Theory Behind Quantum Error Correcting Codes: An Overview

Quantum information processing is now a well-evolved field of study with roots to quantum physics that has significantly evolved from pioneering works over almost more than a century. Today, we are at a stage where elementary forms of quantum computers and communication systems are being built and d...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Indian Institute of Science Vol. 103; no. 2; pp. 449 - 495
Main Authors Garani, Shayan Srinivasa, Nadkarni, Priya J., Raina, Ankur
Format Journal Article
LanguageEnglish
Published New Delhi Springer India 01.04.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0970-4140
0019-4964
DOI10.1007/s41745-023-00392-7

Cover

Abstract Quantum information processing is now a well-evolved field of study with roots to quantum physics that has significantly evolved from pioneering works over almost more than a century. Today, we are at a stage where elementary forms of quantum computers and communication systems are being built and deployed. In this paper, we begin with a historical background into quantum information theory and coding theory for both entanglement-unassisted and assisted quantum communication systems, motivating the need for quantum error correction in such systems. We then begin with the necessary mathematical preliminaries towards understanding the theory behind quantum error correction, central to the discussions within this article, starting from the binary case towards the non-binary generalization, using the rich framework of finite fields. We will introduce the stabilizer framework, build upon the Calderbank-Shor-Steane framework for binary quantum codes and generalize this to the non-binary case, yielding generalized CSS codes that are linear and additive. We will survey important families of quantum codes derived from well-known classical counterparts. Next, we provide an overview of the theory behind entanglement-assisted quantum ECCs along with encoding and syndrome computing architectures. We present a case study on how to construct efficient quantum Reed-Solomon codes that saturate the Singleton bound for the non-degenerate case. We will also show how positive coding rates can be realized using tensor product codes from two zero-rate entanglement-assisted CSS codes, an effect termed as the coding analog of superadditivity, useful for entanglement-assisted quantum communications. We discuss how quantum coded networks can be realized using cluster states and modified graph state codes. Last, we will motivate fault-tolerant quantum computation from the perspective of coding theory. We end the article with our perspectives on interesting open directions in this exciting field.
AbstractList Quantum information processing is now a well-evolved field of study with roots to quantum physics that has significantly evolved from pioneering works over almost more than a century. Today, we are at a stage where elementary forms of quantum computers and communication systems are being built and deployed. In this paper, we begin with a historical background into quantum information theory and coding theory for both entanglement-unassisted and assisted quantum communication systems, motivating the need for quantum error correction in such systems. We then begin with the necessary mathematical preliminaries towards understanding the theory behind quantum error correction, central to the discussions within this article, starting from the binary case towards the non-binary generalization, using the rich framework of finite fields. We will introduce the stabilizer framework, build upon the Calderbank-Shor-Steane framework for binary quantum codes and generalize this to the non-binary case, yielding generalized CSS codes that are linear and additive. We will survey important families of quantum codes derived from well-known classical counterparts. Next, we provide an overview of the theory behind entanglement-assisted quantum ECCs along with encoding and syndrome computing architectures. We present a case study on how to construct efficient quantum Reed-Solomon codes that saturate the Singleton bound for the non-degenerate case. We will also show how positive coding rates can be realized using tensor product codes from two zero-rate entanglement-assisted CSS codes, an effect termed as the coding analog of superadditivity, useful for entanglement-assisted quantum communications. We discuss how quantum coded networks can be realized using cluster states and modified graph state codes. Last, we will motivate fault-tolerant quantum computation from the perspective of coding theory. We end the article with our perspectives on interesting open directions in this exciting field.
Author Garani, Shayan Srinivasa
Nadkarni, Priya J.
Raina, Ankur
Author_xml – sequence: 1
  givenname: Shayan Srinivasa
  orcidid: 0000-0002-2459-1445
  surname: Garani
  fullname: Garani, Shayan Srinivasa
  email: shayangs@iisc.ac.in
  organization: Department of Electronic Systems Engineering, Division of EECS, Indian Institute of Science
– sequence: 2
  givenname: Priya J.
  surname: Nadkarni
  fullname: Nadkarni, Priya J.
  organization: Department of Electronic Systems Engineering, Division of EECS, Indian Institute of Science
– sequence: 3
  givenname: Ankur
  surname: Raina
  fullname: Raina, Ankur
  organization: Department of EECS, Indian Institute of Science Education and Research
BookMark eNp9kE1LAzEURYNUsGr_gKsB16P5nCTuaqkfUChCXYdMJmkjbVKTaaX_3qkjCC66endxz3uPcwkGIQYLwA2CdwhCfp8p4pSVEJMSQiJxyc_AEEIkSyorOuiy5LCkiMILMMrZ15BhyjGnfAjkYmVjOhSPduVDU7ztdGh3m2KaUkzFJKZkTevDsouNzQ_FOBTzvU17b7-uwbnT62xHv_MKvD9NF5OXcjZ_fp2MZ6UhSLYlqjgStCKu4TXjghODITYOCyEa0UhTacuQY0I6hrnTqMYOakeFRLBuDGTkCtz2e7cpfu5sbtVH3KXQnVQEM44QIdWxJfqWSTHnZJ0yvtWtj6FN2q8VguroSvWuVOdK_bhSvEPxP3Sb_Eanw2mI9FDuymFp099XJ6hv91F75A
CitedBy_id crossref_primary_10_1088_1751_8121_ad8607
crossref_primary_10_22331_q_2024_02_12_1249
Cites_doi 10.1038/299802a0
10.1103/PhysRevLett.67.661
10.1109/18.959288
10.1109/PROC.1973.9030
10.1017/CBO9781139034807.021
10.1109/glocomw.2017.8269075
10.1016/j.aop.2005.10.005
10.1142/S0219749906001888
10.1109/ICC.2017.7996747
10.1007/s11128-011-0269-3
10.1109/ITW2.2006.323741
10.1109/TQE.2021.3078152
10.1038/s41534-019-0207-2
10.1126/science.1131563
10.1103/PhysRevA.89.012317
10.1103/PhysRevLett.70.1895
10.1103/RevModPhys.87.307
10.1002/9781119098799
10.1103/PhysRevA.70.052328
10.1109/18.661516
10.1038/nphys1224
10.1002/j.1538-7305.1948.tb01338.x
10.1109/TMAG.2021.3060807
10.1109/ISIT.2012.6284206
10.1063/1.1499754
10.1109/TMAG.2005.861043
10.22331/q-2023-02-21-929
10.1142/S0129054103002011
10.1103/PhysRevResearch.2.033305
10.1109/jsac.2014.140509
10.1007/s11128-020-02935-8
10.22331/q-2019-12-02-205
10.1103/physreva.56.33
10.1109/ICCES.2008.4772987
10.1103/physrevlett.97.120501
10.1109/TIT.2008.924726
10.1109/ITW.2017.8277961
10.1016/S0747-7171(88)80033-6
10.1007/s11432-015-0932-y
10.1007/s11122-005-0002-x
10.1103/PhysRevA.102.062430
10.1145/258533.258579
10.1016/S0003-4916(02)00018-0
10.1070/RM1998v053n06ABEH000091
10.26421/QIC13.11-12-4
10.1038/s42005-022-00881-8
10.1088/1751-8113/40/13/013
10.1098/rspa.1996.0166
10.1103/PhysRev.131.2766
10.1017/9781139207010
10.1145/3519935.3520017
10.1007/978-94-017-0849-4_10
10.1126/science.1162242
10.1209/0295-5075/77/40002
10.1103/PhysRevA.103.042420
10.1109/TCOMM.2018.2876113
10.1038/ncomms12302
10.1109/TIT.2017.2711601
10.1109/TQE.2020.3027035
10.1103/PhysRevA.52.R2493
10.1109/TIT.2010.2054532
10.1109/ISIT.2018.8437493
10.1103/PhysRevA.54.3824
10.1103/PhysRevX.2.041021
10.1103/PhysRevA.86.062306
10.1103/PhysRevA.55.900
10.1103/physreva.54.1862
10.1007/s11128-019-2494-0
10.1103/PhysRevB.78.155120
10.1109/IREPGELC.1954.6499441
10.1017/CBO9780511791338
10.1007/978-3-540-70626-7_45
10.1109/TIT.2021.3119384
10.1109/TIT.2010.2048442
10.1109/iciea.2018.8397697
10.1109/ISIT.2005.1523493
10.1103/PhysRevA.63.022308
10.1109/TMAG.2021.3119723
10.1098/rsta.2011.0494
10.1007/s10623-017-0330-z
10.1109/TIT.2004.839515
10.1017/CBO9781139525343
10.22331/q-2022-08-23-784
10.1103/physreva.81.032326
10.1038/s42005-019-0147-3
10.1103/PhysRevA.83.042310
10.1109/TIT.2011.2165811
10.1002/j.1538-7305.1950.tb00463.x
10.1103/PhysRevA.86.032324
10.1109/TCOMM.2005.844959
10.1038/nature23474
10.1103/PhysRevA.52.3457
10.1103/PhysRevLett.83.3081
10.1007/s11128-021-03350-3
10.22331/q-2021-02-04-392
10.1038/46503
10.1007/3-540-46796-3_23
10.1109/18.681315
10.1109/TIT.2009.2021379
10.1103/PhysRev.130.2529
10.1201/9780203490310
10.1103/PhysRevA.71.022316
10.1109/TIT.2016.2605119
10.1103/PhysRevA.54.1098
10.1109/tit.2006.883612
10.1103/PhysRevA.68.062319
10.1109/TIT.1962.1057683
10.1007/s11128-021-03101-4
10.22331/q-2021-12-02-595
10.1109/18.850663
10.1109/ITWF.2015.7360746
10.1038/nature03909
10.1103/PhysRevLett.77.793
10.1103/PhysRevA.80.052312
10.1109/TMAG.2005.861747
10.1109/JSAC.2010.100212
10.1103/PhysRevA.76.040301
10.1109/GLOCOMW.2018.8644150
10.1109/tit.1965.1053771
10.1007/s11128-021-03174-1
10.1109/18.910579
10.1103/PhysRevApplied.18.014012
10.1103/PhysRevA.79.032340
10.1109/ICC.1993.397441
10.1109/TCOMM.2021.3064566
10.1017/CBO9781139034807
10.1007/s11128-019-2234-5
10.1109/ISIT.2010.5513644
10.1109/tit.2012.2234207
10.1109/JPROC.2018.2795961
10.1103/PhysRevLett.117.070501
10.1063/1.3490195
10.1103/PhysRevLett.108.140501
10.1109/ALLERTON.2014.7028615
10.1016/s0167-2789(98)00043-8
10.1109/ICC.2006.254892
10.1007/978-3-540-70918-3_52
ContentType Journal Article
Copyright Indian Institute of Science 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Indian Institute of Science 2023.
Copyright_xml – notice: Indian Institute of Science 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Indian Institute of Science 2023.
DBID AAYXX
CITATION
7XB
8FE
8FG
ABJCF
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s41745-023-00392-7
DatabaseName CrossRef
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Engineering Database
ProQuest Central Student
Technology Collection
ProQuest Central Basic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList Engineering Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Physics
EISSN 0019-4964
EndPage 495
ExternalDocumentID 10_1007_s41745_023_00392_7
GroupedDBID -EM
0R~
2WC
406
53G
5GY
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAKDD
AANZL
AARHV
AASML
AATNV
AATVU
AAUYE
AAYQN
AAYUE
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACGFO
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFQWF
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AHKAY
AHSBF
AI.
AIAKS
AIGIU
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AXYYD
BGNMA
C1A
CSCUP
DNIVK
DPUIP
E3Z
EBLON
EBS
EIOEI
EJD
FERAY
FIGPU
FINBP
FNLPD
FRJ
FRP
FSGXE
GGCAI
GJIRD
H13
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
LPU
M4Y
NPVJJ
NQJWS
NU0
O9J
OK1
P2P
PT4
RLLFE
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TR2
TSG
UOJIU
UTJUX
UZXMN
VFIZW
VH1
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7XB
8FE
8FG
ABJCF
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ID FETCH-LOGICAL-c319t-16718463fd7b57873c202cf2888d8d9c6ae51f589f527fa1b2f0af48910bdc053
IEDL.DBID BENPR
ISSN 0970-4140
IngestDate Tue Oct 07 06:14:50 EDT 2025
Wed Oct 01 04:57:01 EDT 2025
Thu Apr 24 22:53:21 EDT 2025
Fri Feb 21 02:43:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Entanglement-assisted codes
Non-binary quantum codes
Quantum error correcting circuits
Stabilizer codes
Generalized CSS constructions
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-16718463fd7b57873c202cf2888d8d9c6ae51f589f527fa1b2f0af48910bdc053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2459-1445
PQID 3257113365
PQPubID 7435048
PageCount 47
ParticipantIDs proquest_journals_3257113365
crossref_citationtrail_10_1007_s41745_023_00392_7
crossref_primary_10_1007_s41745_023_00392_7
springer_journals_10_1007_s41745_023_00392_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230400
2023-04-00
20230401
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 4
  year: 2023
  text: 20230400
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
PublicationSubtitle A Multidisciplinary Reviews Journal
PublicationTitle Journal of the Indian Institute of Science
PublicationTitleAbbrev J Indian Inst Sci
PublicationYear 2023
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References Hu X, Srinivasa SG, Weathers A, Barndt R (2011) Trapping set based LDPC code design and related circuits, systems, and methods. Google Patents. US Patent App. 12/889,706
Kobayashi H, Gall F, Nishimura H, Rotteler M (2010) Perfect quantum network communication based on classical network coding. In: Proceedings of the International Symposium on Information Theory
BennettCHBrassardGCrépeauCJozsaRPeresAWoottersWKTeleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channelsPhys Rev Lett1993701318951:STN:280:DC%2BC2sfpt1ygsA%3D%3D
Hayashi M, Iwama K, Nishimura H, Raymond R, Yamashita S (2007) Quantum network coding. In: STACS 2007: 24th Annual Symposium on Theoretical Aspects of Computer Science, Aachen, Germany, February 22-24, 2007. Proceedings 24, pp. 610–621. Springer
HarneyCFletcherAIPirandolaSEnd-to-end capacities of hybrid quantum networksPhys Rev Appl20221811:CAS:528:DC%2BB38XitFSgs73J
LuHLiZ-DYinX-FZhangRFangX-XLiLLiuN-LXuFChenY-APanJ-WExperimental quantum network codingnpj Quant Inf20195189
Aharonov D, Ben-Or M (1997) Fault-tolerant quantum computation with constant error. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing. STOC ’97, pp. 176–188. Association for Computing Machinery, New York, NY, USA . https://doi.org/10.1145/258533.258579
CaiNWinterAYeungRWQuantum privacy and quantum wiretap channelsProbl Inf Transm2004404318336
Grassl M, Geiselmann W, Beth T (1999) Quantum Reed-Solomon codes. In: Proceedings of the 13th International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC-13, pp. 231–244. Springer, Berlin
WildeMMHaydenPGuhaSInformation trade-offs for optical quantum communicationPhys Rev Lett201210814
NadkarniPJGaraniSSEntanglement-assisted Reed-Solomon codes over qudits: theory and architectureQuant Inf Process202120168
Gottesman D (1998) The Heisenberg representation of quantum computers. arXiv preprint quant-ph/9807006
Fan J, Li Y, Hsieh M-H, Chen H (2016) On quantum tensor product codes. arXiv preprint arXiv:1605.09598
DelfosseNNickersonNHAlmost-linear time decoding algorithm for topological codesQuantum20215595
LaiCAshikhminALinear programming bounds for entanglement-assisted quantum error-correcting codes by split weight enumeratorsIEEE Trans Inf Theory201864162263910.1109/TIT.2017.2711601
SchumacherBWestmorelandMDOptimal signal ensemblesPhys Rev A2001632
Gottesman D (1997) Stabilizer codes and quantum error correction. Caltech. PhD thesis, Thesis. arXiv:quant-ph/9705052
Weinert F (2009) Davisson—Germer experiment. In: Compendium of Quantum Physics, pp. 150–152. Springer, Berlin, Heidelberg
GottesmanDClass of quantum error-correcting codes saturating the quantum hamming boundPhys Rev A1996543186218681:CAS:528:DyaK28Xls1Oksbg%3D10.1103/physreva.54.1862
HammingRWError detecting and error correcting codesBell Syst Tech J1950292147160
DelfosseNDecoding color codes by projection onto surface codesPhys Rev A2014891
Varnava M, Browne DE, Rudolph T (2006) Loss tolerance in one-way quantum computation via counterfactual error correction. Phys Rev Lett 97(12). https://doi.org/10.1103/physrevlett.97.120501
BreuckmannNPVuillotCCampbellEKrishnaATerhalBMHyperbolic and semi-hyperbolic surface codes for quantum storageQuant Sci Technol201723
Aly SA (2008) Asymmetric quantum BCH codes. In: 2008 International Conference on Computer Engineering Systems, pp 157–162. https://doi.org/10.1109/ICCES.2008.4772987
CastelnovoCChamonCTopological order in a three-dimensional toric code at finite temperaturePhys Rev B20087815
Fowler AG (2013) Minimum weight perfect matching of fault-tolerant topological quantum error correction in average O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm O}(1) $$\end{document} parallel time. arXiv preprint arXiv:1307.1740
RaussendorfRKey ideas in quantum error correctionPhil. Trans. of The Royal Society20123704511456510.1098/rsta.2011.0494
WoottersWKZurekWHA single quantum cannot be clonedNature19822998028031:CAS:528:DyaL3sXnvVCgsA%3D%3D
WildeMMHaydenPGuhaSQuantum trade-off coding for bosonic communicationPhys Rev A2012866
Panteleev P, Kalachev G (2022) Asymptotically good quantum and locally testable classical LDPC codes. In: Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pp 375–388
HastingsMBSuperadditivity of communication capacity using entangled inputsNat Phys2009542552571:CAS:528:DC%2BD1MXktVKjurw%3D
GlauberRJCoherent and incoherent states of the radiation fieldPhys Rev196313162766
CalderbankARShorPWGood quantum error-correcting codes existPhys Rev A199654210981:CAS:528:DyaK28XltVeiu7c%3D
MullerDEApplication of Boolean algebra to switching circuit design and to error detectionTransactions of the IRE Professional Group on Electronic Computers19543612
Di FrancoCPaternostroMA no-go result on the purification of quantum statesNat Sci Rep2013311387
PirandolaSEnd-to-end capacities of a quantum communication networkCommun Phys20192151
Calderbank AR, Rains EM, Shor PW, Sloane NJA (1997) Quantum error correction via codes over GF(4). In: Proceedings of IEEE International Symposium on Information Theory
NadkarniPJGaraniSSQuantum error correction architecture for qudit stabilizer codesPhys Rev A202110341:CAS:528:DC%2BB3MXhtVyitbvO
NadkarniPJRainaAGaraniSSModified graph-state codes for single-node recovery in quantum distributed storagePhys Rev A202010261:CAS:528:DC%2BB3MXivVOqs7o%3D
FowlerAGTwo-dimensional color-code quantum computationPhys Rev A2011834
Bombín H (2013) An introduction to topological quantum codes. arXiv preprint arXiv:1311.0277
BoltADuclos-CianciGPoulinDStaceTMFoliated quantum error-correcting codesPhys Rev Lett20161170705011:STN:280:DC%2BC2szkvVaksA%3D%3D10.1103/PhysRevLett.117.070501
Raina A (2019) Protocols for quantum information processing on graph states. PhD thesis, Indian Institute of Science, KA, India
BrassardGBraunsteinSLCleveRTeleportation as a quantum computationPhysica D19981201–2434710.1016/s0167-2789(98)00043-8
FowlerAGStephensAMGroszkowskiPHigh-threshold universal quantum computation on the surface codePhys Rev A2009805
HolevoASQuantum coding theoremsRuss Math Surv1998531295
Garcia-FriasJZhaoYNear-Shannon/Slepian-Wolf performance for unknown correlated sources over AWGN channelsIEEE Trans Commun2005534555559
DevetakIThe private classical capacity and quantum capacity of a quantum channelIEEE Trans Inf Theory20055114455
RainaANadkarniPJGaraniSSRecovery of quantum information from a node failure in a graphQuant Inf Process202019139
LidarDBrunTAQuantum error correction20132CambridgeCambridge University Press
WoottersWKEntanglement of formation and concurrenceQuantum Inf Comput2001112744
NadkarniPJGaraniSSNon-binary entanglement-assisted stabilizer codesQuant Inf Process2021208256
GrasslMBethTPellizzariTCodes for the quantum erasure channelPhys Rev A199756133381:CAS:528:DyaK2sXksFSlsLk%3D10.1103/physreva.56.33
DiracPAMThe principles of quantum mechanics1982OxfordOxford University Press
SmithGYardJQuantum communication with zero-capacity channelsScience20083215897181218151:CAS:528:DC%2BD1cXhtFCrtL3J
FowlerAGWhitesideACMcInnesALRabbaniATopological code autotunePhys Rev X201224
GlauberRJThe quantum theory of optical coherencePhys Rev196313062529
DennisEKitaevALandahlAPreskillJTopological quantum memoryJ Math Phys200243944524505
BrußDLewensteinMSENASenUD’ARIANOGMMacchiavelloCDense coding with multipartite quantum statesInternational Journal of Quantum Information2006403415428
GottesmanDChuangILDemonstrating the viability of universal quantum computation using teleportation and single-qubit operationsNature199940267603903931:CAS:528:DyaK1MXnvVyktLc%3D
Nadkarni PJ, Garani SS (2021) Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F}_{p}$$\end{document}-linear and Fpm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F}_{p^m}$$\end{document}-linear qudit codes from dual-containing classical codes. IEEE Trans Quant Eng 2
Nadkarni PJ, Garani SS (2019) Entanglement-assisted Quantum Reed-Solomon codes. In: IEEE Information Theory and Applications Workshop, San Diego, USA
MondalAGaraniSSEfficient hardware architectures for 2-D BCH codes in the frequency domain for two-dimensional data storage applicationsIEEE Trans Magn2021575114
BrunTDevetakIHsiehM-HCorrecting quantum errors with entanglementScience200631457984364391:CAS:528:DC%2BD28XhtVyqtr3F
KitaevAYFault-tolerant quantum computation by anyonsAnn Phys200330312301:CAS:528:DC%2BD3sXisl2hsg%3D%3D
HsiehM-HWildeMMTrading classical communication, quantum communication, and entanglement in quantum Shannon theoryIEEE Trans Inf Theory201056947054730
KlappeneckerASarvepalliPKOn subsystem codes beating the quantum hamming or singleton boundProc R Soc A Math Phys Eng Sci2007463208728872905
GaraniSSDolecekLBarryJSalaFVasićBSignal processing and coding techniques for 2-D magnetic recording: An overviewProc IEEE20181062286318
BravyiSHastingsMBMichalakisSTopological quantum order: stability under local perturbationsJ Math Phys2010519
Kumar PatiABraunsteinSLImpossibility of deleting an unknown quantum stateNature20004046774164165
SteaneAMError correcting codes in quantum theoryPhys Rev Lett19967757931:CAS:528:DyaK28XksFKku7k%3D
KaynakMNKhayatPRParthasarathySClassification codes for soft information generation from hard flash readsIEEE J Sel Areas Commun201432589289910.1109/jsac.2014.140509
ChaichanavongPSiegelPHTensor-product parity code for magnetic recordingIEEE Trans Magn200642235035210.1109/TMAG.2005.861043
HayashiMPrior en
PJ Nadkarni (392_CR37) 2021; 2
392_CR100
MA Nielsen (392_CR128) 2011
R Johannesson (392_CR111) 2015
A Kitaev (392_CR57) 2006; 321
MG Majumdar (392_CR144) 2021; 20
E Dennis (392_CR58) 2002; 43
A Abeyesinghe (392_CR24) 2003; 68
C Piveteau (392_CR54) 2022; 6
J Wolf (392_CR156) 1965; 11
CH Bennett (392_CR18) 1996; 54
A Mondal (392_CR126) 2021; 57
N Delfosse (392_CR70) 2021; 5
B Schumacher (392_CR19) 2001; 63
D Gottesman (392_CR80) 1996; 54
392_CR109
392_CR105
392_CR103
392_CR102
392_CR101
ET Campbell (392_CR170) 2012; 2
AG Fowler (392_CR64) 2012; 2
392_CR32
S Lin (392_CR4) 2004
392_CR38
MM Wilde (392_CR17) 2013
T Brun (392_CR40) 2006; 314
GG La Guardia (392_CR89) 2012; 11
H Alhussien (392_CR161) 2010; 28
A Mondal (392_CR127) 2021; 57
AY Kitaev (392_CR55) 2003; 303
AG Fowler (392_CR62) 2009; 80
RE Blahut (392_CR122) 2008
L Slocombe (392_CR7) 2022; 5
I Devetak (392_CR20) 2005; 51
L Maccone (392_CR146) 2007; 77
392_CR121
GD Forney (392_CR112) 1973; 61
M Grassl (392_CR35) 2003; 14
JE Bourassa (392_CR172) 2021; 5
PAM Dirac (392_CR1) 1982
C Di Franco (392_CR12) 2013; 3
392_CR88
392_CR87
E Arikan (392_CR107) 2009; 55
BJ Brown (392_CR67) 2020; 2
BM Terhal (392_CR73) 2015; 87
392_CR86
G Smith (392_CR23) 2008; 321
D Leung (392_CR139) 2010; 56
S Sakata (392_CR124) 1988; 5
PJ Nadkarni (392_CR48) 2021; 20
392_CR92
CE Shannon (392_CR2) 1948; 27
392_CR91
392_CR90
C Galindo (392_CR47) 2021; 20
PJ Nadkarni (392_CR96) 2020; 102
392_CR95
392_CR94
WK Wootters (392_CR11) 1982; 299
M-H Hsieh (392_CR25) 2010; 56
392_CR125
C Lai (392_CR99) 2018; 64
M Horodecki (392_CR22) 2005; 436
A Ashikhmin (392_CR34) 2001; 47
S Bravyi (392_CR61) 2010; 51
SX Cui (392_CR28) 2016; 57
CH Bennett (392_CR150) 1999; 83
P Chaichanavong (392_CR158) 2006; 42
392_CR98
392_CR97
D Bruß (392_CR136) 2006; 4
E Knill (392_CR81) 1997; 55
392_CR119
392_CR118
392_CR6
B Greene (392_CR5) 2007
SS Garani (392_CR116) 2018; 106
392_CR113
AK Ekert (392_CR14) 1991; 67
R Gabrys (392_CR162) 2013; 59
392_CR143
392_CR142
392_CR141
SS Bullock (392_CR59) 2007; 40
392_CR140
TJ Richardson (392_CR115) 2001; 47
C Harney (392_CR30) 2022; 18
P Panteleev (392_CR52) 2021; 68
392_CR65
D Litinski (392_CR171) 2019; 3
AM Steane (392_CR33) 1996; 77
PJ Nadkarni (392_CR50) 2020; 1
AG Fowler (392_CR63) 2012; 86
NP Breuckmann (392_CR74) 2017; 2
WK Wootters (392_CR129) 2001; 1
T Jochym-O’Connor (392_CR72) 2021; 3
RJ Glauber (392_CR9) 1963; 130
AS Holevo (392_CR10) 1998; 53
AR Calderbank (392_CR31) 1996; 54
S Pirandola (392_CR29) 2019; 2
MN Kaynak (392_CR163) 2014; 32
R Raussendorf (392_CR130) 2012; 370
A Klappenecker (392_CR36) 2007; 463
DE Muller (392_CR110) 1954; 3
MM Wilde (392_CR147) 2012; 86
A Ketkar (392_CR85) 2006; 52
M Hayashi (392_CR145) 2016
392_CR132
JH Bae (392_CR117) 2019; 8
PJ Nadkarni (392_CR104) 2021; 20
A Barenco (392_CR134) 1995; 52
A Raina (392_CR77) 2020; 19
N Delfosse (392_CR69) 2014; 89
B Vasic (392_CR120) 2004
G Brassard (392_CR166) 1998; 120
392_CR84
A Bolt (392_CR173) 2016; 117
392_CR82
392_CR137
392_CR135
CH Bennett (392_CR15) 1993; 70
H Lu (392_CR76) 2019; 5
C Castelnovo (392_CR68) 2008; 78
392_CR165
RJ Glauber (392_CR8) 1963; 131
J Yard (392_CR27) 2011; 57
A Kumar Pati (392_CR13) 2000; 404
AG Fowler (392_CR155) 2011; 83
M-H Hsieh (392_CR43) 2009; 79
392_CR160
R Ahlswede (392_CR138) 2000; 46
392_CR45
L Liu (392_CR108) 2018; 67
392_CR44
M Hayashi (392_CR75) 2007; 76
PW Shor (392_CR79) 1995; 52
MB Hastings (392_CR149) 2009; 5
392_CR42
P Chaichanavong (392_CR157) 2006; 42
392_CR49
S Aaronson (392_CR131) 2004; 70
392_CR51
D Lidar (392_CR78) 2013
M-H Hsieh (392_CR26) 2008; 54
R Gallager (392_CR114) 1962; 8
A Kubica (392_CR71) 2023; 7
392_CR168
M Blaum (392_CR123) 1998; 44
392_CR154
392_CR153
P Huang (392_CR164) 2016; 62
392_CR152
392_CR151
J Fan (392_CR93) 2021; 69
392_CR56
C-Y Lai (392_CR41) 2013; 88
392_CR53
J Biamonte (392_CR133) 2017; 549
AM Steane (392_CR167) 1996; 452
PJ Nadkarni (392_CR39) 2021; 103
MM Wilde (392_CR148) 2012; 108
D Gottesman (392_CR16) 1999; 402
BJ Brown (392_CR66) 2016; 7
392_CR60
RW Hamming (392_CR3) 1950; 29
K Guenda (392_CR46) 2017; 86
J Garcia-Frias (392_CR106) 2005; 53
N Cai (392_CR21) 2004; 40
M Grassl (392_CR83) 1997; 56
392_CR159
S Bravyi (392_CR169) 2005; 71
References_xml – reference: HorodeckiMOppenheimJWinterAPartial quantum informationNature20054366736761:CAS:528:DC%2BD2MXmvFenu74%3D10.1038/nature03909
– reference: Xu J, Chaichanavong P, Burd G, Wu Z (2011) Tensor product codes containing an iterative code. US8086945B1
– reference: DelfosseNDecoding color codes by projection onto surface codesPhys Rev A2014891
– reference: BoltADuclos-CianciGPoulinDStaceTMFoliated quantum error-correcting codesPhys Rev Lett20161170705011:STN:280:DC%2BC2szkvVaksA%3D%3D10.1103/PhysRevLett.117.070501
– reference: MondalAGaraniSSEfficient parallel decoding architecture for cluster erasure correcting 2-D LDPC codes for 2-D data storageIEEE Trans Magn20215712116
– reference: SlocombeLSacchiMAl-KhaliliJAn open quantum systems approach to proton tunnelling in DNACommun Phys2022511091:CAS:528:DC%2BB38Xht1WgsL3L
– reference: JohannessonRZigangirovKSFundamentals of convolutional coding2015AmsterdamWiley
– reference: RaussendorfRKey ideas in quantum error correctionPhil. Trans. of The Royal Society20123704511456510.1098/rsta.2011.0494
– reference: Kobayashi H, Gall F, Nishimura H, Rotteler M (2010) Perfect quantum network communication based on classical network coding. In: Proceedings of the International Symposium on Information Theory
– reference: Raina A (2019) Protocols for quantum information processing on graph states. PhD thesis, Indian Institute of Science, KA, India
– reference: BravyiSHastingsMBMichalakisSTopological quantum order: stability under local perturbationsJ Math Phys2010519
– reference: ArikanEChannel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channelsIEEE Trans Inf Theory200955730513073
– reference: BrownBJNickersonNHBrowneDEFault-tolerant error correction with the gauge color codeNat Commun201671123021:CAS:528:DC%2BC28Xht1ygs7jM
– reference: BreuckmannNPVuillotCCampbellEKrishnaATerhalBMHyperbolic and semi-hyperbolic surface codes for quantum storageQuant Sci Technol201723
– reference: CaiNWinterAYeungRWQuantum privacy and quantum wiretap channelsProbl Inf Transm2004404318336
– reference: FowlerAGWhitesideACMcInnesALRabbaniATopological code autotunePhys Rev X201224
– reference: GrasslMBethTPellizzariTCodes for the quantum erasure channelPhys Rev A199756133381:CAS:528:DyaK2sXksFSlsLk%3D10.1103/physreva.56.33
– reference: GottesmanDClass of quantum error-correcting codes saturating the quantum hamming boundPhys Rev A1996543186218681:CAS:528:DyaK28Xls1Oksbg%3D10.1103/physreva.54.1862
– reference: Nadkarni PJ, Garani SS (2019) Entanglement-assisted Quantum Reed-Solomon codes. In: IEEE Information Theory and Applications Workshop, San Diego, USA
– reference: BennettCHBrassardGCrépeauCJozsaRPeresAWoottersWKTeleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channelsPhys Rev Lett1993701318951:STN:280:DC%2BC2sfpt1ygsA%3D%3D
– reference: BiamonteJWittekPPancottiNRebentrostPWiebeNLloydSQuantum machine learningNature201754976711952021:CAS:528:DC%2BC2sXhsV2isLjI
– reference: NadkarniPJRainaAGaraniSSModified graph-state codes for single-node recovery in quantum distributed storagePhys Rev A202010261:CAS:528:DC%2BB3MXivVOqs7o%3D
– reference: AhlswedeRCaiNLiS-YYeungRWNetwork information flowIEEE Trans Inf Theory200046412041216
– reference: KnillELaflammeRTheory of quantum error-correcting codesPhys Rev A1997559009111:CAS:528:DyaK2sXhtVGru7g%3D10.1103/PhysRevA.55.900
– reference: AlhussienHMoonJAn iteratively decodable tensor product code with application to data storageIEEE J Sel Areas Commun201028222824010.1109/JSAC.2010.100212
– reference: HarneyCFletcherAIPirandolaSEnd-to-end capacities of hybrid quantum networksPhys Rev Appl20221811:CAS:528:DC%2BB38XitFSgs73J
– reference: RainaANadkarniPJGaraniSSRecovery of quantum information from a node failure in a graphQuant Inf Process202019139
– reference: VasicBKurtasEMCoding and signal processing for magnetic recording systems2004New YorkCRC Press
– reference: BennettCHShorPWSmolinJAThapliyalAVEntanglement-assisted classical capacity of noisy quantum channelsPhys Rev Lett1999831530811:CAS:528:DyaK1MXmsVersLw%3D
– reference: SteaneAMError correcting codes in quantum theoryPhys Rev Lett19967757931:CAS:528:DyaK28XksFKku7k%3D
– reference: YardJHaydenPDevetakIQuantum broadcast channelsIEEE Trans Inf Theory2011571071477162
– reference: Gottesman D (1997) Stabilizer codes and quantum error correction. Caltech. PhD thesis, Thesis. arXiv:quant-ph/9705052
– reference: Shao J, Zhou L, Sun Y (2018) Entanglement-assisted nonbinary quantum LDPC codes with finite field method. In: 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE. https://doi.org/10.1109/iciea.2018.8397697
– reference: Grassl M. Entanglement-assisted quantum communication beating the quantum singleton bound. arXiv:2007.01249
– reference: HsiehM-HDevetakIWinterAEntanglement-assisted capacity of quantum multiple-access channelsIEEE Trans Inf Theory200854730783090
– reference: LeungDOppenheimJWinterAQuantum network communication-the butterfly and beyondIEEE Trans Inf Theory201056734783490
– reference: Fan J, Hsieh M, Chen H, Chen H, Li Y (2018) Construction and performance of quantum burst error correction codes for correlated errors. In: 2018 IEEE International Symposium on Information Theory (ISIT), pp 2336–2340 . https://doi.org/10.1109/ISIT.2018.8437493
– reference: BlaumMBruckJVardyAInterleaving schemes for multidimensional cluster errorsIEEE Trans Inf Theory1998442730743
– reference: SteaneAMMultiple-particle interference and quantum error correctionProc R Soc Lond A19964522551257710.1098/rspa.1996.0166
– reference: Grassl M, Rotteler M (2005) Quantum block and convolutional codes from self-orthogonal product codes. In: Proceedings. International Symposium on Information Theory, 2005. ISIT 2005., pp. 1018–1022 . IEEE
– reference: Berrou C, Glavieux A, Thitimajshima P (1993) Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1. In: Proceedings of ICC’93-IEEE International Conference on Communications, vol. 2, pp. 1064–1070. IEEE
– reference: HsiehM-HWildeMMTrading classical communication, quantum communication, and entanglement in quantum Shannon theoryIEEE Trans Inf Theory201056947054730
– reference: Hu X, Srinivasa SG, Weathers A, Barndt R (2011) Trapping set based LDPC code design and related circuits, systems, and methods. Google Patents. US Patent App. 12/889,706
– reference: La GuardiaGGAsymmetric quantum Reed-Solomon and generalized Reed-Solomon codesQuant Inf Process201211259160410.1007/s11128-011-0269-3
– reference: KubicaADelfosseNEfficient color code decoders in d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ d \ge 2$$\end{document} dimensions from toric code decodersQuantum20237929
– reference: FowlerAGMariantoniMMartinisJMClelandANSurface codes: towards practical large-scale quantum computationPhys Rev A2012863
– reference: Nishimura H (2014) Quantum network coding and the current status of its studies. In: 2014 International Symposium on Information Theory and Its Applications, pp. 331–334. IEEE
– reference: Yeo E, Yadav MK, Chaichanavong P, Burd G (2012) Multi-parity tensor-product code for data channel. US8321769B1,
– reference: GuendaKJitmanSGulliverTAConstructions of good entanglement-assisted quantum error correcting codesDes Codes Crypt2017861121136
– reference: Bombín H (2013) An introduction to topological quantum codes. arXiv preprint arXiv:1311.0277
– reference: Nadkarni PJ, Garani SS (2018) Encoding of quantum stabilizer codes over qudits with d=pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=p^{k}$$\end{document}. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp 1–6. https://doi.org/10.1109/GLOCOMW.2018.8644150
– reference: DiracPAMThe principles of quantum mechanics1982OxfordOxford University Press
– reference: Hayashi M, Iwama K, Nishimura H, Raymond R, Yamashita S (2007) Quantum network coding. In: STACS 2007: 24th Annual Symposium on Theoretical Aspects of Computer Science, Aachen, Germany, February 22-24, 2007. Proceedings 24, pp. 610–621. Springer
– reference: AshikhminAKnillENonbinary quantum stabilizer codesIEEE Trans Inf Theory200147730653072
– reference: GrasslMRöttelerMBethTEfficient quantum circuits for non-qubit quantum error-correcting codesInt J Found Comput Sci20031405757775
– reference: Nadkarni PJ, Garani SS (2017) Entanglement assisted binary quantum tensor product codes. In: 2017 IEEE Information Theory Workshop (ITW), pp 219–223. https://doi.org/10.1109/ITW.2017.8277961
– reference: ChaichanavongPSiegelPHTensor-product parity codes: combination with constrained codes and application to perpendicular recordingIEEE Trans Magn200642221421910.1109/TMAG.2005.861747
– reference: BravyiSKitaevAUniversal quantum computation with ideal Clifford gates and noisy ancillasPhys Rev A2005711:CAS:528:DC%2BD2MXit1Khsrs%3D10.1103/PhysRevA.71.022316
– reference: KitaevAYFault-tolerant quantum computation by anyonsAnn Phys200330312301:CAS:528:DC%2BD3sXisl2hsg%3D%3D
– reference: MullerDEApplication of Boolean algebra to switching circuit design and to error detectionTransactions of the IRE Professional Group on Electronic Computers19543612
– reference: Nadkarni PJ, Jayakumar P, Behera A, Garani SS (2023) Entanglement-assisted quantum Reed-Muller tensor product codes. arXiv:2303.08294
– reference: GalindoCHernandoFRuanoDEntanglement-assisted quantum error-correcting codes from RS codes and BCH codes with extension degree 2Quant Inf Process2021205158
– reference: WolfJOn codes derivable from the tensor product of check matricesIEEE Trans Inf Theory196511228128410.1109/tit.1965.1053771
– reference: Galindo C, Hernando F, Matsumoto R, Ruano D (2019) Entanglement-assisted quantum error-correcting codes over arbitrary finite fields. Quant Inf Process 18(4). https://doi.org/10.1007/s11128-019-2234-5
– reference: LinSCostelloDJError control coding20042USAPrentice-Hall Inc
– reference: NadkarniPJGaraniSSNon-binary entanglement-assisted stabilizer codesQuant Inf Process2021208256
– reference: Bengtsson I, Zyczkowski K (2017) Geometry of Quantum States, 2nd edn. Cambridge University Press, USA . https://doi.org/10.1017/9781139207010
– reference: HastingsMBSuperadditivity of communication capacity using entangled inputsNat Phys2009542552571:CAS:528:DC%2BD1MXktVKjurw%3D
– reference: GreeneBThe fabric of the cosmos: Space, time, and the texture of reality2007NY, USAKnopf Doubleday Publishing Group
– reference: Gottesman D (1998) The Heisenberg representation of quantum computers. arXiv preprint quant-ph/9807006
– reference: MacconeLEntropic information-disturbance tradeoffEurophys Lett200777440002
– reference: BrassardGBraunsteinSLCleveRTeleportation as a quantum computationPhysica D19981201–2434710.1016/s0167-2789(98)00043-8
– reference: Grassl M, Geiselmann W, Beth T (1999) Quantum Reed-Solomon codes. In: Proceedings of the 13th International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC-13, pp. 231–244. Springer, Berlin
– reference: HayashiMPrior entanglement between senders enables perfect quantum network coding with modificationPhys Rev A2007764
– reference: PirandolaSEnd-to-end capacities of a quantum communication networkCommun Phys20192151
– reference: Jochym-O’ConnorTYoderTJFour-dimensional toric code with non-clifford transversal gatesPhys Rev Res202131
– reference: ShorPWScheme for reducing decoherence in quantum computer memoryPhys Rev A1995522493249610.1103/PhysRevA.52.R2493
– reference: GabrysRYaakobiEDolecekLGraded bit-error-correcting codes with applications to flash memoryIEEE Trans Inf Theory20135942315232710.1109/tit.2012.2234207
– reference: Greenberger DM, Horne MA, Zeilinger A (1989) Going beyond Bell’s theorem. Bell’s theorem, quantum theory and conceptions of the universe, 69–72
– reference: WildeMMHaydenPGuhaSInformation trade-offs for optical quantum communicationPhys Rev Lett201210814
– reference: CampbellETAnwarHBrowneDEMagic-state distillation in all prime dimensions using quantum Reed-Muller codesPhys Rev X201221:CAS:528:DC%2BC3sXit1Cmu7Y%3D10.1103/PhysRevX.2.041021
– reference: HolevoASQuantum coding theoremsRuss Math Surv1998531295
– reference: Wolf JK (2006) An introduction to tensor product codes and applications to digital storage systems. In: 2006 IEEE Information Theory Workshop - ITW ’06 Chengdu, pp. 6–10. https://doi.org/10.1109/ITW2.2006.323741
– reference: CastelnovoCChamonCTopological order in a three-dimensional toric code at finite temperaturePhys Rev B20087815
– reference: Wilde MM (2008) Quantum coding with entanglement. PhD thesis, University of Southern California, CA, USA
– reference: Aly SA (2008) Asymmetric quantum BCH codes. In: 2008 International Conference on Computer Engineering Systems, pp 157–162. https://doi.org/10.1109/ICCES.2008.4772987
– reference: MajumdarMGGaraniSSQuantum network recovery from multinode failure using network encoding with GHZ states on higher-order butterfly networksQuantum Inf Process20212017
– reference: Aharonov D, Ben-Or M (1997) Fault-tolerant quantum computation with constant error. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing. STOC ’97, pp. 176–188. Association for Computing Machinery, New York, NY, USA . https://doi.org/10.1145/258533.258579
– reference: BarencoABennettCHCleveRDiVincenzoDPMargolusNShorPSleatorTSmolinJAWeinfurterHElementary gates for quantum computationPhys Rev A199552534571:CAS:528:DyaK2MXpt1KqurY%3D
– reference: NadkarniPJGaraniSSEncoding of nonbinary entanglement-unassisted and assisted stabilizer codesIEEE Trans Quant Eng20212122
– reference: BrunTDevetakIHsiehM-HCorrecting quantum errors with entanglementScience200631457984364391:CAS:528:DC%2BD28XhtVyqtr3F
– reference: Giuliano L, Guardia Reginaldo P, Lavor C (2010) Nonbinary quantum Reed-Solomon codes. Int J Pure Appl Math 65(1)
– reference: Richardson T (1998) Error floors of LDPC codes. In: Proceedings of the Annual Allerton Conference on Communication Control and Computing, vol. 41, pp. 1426–1435 (2003). The University;
– reference: Fan J, Li Y, Hsieh M-H, Chen H (2016) On quantum tensor product codes. arXiv preprint arXiv:1605.09598
– reference: LitinskiDMagic state distillation: Not as costly as you thinkQuantum2019320510.22331/q-2019-12-02-205
– reference: Fowler AG (2013) Minimum weight perfect matching of fault-tolerant topological quantum error correction in average O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm O}(1) $$\end{document} parallel time. arXiv preprint arXiv:1307.1740
– reference: Nadkarni PJ, Raina A, Srinivasa SG (2017) Recovery of distributed quantum information using graph states from a node failure. In: 2017 IEEE Globecom Workshops (GC Wkshps). IEEE. https://doi.org/10.1109/glocomw.2017.8269075
– reference: Panteleev P, Kalachev G (2022) Asymptotically good quantum and locally testable classical LDPC codes. In: Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pp 375–388
– reference: Bravyi S, Duclos-Cianci G, Poulin D, Suchara M (2012) Subsystem surface codes with three-qubit check operators. arXiv preprint arXiv:1207.1443
– reference: PiveteauCRenesJMQuantum message-passing algorithm for optimal and efficient decodingQuantum20226784
– reference: EkertAKQuantum cryptography based on Bell’s theoremPhys Rev Lett19916766611:STN:280:DC%2BC2sfptVarsg%3D%3D
– reference: Kumar PatiABraunsteinSLImpossibility of deleting an unknown quantum stateNature20004046774164165
– reference: Raveendran N, Nadkarni PJ, Garani SS, Vasić B (2017) Stochastic resonance decoding for quantum LDPC codes. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE
– reference: KaynakMNKhayatPRParthasarathySClassification codes for soft information generation from hard flash readsIEEE J Sel Areas Commun201432589289910.1109/jsac.2014.140509
– reference: LidarDBrunTAQuantum error correction20132CambridgeCambridge University Press
– reference: GlauberRJThe quantum theory of optical coherencePhys Rev196313062529
– reference: WoottersWKZurekWHA single quantum cannot be clonedNature19822998028031:CAS:528:DyaL3sXnvVCgsA%3D%3D
– reference: ShannonCEA mathematical theory of communicationBell Syst Tech J1948273379423
– reference: NielsenMAChuangILQuantum Computation and Quantum Information: 10th2011AnniversaryUSACambridge University Press
– reference: Riguang L, Zhi M. Non-binary entanglement-assisted stabilizer quantum codes. http://arxiv.org/abs/1105.5872v1
– reference: BaeJHAbotablALinH-PSongK-BLeeJAn overview of channel coding for 5G NR cellular communicationsAPSIPA Transactions on Signal and Information Processing2019817
– reference: RichardsonTJUrbankeRLEfficient encoding of low-density parity-check codesIEEE Trans Inf Theory2001472638656
– reference: Di FrancoCPaternostroMA no-go result on the purification of quantum statesNat Sci Rep2013311387
– reference: BennettCHDiVincenzoDPSmolinJAWoottersWKMixed-state entanglement and quantum error correctionPhys Rev A199654538241:CAS:528:DyaK28XmvVOmsrc%3D
– reference: NadkarniPJGaraniSSQuantum error correction architecture for qudit stabilizer codesPhys Rev A202110341:CAS:528:DC%2BB3MXhtVyitbvO
– reference: LuHLiZ-DYinX-FZhangRFangX-XLiLLiuN-LXuFChenY-APanJ-WExperimental quantum network codingnpj Quant Inf20195189
– reference: Richardson T, Urbanke R (2008) Modern Coding Theory. Cambridge University Press, UK . https://doi.org/10.1017/CBO9780511791338
– reference: WoottersWKEntanglement of formation and concurrenceQuantum Inf Comput2001112744
– reference: HuangPYaakobiEUchikawaHSiegelPHBinary linear locally repairable codesIEEE Trans Inf Theory201662116268628310.1109/TIT.2016.2605119
– reference: NadkarniPJGaraniSSEntanglement-assisted Reed-Solomon codes over qudits: theory and architectureQuant Inf Process202120168
– reference: Kovalev AA, Pryadko LP (2012) Improved quantum hypergraph-product LDPC codes. In: 2012 IEEE International Symposium on Information Theory Proceedings, pp. 348–352. IEEE
– reference: BourassaJEAlexanderRNVasmerMPatilATzitrinIMatsuuraTSuDBaragiolaBQGuhaSDauphinaisGSabapathyKKMenicucciNCDhandIBlueprint for a scalable photonic fault-tolerant quantum computerQuantum2021539210.22331/q-2021-02-04-392
– reference: Calderbank AR, Rains EM, Shor PW, Sloane NJA (1997) Quantum error correction via codes over GF(4). In: Proceedings of IEEE International Symposium on Information Theory
– reference: Weinert F (2009) Davisson—Germer experiment. In: Compendium of Quantum Physics, pp. 150–152. Springer, Berlin, Heidelberg
– reference: SchumacherBWestmorelandMDOptimal signal ensemblesPhys Rev A2001632
– reference: Nadkarni PJ, Garani SS (2021) Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F}_{p}$$\end{document}-linear and Fpm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F}_{p^m}$$\end{document}-linear qudit codes from dual-containing classical codes. IEEE Trans Quant Eng 2
– reference: KitaevAAnyons in an exactly solved model and beyondAnn Phys2006321121111:CAS:528:DC%2BD28XjvVeisA%3D%3D
– reference: CalderbankARShorPWGood quantum error-correcting codes existPhys Rev A199654210981:CAS:528:DyaK28XltVeiu7c%3D
– reference: CuiSXFreedmanMHSattathOStongRMintonGQuantum max-flow/min-cutJ Math Phys2016576
– reference: MondalAGaraniSSEfficient hardware architectures for 2-D BCH codes in the frequency domain for two-dimensional data storage applicationsIEEE Trans Magn2021575114
– reference: GottesmanDChuangILDemonstrating the viability of universal quantum computation using teleportation and single-qubit operationsNature199940267603903931:CAS:528:DyaK1MXnvVyktLc%3D
– reference: FowlerAGTwo-dimensional color-code quantum computationPhys Rev A2011834
– reference: LaiCAshikhminALinear programming bounds for entanglement-assisted quantum error-correcting codes by split weight enumeratorsIEEE Trans Inf Theory201864162263910.1109/TIT.2017.2711601
– reference: Hurley T, Hurley D, Hurley B. Entanglement-assisted quantum error-correcting codes from units. arXiv:1806.10875v1
– reference: WildeMMHaydenPGuhaSQuantum trade-off coding for bosonic communicationPhys Rev A2012866
– reference: LaiC-YBrunTAEntanglement increases the error-correcting ability of quantum error-correcting codesPhys Rev A2013881
– reference: HammingRWError detecting and error correcting codesBell Syst Tech J1950292147160
– reference: LiuLYanYLingCWuXConstruction of capacity-achieving lattice codes: polar latticesIEEE Trans Commun2018672915928
– reference: AaronsonSGottesmanDImproved simulation of stabilizer circuitsPhys Rev A2004701:CAS:528:DC%2BD2cXhtVGhtL%2FJ10.1103/PhysRevA.70.052328
– reference: BlahutREAlgebraic codes on lines, planes, and curves: An engineering approach2008UKCambridge University Press
– reference: HayashiMQuantum Information Theory20162JapanSpringer
– reference: FanJLiJWangJWeiZHsiehM-HAsymmetric quantum concatenated and tensor product codes with large Z-distancesIEEE Trans Commun202169639713983
– reference: Garcia-FriasJZhaoYNear-Shannon/Slepian-Wolf performance for unknown correlated sources over AWGN channelsIEEE Trans Commun2005534555559
– reference: BrußDLewensteinMSENASenUD’ARIANOGMMacchiavelloCDense coding with multipartite quantum statesInternational Journal of Quantum Information2006403415428
– reference: SmithGYardJQuantum communication with zero-capacity channelsScience20083215897181218151:CAS:528:DC%2BD1cXhtFCrtL3J
– reference: Nadkarni P (2021) Entanglement-assisted additive qudit stabilizer codes. PhD thesis, Indian Institute of Science, KA, India
– reference: DennisEKitaevALandahlAPreskillJTopological quantum memoryJ Math Phys200243944524505
– reference: GallagerRLow-density parity-check codesIRE Transactions on Information Theory1962812128
– reference: Kitaev A (2006) Protected qubit based on a superconducting current mirror. arXiv preprint arXiv:cond-mat/0609441
– reference: SakataSFinding a minimal set of linear recurring relations capable of generating a given finite two-dimensional arrayJ Symb Comput198853321337
– reference: AbeyesingheAHaydenPGeneralized remote state preparation: trading cbits, qubits, and ebits in quantum communicationPhys Rev A2003686
– reference: DevetakIThe private classical capacity and quantum capacity of a quantum channelIEEE Trans Inf Theory20055114455
– reference: Luo L, Ma Z, Wei Z, Leng R (2016) Non-binary entanglement-assisted quantum stabilizer codes. Sci Chin Inf Sci 60(4). https://doi.org/10.1007/s11432-015-0932-y
– reference: ForneyGDThe Viterbi algorithmProc IEEE1973613268278
– reference: GlauberRJCoherent and incoherent states of the radiation fieldPhys Rev196313162766
– reference: PanteleevPKalachevGQuantum LDPC codes with almost linear minimum distanceIEEE Trans Inf Theory2021681213229
– reference: TerhalBMQuantum error correction for quantum memoriesRev Mod Phys2015872307
– reference: GaraniSSDolecekLBarryJSalaFVasićBSignal processing and coding techniques for 2-D magnetic recording: An overviewProc IEEE20181062286318
– reference: Gheorghiu V, Looi SY, Griffiths RB (2010) Location of quantum information in additive graph codes. Physical Review A 81(3) . https://doi.org/10.1103/physreva.81.032326
– reference: WildeMMQuantum information theory2013CambridgeCambridge University Press10.1017/CBO9781139525343
– reference: FowlerAGStephensAMGroszkowskiPHigh-threshold universal quantum computation on the surface codePhys Rev A2009805
– reference: Chilappagari SK, Sankaranarayanan S, Vasic B (2006) Error floors of LDPC codes on the binary symmetric channel. In: 2006 IEEE International Conference on Communications, vol. 3, pp. 1089–1094. IEEE
– reference: KlappeneckerASarvepalliPKOn subsystem codes beating the quantum hamming or singleton boundProc R Soc A Math Phys Eng Sci2007463208728872905
– reference: BrownBJRobertsSUniversal fault-tolerant measurement-based quantum computationPhys Rev Res2020231:CAS:528:DC%2BB3cXitV2gsLrK
– reference: BullockSSBrennenGKQudit surface codes and gauge theory with finite cyclic groupsJ Phys A: Math Theor200740133481
– reference: NadkarniPJGaraniSSCoding analog of superadditivity using entanglement-assisted quantum tensor product codes over Fpk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F} _{\rm p ^k}$$\end{document}IEEE Trans Quant Eng20201117
– reference: DelfosseNNickersonNHAlmost-linear time decoding algorithm for topological codesQuantum20215595
– reference: Raina A, Srinivasa SG (2014) Quantum communication over bit flip channels using entangled bipartite and tripartite states. In: 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1368–1375 . IEEE
– reference: KetkarAKlappeneckerAKumarSSarvepalliPKNonbinary stabilizer codes over finite fieldsIEEE Trans Inf Theory200652114892491410.1109/tit.2006.883612
– reference: Varnava M, Browne DE, Rudolph T (2006) Loss tolerance in one-way quantum computation via counterfactual error correction. Phys Rev Lett 97(12). https://doi.org/10.1103/physrevlett.97.120501
– reference: HsiehM-HBrunTADevetakIEntanglement-assisted quantum quasicyclic low-density parity-check codesPhys Rev A2009793
– reference: Roy S, Srinivasa SG (2015) Two dimensional error-correcting codes using finite field Fourier transform. In: 2015 IEEE Information Theory Workshop-Fall (ITW), pp. 119–123. IEEE
– reference: ChaichanavongPSiegelPHTensor-product parity code for magnetic recordingIEEE Trans Magn200642235035210.1109/TMAG.2005.861043
– volume: 299
  start-page: 802
  year: 1982
  ident: 392_CR11
  publication-title: Nature
  doi: 10.1038/299802a0
– volume: 67
  start-page: 661
  issue: 6
  year: 1991
  ident: 392_CR14
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.67.661
– volume: 47
  start-page: 3065
  issue: 7
  year: 2001
  ident: 392_CR34
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/18.959288
– volume: 61
  start-page: 268
  issue: 3
  year: 1973
  ident: 392_CR112
  publication-title: Proc IEEE
  doi: 10.1109/PROC.1973.9030
– ident: 392_CR154
  doi: 10.1017/CBO9781139034807.021
– ident: 392_CR95
  doi: 10.1109/glocomw.2017.8269075
– volume: 321
  start-page: 2
  issue: 1
  year: 2006
  ident: 392_CR57
  publication-title: Ann Phys
  doi: 10.1016/j.aop.2005.10.005
– volume: 4
  start-page: 415
  issue: 03
  year: 2006
  ident: 392_CR136
  publication-title: International Journal of Quantum Information
  doi: 10.1142/S0219749906001888
– volume-title: The fabric of the cosmos: Space, time, and the texture of reality
  year: 2007
  ident: 392_CR5
– volume: 404
  start-page: 164
  issue: 6774
  year: 2000
  ident: 392_CR13
  publication-title: Nature
– ident: 392_CR152
  doi: 10.1109/ICC.2017.7996747
– volume: 11
  start-page: 591
  issue: 2
  year: 2012
  ident: 392_CR89
  publication-title: Quant Inf Process
  doi: 10.1007/s11128-011-0269-3
– ident: 392_CR141
– ident: 392_CR32
– ident: 392_CR103
– ident: 392_CR165
  doi: 10.1109/ITW2.2006.323741
– ident: 392_CR38
  doi: 10.1109/TQE.2021.3078152
– volume: 5
  start-page: 89
  issue: 1
  year: 2019
  ident: 392_CR76
  publication-title: npj Quant Inf
  doi: 10.1038/s41534-019-0207-2
– volume: 2
  issue: 3
  year: 2017
  ident: 392_CR74
  publication-title: Quant Sci Technol
– volume: 314
  start-page: 436
  issue: 5798
  year: 2006
  ident: 392_CR40
  publication-title: Science
  doi: 10.1126/science.1131563
– volume: 89
  issue: 1
  year: 2014
  ident: 392_CR69
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.89.012317
– volume: 70
  start-page: 1895
  issue: 13
  year: 1993
  ident: 392_CR15
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.70.1895
– volume: 87
  start-page: 307
  issue: 2
  year: 2015
  ident: 392_CR73
  publication-title: Rev Mod Phys
  doi: 10.1103/RevModPhys.87.307
– volume-title: Fundamentals of convolutional coding
  year: 2015
  ident: 392_CR111
  doi: 10.1002/9781119098799
– volume: 70
  year: 2004
  ident: 392_CR131
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.70.052328
– volume: 44
  start-page: 730
  issue: 2
  year: 1998
  ident: 392_CR123
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/18.661516
– volume: 5
  start-page: 255
  issue: 4
  year: 2009
  ident: 392_CR149
  publication-title: Nat Phys
  doi: 10.1038/nphys1224
– volume: 27
  start-page: 379
  issue: 3
  year: 1948
  ident: 392_CR2
  publication-title: Bell Syst Tech J
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– volume: 57
  start-page: 1
  issue: 5
  year: 2021
  ident: 392_CR126
  publication-title: IEEE Trans Magn
  doi: 10.1109/TMAG.2021.3060807
– ident: 392_CR51
  doi: 10.1109/ISIT.2012.6284206
– volume: 43
  start-page: 4452
  issue: 9
  year: 2002
  ident: 392_CR58
  publication-title: J Math Phys
  doi: 10.1063/1.1499754
– ident: 392_CR44
– volume: 42
  start-page: 350
  issue: 2
  year: 2006
  ident: 392_CR158
  publication-title: IEEE Trans Magn
  doi: 10.1109/TMAG.2005.861043
– volume: 7
  start-page: 929
  year: 2023
  ident: 392_CR71
  publication-title: Quantum
  doi: 10.22331/q-2023-02-21-929
– volume: 14
  start-page: 757
  issue: 05
  year: 2003
  ident: 392_CR35
  publication-title: Int J Found Comput Sci
  doi: 10.1142/S0129054103002011
– volume: 2
  issue: 3
  year: 2020
  ident: 392_CR67
  publication-title: Phys Rev Res
  doi: 10.1103/PhysRevResearch.2.033305
– volume: 32
  start-page: 892
  issue: 5
  year: 2014
  ident: 392_CR163
  publication-title: IEEE J Sel Areas Commun
  doi: 10.1109/jsac.2014.140509
– volume: 20
  start-page: 1
  year: 2021
  ident: 392_CR48
  publication-title: Quant Inf Process
  doi: 10.1007/s11128-020-02935-8
– volume: 3
  start-page: 205
  year: 2019
  ident: 392_CR171
  publication-title: Quantum
  doi: 10.22331/q-2019-12-02-205
– volume: 56
  start-page: 33
  issue: 1
  year: 1997
  ident: 392_CR83
  publication-title: Phys Rev A
  doi: 10.1103/physreva.56.33
– ident: 392_CR87
  doi: 10.1109/ICCES.2008.4772987
– ident: 392_CR86
  doi: 10.1103/physrevlett.97.120501
– volume: 54
  start-page: 3078
  issue: 7
  year: 2008
  ident: 392_CR26
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2008.924726
– ident: 392_CR94
  doi: 10.1109/ITW.2017.8277961
– volume: 5
  start-page: 321
  issue: 3
  year: 1988
  ident: 392_CR124
  publication-title: J Symb Comput
  doi: 10.1016/S0747-7171(88)80033-6
– ident: 392_CR91
  doi: 10.1007/s11432-015-0932-y
– volume: 40
  start-page: 318
  issue: 4
  year: 2004
  ident: 392_CR21
  publication-title: Probl Inf Transm
  doi: 10.1007/s11122-005-0002-x
– volume: 102
  issue: 6
  year: 2020
  ident: 392_CR96
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.102.062430
– volume: 1
  start-page: 27
  issue: 1
  year: 2001
  ident: 392_CR129
  publication-title: Quantum Inf Comput
– ident: 392_CR168
  doi: 10.1145/258533.258579
– volume: 303
  start-page: 2
  issue: 1
  year: 2003
  ident: 392_CR55
  publication-title: Ann Phys
  doi: 10.1016/S0003-4916(02)00018-0
– volume-title: Quantum Computation and Quantum Information: 10th
  year: 2011
  ident: 392_CR128
– volume: 53
  start-page: 1295
  year: 1998
  ident: 392_CR10
  publication-title: Russ Math Surv
  doi: 10.1070/RM1998v053n06ABEH000091
– ident: 392_CR60
  doi: 10.26421/QIC13.11-12-4
– volume: 88
  issue: 1
  year: 2013
  ident: 392_CR41
  publication-title: Phys Rev A
– volume: 5
  start-page: 109
  issue: 1
  year: 2022
  ident: 392_CR7
  publication-title: Commun Phys
  doi: 10.1038/s42005-022-00881-8
– volume: 40
  start-page: 3481
  issue: 13
  year: 2007
  ident: 392_CR59
  publication-title: J Phys A: Math Theor
  doi: 10.1088/1751-8113/40/13/013
– volume: 452
  start-page: 2551
  year: 1996
  ident: 392_CR167
  publication-title: Proc R Soc Lond A
  doi: 10.1098/rspa.1996.0166
– volume: 131
  start-page: 2766
  issue: 6
  year: 1963
  ident: 392_CR8
  publication-title: Phys Rev
  doi: 10.1103/PhysRev.131.2766
– ident: 392_CR151
  doi: 10.1017/9781139207010
– ident: 392_CR53
  doi: 10.1145/3519935.3520017
– ident: 392_CR135
  doi: 10.1007/978-94-017-0849-4_10
– volume: 321
  start-page: 1812
  issue: 5897
  year: 2008
  ident: 392_CR23
  publication-title: Science
  doi: 10.1126/science.1162242
– volume-title: Quantum Information Theory
  year: 2016
  ident: 392_CR145
– volume: 77
  start-page: 40002
  issue: 4
  year: 2007
  ident: 392_CR146
  publication-title: Europhys Lett
  doi: 10.1209/0295-5075/77/40002
– volume: 103
  issue: 4
  year: 2021
  ident: 392_CR39
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.103.042420
– volume: 67
  start-page: 915
  issue: 2
  year: 2018
  ident: 392_CR108
  publication-title: IEEE Trans Commun
  doi: 10.1109/TCOMM.2018.2876113
– ident: 392_CR132
– volume: 7
  start-page: 12302
  issue: 1
  year: 2016
  ident: 392_CR66
  publication-title: Nat Commun
  doi: 10.1038/ncomms12302
– volume: 64
  start-page: 622
  issue: 1
  year: 2018
  ident: 392_CR99
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2017.2711601
– volume: 1
  start-page: 1
  year: 2020
  ident: 392_CR50
  publication-title: IEEE Trans Quant Eng
  doi: 10.1109/TQE.2020.3027035
– volume: 52
  start-page: 2493
  year: 1995
  ident: 392_CR79
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.52.R2493
– volume: 56
  start-page: 4705
  issue: 9
  year: 2010
  ident: 392_CR25
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2010.2054532
– ident: 392_CR121
– ident: 392_CR92
  doi: 10.1109/ISIT.2018.8437493
– volume: 54
  start-page: 3824
  issue: 5
  year: 1996
  ident: 392_CR18
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.54.3824
– ident: 392_CR118
– volume: 2
  year: 2012
  ident: 392_CR170
  publication-title: Phys Rev X
  doi: 10.1103/PhysRevX.2.041021
– volume: 86
  issue: 6
  year: 2012
  ident: 392_CR147
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.86.062306
– volume: 55
  start-page: 900
  year: 1997
  ident: 392_CR81
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.55.900
– volume: 54
  start-page: 1862
  issue: 3
  year: 1996
  ident: 392_CR80
  publication-title: Phys Rev A
  doi: 10.1103/physreva.54.1862
– volume: 19
  start-page: 1
  year: 2020
  ident: 392_CR77
  publication-title: Quant Inf Process
  doi: 10.1007/s11128-019-2494-0
– ident: 392_CR160
– volume: 78
  issue: 15
  year: 2008
  ident: 392_CR68
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.78.155120
– volume: 3
  start-page: 6
  year: 1954
  ident: 392_CR110
  publication-title: Transactions of the IRE Professional Group on Electronic Computers
  doi: 10.1109/IREPGELC.1954.6499441
– ident: 392_CR109
  doi: 10.1017/CBO9780511791338
– ident: 392_CR6
  doi: 10.1007/978-3-540-70626-7_45
– volume: 68
  start-page: 213
  issue: 1
  year: 2021
  ident: 392_CR52
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2021.3119384
– volume: 56
  start-page: 3478
  issue: 7
  year: 2010
  ident: 392_CR139
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2010.2048442
– ident: 392_CR97
  doi: 10.1109/iciea.2018.8397697
– ident: 392_CR49
  doi: 10.1109/ISIT.2005.1523493
– ident: 392_CR45
– volume: 63
  issue: 2
  year: 2001
  ident: 392_CR19
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.63.022308
– volume: 2
  issue: 4
  year: 2012
  ident: 392_CR64
  publication-title: Phys Rev X
– volume: 3
  issue: 1
  year: 2021
  ident: 392_CR72
  publication-title: Phys Rev Res
– volume: 57
  start-page: 1
  issue: 12
  year: 2021
  ident: 392_CR127
  publication-title: IEEE Trans Magn
  doi: 10.1109/TMAG.2021.3119723
– volume: 370
  start-page: 4511
  year: 2012
  ident: 392_CR130
  publication-title: Phil. Trans. of The Royal Society
  doi: 10.1098/rsta.2011.0494
– ident: 392_CR88
– volume: 86
  start-page: 121
  issue: 1
  year: 2017
  ident: 392_CR46
  publication-title: Des Codes Crypt
  doi: 10.1007/s10623-017-0330-z
– volume: 51
  start-page: 44
  issue: 1
  year: 2005
  ident: 392_CR20
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2004.839515
– volume-title: Algebraic codes on lines, planes, and curves: An engineering approach
  year: 2008
  ident: 392_CR122
– volume-title: Quantum information theory
  year: 2013
  ident: 392_CR17
  doi: 10.1017/CBO9781139525343
– volume: 6
  start-page: 784
  year: 2022
  ident: 392_CR54
  publication-title: Quantum
  doi: 10.22331/q-2022-08-23-784
– ident: 392_CR159
– ident: 392_CR153
  doi: 10.1103/physreva.81.032326
– volume: 3
  start-page: 1387
  issue: 1
  year: 2013
  ident: 392_CR12
  publication-title: Nat Sci Rep
– volume: 2
  start-page: 51
  issue: 1
  year: 2019
  ident: 392_CR29
  publication-title: Commun Phys
  doi: 10.1038/s42005-019-0147-3
– volume: 83
  issue: 4
  year: 2011
  ident: 392_CR155
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.83.042310
– volume: 57
  start-page: 7147
  issue: 10
  year: 2011
  ident: 392_CR27
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2011.2165811
– volume: 8
  start-page: 17
  year: 2019
  ident: 392_CR117
  publication-title: APSIPA Transactions on Signal and Information Processing
– volume: 29
  start-page: 147
  issue: 2
  year: 1950
  ident: 392_CR3
  publication-title: Bell Syst Tech J
  doi: 10.1002/j.1538-7305.1950.tb00463.x
– volume: 86
  issue: 3
  year: 2012
  ident: 392_CR63
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.86.032324
– volume: 53
  start-page: 555
  issue: 4
  year: 2005
  ident: 392_CR106
  publication-title: IEEE Trans Commun
  doi: 10.1109/TCOMM.2005.844959
– ident: 392_CR65
– volume: 549
  start-page: 195
  issue: 7671
  year: 2017
  ident: 392_CR133
  publication-title: Nature
  doi: 10.1038/nature23474
– volume: 52
  start-page: 3457
  issue: 5
  year: 1995
  ident: 392_CR134
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.52.3457
– volume: 83
  start-page: 3081
  issue: 15
  year: 1999
  ident: 392_CR150
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.83.3081
– volume: 20
  start-page: 1
  year: 2021
  ident: 392_CR144
  publication-title: Quantum Inf Process
  doi: 10.1007/s11128-021-03350-3
– volume: 5
  start-page: 392
  year: 2021
  ident: 392_CR172
  publication-title: Quantum
  doi: 10.22331/q-2021-02-04-392
– volume: 402
  start-page: 390
  issue: 6760
  year: 1999
  ident: 392_CR16
  publication-title: Nature
  doi: 10.1038/46503
– ident: 392_CR84
  doi: 10.1007/3-540-46796-3_23
– ident: 392_CR82
  doi: 10.1109/18.681315
– volume: 55
  start-page: 3051
  issue: 7
  year: 2009
  ident: 392_CR107
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2009.2021379
– volume: 130
  start-page: 2529
  issue: 6
  year: 1963
  ident: 392_CR9
  publication-title: Phys Rev
  doi: 10.1103/PhysRev.130.2529
– volume-title: Coding and signal processing for magnetic recording systems
  year: 2004
  ident: 392_CR120
  doi: 10.1201/9780203490310
– volume: 71
  year: 2005
  ident: 392_CR169
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.71.022316
– ident: 392_CR140
– volume-title: Error control coding
  year: 2004
  ident: 392_CR4
– ident: 392_CR102
– volume: 62
  start-page: 6268
  issue: 11
  year: 2016
  ident: 392_CR164
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2016.2605119
– volume: 54
  start-page: 1098
  issue: 2
  year: 1996
  ident: 392_CR31
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.54.1098
– volume: 52
  start-page: 4892
  issue: 11
  year: 2006
  ident: 392_CR85
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/tit.2006.883612
– volume: 68
  issue: 6
  year: 2003
  ident: 392_CR24
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.68.062319
– volume: 2
  start-page: 1
  year: 2021
  ident: 392_CR37
  publication-title: IEEE Trans Quant Eng
– volume: 8
  start-page: 21
  issue: 1
  year: 1962
  ident: 392_CR114
  publication-title: IRE Transactions on Information Theory
  doi: 10.1109/TIT.1962.1057683
– volume: 20
  start-page: 158
  issue: 5
  year: 2021
  ident: 392_CR47
  publication-title: Quant Inf Process
  doi: 10.1007/s11128-021-03101-4
– volume: 5
  start-page: 595
  year: 2021
  ident: 392_CR70
  publication-title: Quantum
  doi: 10.22331/q-2021-12-02-595
– volume: 57
  issue: 6
  year: 2016
  ident: 392_CR28
  publication-title: J Math Phys
– volume: 46
  start-page: 1204
  issue: 4
  year: 2000
  ident: 392_CR138
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/18.850663
– ident: 392_CR125
  doi: 10.1109/ITWF.2015.7360746
– volume: 436
  start-page: 673
  year: 2005
  ident: 392_CR22
  publication-title: Nature
  doi: 10.1038/nature03909
– volume: 77
  start-page: 793
  issue: 5
  year: 1996
  ident: 392_CR33
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.77.793
– volume: 80
  issue: 5
  year: 2009
  ident: 392_CR62
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.80.052312
– volume: 42
  start-page: 214
  issue: 2
  year: 2006
  ident: 392_CR157
  publication-title: IEEE Trans Magn
  doi: 10.1109/TMAG.2005.861747
– volume: 28
  start-page: 228
  issue: 2
  year: 2010
  ident: 392_CR161
  publication-title: IEEE J Sel Areas Commun
  doi: 10.1109/JSAC.2010.100212
– volume: 76
  issue: 4
  year: 2007
  ident: 392_CR75
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.76.040301
– ident: 392_CR105
– ident: 392_CR98
  doi: 10.1109/GLOCOMW.2018.8644150
– volume: 11
  start-page: 281
  issue: 2
  year: 1965
  ident: 392_CR156
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/tit.1965.1053771
– volume: 20
  start-page: 256
  issue: 8
  year: 2021
  ident: 392_CR104
  publication-title: Quant Inf Process
  doi: 10.1007/s11128-021-03174-1
– volume: 47
  start-page: 638
  issue: 2
  year: 2001
  ident: 392_CR115
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/18.910579
– volume: 18
  issue: 1
  year: 2022
  ident: 392_CR30
  publication-title: Phys Rev Appl
  doi: 10.1103/PhysRevApplied.18.014012
– volume: 79
  issue: 3
  year: 2009
  ident: 392_CR43
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.79.032340
– ident: 392_CR113
  doi: 10.1109/ICC.1993.397441
– ident: 392_CR42
– volume: 69
  start-page: 3971
  issue: 6
  year: 2021
  ident: 392_CR93
  publication-title: IEEE Trans Commun
  doi: 10.1109/TCOMM.2021.3064566
– volume-title: Quantum error correction
  year: 2013
  ident: 392_CR78
  doi: 10.1017/CBO9781139034807
– ident: 392_CR101
  doi: 10.1007/s11128-019-2234-5
– volume-title: The principles of quantum mechanics
  year: 1982
  ident: 392_CR1
– volume: 463
  start-page: 2887
  issue: 2087
  year: 2007
  ident: 392_CR36
  publication-title: Proc R Soc A Math Phys Eng Sci
– ident: 392_CR142
  doi: 10.1109/ISIT.2010.5513644
– volume: 59
  start-page: 2315
  issue: 4
  year: 2013
  ident: 392_CR162
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/tit.2012.2234207
– volume: 106
  start-page: 286
  issue: 2
  year: 2018
  ident: 392_CR116
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2018.2795961
– volume: 117
  start-page: 070501
  year: 2016
  ident: 392_CR173
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.117.070501
– volume: 51
  issue: 9
  year: 2010
  ident: 392_CR61
  publication-title: J Math Phys
  doi: 10.1063/1.3490195
– volume: 108
  issue: 14
  year: 2012
  ident: 392_CR148
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.108.140501
– ident: 392_CR137
  doi: 10.1109/ALLERTON.2014.7028615
– volume: 120
  start-page: 43
  issue: 1–2
  year: 1998
  ident: 392_CR166
  publication-title: Physica D
  doi: 10.1016/s0167-2789(98)00043-8
– ident: 392_CR56
– ident: 392_CR90
– ident: 392_CR100
– ident: 392_CR119
  doi: 10.1109/ICC.2006.254892
– ident: 392_CR143
  doi: 10.1007/978-3-540-70918-3_52
SSID ssib052472747
ssj0028602
Score 2.2940404
SecondaryResourceType review_article
Snippet Quantum information processing is now a well-evolved field of study with roots to quantum physics that has significantly evolved from pioneering works over...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 449
SubjectTerms 20th century
Algorithms
Binary codes
Chemistry and Materials Science
Chemistry/Food Science
Coding
Coding theory
Communications systems
Data processing
Engineering
Error correcting codes
Error correction
Error correction & detection
Fault tolerance
Fields (mathematics)
Information processing
Information theory
Materials Science
Mindfulness
Physics
Protocol
Quantum computers
Quantum computing
Quantum entanglement
Quantum phenomena
Quantum physics
Quantum theory
Reed-Solomon codes
Review Article
Satellite communications
Tensors
Title Theory Behind Quantum Error Correcting Codes: An Overview
URI https://link.springer.com/article/10.1007/s41745-023-00392-7
https://www.proquest.com/docview/3257113365
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 0019-4964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028602
  issn: 0970-4140
  databaseCode: AFBBN
  dateStart: 20170301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB76uHgRRcVqLTl408Vms3kJIm1pLILxgYXeQvaFB21rH_r3nd0mLQr2tpBkD9_uzHyT3ZkP4BwjjsgZ50TzSBIWSJ9wdJAkwhGyax1p26z6IQ0GQ3Y_8kcVSMtaGHOtsvSJ1lHLiTD_yK883FsuJlSBfzv9JEY1ypyulhIaeSGtIG9si7Eq1KnpjFWDerefPr2UO8ynLDRpmG3AF7YJw_SiqKSx9XQM-bkpWPaIqVlF6vk7Wm0o6J9TUxuMkj3YLVik01kt-z5U1PgA4lWdvdNVb5hoO89LBG354fRns8nM6RkVDmHuOONQqvm10xk7j1_GU6jvQxgm_dfegBTKCESgySyIG2BIYYGnZciNyXmCtqnQFNNZGclYBLnyXe1HsfZpqHOXU93ONYuQG3Ap0O6OoDaejNUxOG0T4SOumDRK6JTGChljqLwcuZ-npG6AWyKQiaJtuFGveM_WDY8tahmillnUsrABF-tvpqumGVvfbpbAZoUBzbPNcjfgsgR78_j_2U62z3YKO9Sur7l704TaYrZUZ0grFrwF1Si5a0G9k3S7aavYOT9jpMdd
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELUQPcAFgQBRKOADnMAicZwNqUJtKWpZyqJW4hbiTRygLV2o-Dm-jbGbtAIJbtwiZTmMX2beSzzzEDqAiiNSxjnRPJKEBdInHBIkieAI2LWOtB1WfdMKGh12-eg_LqDPvBfGbKvMc6JN1LInzDfyEw-w5YKgCvyz_hsxrlHm72puoZFm1gqybEeMZY0dV-pjAhJuWG6ew3ofUnpRb9caJHMZIALgNyJuAOmZBZ6WITfw9QR1qNAUpKGMZCyCVPmu9qNY-zTUqcupdlLNIqizXArHuEZACSgwj8Ug_grVeuvuIUe0T1loZJ8d-Bc6hIGcyTp3bP8eAz1gGqQ9Ynpkgep-r45zyvvjL60tfheraCVjrbgyhdkaWlDddRRP-_pxVT2DsMf3Y1ik8SuuDwa9Aa4Z1w9h9lTDoVTDU1zp4tt3k5nUZAN1_iVGm2ix2-uqLYQdwygirpg0zuuUxgoYaqi8FLimp6QuIjePQCKyMeXGLeMlmQ1YtlFLIGqJjVoSFtHR7J7-dEjHn1eX8sAm2Qs7TObwKqLjPNjz078_bfvvp-2jpUb75jq5braudtAytWtt9v2U0OJoMFa7QGlGfC_DDUZP_w3VL9iaATQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theory+Behind+Quantum+Error+Correcting+Codes%3A+An+Overview&rft.jtitle=Journal+of+the+Indian+Institute+of+Science&rft.au=Garani%2C+Shayan+Srinivasa&rft.au=Nadkarni%2C+Priya+J.&rft.au=Raina%2C+Ankur&rft.date=2023-04-01&rft.pub=Springer+India&rft.issn=0970-4140&rft.eissn=0019-4964&rft.volume=103&rft.issue=2&rft.spage=449&rft.epage=495&rft_id=info:doi/10.1007%2Fs41745-023-00392-7&rft.externalDocID=10_1007_s41745_023_00392_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0970-4140&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0970-4140&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0970-4140&client=summon