achieved on the well-known surveillance data sets and compared with state-of-the-art deep learning-based video anomaly detection algorithms. The promising results support further research in this area.
Author Ekinci, Murat
Aydogdu, Ozge
Author_xml – sequence: 1
  givenname: Ozge
  orcidid: 0000-0001-9386-4390
  surname: Aydogdu
  fullname: Aydogdu, Ozge
  email: omakul@ktu.edu.tr
  organization: Department of Computer Engineering, Karadeniz Technical University
– sequence: 2
  givenname: Murat
  surname: Ekinci
  fullname: Ekinci, Murat
  organization: Department of Computer Engineering, Karadeniz Technical University
BookMark eNp9kD1PwzAQhi1UJNrCH2CyxBzw2amdjFXFR6VKLDBbF_sCqdKk2GnV_ntSggRiYLob3ufu1TNho6ZtiLFrELcghLmLACKViZAqAZNpSA5nbAwzoxJjJIx-7RdsEuNaCNAzmY7Zcs49dshjFwg3SYGRPMftNrTo3nnZBo5Nu8H6yD115LqqbXjV8LgLe6rqGhtHfF95auMlOy-xjnT1Pafs9eH-ZfGUrJ4fl4v5KnEK8i6BXOeFNjItHZD2Ki-FIldSWqRagXMoC1dIr40q_ayAAsjlmBlfostBIKkpuxnu9h0_dhQ7u253oelfWiW0yvJUSdmnsiHlQhtjoNK6qsNT_S5gVVsQ9iTODuJsL85-ibOHHpV_0G2oNhiO_0NqgGIfbt4o_LT6h_oE-ZOEPQ
CitedBy_id crossref_primary_10_1007_s44196_025_00766_y
Cites_doi 10.1016/j.neucom.2019.08.044
10.1016/j.cviu.2020.102920
10.1109/ACCESS.2019.2960654
10.1016/j.patcog.2017.10.009
10.1016/j.jvcir.2020.102767
10.1016/j.patrec.2019.11.024
10.1007/s11227-019-02861-2
10.1109/TKDE.2012.66
10.1109/ACCESS.2019.2954540
10.1109/TIFS.2019.2900907
10.1016/j.compeleceng.2019.02.017
10.1016/j.cviu.2016.10.010
10.1016/j.eswa.2016.08.052
10.1109/ACCESS.2020.2993373
10.1016/S0004-3702(96)00034-3
10.1109/TNN.2006.880583
10.1109/TMM.2018.2846411
10.1007/s11227-019-03090-3
10.1016/j.neucom.2019.08.059
10.1007/s11042-016-3316-3
10.1016/j.knosys.2016.01.027
10.1016/j.jnca.2015.11.016
10.1016/j.neucom.2005.12.126
10.1007/s10115-014-0808-1
10.1109/TITS.2020.3038250
10.1016/j.neucom.2016.08.156
10.1016/j.neucom.2016.09.063
10.1016/j.imavis.2020.103915
10.7717/peerj-cs.185
10.1016/j.patcog.2014.05.022
10.1109/TII.2019.2938527
10.1109/ICCV.2017.620
10.1007/s11042-019-7543-2
10.1007/978-981-15-4018-9_31
10.1109/CVPR.2019.00133
10.1007/s13042-015-0351-8
10.1007/978-3-642-02788-8_14
10.1155/2020/8876056
10.5244/C.29.8
10.1007/s11042-020-09300-y
10.1109/CVPR.2018.00678
10.1109/ICCV.2015.510
10.1109/CVPR.2010.5539872
10.1109/ICCV.2013.338
10.1109/CVPR.2016.86
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-023-17861-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection (via ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 60241
ExternalDocumentID 10_1007_s11042_023_17861_x
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-1969b6724fc1e6d39f03ecfe4b4631cca2bcb2d673fd5b1b1ec9a87dfac910ae3
IEDL.DBID U2A
ISSN 1573-7721
1380-7501
IngestDate Fri Jul 25 09:35:01 EDT 2025
Wed Oct 01 04:51:41 EDT 2025
Thu Apr 24 23:10:54 EDT 2025
Fri Feb 21 02:42:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords Video surveillance
Data stream
Incremental learning
Concept drift
Anomaly detection
UFROS-ELM
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-1969b6724fc1e6d39f03ecfe4b4631cca2bcb2d673fd5b1b1ec9a87dfac910ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9386-4390
PQID 3063894322
PQPubID 54626
PageCount 29
ParticipantIDs proquest_journals_3063894322
crossref_citationtrail_10_1007_s11042_023_17861_x
crossref_primary_10_1007_s11042_023_17861_x
springer_journals_10_1007_s11042_023_17861_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240600
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 6
  year: 2024
  text: 20240600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Fan, Wen, Li, Qiu, Levine, Xiao (CR16) 2020; 95
Tang, Zhao, Zhang, Gong, Li, Yang (CR40) 2020; 129
Li, Chang (CR27) 2019; 369
Singh, Rajora, Vishwakarma, Tripathi, Kumar, Walia (CR38) 2020; 371
CR39
Liang, Huang, Saratchandran, Sundararajan (CR28) 2006; 17
Abbasi, Tahouri, Rafiee (CR1) 2019; 5
CR13
Zhou, Du, Zhu, Peng, Liu, Goh (CR48) 2019; 14
Kasun, Zhou, Huang (CR24) 2013; 28
CR33
Zeng, Li (CR46) 2014; 47
CR32
Chen, Wang, Yue, Zhang, Jia (CR10) 2020; 98
Chu, Xue, Yao, Cai (CR11) 2018; 21
Fang, Fei, Fang, Lee, Xiong, Shu, Chen (CR18) 2016; 75
CR31
Ahmed, Mahmood, Hu (CR6) 2016; 60
CR30
Nawaratne, Alahakoon, De Silva, Yu (CR35) 2019; 16
Dietterich, Lathrop, Lozano-Pérez (CR12) 1997; 89
Feng, Yuan, Lu (CR19) 2017; 219
Carbonneau, Cheplygina, Granger, Gagnon (CR9) 2018; 77
Abbasi, Najafi, Rafiee, Khosravi, Menon, Muhammad (CR2) 2021; 22
Liu, Yu, Gong, Chen (CR29) 2020; 68
Abbasi, Vesaghati Fazel, Rafiee (CR3) 2020; 76
Wang, Zhu, Yin, Porikli (CR42) 2018; 277
Rutkowski, Pietruczuk, Duda, Jaworski (CR37) 2013; 25
CR5
CR8
CR7
Duman, Erdem (CR15) 2019; 7
Abbasi, Rafiee (CR4) 2019; 75
CR26
Murugan, Elhoseny, Shankar, Uthayakumar (CR34) 2019; 75
CR47
Xu, Wang (CR45) 2016; 65
CR22
CR21
CR43
CR20
Nguyen, Woon, Ng (CR36) 2015; 45
Dong, Zhang, Nie (CR14) 2020; 8
CR41
Xu, Yan, Ricci, Sebe (CR44) 2017; 156
Huang, Zhu, Siew (CR23) 2006; 70
Fanaee, Gama (CR17) 2016; 98
Li, Cai, Liu, Lang, Zhang (CR25) 2019; 7
TG Dietterich (17861_CR12) 1997; 89
R Nawaratne (17861_CR35) 2019; 16
TH Fanaee (17861_CR17) 2016; 98
K Singh (17861_CR38) 2020; 371
D Chen (17861_CR10) 2020; 98
Y Li (17861_CR25) 2019; 7
GB Huang (17861_CR23) 2006; 70
Y Tang (17861_CR40) 2020; 129
XQ Zeng (17861_CR46) 2014; 47
Y Liu (17861_CR29) 2020; 68
L Rutkowski (17861_CR37) 2013; 25
17861_CR39
LLC Kasun (17861_CR24) 2013; 28
17861_CR32
17861_CR33
BS Murugan (17861_CR34) 2019; 75
17861_CR13
W Chu (17861_CR11) 2018; 21
D Xu (17861_CR44) 2017; 156
17861_CR41
17861_CR20
M Abbasi (17861_CR1) 2019; 5
M Abbasi (17861_CR4) 2019; 75
F Dong (17861_CR14) 2020; 8
N Li (17861_CR27) 2019; 369
MA Carbonneau (17861_CR9) 2018; 77
M Ahmed (17861_CR6) 2016; 60
NY Liang (17861_CR28) 2006; 17
S Wang (17861_CR42) 2018; 277
S Xu (17861_CR45) 2016; 65
E Duman (17861_CR15) 2019; 7
Y Fan (17861_CR16) 2020; 95
17861_CR47
M Abbasi (17861_CR2) 2021; 22
17861_CR26
17861_CR8
17861_CR21
17861_CR43
17861_CR7
17861_CR22
HL Nguyen (17861_CR36) 2015; 45
17861_CR5
Z Fang (17861_CR18) 2016; 75
17861_CR30
17861_CR31
Y Feng (17861_CR19) 2017; 219
JT Zhou (17861_CR48) 2019; 14
M Abbasi (17861_CR3) 2020; 76
References_xml – ident: CR22
– volume: 369
  start-page: 92
  year: 2019
  end-page: 105
  ident: CR27
  article-title: Video anomaly detection and localization via multivariate Gaussian fully convolution adversarial autoencoder
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.08.044
– volume: 95
  start-page: 102920
  year: 2020
  ident: CR16
  article-title: Video anomaly detection and localization via Gaussian mixture fully convolutional variational autoencoder
  publication-title: Comput Vis Image Understand
  doi: 10.1016/j.cviu.2020.102920
– ident: CR43
– ident: CR47
– ident: CR39
– volume: 7
  start-page: 183914
  year: 2019
  end-page: 183923
  ident: CR15
  article-title: Anomaly detection in videos using optical flow and convolutional autoencoder
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2960654
– ident: CR30
– volume: 77
  start-page: 329
  year: 2018
  end-page: 353
  ident: CR9
  article-title: Multiple instance learning: a survey of problem characteristics and applications
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2017.10.009
– ident: CR33
– volume: 68
  start-page: 102767
  year: 2020
  ident: CR29
  article-title: A real time expert system for anomaly detection of aerators based on computer vision and surveillance cameras
  publication-title: J Vis Commun Image Represent
  doi: 10.1016/j.jvcir.2020.102767
– volume: 129
  start-page: 123
  year: 2020
  end-page: 130
  ident: CR40
  article-title: Integrating prediction and reconstruction for anomaly detection
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2019.11.024
– volume: 75
  start-page: 6574
  year: 2019
  end-page: 6611
  ident: CR4
  article-title: A calibrated asymptotic framework for analyzing packet classification algorithms on GPUs
  publication-title: J Supercomput
  doi: 10.1007/s11227-019-02861-2
– volume: 25
  start-page: 1272
  issue: 6
  year: 2013
  end-page: 1279
  ident: CR37
  article-title: Decision trees for mining data streams based on the McDiarmid’s bound
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2012.66
– ident: CR8
– volume: 7
  start-page: 172425
  year: 2019
  end-page: 172432
  ident: CR25
  article-title: Spatio-temporal unity networking for video anomaly detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2954540
– volume: 14
  start-page: 2537
  issue: 10
  year: 2019
  end-page: 2550
  ident: CR48
  article-title: AnomalyNet: an anomaly detection network for video surveillance
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2019.2900907
– volume: 75
  start-page: 146
  year: 2019
  end-page: 160
  ident: CR34
  article-title: Region-based scalable smart system for anomaly detection in pedestrian walkways
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2019.02.017
– volume: 156
  start-page: 117
  year: 2017
  end-page: 127
  ident: CR44
  article-title: Detecting anomalous events in videos by learning deep representations of appearance and motion
  publication-title: Comput Vis Image Understand
  doi: 10.1016/j.cviu.2016.10.010
– volume: 65
  start-page: 332
  year: 2016
  end-page: 344
  ident: CR45
  article-title: A fast incremental extreme learning machine algorithm for data streams classification
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.08.052
– ident: CR21
– volume: 8
  start-page: 88170
  year: 2020
  end-page: 88176
  ident: CR14
  article-title: Dual discriminator generative adversarial network for video anomaly detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2993373
– volume: 89
  start-page: 31
  issue: 1
  year: 1997
  end-page: 71
  ident: CR12
  article-title: Solving the multiple instance problem with axis-parallel rectangles
  publication-title: Artif Intell
  doi: 10.1016/S0004-3702(96)00034-3
– volume: 17
  start-page: 1411
  issue: 6
  year: 2006
  end-page: 1423
  ident: CR28
  article-title: A fast and accurate online sequential learning algorithm for feedforward networks
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2006.880583
– volume: 21
  start-page: 246
  issue: 1
  year: 2018
  end-page: 255
  ident: CR11
  article-title: Sparse coding guided spatiotemporal feature learning for abnormal event detection in large videos
  publication-title: IEEE Trans Multimedia
  doi: 10.1109/TMM.2018.2846411
– volume: 76
  start-page: 3105
  year: 2020
  end-page: 3128
  ident: CR3
  article-title: MBitCuts: optimal bit-level cutting in geometric space packet classification
  publication-title: J Supercomput
  doi: 10.1007/s11227-019-03090-3
– volume: 371
  start-page: 188
  year: 2020
  end-page: 198
  ident: CR38
  article-title: Crowd anomaly detection using aggregation of ensembles of fine-tuned ConvNets
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.08.059
– volume: 75
  start-page: 14617
  issue: 22
  year: 2016
  end-page: 14639
  ident: CR18
  article-title: Abnormal event detection in crowded scenes based on deep learning
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-016-3316-3
– volume: 98
  start-page: 130
  year: 2016
  end-page: 147
  ident: CR17
  article-title: Tensor-based anomaly detection: an interdisciplinary survey
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2016.01.027
– volume: 28
  start-page: 31
  issue: 6
  year: 2013
  end-page: 34
  ident: CR24
  article-title: Representational learning with ELMs for big data
  publication-title: IEEE Intell Syst
– volume: 60
  start-page: 19
  year: 2016
  end-page: 31
  ident: CR6
  article-title: A survey of network anomaly detection techniques
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2015.11.016
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  end-page: 501
  ident: CR23
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– ident: CR31
– ident: CR13
– volume: 45
  start-page: 535
  issue: 3
  year: 2015
  end-page: 569
  ident: CR36
  article-title: A survey on data stream clustering and classification
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-014-0808-1
– volume: 22
  start-page: 5283
  issue: 8
  year: 2021
  end-page: 5292
  ident: CR2
  article-title: Efficient flow processing in 5G-envisioned SDN-based Internet of Vehicles using GPUs
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2020.3038250
– ident: CR32
– volume: 277
  start-page: 161
  year: 2018
  end-page: 175
  ident: CR42
  article-title: Video anomaly detection and localization by local motion based joint video representation and OCELM
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.08.156
– volume: 219
  start-page: 548
  year: 2017
  end-page: 556
  ident: CR19
  article-title: Learning deep event models for crowd anomaly detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.063
– volume: 98
  start-page: 103915
  year: 2020
  ident: CR10
  article-title: Anomaly detection in surveillance video based on bidirectional prediction
  publication-title: Image Vis Comput
  doi: 10.1016/j.imavis.2020.103915
– volume: 5
  start-page: e185
  year: 2019
  ident: CR1
  article-title: Enhancing the performance of the aggregated bit vector algorithm in network packet classification using GPU
  publication-title: PeerJ Comput Sci
  doi: 10.7717/peerj-cs.185
– volume: 47
  start-page: 3726
  issue: 11
  year: 2014
  end-page: 3735
  ident: CR46
  article-title: Incremental partial least squares analysis of big streaming data
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2014.05.022
– ident: CR5
– ident: CR7
– ident: CR41
– ident: CR26
– volume: 16
  start-page: 393
  issue: 1
  year: 2019
  end-page: 402
  ident: CR35
  article-title: Spatiotemporal anomaly detection using deep learning for real-time video surveillance
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2019.2938527
– ident: CR20
– volume: 75
  start-page: 6574
  year: 2019
  ident: 17861_CR4
  publication-title: J Supercomput
  doi: 10.1007/s11227-019-02861-2
– ident: 17861_CR22
  doi: 10.1109/ICCV.2017.620
– volume: 98
  start-page: 130
  year: 2016
  ident: 17861_CR17
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2016.01.027
– volume: 277
  start-page: 161
  year: 2018
  ident: 17861_CR42
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.08.156
– volume: 76
  start-page: 3105
  year: 2020
  ident: 17861_CR3
  publication-title: J Supercomput
  doi: 10.1007/s11227-019-03090-3
– volume: 14
  start-page: 2537
  issue: 10
  year: 2019
  ident: 17861_CR48
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2019.2900907
– volume: 8
  start-page: 88170
  year: 2020
  ident: 17861_CR14
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2993373
– volume: 60
  start-page: 19
  year: 2016
  ident: 17861_CR6
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2015.11.016
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  ident: 17861_CR23
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– ident: 17861_CR26
  doi: 10.1007/s11042-019-7543-2
– ident: 17861_CR33
– volume: 75
  start-page: 146
  year: 2019
  ident: 17861_CR34
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2019.02.017
– volume: 98
  start-page: 103915
  year: 2020
  ident: 17861_CR10
  publication-title: Image Vis Comput
  doi: 10.1016/j.imavis.2020.103915
– ident: 17861_CR32
  doi: 10.1007/978-981-15-4018-9_31
– ident: 17861_CR47
  doi: 10.1109/CVPR.2019.00133
– volume: 129
  start-page: 123
  year: 2020
  ident: 17861_CR40
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2019.11.024
– ident: 17861_CR7
– volume: 47
  start-page: 3726
  issue: 11
  year: 2014
  ident: 17861_CR46
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2014.05.022
– volume: 17
  start-page: 1411
  issue: 6
  year: 2006
  ident: 17861_CR28
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2006.880583
– volume: 25
  start-page: 1272
  issue: 6
  year: 2013
  ident: 17861_CR37
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2012.66
– volume: 77
  start-page: 329
  year: 2018
  ident: 17861_CR9
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2017.10.009
– volume: 7
  start-page: 183914
  year: 2019
  ident: 17861_CR15
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2960654
– volume: 75
  start-page: 14617
  issue: 22
  year: 2016
  ident: 17861_CR18
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-016-3316-3
– ident: 17861_CR13
  doi: 10.1007/s13042-015-0351-8
– volume: 95
  start-page: 102920
  year: 2020
  ident: 17861_CR16
  publication-title: Comput Vis Image Understand
  doi: 10.1016/j.cviu.2020.102920
– ident: 17861_CR5
  doi: 10.1007/978-3-642-02788-8_14
– ident: 17861_CR20
  doi: 10.1155/2020/8876056
– ident: 17861_CR43
  doi: 10.5244/C.29.8
– volume: 89
  start-page: 31
  issue: 1
  year: 1997
  ident: 17861_CR12
  publication-title: Artif Intell
  doi: 10.1016/S0004-3702(96)00034-3
– volume: 68
  start-page: 102767
  year: 2020
  ident: 17861_CR29
  publication-title: J Vis Commun Image Represent
  doi: 10.1016/j.jvcir.2020.102767
– ident: 17861_CR8
  doi: 10.1007/s11042-020-09300-y
– volume: 369
  start-page: 92
  year: 2019
  ident: 17861_CR27
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.08.044
– ident: 17861_CR39
  doi: 10.1109/CVPR.2018.00678
– volume: 65
  start-page: 332
  year: 2016
  ident: 17861_CR45
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.08.052
– ident: 17861_CR41
  doi: 10.1109/ICCV.2015.510
– volume: 16
  start-page: 393
  issue: 1
  year: 2019
  ident: 17861_CR35
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2019.2938527
– volume: 371
  start-page: 188
  year: 2020
  ident: 17861_CR38
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.08.059
– volume: 21
  start-page: 246
  issue: 1
  year: 2018
  ident: 17861_CR11
  publication-title: IEEE Trans Multimedia
  doi: 10.1109/TMM.2018.2846411
– volume: 156
  start-page: 117
  year: 2017
  ident: 17861_CR44
  publication-title: Comput Vis Image Understand
  doi: 10.1016/j.cviu.2016.10.010
– volume: 5
  start-page: e185
  year: 2019
  ident: 17861_CR1
  publication-title: PeerJ Comput Sci
  doi: 10.7717/peerj-cs.185
– volume: 22
  start-page: 5283
  issue: 8
  year: 2021
  ident: 17861_CR2
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2020.3038250
– volume: 219
  start-page: 548
  year: 2017
  ident: 17861_CR19
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.063
– ident: 17861_CR31
  doi: 10.1109/CVPR.2010.5539872
– ident: 17861_CR30
  doi: 10.1109/ICCV.2013.338
– ident: 17861_CR21
  doi: 10.1109/CVPR.2016.86
– volume: 28
  start-page: 31
  issue: 6
  year: 2013
  ident: 17861_CR24
  publication-title: IEEE Intell Syst
– volume: 7
  start-page: 172425
  year: 2019
  ident: 17861_CR25
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2954540
– volume: 45
  start-page: 535
  issue: 3
  year: 2015
  ident: 17861_CR36
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-014-0808-1
SSID ssj0016524
Score 2.3782852
Snippet Anomaly detection is a challenging task in surveillance videos. Nowadays, deep learning-based approaches have been developed for this issue. Although they...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 60213
SubjectTerms Algorithms
Anomalies
Artificial neural networks
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Data transmission
Deep learning
Ensemble learning
Machine learning
Multimedia Information Systems
Segments
Special Purpose and Application-Based Systems
Surveillance
Video
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60vejBt1itkoM3DW72mT2IVGmpgkXEQm9LniDotvYh9d-b7GZbFex5sznMTDJDZr7vAzhnka9l6imsQs5wKGiMKUsi7CWCCu5pWr5DPvbibj98GESDNehVWBg7VlndicVFLYfCvpFfBUVuDU383Yw-sFWNst3VSkKDOWkFeV1QjK1D3bfMWDWo37Z7T8-LvkIcOZlb6mGTK4mD0ZRgOmKhKiaHYZLQmOD571S1rD__tEyLTNTZgS1XQqJW6fNdWFP5HmxX8gzIndY92PzBNbgP9y1kp0GRBYewd2yzl0QVozgypSti-fCdvX0hqabFfFaOXnM0mY0_lVUmMlsii9kbTg6g32m_3HWx01HAwhywKbYMODxO_FALomIZpNoLlNDGO2EcEONCnwvuyzgJtIw44USJlNFEaiZMMcFUcAi1fJirI0ABpZJyqbUMVegxi3JlwiqJRzqlaZQ0gFQmy4QjGbdaF2_Zkh7ZmjkzZs4KM2fzBlws_hmVFBsrVzcrT2TuuE2yZXA04LLyzvLz_7sdr97tBDZ8U8SUo2FNqE3HM3VqipApP3OR9Q1TCtjK
  priority: 102
  providerName: ProQuest
Title A data stream-based approach for anomaly detection in surveillance videos
URI https://link.springer.com/article/10.1007/s11042-023-17861-x
https://www.proquest.com/docview/3063894322
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: ADMLS
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60vejBR1Ws1pKDNw3sI7ubPVZprYpFxEI9LXmC0G6l24r-e5N9tCoqeNpDHoeZTOZjM983AKcs8LSMHYUV4QwTQUNMWRRgJxJUcEfT4j_k3SDsD8nNKBiVpLCsqnavniTzm3pFdnMtlcTkGOxGNHSxQY71wMp5mVM89DrLt4Mw8EhJj_l53dcUtMKV355C8wzT24GtEhqiTuHLXVhTaQO2q7YLqIzCBmx-0hDcg-sOslWeyJI-2ATbrCRRpRSODCRFLJ1O2PgdSTXP665S9JyibDF7VbbjkNkSWS7eNNuHYa_7eNnHZX8ELEzgzLFVtuFh5BEtXBVKP9aOr4Q2Vieh7xrXeFxwT4aRr2XAXe4qETMaSc2EAQlM-QdQS6epOgTkUyopl1pLoojDLHuVCdshPNAxjYOoCW5lskSU4uG2h8U4WckeWzMnxsxJbubkrQlnyzUvhXTGn7NblSeSMoyyxM8BFTGXThPOK--shn_f7eh_049hwzNgpSgBa0FtPluoEwM25rwN67R31YZ65-rptmu-F93B_UM7P3EftTnR7w
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEB1RcqAcKKWtCAS6Bzi1q3rttb0-oCp8KSkhQhVI3Nz9lCoRJ5AEwp_jt7FrrwlFKjfOtkf27HhndnfeewA7PA6NygKNNRUcU8kSzHga4yCVTIrAsGof8rSfdC7or8v4cgEeaiyMa6us58RyolZD6fbIf0RlbqU2_n6OrrFTjXKnq7WEBvfSCmqvpBjzwI4TfX9nl3Djve6hHe_dMDw-Oj_oYK8ygKUNvwl2_DAiSUNqJNGJijITRFoa--40iYj9wFBIEaokjYyKBRFEy4yzVBkubarlOrJ230GDRjSzi7_G_lH_7PfTOUYSe1ldFmCbm4mH7VTgPeKgMTZnYpKyhODZv6lxXu--OKItM9_xKqz4khW1qxj7CAu6WIMPtRwE8rPDGiw_4zb8BN02ct2nyIFR-AC7bKlQzWCObKmMeDEc8Kt7pPSk7Acr0N8Cjac3t9opIVmTyGEEh-PPcPEmHv0Ci8Ww0OuAIsYUE8oYRTUNuEPVcumUy2OTsSxOm0Bql-XSk5o7bY2rfE7H7NycWzfnpZvzWRO-PT0zqig9Xr27VY9E7n_vcT4PxiZ8r0dnfvn_1jZet_YVljrnp7281-2fbML70BZQVVtaCxYnN1O9ZQugidj2UYbgz1sH9iPfFhgp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3HTsQwEB1RJAQHOmKpPsAJLOJU54AQAhaWJg4gcQuuEtKSBXZpv8bX4UlhAQlunJOMkvGzZ2LPmwewJiLf6tQz1IRS0FDxmHKRRNRLFFfSs7zchzw7j4-uwuPr6HoA3msuDJZV1mtisVDrjsI98q2giK2hw9-WrcoiLvabO_cPFBWk8KS1ltMoIXJi3l7c71t3u7Xvxnrd95sHl3tHtFIYoMpBr0exN4yMEz-0iplYB6n1AqOse-8wDpj7OF8q6es4CayOJJPMqFTwRFuhXJgVJnB2B2E4wS7uyFJvHn6eYMRRJajLPeqiMqsIOyVtjyEpxkVLyhIeM_r6PSj2M90fh7NFzGtOwniVrJLdEl1TMGDyaZiohSBItS5Mw9iXroYz0NolWHdKkIYi7ijGSU3q3uXEJclE5J070X4j2vSKSrCc3Oak-_T4bFADyZkkyA7sdGfh6l_8OQdDeSc380ACzjWX2lodmtATyKcVCjXLI5vyNEoawGqXZapqZ46qGu2s34gZ3Zw5N2eFm7PXBmx8PnNfNvP48-6leiSyamJ3sz4MG7BZj07_8u_WFv62tgojDs7Zaev8ZBFGfZc5lfVoSzDUe3wyyy7z6cmVAmIEbv4b0x82BBXD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data+stream-based+approach+for+anomaly+detection+in+surveillance+videos&rft.jtitle=Multimedia+tools+and+applications&rft.au=Aydogdu%2C+Ozge&rft.au=Ekinci%2C+Murat&rft.date=2024-06-01&rft.pub=Springer+US&rft.eissn=1573-7721&rft.volume=83&rft.issue=21&rft.spage=60213&rft.epage=60241&rft_id=info:doi/10.1007%2Fs11042-023-17861-x&rft.externalDocID=10_1007_s11042_023_17861_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon