Optimization of artificial neural network structure and hyperparameters in hybrid model by genetic algorithm: iOS–android application for breast cancer diagnosis/prediction

Breast cancer is a common disease that can result in death among women. Cancer research is important because early detection of cancer facilitates clinical practice for patients. The aim of the study is to ensure that breast cancer can be diagnosed in a short time and easily. For this purpose, a dat...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of supercomputing Vol. 80; no. 4; pp. 4533 - 4553
Main Author Bülbül, Mehmet Akif
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0920-8542
1573-0484
DOI10.1007/s11227-023-05635-z

Cover

Abstract Breast cancer is a common disease that can result in death among women. Cancer research is important because early detection of cancer facilitates clinical practice for patients. The aim of the study is to ensure that breast cancer can be diagnosed in a short time and easily. For this purpose, a dataset containing 116 samples, 9 features and 2 target variables (Breast Cancer Coimbra) from the UCI library was used during the training and testing phases. A hybrid structure was created with genetic algorithm (GA) and artificial neural network (ANN) to classify the datasets. With the established hybrid model, the feedforward backpropagation artificial neural network model and the hyperparameters in this model structure have been optimized with the genetic algorithm. The performance of the structure constructed with the most successful gene parameters obtained was compared with weighted K-nearest neighbors, decision tree, and linear support vector machine methods. In all machine learning methods used, fivefold cross-validation was applied and the dataset was divided into two groups as 50% training and 50% testing in order to test the models with different data. The hybrid model proposed in the study performed better than other machine learning methods with 100% correct classification rate. Although there are few data in this study, the accuracy is higher than other literature. In addition, an iOS–android-based application has been developed for the diagnosis and prediction of the disease with the findings obtained. Thanks to the developed application, the most important factor in the fight against the disease, time and cost spent for the diagnosis of this disease will be saved. Considering the interest in artificial intelligence techniques in cancer research, this study presents a new diagnostic method and a usable application in terms of patient decision support systems.
AbstractList Breast cancer is a common disease that can result in death among women. Cancer research is important because early detection of cancer facilitates clinical practice for patients. The aim of the study is to ensure that breast cancer can be diagnosed in a short time and easily. For this purpose, a dataset containing 116 samples, 9 features and 2 target variables (Breast Cancer Coimbra) from the UCI library was used during the training and testing phases. A hybrid structure was created with genetic algorithm (GA) and artificial neural network (ANN) to classify the datasets. With the established hybrid model, the feedforward backpropagation artificial neural network model and the hyperparameters in this model structure have been optimized with the genetic algorithm. The performance of the structure constructed with the most successful gene parameters obtained was compared with weighted K-nearest neighbors, decision tree, and linear support vector machine methods. In all machine learning methods used, fivefold cross-validation was applied and the dataset was divided into two groups as 50% training and 50% testing in order to test the models with different data. The hybrid model proposed in the study performed better than other machine learning methods with 100% correct classification rate. Although there are few data in this study, the accuracy is higher than other literature. In addition, an iOS–android-based application has been developed for the diagnosis and prediction of the disease with the findings obtained. Thanks to the developed application, the most important factor in the fight against the disease, time and cost spent for the diagnosis of this disease will be saved. Considering the interest in artificial intelligence techniques in cancer research, this study presents a new diagnostic method and a usable application in terms of patient decision support systems.
Author Bülbül, Mehmet Akif
Author_xml – sequence: 1
  givenname: Mehmet Akif
  surname: Bülbül
  fullname: Bülbül, Mehmet Akif
  email: makifbulbul@nevsehir.edu.tr
  organization: Faculty of Engineering-Architecture, Computer Engineering, Nevşehir Hacı Bektaş Veli University
BookMark eNp9kc9q3DAQxkVJIZukL5CToGc3smTZcm8l9B8E9tDmbMaSvFFqS-5Ipuye8g59jz5UniTKulDoIadhhu833zDfGTnxwVtCLkv2rmSsuYplyXlTMC4KJmshi8Mrsillk9tKVSdkw1rOCiUrfkrOYrxnjFWiERvyZzsnN7kDJBc8DQMFTG5w2sFIvV3wWNKvgD9oTLjotKCl4A29288WZ0CYbLIYqfN51KMzdArGjrTf053NqNMUxl1Al-6m99Rtvz0-_M48hqyEeR6dXq2HgLRHCzFRDV5bpMbBzofo4tWM1jj9LLsgrwcYo33zt56T208fv19_KW62n79ef7gptCjbVJStGFqrNJONNrXiPaimhYoPynJW20oa00sQYHrTQv5QP-iqZUrVnMtKDI04J2_XvTOGn4uNqbsPC_ps2Qkua9k2vFFZxVeVxhAj2qGb0U2A-65k3XMu3ZpLl3Ppjrl0hwyp_yDt0vEHCcGNL6NiRWP28TuL_656gXoCXUGrcQ
CitedBy_id crossref_primary_10_1007_s00217_024_04468_1
crossref_primary_10_1016_j_measurement_2024_114488
crossref_primary_10_1007_s10614_023_10530_z
crossref_primary_10_17798_bitlisfen_1360049
crossref_primary_10_46387_bjesr_1419106
crossref_primary_10_1007_s00217_023_04436_1
crossref_primary_10_17798_bitlisfen_1479725
crossref_primary_10_3390_waste2030014
crossref_primary_10_1007_s40747_025_01845_5
crossref_primary_10_3390_sym16070866
crossref_primary_10_1007_s11042_024_19561_6
crossref_primary_10_1016_j_asoc_2024_111941
crossref_primary_10_54097_7qv57m30
crossref_primary_10_1007_s11227_024_06211_9
crossref_primary_10_1080_0954898X_2024_2343348
crossref_primary_10_3390_biomimetics9050304
Cites_doi 10.3390/ijerph19063211
10.3390/app12105138
10.1016/j.eswa.2020.113829
10.1109/TSMC.1976.5408784
10.3934/mbe.2021378
10.32604/csse.2022.016376
10.1109/ACCESS.2021.3085605
10.1007/s11517-020-02187-9
10.5614/itbj.ict.res.appl.2017.11.1.3
10.15557/JoU.2022.0014
10.3390/app12041957
10.1016/j.scitotenv.2021.145650
10.3390/make1010028
10.1590/1413-81232022272.36462020
10.1007/s11042-022-12144-3
10.1007/s13369-021-06168-4
10.1186/s12885-017-3877-1
10.1371/journal.pone.0245841
10.1186/s40537-023-00749-w
10.1016/j.knosys.2021.107944
10.1016/j.cmpb.2021.106541
10.47059/revistageintec.v11i2.1738
10.14569/IJACSA.2022.0130478
10.1109/ISMSIT.2018.8567245
10.1109/ICAITI.2018.8686707
10.1007/s10994-021-05996-7
10.1080/15435075.2021.1984924
10.1007/s00521-022-07290-6
10.1109/DCABES50732.2020.00067
10.1155/2020/8846948
10.1037/e471672008-001
10.18201/ijisae.2018648455
10.1155/2020/2561726
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11227-023-05635-z
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 4553
ExternalDocumentID 10_1007_s11227_023_05635_z
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-c319t-193f9e8c057cd682ba879a42f8e206e45ddb5a3adbd9a048bfc49088622543f73
IEDL.DBID U2A
ISSN 0920-8542
IngestDate Mon Oct 06 18:37:26 EDT 2025
Wed Oct 01 03:43:56 EDT 2025
Thu Apr 24 23:05:03 EDT 2025
Fri Feb 21 02:42:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Decision support systems
Model and hyperparameter optimization
Breast cancer classification
Genetic algorithm
Artificial neural networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-193f9e8c057cd682ba879a42f8e206e45ddb5a3adbd9a048bfc49088622543f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3256597278
PQPubID 2043774
PageCount 21
ParticipantIDs proquest_journals_3256597278
crossref_primary_10_1007_s11227_023_05635_z
crossref_citationtrail_10_1007_s11227_023_05635_z
springer_journals_10_1007_s11227_023_05635_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240300
2024-03-00
20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 3
  year: 2024
  text: 20240300
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Patrício, Pereira, Crisóstomo, Matafome, Gomes, Seiça, Caramelo (CR34) 2018; 18
Rasool, Bunterngchit, Tiejian, Islam, Qu, Jiang (CR6) 2022; 19
Escorcia-Gutierrez, Mansour, Beleño, Jiménez-Cabas, Pérez, Madera, Velasquez (CR8) 2022; 71
Bülbül, Öztürk, Işık (CR18) 2022; 65
Dudani (CR22) 1976; 4
CR15
Dinesh, Rajendran (CR25) 2021; 11
Bülbül, Harirchian, Işık, Aghakouchaki Hosseini, Işık (CR17) 2022; 12
CR35
CR12
CR11
CR33
CR10
Geler, Kurbalija, Ivanović, Radovanović (CR24) 2020; 162
CR32
Li, Liu, Bai, He, Yang (CR37) 2022; 239
CR31
Quang-Huy, Doan, Yen, Tran (CR26) 2021; 18
CR30
Lin, Kujabi, Chuang, Lin, Chiu (CR5) 2022; 12
Tiwari, Dadhania, Ragunathrao, Oliveira (CR38) 2021; 773
Yavuz, Eyupoglu (CR14) 2020; 58
CR4
Silva Araújo, Guimarães, de Campos Souza, Rezende, Araújo (CR13) 2019; 1
Kayikci, Khoshgoftaar (CR2) 2023; 10
Wahyuni, Mahmudy (CR36) 2017; 11
CR29
CR28
CR27
Ma, Zhao (CR23) 2021; 9
Łuczyńska, Pawlak, Popiela, Rudnicki (CR3) 2022; 22
Jeyaranjani, Devaraj (CR19) 2022; 35
Santos, Borges, Ferreira, Meira, Souza, Guimarães, Jomar (CR1) 2022; 27
Hasan, Ghani, Din, Almogren, Altameem (CR21) 2022; 70
Bülbül, Öztürk (CR16) 2022; 47
Layer, Menzenbach, Layer, Mayr, Hilbert, Velten, Hoeft, Wittmann (CR39) 2021; 16
Jayandhi, Jasmine, Joans (CR7) 2022; 40
Rani, Kaur, Kumar (CR9) 2022; 81
Nahavandi, Alizadehsani, Khosravi, Acharya (CR20) 2022; 213
SSU Hasan (5635_CR21) 2022; 70
MA Bülbül (5635_CR17) 2022; 12
MA Bülbül (5635_CR18) 2022; 65
T Dinesh (5635_CR25) 2021; 11
Z Geler (5635_CR24) 2020; 162
J Jeyaranjani (5635_CR19) 2022; 35
T Quang-Huy (5635_CR26) 2021; 18
A Tiwari (5635_CR38) 2021; 773
MA Bülbül (5635_CR16) 2022; 47
R-H Lin (5635_CR5) 2022; 12
G Jayandhi (5635_CR7) 2022; 40
YC Layer (5635_CR39) 2021; 16
M Patrício (5635_CR34) 2018; 18
I Wahyuni (5635_CR36) 2017; 11
5635_CR11
5635_CR33
5635_CR10
5635_CR32
5635_CR31
5635_CR30
5635_CR15
SA Dudani (5635_CR22) 1976; 4
Y Ma (5635_CR23) 2021; 9
5635_CR35
5635_CR12
TBd Santos (5635_CR1) 2022; 27
5635_CR29
5635_CR28
5635_CR27
Q Li (5635_CR37) 2022; 239
S Kayikci (5635_CR2) 2023; 10
5635_CR4
A Rasool (5635_CR6) 2022; 19
VJ Silva Araújo (5635_CR13) 2019; 1
S Rani (5635_CR9) 2022; 81
J Escorcia-Gutierrez (5635_CR8) 2022; 71
D Nahavandi (5635_CR20) 2022; 213
E Łuczyńska (5635_CR3) 2022; 22
E Yavuz (5635_CR14) 2020; 58
References_xml – volume: 19
  start-page: 3211
  issue: 6
  year: 2022
  ident: CR6
  article-title: Improved machine learning-based predictive models for breast cancer diagnosis
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph19063211
– volume: 12
  start-page: 5138
  issue: 10
  year: 2022
  ident: CR17
  article-title: A hybrid ANN-GA model for an automated rapid vulnerability assessment of existing RC buildings
  publication-title: Appl Sci
  doi: 10.3390/app12105138
– volume: 162
  year: 2020
  ident: CR24
  article-title: Weighted KNN and constrained elastic distances for time-series classification
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113829
– volume: 35
  year: 2022
  ident: CR19
  article-title: Improved genetic algorithm for optimal demand response in smart grid
  publication-title: Sustain Comput Inform Syst
– volume: 4
  start-page: 325
  year: 1976
  end-page: 327
  ident: CR22
  article-title: The distance-weighted k-nearest-neighbor rule
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1976.5408784
– volume: 18
  start-page: 7631
  year: 2021
  end-page: 7647
  ident: CR26
  article-title: Shear wave imaging and classification using extended Kalman filter and decision tree algorithm
  publication-title: Math Biosci Eng
  doi: 10.3934/mbe.2021378
– ident: CR4
– volume: 40
  start-page: 491
  issue: 2
  year: 2022
  end-page: 503
  ident: CR7
  article-title: Mammogram learning system for breast cancer diagnosis using deep learning SVM
  publication-title: Comput Syst Sci Eng
  doi: 10.32604/csse.2022.016376
– volume: 9
  start-page: 81765
  year: 2021
  end-page: 81777
  ident: CR23
  article-title: Pod: a parallel outlier detection algorithm using weighted KNN
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3085605
– ident: CR12
– ident: CR30
– volume: 58
  start-page: 1583
  issue: 7
  year: 2020
  end-page: 1601
  ident: CR14
  article-title: An effective approach for breast cancer diagnosis based on routine blood analysis features
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-020-02187-9
– ident: CR10
– ident: CR33
– volume: 11
  start-page: 38
  issue: 1
  year: 2017
  end-page: 55
  ident: CR36
  article-title: Rainfall prediction in Tengger, Indonesia using hybrid Tsukamoto Fis and genetic algorithm method
  publication-title: J ICT Res Appl
  doi: 10.5614/itbj.ict.res.appl.2017.11.1.3
– ident: CR35
– ident: CR29
– volume: 71
  start-page: 3
  year: 2022
  end-page: 4221
  ident: CR8
  article-title: Automated deep learning empowered breast cancer diagnosis using biomedical mammogram images
  publication-title: Comput Mater Continua
– volume: 22
  start-page: 76
  issue: 89
  year: 2022
  end-page: 85
  ident: CR3
  article-title: The role of ABUS in the diagnosis of breast cancer
  publication-title: J Ultrasonogr
  doi: 10.15557/JoU.2022.0014
– ident: CR27
– volume: 12
  start-page: 1957
  issue: 4
  year: 2022
  ident: CR5
  article-title: Application of deep learning to construct breast cancer diagnosis model
  publication-title: Appl Sci
  doi: 10.3390/app12041957
– volume: 773
  year: 2021
  ident: CR38
  article-title: Using machine learning to develop a novel Covid-19 vulnerability index (C19VI)
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.145650
– volume: 1
  start-page: 466
  issue: 1
  year: 2019
  end-page: 482
  ident: CR13
  article-title: Using resistin, glucose, age and BMI and pruning fuzzy neural network for the construction of expert systems in the prediction of breast cancer
  publication-title: Mach Learn Knowl Extr
  doi: 10.3390/make1010028
– volume: 27
  start-page: 471
  year: 2022
  end-page: 482
  ident: CR1
  article-title: Prevalence and factors associated to advanced stage breast cancer diagnosis
  publication-title: Ciência & Saúde Coletiva
  doi: 10.1590/1413-81232022272.36462020
– volume: 70
  start-page: 3701
  year: 2022
  end-page: 3716
  ident: CR21
  article-title: Iot devices authentication using artificial neural network
  publication-title: Comput Mater Contin
– volume: 81
  start-page: 9939
  issue: 7
  year: 2022
  end-page: 9948
  ident: CR9
  article-title: Recommender system: prediction/diagnosis of breast cancer using hybrid machine learning algorithm
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-022-12144-3
– volume: 47
  start-page: 2329
  issue: 2
  year: 2022
  end-page: 2343
  ident: CR16
  article-title: Optimization, modeling and implementation of plant water consumption control using genetic algorithm and artificial neural network in a hybrid structure
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-021-06168-4
– volume: 18
  start-page: 1
  issue: 1
  year: 2018
  end-page: 8
  ident: CR34
  article-title: Using resistin, glucose, age and BMI to predict the presence of breast cancer
  publication-title: BMC Cancer
  doi: 10.1186/s12885-017-3877-1
– ident: CR15
– volume: 16
  start-page: 0245841
  issue: 1
  year: 2021
  ident: CR39
  article-title: Validation of the preoperative score to predict postoperative mortality (POSPOM) in Germany
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0245841
– ident: CR31
– volume: 10
  start-page: 1
  issue: 1
  year: 2023
  end-page: 11
  ident: CR2
  article-title: Breast cancer prediction using gated attentive multimodal deep learning
  publication-title: J Big Data
  doi: 10.1186/s40537-023-00749-w
– ident: CR11
– volume: 239
  year: 2022
  ident: CR37
  article-title: An elitism-based multi-objective evolutionary algorithm for min-cost network disintegration
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.107944
– ident: CR32
– volume: 213
  year: 2022
  ident: CR20
  article-title: Application of artificial intelligence in wearable devices: opportunities and challenges
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2021.106541
– volume: 65
  start-page: 2654
  issue: 10
  year: 2022
  end-page: 2663
  ident: CR18
  article-title: Optimization of climatic conditions affecting determination of the amount of water needed by plants in relation to their life cycle with particle swarm optimization, and determining the optimum irrigation schedule
  publication-title: Comput J
– ident: CR28
– volume: 11
  start-page: 1084
  issue: 2
  year: 2021
  end-page: 1096
  ident: CR25
  article-title: Higher classification of fake political news using decision tree algorithm over Naive Bayes algorithm
  publication-title: Revista Geintec-gestao Inovacao E Tecnologias
  doi: 10.47059/revistageintec.v11i2.1738
– ident: 5635_CR10
  doi: 10.14569/IJACSA.2022.0130478
– volume: 12
  start-page: 5138
  issue: 10
  year: 2022
  ident: 5635_CR17
  publication-title: Appl Sci
  doi: 10.3390/app12105138
– volume: 65
  start-page: 2654
  issue: 10
  year: 2022
  ident: 5635_CR18
  publication-title: Comput J
– volume: 71
  start-page: 3
  year: 2022
  ident: 5635_CR8
  publication-title: Comput Mater Continua
– volume: 47
  start-page: 2329
  issue: 2
  year: 2022
  ident: 5635_CR16
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-021-06168-4
– volume: 27
  start-page: 471
  year: 2022
  ident: 5635_CR1
  publication-title: Ciência & Saúde Coletiva
  doi: 10.1590/1413-81232022272.36462020
– volume: 213
  year: 2022
  ident: 5635_CR20
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2021.106541
– ident: 5635_CR32
  doi: 10.1109/ISMSIT.2018.8567245
– volume: 40
  start-page: 491
  issue: 2
  year: 2022
  ident: 5635_CR7
  publication-title: Comput Syst Sci Eng
  doi: 10.32604/csse.2022.016376
– volume: 19
  start-page: 3211
  issue: 6
  year: 2022
  ident: 5635_CR6
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph19063211
– ident: 5635_CR12
  doi: 10.1109/ICAITI.2018.8686707
– ident: 5635_CR31
  doi: 10.1007/s10994-021-05996-7
– ident: 5635_CR29
  doi: 10.1080/15435075.2021.1984924
– volume: 70
  start-page: 3701
  year: 2022
  ident: 5635_CR21
  publication-title: Comput Mater Contin
– ident: 5635_CR30
– volume: 81
  start-page: 9939
  issue: 7
  year: 2022
  ident: 5635_CR9
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-022-12144-3
– ident: 5635_CR15
  doi: 10.1007/s00521-022-07290-6
– volume: 239
  year: 2022
  ident: 5635_CR37
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.107944
– volume: 58
  start-page: 1583
  issue: 7
  year: 2020
  ident: 5635_CR14
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-020-02187-9
– ident: 5635_CR33
  doi: 10.1109/DCABES50732.2020.00067
– volume: 1
  start-page: 466
  issue: 1
  year: 2019
  ident: 5635_CR13
  publication-title: Mach Learn Knowl Extr
  doi: 10.3390/make1010028
– volume: 35
  year: 2022
  ident: 5635_CR19
  publication-title: Sustain Comput Inform Syst
– volume: 162
  year: 2020
  ident: 5635_CR24
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113829
– volume: 773
  year: 2021
  ident: 5635_CR38
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.145650
– volume: 9
  start-page: 81765
  year: 2021
  ident: 5635_CR23
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3085605
– ident: 5635_CR27
  doi: 10.1155/2020/8846948
– volume: 11
  start-page: 38
  issue: 1
  year: 2017
  ident: 5635_CR36
  publication-title: J ICT Res Appl
  doi: 10.5614/itbj.ict.res.appl.2017.11.1.3
– volume: 11
  start-page: 1084
  issue: 2
  year: 2021
  ident: 5635_CR25
  publication-title: Revista Geintec-gestao Inovacao E Tecnologias
  doi: 10.47059/revistageintec.v11i2.1738
– volume: 22
  start-page: 76
  issue: 89
  year: 2022
  ident: 5635_CR3
  publication-title: J Ultrasonogr
  doi: 10.15557/JoU.2022.0014
– volume: 12
  start-page: 1957
  issue: 4
  year: 2022
  ident: 5635_CR5
  publication-title: Appl Sci
  doi: 10.3390/app12041957
– ident: 5635_CR28
  doi: 10.1037/e471672008-001
– ident: 5635_CR35
– volume: 16
  start-page: 0245841
  issue: 1
  year: 2021
  ident: 5635_CR39
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0245841
– ident: 5635_CR11
  doi: 10.18201/ijisae.2018648455
– volume: 18
  start-page: 1
  issue: 1
  year: 2018
  ident: 5635_CR34
  publication-title: BMC Cancer
  doi: 10.1186/s12885-017-3877-1
– ident: 5635_CR4
  doi: 10.1155/2020/2561726
– volume: 10
  start-page: 1
  issue: 1
  year: 2023
  ident: 5635_CR2
  publication-title: J Big Data
  doi: 10.1186/s40537-023-00749-w
– volume: 4
  start-page: 325
  year: 1976
  ident: 5635_CR22
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1976.5408784
– volume: 18
  start-page: 7631
  year: 2021
  ident: 5635_CR26
  publication-title: Math Biosci Eng
  doi: 10.3934/mbe.2021378
SSID ssj0004373
Score 2.4118056
Snippet Breast cancer is a common disease that can result in death among women. Cancer research is important because early detection of cancer facilitates clinical...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4533
SubjectTerms Accuracy
Artificial intelligence
Artificial neural networks
Back propagation
Back propagation networks
Breast cancer
Compilers
Computer Science
Datasets
Decision support systems
Decision trees
Deep learning
Diagnosis
Fuzzy logic
Genetic algorithms
Hybrid structures
Interpreters
Machine learning
Mammography
Medical diagnosis
Neural networks
Optimization algorithms
Processor Architectures
Programming Languages
Success
Support vector machines
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELbK9sIFyp9YWtAcuIHVxkkcB6lCgFpVHLYIqNRb5F-6Uje73d0e6Il34D36UH0SZhyHABI9RUocHzJjz-fMzPcx9pI0pjKvNReuKnhhReDGOcl9sMJnmfGVjWyfE3l0Unw8LU832KTvhaGyyn5PjBu1m1v6R76bY2xG8Csq9XZxwUk1irKrvYSGTtIKbj9SjN1hm4KYsUZs8_3B5NPnoVMy73LONR6aVFmI1EbTNdNlQlQcYxhHUJCX_OrvUDXgz39SpjESHW6xewlCwrvO5g_Yhm8fsvu9PAOk1fqIXR_jdjBLfZYwD0Be0hFGANFYxkssAoeORfZy6UG3Ds7wbLokTvAZ1cqsYNriLersgqibA-Y7oNtR9yPo82_4kdZnszcwPf5y8-OnJgIEHPlHYhwQF4Oh4vc1WHKyJbiuwG-62l0sKVNEwx6zk8ODrx-OeJJn4BbX7Zoj9Au1VxYRn3VSCaNVVetCBOXFnvRF6Zwpda6dcbXGjcIEG6uqpKAG_FDlT9ionbf-KQNltBNGWr2niqLWpTESo6S3wWZKGhnGLOst0djEXU4SGufNwLpM1mvQek20XnM1Zq9-v7PomDtuHb3TG7hJq3jVDD43Zq97ow-P_z_bs9tn22Z3BWKjrpRth43Qxv45Ypu1eZEc9heDMP1N
  priority: 102
  providerName: ProQuest
Title Optimization of artificial neural network structure and hyperparameters in hybrid model by genetic algorithm: iOS–android application for breast cancer diagnosis/prediction
URI https://link.springer.com/article/10.1007/s11227-023-05635-z
https://www.proquest.com/docview/3256597278
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1573-0484
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: ABDBF
  dateStart: 20030501
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: ADMLS
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTttAEF4VuPTSUtqqKRDNgVu7Kl7b6zW3BCWgVgpV20j0ZO0vRCIOcsIBTrwD78FD8STMru26rdpKPa1kr335ZnZmNfN9Q8ienzEVWSkpM1lCE80cVcZwap1mNoqUzXRQ-5zw42ny8TQ9bUhhy7bbvS1JhpO6I7tFjGUUYwzFoB2n9GaNbKRezguteMoGHRsyruvKOV6MRJqwhirz53_8Go66HPO3smiINuNN8qxJE2FQ4_qCPLHlFnnejmCAxiNfkvsTdPl5w6WEhQNvCbUoBHipyrCERm-olWKvKguyNHCO98_K637PfT_MEmYlPvLsLQizcUBdA5qWZziCvDhbVLPV-fwAZidfH27vpBc5wJ0_Fb8Bc19QvsF9BdobUgWmbuKbLT9cVr4a5Le9ItPx6NvhMW1GMFCNvrmimN653AqNWZ02XDAlRZbLhDlh2T63SWqMSmUsjTK5xMNAOR06pzjzJHuXxa_Jerko7RsCQknDFNdyXyRJLlOlOEZCq52OBFfc9UjUIlHoRp_cj8m4KDplZY9egegVAb3ipkfe_fjmslbn-OfunRbgovHUZRFjzoeXKpaJHnnfgt69_vvf3v7f9m3ylGE-VLev7ZB1xNzuYj6zUn2yJsZHfbIxGA-HE78eff80wnU4mnz-0g_G_QgjIvmt
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbtRAEG2FZAEbwlcMBKgFrKCVuN3-IUUoQKIJCRMEiZSd6Z_JSBnPZGYQSlbcgXvkCByGk1DVbmNAIrusLNnt3rxy1WtX1SvGntCMqcgpxYXNJJdGVFxbm3JXGeGiSLvMeLXPQdo_kG8Pk8MF9qPthaGyytYnekdtx4b-ka_GGJuR_Iosfzk54TQ1irKr7QgNFUYr2HUvMRYaO3bc6Vc8ws3Wt98g3k-F2Nrcf93nYcoAN2h-c44MpipcbpC4GJvmQqs8K5QUVe7EWupkYq1OVKystoVCe9eV8cVBqaA-8iqLcd8rbEnGssDD39KrzcH7D11nZtzkuAs8pOWJFKFtp2nei4TIOMZMjiQkTvjZ36Gx47v_pGh95Nu6wa4HygobjY3dZAuuvsWW23EQELzDbXa-h-5nFPo6YVwBWWUjUAEkm-kvvugcGtXaL1MHqrZwhGfhKWmQj6g2ZwbDGm9RJxn4OT2gTwHNnLotQR1_RlDmR6MXMNz7-PPbd0WCC7jyj0Q8IA8HTcX2czBk1FOwTUHhcLY6mVJmipbdYQeXAtRdtliPa3ePQa6VFTo1ai2XslCJ1ilGZWcqE-WpTqsei1okShO00mlkx3HZqTwTeiWiV3r0yrMee_b7nUmjFHLh6pUW4DJ4jVnZ2XiPPW9B7x7_f7f7F-_2mF3t77_bLXe3BzsP2DWBvKwpo1thi4i3e4i8aq4fBeMF9umyv5dfurM6RA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZKKyEuhRYQWwqdAzewtnEcx-FWAau2oLYSrNRb5F-6Uje7yoYDPfEOvAcP1Sfp2ElIQYDEKVIyyeWbyYw1831DyIuwYypxSlFmc065YZ5qawV13jCXJNrlJqp9nojDKT8-z85vsfjjtHvfkmw5DUGlqWrGS-vHA_EtYSynmG8oJvA0o1d3yAYPQgno0VN2MDAj07bHXOAhSWacdbSZP3_j19Q01Ju_tUhj5pk8IJtdyQgHLcZbZM1V2-R-v44Buuh8SH6cYvjPO14lLDwEr2gFIiDIVsZLHPqGVjX2S-1AVRYu8CxaBw3weZiNWcGswluByQVxTw7or4BuFtiOoC4_L-pZczF_DbPTj9ffvqsgeICWtxrhgHUw6DDs3oAJTlWDbQf6Zqvxsg6doWD2iEwn7z69OaTdOgZqME4biqWeL5w0WOEZKyTTSuaF4sxLx_aF45m1OlOpstoWCn8M2ps4RSVYINz7PH1M1qtF5Z4QkFpZpoVR-5LzQmVaC8yKzniTSKGFH5GkR6I0nVZ5WJlxWQ4qywG9EtErI3rl1Yi8_PnOslXq-Kf1bg9w2UXtqkyx_sMDFsvliLzqQR8e__1rO_9nvkfunr2dlB-OTt4_JfcYlkntVNsuWUf43TMscxr9PHryDZb6-0U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+artificial+neural+network+structure+and+hyperparameters+in+hybrid+model+by+genetic+algorithm%3A+iOS%E2%80%93android+application+for+breast+cancer+diagnosis%2Fprediction&rft.jtitle=The+Journal+of+supercomputing&rft.au=B%C3%BClb%C3%BCl%2C+Mehmet+Akif&rft.date=2024-03-01&rft.pub=Springer+US&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=80&rft.issue=4&rft.spage=4533&rft.epage=4553&rft_id=info:doi/10.1007%2Fs11227-023-05635-z&rft.externalDocID=10_1007_s11227_023_05635_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon