Optimization of artificial neural network structure and hyperparameters in hybrid model by genetic algorithm: iOS–android application for breast cancer diagnosis/prediction
Breast cancer is a common disease that can result in death among women. Cancer research is important because early detection of cancer facilitates clinical practice for patients. The aim of the study is to ensure that breast cancer can be diagnosed in a short time and easily. For this purpose, a dat...
Saved in:
| Published in | The Journal of supercomputing Vol. 80; no. 4; pp. 4533 - 4553 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.03.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0920-8542 1573-0484 |
| DOI | 10.1007/s11227-023-05635-z |
Cover
| Abstract | Breast cancer is a common disease that can result in death among women. Cancer research is important because early detection of cancer facilitates clinical practice for patients. The aim of the study is to ensure that breast cancer can be diagnosed in a short time and easily. For this purpose, a dataset containing 116 samples, 9 features and 2 target variables (Breast Cancer Coimbra) from the UCI library was used during the training and testing phases. A hybrid structure was created with genetic algorithm (GA) and artificial neural network (ANN) to classify the datasets. With the established hybrid model, the feedforward backpropagation artificial neural network model and the hyperparameters in this model structure have been optimized with the genetic algorithm. The performance of the structure constructed with the most successful gene parameters obtained was compared with weighted K-nearest neighbors, decision tree, and linear support vector machine methods. In all machine learning methods used, fivefold cross-validation was applied and the dataset was divided into two groups as 50% training and 50% testing in order to test the models with different data. The hybrid model proposed in the study performed better than other machine learning methods with 100% correct classification rate. Although there are few data in this study, the accuracy is higher than other literature. In addition, an iOS–android-based application has been developed for the diagnosis and prediction of the disease with the findings obtained. Thanks to the developed application, the most important factor in the fight against the disease, time and cost spent for the diagnosis of this disease will be saved. Considering the interest in artificial intelligence techniques in cancer research, this study presents a new diagnostic method and a usable application in terms of patient decision support systems. |
|---|---|
| AbstractList | Breast cancer is a common disease that can result in death among women. Cancer research is important because early detection of cancer facilitates clinical practice for patients. The aim of the study is to ensure that breast cancer can be diagnosed in a short time and easily. For this purpose, a dataset containing 116 samples, 9 features and 2 target variables (Breast Cancer Coimbra) from the UCI library was used during the training and testing phases. A hybrid structure was created with genetic algorithm (GA) and artificial neural network (ANN) to classify the datasets. With the established hybrid model, the feedforward backpropagation artificial neural network model and the hyperparameters in this model structure have been optimized with the genetic algorithm. The performance of the structure constructed with the most successful gene parameters obtained was compared with weighted K-nearest neighbors, decision tree, and linear support vector machine methods. In all machine learning methods used, fivefold cross-validation was applied and the dataset was divided into two groups as 50% training and 50% testing in order to test the models with different data. The hybrid model proposed in the study performed better than other machine learning methods with 100% correct classification rate. Although there are few data in this study, the accuracy is higher than other literature. In addition, an iOS–android-based application has been developed for the diagnosis and prediction of the disease with the findings obtained. Thanks to the developed application, the most important factor in the fight against the disease, time and cost spent for the diagnosis of this disease will be saved. Considering the interest in artificial intelligence techniques in cancer research, this study presents a new diagnostic method and a usable application in terms of patient decision support systems. |
| Author | Bülbül, Mehmet Akif |
| Author_xml | – sequence: 1 givenname: Mehmet Akif surname: Bülbül fullname: Bülbül, Mehmet Akif email: makifbulbul@nevsehir.edu.tr organization: Faculty of Engineering-Architecture, Computer Engineering, Nevşehir Hacı Bektaş Veli University |
| BookMark | eNp9kc9q3DAQxkVJIZukL5CToGc3smTZcm8l9B8E9tDmbMaSvFFqS-5Ipuye8g59jz5UniTKulDoIadhhu833zDfGTnxwVtCLkv2rmSsuYplyXlTMC4KJmshi8Mrsillk9tKVSdkw1rOCiUrfkrOYrxnjFWiERvyZzsnN7kDJBc8DQMFTG5w2sFIvV3wWNKvgD9oTLjotKCl4A29288WZ0CYbLIYqfN51KMzdArGjrTf053NqNMUxl1Al-6m99Rtvz0-_M48hqyEeR6dXq2HgLRHCzFRDV5bpMbBzofo4tWM1jj9LLsgrwcYo33zt56T208fv19_KW62n79ef7gptCjbVJStGFqrNJONNrXiPaimhYoPynJW20oa00sQYHrTQv5QP-iqZUrVnMtKDI04J2_XvTOGn4uNqbsPC_ps2Qkua9k2vFFZxVeVxhAj2qGb0U2A-65k3XMu3ZpLl3Ppjrl0hwyp_yDt0vEHCcGNL6NiRWP28TuL_656gXoCXUGrcQ |
| CitedBy_id | crossref_primary_10_1007_s00217_024_04468_1 crossref_primary_10_1016_j_measurement_2024_114488 crossref_primary_10_1007_s10614_023_10530_z crossref_primary_10_17798_bitlisfen_1360049 crossref_primary_10_46387_bjesr_1419106 crossref_primary_10_1007_s00217_023_04436_1 crossref_primary_10_17798_bitlisfen_1479725 crossref_primary_10_3390_waste2030014 crossref_primary_10_1007_s40747_025_01845_5 crossref_primary_10_3390_sym16070866 crossref_primary_10_1007_s11042_024_19561_6 crossref_primary_10_1016_j_asoc_2024_111941 crossref_primary_10_54097_7qv57m30 crossref_primary_10_1007_s11227_024_06211_9 crossref_primary_10_1080_0954898X_2024_2343348 crossref_primary_10_3390_biomimetics9050304 |
| Cites_doi | 10.3390/ijerph19063211 10.3390/app12105138 10.1016/j.eswa.2020.113829 10.1109/TSMC.1976.5408784 10.3934/mbe.2021378 10.32604/csse.2022.016376 10.1109/ACCESS.2021.3085605 10.1007/s11517-020-02187-9 10.5614/itbj.ict.res.appl.2017.11.1.3 10.15557/JoU.2022.0014 10.3390/app12041957 10.1016/j.scitotenv.2021.145650 10.3390/make1010028 10.1590/1413-81232022272.36462020 10.1007/s11042-022-12144-3 10.1007/s13369-021-06168-4 10.1186/s12885-017-3877-1 10.1371/journal.pone.0245841 10.1186/s40537-023-00749-w 10.1016/j.knosys.2021.107944 10.1016/j.cmpb.2021.106541 10.47059/revistageintec.v11i2.1738 10.14569/IJACSA.2022.0130478 10.1109/ISMSIT.2018.8567245 10.1109/ICAITI.2018.8686707 10.1007/s10994-021-05996-7 10.1080/15435075.2021.1984924 10.1007/s00521-022-07290-6 10.1109/DCABES50732.2020.00067 10.1155/2020/8846948 10.1037/e471672008-001 10.18201/ijisae.2018648455 10.1155/2020/2561726 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s11227-023-05635-z |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials Local Electronic Collection Information ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Computer Science Collection ProQuest Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0484 |
| EndPage | 4553 |
| ExternalDocumentID | 10_1007_s11227_023_05635_z |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-c319t-193f9e8c057cd682ba879a42f8e206e45ddb5a3adbd9a048bfc49088622543f73 |
| IEDL.DBID | U2A |
| ISSN | 0920-8542 |
| IngestDate | Mon Oct 06 18:37:26 EDT 2025 Wed Oct 01 03:43:56 EDT 2025 Thu Apr 24 23:05:03 EDT 2025 Fri Feb 21 02:42:08 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Decision support systems Model and hyperparameter optimization Breast cancer classification Genetic algorithm Artificial neural networks |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-193f9e8c057cd682ba879a42f8e206e45ddb5a3adbd9a048bfc49088622543f73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3256597278 |
| PQPubID | 2043774 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_3256597278 crossref_primary_10_1007_s11227_023_05635_z crossref_citationtrail_10_1007_s11227_023_05635_z springer_journals_10_1007_s11227_023_05635_z |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240300 2024-03-00 20240301 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 3 year: 2024 text: 20240300 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
| PublicationTitle | The Journal of supercomputing |
| PublicationTitleAbbrev | J Supercomput |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Patrício, Pereira, Crisóstomo, Matafome, Gomes, Seiça, Caramelo (CR34) 2018; 18 Rasool, Bunterngchit, Tiejian, Islam, Qu, Jiang (CR6) 2022; 19 Escorcia-Gutierrez, Mansour, Beleño, Jiménez-Cabas, Pérez, Madera, Velasquez (CR8) 2022; 71 Bülbül, Öztürk, Işık (CR18) 2022; 65 Dudani (CR22) 1976; 4 CR15 Dinesh, Rajendran (CR25) 2021; 11 Bülbül, Harirchian, Işık, Aghakouchaki Hosseini, Işık (CR17) 2022; 12 CR35 CR12 CR11 CR33 CR10 Geler, Kurbalija, Ivanović, Radovanović (CR24) 2020; 162 CR32 Li, Liu, Bai, He, Yang (CR37) 2022; 239 CR31 Quang-Huy, Doan, Yen, Tran (CR26) 2021; 18 CR30 Lin, Kujabi, Chuang, Lin, Chiu (CR5) 2022; 12 Tiwari, Dadhania, Ragunathrao, Oliveira (CR38) 2021; 773 Yavuz, Eyupoglu (CR14) 2020; 58 CR4 Silva Araújo, Guimarães, de Campos Souza, Rezende, Araújo (CR13) 2019; 1 Kayikci, Khoshgoftaar (CR2) 2023; 10 Wahyuni, Mahmudy (CR36) 2017; 11 CR29 CR28 CR27 Ma, Zhao (CR23) 2021; 9 Łuczyńska, Pawlak, Popiela, Rudnicki (CR3) 2022; 22 Jeyaranjani, Devaraj (CR19) 2022; 35 Santos, Borges, Ferreira, Meira, Souza, Guimarães, Jomar (CR1) 2022; 27 Hasan, Ghani, Din, Almogren, Altameem (CR21) 2022; 70 Bülbül, Öztürk (CR16) 2022; 47 Layer, Menzenbach, Layer, Mayr, Hilbert, Velten, Hoeft, Wittmann (CR39) 2021; 16 Jayandhi, Jasmine, Joans (CR7) 2022; 40 Rani, Kaur, Kumar (CR9) 2022; 81 Nahavandi, Alizadehsani, Khosravi, Acharya (CR20) 2022; 213 SSU Hasan (5635_CR21) 2022; 70 MA Bülbül (5635_CR17) 2022; 12 MA Bülbül (5635_CR18) 2022; 65 T Dinesh (5635_CR25) 2021; 11 Z Geler (5635_CR24) 2020; 162 J Jeyaranjani (5635_CR19) 2022; 35 T Quang-Huy (5635_CR26) 2021; 18 A Tiwari (5635_CR38) 2021; 773 MA Bülbül (5635_CR16) 2022; 47 R-H Lin (5635_CR5) 2022; 12 G Jayandhi (5635_CR7) 2022; 40 YC Layer (5635_CR39) 2021; 16 M Patrício (5635_CR34) 2018; 18 I Wahyuni (5635_CR36) 2017; 11 5635_CR11 5635_CR33 5635_CR10 5635_CR32 5635_CR31 5635_CR30 5635_CR15 SA Dudani (5635_CR22) 1976; 4 Y Ma (5635_CR23) 2021; 9 5635_CR35 5635_CR12 TBd Santos (5635_CR1) 2022; 27 5635_CR29 5635_CR28 5635_CR27 Q Li (5635_CR37) 2022; 239 S Kayikci (5635_CR2) 2023; 10 5635_CR4 A Rasool (5635_CR6) 2022; 19 VJ Silva Araújo (5635_CR13) 2019; 1 S Rani (5635_CR9) 2022; 81 J Escorcia-Gutierrez (5635_CR8) 2022; 71 D Nahavandi (5635_CR20) 2022; 213 E Łuczyńska (5635_CR3) 2022; 22 E Yavuz (5635_CR14) 2020; 58 |
| References_xml | – volume: 19 start-page: 3211 issue: 6 year: 2022 ident: CR6 article-title: Improved machine learning-based predictive models for breast cancer diagnosis publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph19063211 – volume: 12 start-page: 5138 issue: 10 year: 2022 ident: CR17 article-title: A hybrid ANN-GA model for an automated rapid vulnerability assessment of existing RC buildings publication-title: Appl Sci doi: 10.3390/app12105138 – volume: 162 year: 2020 ident: CR24 article-title: Weighted KNN and constrained elastic distances for time-series classification publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113829 – volume: 35 year: 2022 ident: CR19 article-title: Improved genetic algorithm for optimal demand response in smart grid publication-title: Sustain Comput Inform Syst – volume: 4 start-page: 325 year: 1976 end-page: 327 ident: CR22 article-title: The distance-weighted k-nearest-neighbor rule publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMC.1976.5408784 – volume: 18 start-page: 7631 year: 2021 end-page: 7647 ident: CR26 article-title: Shear wave imaging and classification using extended Kalman filter and decision tree algorithm publication-title: Math Biosci Eng doi: 10.3934/mbe.2021378 – ident: CR4 – volume: 40 start-page: 491 issue: 2 year: 2022 end-page: 503 ident: CR7 article-title: Mammogram learning system for breast cancer diagnosis using deep learning SVM publication-title: Comput Syst Sci Eng doi: 10.32604/csse.2022.016376 – volume: 9 start-page: 81765 year: 2021 end-page: 81777 ident: CR23 article-title: Pod: a parallel outlier detection algorithm using weighted KNN publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3085605 – ident: CR12 – ident: CR30 – volume: 58 start-page: 1583 issue: 7 year: 2020 end-page: 1601 ident: CR14 article-title: An effective approach for breast cancer diagnosis based on routine blood analysis features publication-title: Med Biol Eng Comput doi: 10.1007/s11517-020-02187-9 – ident: CR10 – ident: CR33 – volume: 11 start-page: 38 issue: 1 year: 2017 end-page: 55 ident: CR36 article-title: Rainfall prediction in Tengger, Indonesia using hybrid Tsukamoto Fis and genetic algorithm method publication-title: J ICT Res Appl doi: 10.5614/itbj.ict.res.appl.2017.11.1.3 – ident: CR35 – ident: CR29 – volume: 71 start-page: 3 year: 2022 end-page: 4221 ident: CR8 article-title: Automated deep learning empowered breast cancer diagnosis using biomedical mammogram images publication-title: Comput Mater Continua – volume: 22 start-page: 76 issue: 89 year: 2022 end-page: 85 ident: CR3 article-title: The role of ABUS in the diagnosis of breast cancer publication-title: J Ultrasonogr doi: 10.15557/JoU.2022.0014 – ident: CR27 – volume: 12 start-page: 1957 issue: 4 year: 2022 ident: CR5 article-title: Application of deep learning to construct breast cancer diagnosis model publication-title: Appl Sci doi: 10.3390/app12041957 – volume: 773 year: 2021 ident: CR38 article-title: Using machine learning to develop a novel Covid-19 vulnerability index (C19VI) publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.145650 – volume: 1 start-page: 466 issue: 1 year: 2019 end-page: 482 ident: CR13 article-title: Using resistin, glucose, age and BMI and pruning fuzzy neural network for the construction of expert systems in the prediction of breast cancer publication-title: Mach Learn Knowl Extr doi: 10.3390/make1010028 – volume: 27 start-page: 471 year: 2022 end-page: 482 ident: CR1 article-title: Prevalence and factors associated to advanced stage breast cancer diagnosis publication-title: Ciência & Saúde Coletiva doi: 10.1590/1413-81232022272.36462020 – volume: 70 start-page: 3701 year: 2022 end-page: 3716 ident: CR21 article-title: Iot devices authentication using artificial neural network publication-title: Comput Mater Contin – volume: 81 start-page: 9939 issue: 7 year: 2022 end-page: 9948 ident: CR9 article-title: Recommender system: prediction/diagnosis of breast cancer using hybrid machine learning algorithm publication-title: Multimedia Tools Appl doi: 10.1007/s11042-022-12144-3 – volume: 47 start-page: 2329 issue: 2 year: 2022 end-page: 2343 ident: CR16 article-title: Optimization, modeling and implementation of plant water consumption control using genetic algorithm and artificial neural network in a hybrid structure publication-title: Arab J Sci Eng doi: 10.1007/s13369-021-06168-4 – volume: 18 start-page: 1 issue: 1 year: 2018 end-page: 8 ident: CR34 article-title: Using resistin, glucose, age and BMI to predict the presence of breast cancer publication-title: BMC Cancer doi: 10.1186/s12885-017-3877-1 – ident: CR15 – volume: 16 start-page: 0245841 issue: 1 year: 2021 ident: CR39 article-title: Validation of the preoperative score to predict postoperative mortality (POSPOM) in Germany publication-title: PLoS ONE doi: 10.1371/journal.pone.0245841 – ident: CR31 – volume: 10 start-page: 1 issue: 1 year: 2023 end-page: 11 ident: CR2 article-title: Breast cancer prediction using gated attentive multimodal deep learning publication-title: J Big Data doi: 10.1186/s40537-023-00749-w – ident: CR11 – volume: 239 year: 2022 ident: CR37 article-title: An elitism-based multi-objective evolutionary algorithm for min-cost network disintegration publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2021.107944 – ident: CR32 – volume: 213 year: 2022 ident: CR20 article-title: Application of artificial intelligence in wearable devices: opportunities and challenges publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2021.106541 – volume: 65 start-page: 2654 issue: 10 year: 2022 end-page: 2663 ident: CR18 article-title: Optimization of climatic conditions affecting determination of the amount of water needed by plants in relation to their life cycle with particle swarm optimization, and determining the optimum irrigation schedule publication-title: Comput J – ident: CR28 – volume: 11 start-page: 1084 issue: 2 year: 2021 end-page: 1096 ident: CR25 article-title: Higher classification of fake political news using decision tree algorithm over Naive Bayes algorithm publication-title: Revista Geintec-gestao Inovacao E Tecnologias doi: 10.47059/revistageintec.v11i2.1738 – ident: 5635_CR10 doi: 10.14569/IJACSA.2022.0130478 – volume: 12 start-page: 5138 issue: 10 year: 2022 ident: 5635_CR17 publication-title: Appl Sci doi: 10.3390/app12105138 – volume: 65 start-page: 2654 issue: 10 year: 2022 ident: 5635_CR18 publication-title: Comput J – volume: 71 start-page: 3 year: 2022 ident: 5635_CR8 publication-title: Comput Mater Continua – volume: 47 start-page: 2329 issue: 2 year: 2022 ident: 5635_CR16 publication-title: Arab J Sci Eng doi: 10.1007/s13369-021-06168-4 – volume: 27 start-page: 471 year: 2022 ident: 5635_CR1 publication-title: Ciência & Saúde Coletiva doi: 10.1590/1413-81232022272.36462020 – volume: 213 year: 2022 ident: 5635_CR20 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2021.106541 – ident: 5635_CR32 doi: 10.1109/ISMSIT.2018.8567245 – volume: 40 start-page: 491 issue: 2 year: 2022 ident: 5635_CR7 publication-title: Comput Syst Sci Eng doi: 10.32604/csse.2022.016376 – volume: 19 start-page: 3211 issue: 6 year: 2022 ident: 5635_CR6 publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph19063211 – ident: 5635_CR12 doi: 10.1109/ICAITI.2018.8686707 – ident: 5635_CR31 doi: 10.1007/s10994-021-05996-7 – ident: 5635_CR29 doi: 10.1080/15435075.2021.1984924 – volume: 70 start-page: 3701 year: 2022 ident: 5635_CR21 publication-title: Comput Mater Contin – ident: 5635_CR30 – volume: 81 start-page: 9939 issue: 7 year: 2022 ident: 5635_CR9 publication-title: Multimedia Tools Appl doi: 10.1007/s11042-022-12144-3 – ident: 5635_CR15 doi: 10.1007/s00521-022-07290-6 – volume: 239 year: 2022 ident: 5635_CR37 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2021.107944 – volume: 58 start-page: 1583 issue: 7 year: 2020 ident: 5635_CR14 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-020-02187-9 – ident: 5635_CR33 doi: 10.1109/DCABES50732.2020.00067 – volume: 1 start-page: 466 issue: 1 year: 2019 ident: 5635_CR13 publication-title: Mach Learn Knowl Extr doi: 10.3390/make1010028 – volume: 35 year: 2022 ident: 5635_CR19 publication-title: Sustain Comput Inform Syst – volume: 162 year: 2020 ident: 5635_CR24 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113829 – volume: 773 year: 2021 ident: 5635_CR38 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.145650 – volume: 9 start-page: 81765 year: 2021 ident: 5635_CR23 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3085605 – ident: 5635_CR27 doi: 10.1155/2020/8846948 – volume: 11 start-page: 38 issue: 1 year: 2017 ident: 5635_CR36 publication-title: J ICT Res Appl doi: 10.5614/itbj.ict.res.appl.2017.11.1.3 – volume: 11 start-page: 1084 issue: 2 year: 2021 ident: 5635_CR25 publication-title: Revista Geintec-gestao Inovacao E Tecnologias doi: 10.47059/revistageintec.v11i2.1738 – volume: 22 start-page: 76 issue: 89 year: 2022 ident: 5635_CR3 publication-title: J Ultrasonogr doi: 10.15557/JoU.2022.0014 – volume: 12 start-page: 1957 issue: 4 year: 2022 ident: 5635_CR5 publication-title: Appl Sci doi: 10.3390/app12041957 – ident: 5635_CR28 doi: 10.1037/e471672008-001 – ident: 5635_CR35 – volume: 16 start-page: 0245841 issue: 1 year: 2021 ident: 5635_CR39 publication-title: PLoS ONE doi: 10.1371/journal.pone.0245841 – ident: 5635_CR11 doi: 10.18201/ijisae.2018648455 – volume: 18 start-page: 1 issue: 1 year: 2018 ident: 5635_CR34 publication-title: BMC Cancer doi: 10.1186/s12885-017-3877-1 – ident: 5635_CR4 doi: 10.1155/2020/2561726 – volume: 10 start-page: 1 issue: 1 year: 2023 ident: 5635_CR2 publication-title: J Big Data doi: 10.1186/s40537-023-00749-w – volume: 4 start-page: 325 year: 1976 ident: 5635_CR22 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMC.1976.5408784 – volume: 18 start-page: 7631 year: 2021 ident: 5635_CR26 publication-title: Math Biosci Eng doi: 10.3934/mbe.2021378 |
| SSID | ssj0004373 |
| Score | 2.4118056 |
| Snippet | Breast cancer is a common disease that can result in death among women. Cancer research is important because early detection of cancer facilitates clinical... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4533 |
| SubjectTerms | Accuracy Artificial intelligence Artificial neural networks Back propagation Back propagation networks Breast cancer Compilers Computer Science Datasets Decision support systems Decision trees Deep learning Diagnosis Fuzzy logic Genetic algorithms Hybrid structures Interpreters Machine learning Mammography Medical diagnosis Neural networks Optimization algorithms Processor Architectures Programming Languages Success Support vector machines |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELbK9sIFyp9YWtAcuIHVxkkcB6lCgFpVHLYIqNRb5F-6Uje73d0e6Il34D36UH0SZhyHABI9RUocHzJjz-fMzPcx9pI0pjKvNReuKnhhReDGOcl9sMJnmfGVjWyfE3l0Unw8LU832KTvhaGyyn5PjBu1m1v6R76bY2xG8Csq9XZxwUk1irKrvYSGTtIKbj9SjN1hm4KYsUZs8_3B5NPnoVMy73LONR6aVFmI1EbTNdNlQlQcYxhHUJCX_OrvUDXgz39SpjESHW6xewlCwrvO5g_Yhm8fsvu9PAOk1fqIXR_jdjBLfZYwD0Be0hFGANFYxkssAoeORfZy6UG3Ds7wbLokTvAZ1cqsYNriLersgqibA-Y7oNtR9yPo82_4kdZnszcwPf5y8-OnJgIEHPlHYhwQF4Oh4vc1WHKyJbiuwG-62l0sKVNEwx6zk8ODrx-OeJJn4BbX7Zoj9Au1VxYRn3VSCaNVVetCBOXFnvRF6Zwpda6dcbXGjcIEG6uqpKAG_FDlT9ionbf-KQNltBNGWr2niqLWpTESo6S3wWZKGhnGLOst0djEXU4SGufNwLpM1mvQek20XnM1Zq9-v7PomDtuHb3TG7hJq3jVDD43Zq97ow-P_z_bs9tn22Z3BWKjrpRth43Qxv45Ypu1eZEc9heDMP1N priority: 102 providerName: ProQuest |
| Title | Optimization of artificial neural network structure and hyperparameters in hybrid model by genetic algorithm: iOS–android application for breast cancer diagnosis/prediction |
| URI | https://link.springer.com/article/10.1007/s11227-023-05635-z https://www.proquest.com/docview/3256597278 |
| Volume | 80 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1573-0484 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: ABDBF dateStart: 20030501 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-0484 dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: ADMLS dateStart: 19870101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTttAEF4VuPTSUtqqKRDNgVu7Kl7b6zW3BCWgVgpV20j0ZO0vRCIOcsIBTrwD78FD8STMru26rdpKPa1kr335ZnZmNfN9Q8ienzEVWSkpM1lCE80cVcZwap1mNoqUzXRQ-5zw42ny8TQ9bUhhy7bbvS1JhpO6I7tFjGUUYwzFoB2n9GaNbKRezguteMoGHRsyruvKOV6MRJqwhirz53_8Go66HPO3smiINuNN8qxJE2FQ4_qCPLHlFnnejmCAxiNfkvsTdPl5w6WEhQNvCbUoBHipyrCERm-olWKvKguyNHCO98_K637PfT_MEmYlPvLsLQizcUBdA5qWZziCvDhbVLPV-fwAZidfH27vpBc5wJ0_Fb8Bc19QvsF9BdobUgWmbuKbLT9cVr4a5Le9ItPx6NvhMW1GMFCNvrmimN653AqNWZ02XDAlRZbLhDlh2T63SWqMSmUsjTK5xMNAOR06pzjzJHuXxa_Jerko7RsCQknDFNdyXyRJLlOlOEZCq52OBFfc9UjUIlHoRp_cj8m4KDplZY9egegVAb3ipkfe_fjmslbn-OfunRbgovHUZRFjzoeXKpaJHnnfgt69_vvf3v7f9m3ylGE-VLev7ZB1xNzuYj6zUn2yJsZHfbIxGA-HE78eff80wnU4mnz-0g_G_QgjIvmt |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbtRAEG2FZAEbwlcMBKgFrKCVuN3-IUUoQKIJCRMEiZSd6Z_JSBnPZGYQSlbcgXvkCByGk1DVbmNAIrusLNnt3rxy1WtX1SvGntCMqcgpxYXNJJdGVFxbm3JXGeGiSLvMeLXPQdo_kG8Pk8MF9qPthaGyytYnekdtx4b-ka_GGJuR_Iosfzk54TQ1irKr7QgNFUYr2HUvMRYaO3bc6Vc8ws3Wt98g3k-F2Nrcf93nYcoAN2h-c44MpipcbpC4GJvmQqs8K5QUVe7EWupkYq1OVKystoVCe9eV8cVBqaA-8iqLcd8rbEnGssDD39KrzcH7D11nZtzkuAs8pOWJFKFtp2nei4TIOMZMjiQkTvjZ36Gx47v_pGh95Nu6wa4HygobjY3dZAuuvsWW23EQELzDbXa-h-5nFPo6YVwBWWUjUAEkm-kvvugcGtXaL1MHqrZwhGfhKWmQj6g2ZwbDGm9RJxn4OT2gTwHNnLotQR1_RlDmR6MXMNz7-PPbd0WCC7jyj0Q8IA8HTcX2czBk1FOwTUHhcLY6mVJmipbdYQeXAtRdtliPa3ePQa6VFTo1ai2XslCJ1ilGZWcqE-WpTqsei1okShO00mlkx3HZqTwTeiWiV3r0yrMee_b7nUmjFHLh6pUW4DJ4jVnZ2XiPPW9B7x7_f7f7F-_2mF3t77_bLXe3BzsP2DWBvKwpo1thi4i3e4i8aq4fBeMF9umyv5dfurM6RA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZKKyEuhRYQWwqdAzewtnEcx-FWAau2oLYSrNRb5F-6Uje7yoYDPfEOvAcP1Sfp2ElIQYDEKVIyyeWbyYw1831DyIuwYypxSlFmc065YZ5qawV13jCXJNrlJqp9nojDKT8-z85vsfjjtHvfkmw5DUGlqWrGS-vHA_EtYSynmG8oJvA0o1d3yAYPQgno0VN2MDAj07bHXOAhSWacdbSZP3_j19Q01Ju_tUhj5pk8IJtdyQgHLcZbZM1V2-R-v44Buuh8SH6cYvjPO14lLDwEr2gFIiDIVsZLHPqGVjX2S-1AVRYu8CxaBw3weZiNWcGswluByQVxTw7or4BuFtiOoC4_L-pZczF_DbPTj9ffvqsgeICWtxrhgHUw6DDs3oAJTlWDbQf6Zqvxsg6doWD2iEwn7z69OaTdOgZqME4biqWeL5w0WOEZKyTTSuaF4sxLx_aF45m1OlOpstoWCn8M2ps4RSVYINz7PH1M1qtF5Z4QkFpZpoVR-5LzQmVaC8yKzniTSKGFH5GkR6I0nVZ5WJlxWQ4qywG9EtErI3rl1Yi8_PnOslXq-Kf1bg9w2UXtqkyx_sMDFsvliLzqQR8e__1rO_9nvkfunr2dlB-OTt4_JfcYlkntVNsuWUf43TMscxr9PHryDZb6-0U |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+artificial+neural+network+structure+and+hyperparameters+in+hybrid+model+by+genetic+algorithm%3A+iOS%E2%80%93android+application+for+breast+cancer+diagnosis%2Fprediction&rft.jtitle=The+Journal+of+supercomputing&rft.au=B%C3%BClb%C3%BCl%2C+Mehmet+Akif&rft.date=2024-03-01&rft.pub=Springer+US&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=80&rft.issue=4&rft.spage=4533&rft.epage=4553&rft_id=info:doi/10.1007%2Fs11227-023-05635-z&rft.externalDocID=10_1007_s11227_023_05635_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |