Theory Behind Quantum Error Correcting Codes: An Overview
Quantum information processing is now a well-evolved field of study with roots to quantum physics that has significantly evolved from pioneering works over almost more than a century. Today, we are at a stage where elementary forms of quantum computers and communication systems are being built and d...
Saved in:
| Published in | Journal of the Indian Institute of Science Vol. 103; no. 2; pp. 449 - 495 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New Delhi
Springer India
01.04.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0970-4140 0019-4964 |
| DOI | 10.1007/s41745-023-00392-7 |
Cover
| Abstract | Quantum information processing is now a well-evolved field of study with roots to quantum physics that has significantly evolved from pioneering works over almost more than a century. Today, we are at a stage where elementary forms of quantum computers and communication systems are being built and deployed. In this paper, we begin with a historical background into quantum information theory and coding theory for both entanglement-unassisted and assisted quantum communication systems, motivating the need for quantum error correction in such systems. We then begin with the necessary mathematical preliminaries towards understanding the theory behind quantum error correction, central to the discussions within this article, starting from the binary case towards the non-binary generalization, using the rich framework of finite fields. We will introduce the stabilizer framework, build upon the Calderbank-Shor-Steane framework for binary quantum codes and generalize this to the non-binary case, yielding generalized CSS codes that are linear and additive. We will survey important families of quantum codes derived from well-known classical counterparts. Next, we provide an overview of the theory behind entanglement-assisted quantum ECCs along with encoding and syndrome computing architectures. We present a case study on how to construct efficient quantum Reed-Solomon codes that saturate the Singleton bound for the non-degenerate case. We will also show how positive coding rates can be realized using tensor product codes from two zero-rate entanglement-assisted CSS codes, an effect termed as the coding analog of superadditivity, useful for entanglement-assisted quantum communications. We discuss how quantum coded networks can be realized using cluster states and modified graph state codes. Last, we will motivate fault-tolerant quantum computation from the perspective of coding theory. We end the article with our perspectives on interesting open directions in this exciting field. |
|---|---|
| AbstractList | Quantum information processing is now a well-evolved field of study with roots to quantum physics that has significantly evolved from pioneering works over almost more than a century. Today, we are at a stage where elementary forms of quantum computers and communication systems are being built and deployed. In this paper, we begin with a historical background into quantum information theory and coding theory for both entanglement-unassisted and assisted quantum communication systems, motivating the need for quantum error correction in such systems. We then begin with the necessary mathematical preliminaries towards understanding the theory behind quantum error correction, central to the discussions within this article, starting from the binary case towards the non-binary generalization, using the rich framework of finite fields. We will introduce the stabilizer framework, build upon the Calderbank-Shor-Steane framework for binary quantum codes and generalize this to the non-binary case, yielding generalized CSS codes that are linear and additive. We will survey important families of quantum codes derived from well-known classical counterparts. Next, we provide an overview of the theory behind entanglement-assisted quantum ECCs along with encoding and syndrome computing architectures. We present a case study on how to construct efficient quantum Reed-Solomon codes that saturate the Singleton bound for the non-degenerate case. We will also show how positive coding rates can be realized using tensor product codes from two zero-rate entanglement-assisted CSS codes, an effect termed as the coding analog of superadditivity, useful for entanglement-assisted quantum communications. We discuss how quantum coded networks can be realized using cluster states and modified graph state codes. Last, we will motivate fault-tolerant quantum computation from the perspective of coding theory. We end the article with our perspectives on interesting open directions in this exciting field. |
| Author | Garani, Shayan Srinivasa Nadkarni, Priya J. Raina, Ankur |
| Author_xml | – sequence: 1 givenname: Shayan Srinivasa orcidid: 0000-0002-2459-1445 surname: Garani fullname: Garani, Shayan Srinivasa email: shayangs@iisc.ac.in organization: Department of Electronic Systems Engineering, Division of EECS, Indian Institute of Science – sequence: 2 givenname: Priya J. surname: Nadkarni fullname: Nadkarni, Priya J. organization: Department of Electronic Systems Engineering, Division of EECS, Indian Institute of Science – sequence: 3 givenname: Ankur surname: Raina fullname: Raina, Ankur organization: Department of EECS, Indian Institute of Science Education and Research |
| BookMark | eNp9kE1LAzEURYNUsGr_gKsB16P5nCTuaqkfUChCXYdMJmkjbVKTaaX_3qkjCC66endxz3uPcwkGIQYLwA2CdwhCfp8p4pSVEJMSQiJxyc_AEEIkSyorOuiy5LCkiMILMMrZ15BhyjGnfAjkYmVjOhSPduVDU7ztdGh3m2KaUkzFJKZkTevDsouNzQ_FOBTzvU17b7-uwbnT62xHv_MKvD9NF5OXcjZ_fp2MZ6UhSLYlqjgStCKu4TXjghODITYOCyEa0UhTacuQY0I6hrnTqMYOakeFRLBuDGTkCtz2e7cpfu5sbtVH3KXQnVQEM44QIdWxJfqWSTHnZJ0yvtWtj6FN2q8VguroSvWuVOdK_bhSvEPxP3Sb_Eanw2mI9FDuymFp099XJ6hv91F75A |
| CitedBy_id | crossref_primary_10_1088_1751_8121_ad8607 crossref_primary_10_22331_q_2024_02_12_1249 |
| Cites_doi | 10.1038/299802a0 10.1103/PhysRevLett.67.661 10.1109/18.959288 10.1109/PROC.1973.9030 10.1017/CBO9781139034807.021 10.1109/glocomw.2017.8269075 10.1016/j.aop.2005.10.005 10.1142/S0219749906001888 10.1109/ICC.2017.7996747 10.1007/s11128-011-0269-3 10.1109/ITW2.2006.323741 10.1109/TQE.2021.3078152 10.1038/s41534-019-0207-2 10.1126/science.1131563 10.1103/PhysRevA.89.012317 10.1103/PhysRevLett.70.1895 10.1103/RevModPhys.87.307 10.1002/9781119098799 10.1103/PhysRevA.70.052328 10.1109/18.661516 10.1038/nphys1224 10.1002/j.1538-7305.1948.tb01338.x 10.1109/TMAG.2021.3060807 10.1109/ISIT.2012.6284206 10.1063/1.1499754 10.1109/TMAG.2005.861043 10.22331/q-2023-02-21-929 10.1142/S0129054103002011 10.1103/PhysRevResearch.2.033305 10.1109/jsac.2014.140509 10.1007/s11128-020-02935-8 10.22331/q-2019-12-02-205 10.1103/physreva.56.33 10.1109/ICCES.2008.4772987 10.1103/physrevlett.97.120501 10.1109/TIT.2008.924726 10.1109/ITW.2017.8277961 10.1016/S0747-7171(88)80033-6 10.1007/s11432-015-0932-y 10.1007/s11122-005-0002-x 10.1103/PhysRevA.102.062430 10.1145/258533.258579 10.1016/S0003-4916(02)00018-0 10.1070/RM1998v053n06ABEH000091 10.26421/QIC13.11-12-4 10.1038/s42005-022-00881-8 10.1088/1751-8113/40/13/013 10.1098/rspa.1996.0166 10.1103/PhysRev.131.2766 10.1017/9781139207010 10.1145/3519935.3520017 10.1007/978-94-017-0849-4_10 10.1126/science.1162242 10.1209/0295-5075/77/40002 10.1103/PhysRevA.103.042420 10.1109/TCOMM.2018.2876113 10.1038/ncomms12302 10.1109/TIT.2017.2711601 10.1109/TQE.2020.3027035 10.1103/PhysRevA.52.R2493 10.1109/TIT.2010.2054532 10.1109/ISIT.2018.8437493 10.1103/PhysRevA.54.3824 10.1103/PhysRevX.2.041021 10.1103/PhysRevA.86.062306 10.1103/PhysRevA.55.900 10.1103/physreva.54.1862 10.1007/s11128-019-2494-0 10.1103/PhysRevB.78.155120 10.1109/IREPGELC.1954.6499441 10.1017/CBO9780511791338 10.1007/978-3-540-70626-7_45 10.1109/TIT.2021.3119384 10.1109/TIT.2010.2048442 10.1109/iciea.2018.8397697 10.1109/ISIT.2005.1523493 10.1103/PhysRevA.63.022308 10.1109/TMAG.2021.3119723 10.1098/rsta.2011.0494 10.1007/s10623-017-0330-z 10.1109/TIT.2004.839515 10.1017/CBO9781139525343 10.22331/q-2022-08-23-784 10.1103/physreva.81.032326 10.1038/s42005-019-0147-3 10.1103/PhysRevA.83.042310 10.1109/TIT.2011.2165811 10.1002/j.1538-7305.1950.tb00463.x 10.1103/PhysRevA.86.032324 10.1109/TCOMM.2005.844959 10.1038/nature23474 10.1103/PhysRevA.52.3457 10.1103/PhysRevLett.83.3081 10.1007/s11128-021-03350-3 10.22331/q-2021-02-04-392 10.1038/46503 10.1007/3-540-46796-3_23 10.1109/18.681315 10.1109/TIT.2009.2021379 10.1103/PhysRev.130.2529 10.1201/9780203490310 10.1103/PhysRevA.71.022316 10.1109/TIT.2016.2605119 10.1103/PhysRevA.54.1098 10.1109/tit.2006.883612 10.1103/PhysRevA.68.062319 10.1109/TIT.1962.1057683 10.1007/s11128-021-03101-4 10.22331/q-2021-12-02-595 10.1109/18.850663 10.1109/ITWF.2015.7360746 10.1038/nature03909 10.1103/PhysRevLett.77.793 10.1103/PhysRevA.80.052312 10.1109/TMAG.2005.861747 10.1109/JSAC.2010.100212 10.1103/PhysRevA.76.040301 10.1109/GLOCOMW.2018.8644150 10.1109/tit.1965.1053771 10.1007/s11128-021-03174-1 10.1109/18.910579 10.1103/PhysRevApplied.18.014012 10.1103/PhysRevA.79.032340 10.1109/ICC.1993.397441 10.1109/TCOMM.2021.3064566 10.1017/CBO9781139034807 10.1007/s11128-019-2234-5 10.1109/ISIT.2010.5513644 10.1109/tit.2012.2234207 10.1109/JPROC.2018.2795961 10.1103/PhysRevLett.117.070501 10.1063/1.3490195 10.1103/PhysRevLett.108.140501 10.1109/ALLERTON.2014.7028615 10.1016/s0167-2789(98)00043-8 10.1109/ICC.2006.254892 10.1007/978-3-540-70918-3_52 |
| ContentType | Journal Article |
| Copyright | Indian Institute of Science 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Indian Institute of Science 2023. |
| Copyright_xml | – notice: Indian Institute of Science 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Indian Institute of Science 2023. |
| DBID | AAYXX CITATION 7XB 8FE 8FG ABJCF AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ L6V M2P M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s41745-023-00392-7 |
| DatabaseName | CrossRef ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Science Database Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef Engineering Database ProQuest Central Student Technology Collection ProQuest Central Basic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
| DatabaseTitleList | Engineering Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) Physics |
| EISSN | 0019-4964 |
| EndPage | 495 |
| ExternalDocumentID | 10_1007_s41745_023_00392_7 |
| GroupedDBID | -EM 0R~ 2WC 406 53G 5GY AAAVM AACDK AAHNG AAIAL AAJBT AAKDD AANZL AARHV AASML AATNV AATVU AAUYE AAYQN AAYUE ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACGFO ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AEVLU AEXYK AFBBN AFQWF AGDGC AGMZJ AGQEE AGQMX AGRTI AHKAY AHSBF AI. AIAKS AIGIU AILAN AITGF AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR AXYYD BGNMA C1A CSCUP DNIVK DPUIP E3Z EBLON EBS EIOEI EJD FERAY FIGPU FINBP FNLPD FRJ FRP FSGXE GGCAI GJIRD H13 IKXTQ IWAJR J-C JZLTJ KOV LLZTM LPU M4Y NPVJJ NQJWS NU0 O9J OK1 P2P PT4 RLLFE ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TR2 TSG UOJIU UTJUX UZXMN VFIZW VH1 ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7XB 8FE 8FG ABJCF AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ L6V M2P M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| ID | FETCH-LOGICAL-c319t-16718463fd7b57873c202cf2888d8d9c6ae51f589f527fa1b2f0af48910bdc053 |
| IEDL.DBID | BENPR |
| ISSN | 0970-4140 |
| IngestDate | Tue Oct 07 06:14:50 EDT 2025 Wed Oct 01 04:57:01 EDT 2025 Thu Apr 24 22:53:21 EDT 2025 Fri Feb 21 02:43:16 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Entanglement-assisted codes Non-binary quantum codes Quantum error correcting circuits Stabilizer codes Generalized CSS constructions |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-16718463fd7b57873c202cf2888d8d9c6ae51f589f527fa1b2f0af48910bdc053 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2459-1445 |
| PQID | 3257113365 |
| PQPubID | 7435048 |
| PageCount | 47 |
| ParticipantIDs | proquest_journals_3257113365 crossref_citationtrail_10_1007_s41745_023_00392_7 crossref_primary_10_1007_s41745_023_00392_7 springer_journals_10_1007_s41745_023_00392_7 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20230400 2023-04-00 20230401 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 4 year: 2023 text: 20230400 |
| PublicationDecade | 2020 |
| PublicationPlace | New Delhi |
| PublicationPlace_xml | – name: New Delhi |
| PublicationSubtitle | A Multidisciplinary Reviews Journal |
| PublicationTitle | Journal of the Indian Institute of Science |
| PublicationTitleAbbrev | J Indian Inst Sci |
| PublicationYear | 2023 |
| Publisher | Springer India Springer Nature B.V |
| Publisher_xml | – name: Springer India – name: Springer Nature B.V |
| References | Hu X, Srinivasa SG, Weathers A, Barndt R (2011) Trapping set based LDPC code design and related circuits, systems, and methods. Google Patents. US Patent App. 12/889,706 Kobayashi H, Gall F, Nishimura H, Rotteler M (2010) Perfect quantum network communication based on classical network coding. In: Proceedings of the International Symposium on Information Theory BennettCHBrassardGCrépeauCJozsaRPeresAWoottersWKTeleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channelsPhys Rev Lett1993701318951:STN:280:DC%2BC2sfpt1ygsA%3D%3D Hayashi M, Iwama K, Nishimura H, Raymond R, Yamashita S (2007) Quantum network coding. In: STACS 2007: 24th Annual Symposium on Theoretical Aspects of Computer Science, Aachen, Germany, February 22-24, 2007. Proceedings 24, pp. 610–621. Springer HarneyCFletcherAIPirandolaSEnd-to-end capacities of hybrid quantum networksPhys Rev Appl20221811:CAS:528:DC%2BB38XitFSgs73J LuHLiZ-DYinX-FZhangRFangX-XLiLLiuN-LXuFChenY-APanJ-WExperimental quantum network codingnpj Quant Inf20195189 Aharonov D, Ben-Or M (1997) Fault-tolerant quantum computation with constant error. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing. STOC ’97, pp. 176–188. Association for Computing Machinery, New York, NY, USA . https://doi.org/10.1145/258533.258579 CaiNWinterAYeungRWQuantum privacy and quantum wiretap channelsProbl Inf Transm2004404318336 Grassl M, Geiselmann W, Beth T (1999) Quantum Reed-Solomon codes. In: Proceedings of the 13th International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC-13, pp. 231–244. Springer, Berlin WildeMMHaydenPGuhaSInformation trade-offs for optical quantum communicationPhys Rev Lett201210814 NadkarniPJGaraniSSEntanglement-assisted Reed-Solomon codes over qudits: theory and architectureQuant Inf Process202120168 Gottesman D (1998) The Heisenberg representation of quantum computers. arXiv preprint quant-ph/9807006 Fan J, Li Y, Hsieh M-H, Chen H (2016) On quantum tensor product codes. arXiv preprint arXiv:1605.09598 DelfosseNNickersonNHAlmost-linear time decoding algorithm for topological codesQuantum20215595 LaiCAshikhminALinear programming bounds for entanglement-assisted quantum error-correcting codes by split weight enumeratorsIEEE Trans Inf Theory201864162263910.1109/TIT.2017.2711601 SchumacherBWestmorelandMDOptimal signal ensemblesPhys Rev A2001632 Gottesman D (1997) Stabilizer codes and quantum error correction. Caltech. PhD thesis, Thesis. arXiv:quant-ph/9705052 Weinert F (2009) Davisson—Germer experiment. In: Compendium of Quantum Physics, pp. 150–152. Springer, Berlin, Heidelberg GottesmanDClass of quantum error-correcting codes saturating the quantum hamming boundPhys Rev A1996543186218681:CAS:528:DyaK28Xls1Oksbg%3D10.1103/physreva.54.1862 HammingRWError detecting and error correcting codesBell Syst Tech J1950292147160 DelfosseNDecoding color codes by projection onto surface codesPhys Rev A2014891 Varnava M, Browne DE, Rudolph T (2006) Loss tolerance in one-way quantum computation via counterfactual error correction. Phys Rev Lett 97(12). https://doi.org/10.1103/physrevlett.97.120501 BreuckmannNPVuillotCCampbellEKrishnaATerhalBMHyperbolic and semi-hyperbolic surface codes for quantum storageQuant Sci Technol201723 Aly SA (2008) Asymmetric quantum BCH codes. In: 2008 International Conference on Computer Engineering Systems, pp 157–162. https://doi.org/10.1109/ICCES.2008.4772987 CastelnovoCChamonCTopological order in a three-dimensional toric code at finite temperaturePhys Rev B20087815 Fowler AG (2013) Minimum weight perfect matching of fault-tolerant topological quantum error correction in average O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm O}(1) $$\end{document} parallel time. arXiv preprint arXiv:1307.1740 RaussendorfRKey ideas in quantum error correctionPhil. Trans. of The Royal Society20123704511456510.1098/rsta.2011.0494 WoottersWKZurekWHA single quantum cannot be clonedNature19822998028031:CAS:528:DyaL3sXnvVCgsA%3D%3D WildeMMHaydenPGuhaSQuantum trade-off coding for bosonic communicationPhys Rev A2012866 Panteleev P, Kalachev G (2022) Asymptotically good quantum and locally testable classical LDPC codes. In: Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pp 375–388 HastingsMBSuperadditivity of communication capacity using entangled inputsNat Phys2009542552571:CAS:528:DC%2BD1MXktVKjurw%3D GlauberRJCoherent and incoherent states of the radiation fieldPhys Rev196313162766 CalderbankARShorPWGood quantum error-correcting codes existPhys Rev A199654210981:CAS:528:DyaK28XltVeiu7c%3D MullerDEApplication of Boolean algebra to switching circuit design and to error detectionTransactions of the IRE Professional Group on Electronic Computers19543612 Di FrancoCPaternostroMA no-go result on the purification of quantum statesNat Sci Rep2013311387 PirandolaSEnd-to-end capacities of a quantum communication networkCommun Phys20192151 Calderbank AR, Rains EM, Shor PW, Sloane NJA (1997) Quantum error correction via codes over GF(4). In: Proceedings of IEEE International Symposium on Information Theory NadkarniPJGaraniSSQuantum error correction architecture for qudit stabilizer codesPhys Rev A202110341:CAS:528:DC%2BB3MXhtVyitbvO NadkarniPJRainaAGaraniSSModified graph-state codes for single-node recovery in quantum distributed storagePhys Rev A202010261:CAS:528:DC%2BB3MXivVOqs7o%3D FowlerAGTwo-dimensional color-code quantum computationPhys Rev A2011834 Bombín H (2013) An introduction to topological quantum codes. arXiv preprint arXiv:1311.0277 BoltADuclos-CianciGPoulinDStaceTMFoliated quantum error-correcting codesPhys Rev Lett20161170705011:STN:280:DC%2BC2szkvVaksA%3D%3D10.1103/PhysRevLett.117.070501 Raina A (2019) Protocols for quantum information processing on graph states. PhD thesis, Indian Institute of Science, KA, India BrassardGBraunsteinSLCleveRTeleportation as a quantum computationPhysica D19981201–2434710.1016/s0167-2789(98)00043-8 FowlerAGStephensAMGroszkowskiPHigh-threshold universal quantum computation on the surface codePhys Rev A2009805 HolevoASQuantum coding theoremsRuss Math Surv1998531295 Garcia-FriasJZhaoYNear-Shannon/Slepian-Wolf performance for unknown correlated sources over AWGN channelsIEEE Trans Commun2005534555559 DevetakIThe private classical capacity and quantum capacity of a quantum channelIEEE Trans Inf Theory20055114455 RainaANadkarniPJGaraniSSRecovery of quantum information from a node failure in a graphQuant Inf Process202019139 LidarDBrunTAQuantum error correction20132CambridgeCambridge University Press WoottersWKEntanglement of formation and concurrenceQuantum Inf Comput2001112744 NadkarniPJGaraniSSNon-binary entanglement-assisted stabilizer codesQuant Inf Process2021208256 GrasslMBethTPellizzariTCodes for the quantum erasure channelPhys Rev A199756133381:CAS:528:DyaK2sXksFSlsLk%3D10.1103/physreva.56.33 DiracPAMThe principles of quantum mechanics1982OxfordOxford University Press SmithGYardJQuantum communication with zero-capacity channelsScience20083215897181218151:CAS:528:DC%2BD1cXhtFCrtL3J FowlerAGWhitesideACMcInnesALRabbaniATopological code autotunePhys Rev X201224 GlauberRJThe quantum theory of optical coherencePhys Rev196313062529 DennisEKitaevALandahlAPreskillJTopological quantum memoryJ Math Phys200243944524505 BrußDLewensteinMSENASenUD’ARIANOGMMacchiavelloCDense coding with multipartite quantum statesInternational Journal of Quantum Information2006403415428 GottesmanDChuangILDemonstrating the viability of universal quantum computation using teleportation and single-qubit operationsNature199940267603903931:CAS:528:DyaK1MXnvVyktLc%3D Nadkarni PJ, Garani SS (2021) Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F}_{p}$$\end{document}-linear and Fpm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F}_{p^m}$$\end{document}-linear qudit codes from dual-containing classical codes. IEEE Trans Quant Eng 2 Nadkarni PJ, Garani SS (2019) Entanglement-assisted Quantum Reed-Solomon codes. In: IEEE Information Theory and Applications Workshop, San Diego, USA MondalAGaraniSSEfficient hardware architectures for 2-D BCH codes in the frequency domain for two-dimensional data storage applicationsIEEE Trans Magn2021575114 BrunTDevetakIHsiehM-HCorrecting quantum errors with entanglementScience200631457984364391:CAS:528:DC%2BD28XhtVyqtr3F KitaevAYFault-tolerant quantum computation by anyonsAnn Phys200330312301:CAS:528:DC%2BD3sXisl2hsg%3D%3D HsiehM-HWildeMMTrading classical communication, quantum communication, and entanglement in quantum Shannon theoryIEEE Trans Inf Theory201056947054730 KlappeneckerASarvepalliPKOn subsystem codes beating the quantum hamming or singleton boundProc R Soc A Math Phys Eng Sci2007463208728872905 GaraniSSDolecekLBarryJSalaFVasićBSignal processing and coding techniques for 2-D magnetic recording: An overviewProc IEEE20181062286318 BravyiSHastingsMBMichalakisSTopological quantum order: stability under local perturbationsJ Math Phys2010519 Kumar PatiABraunsteinSLImpossibility of deleting an unknown quantum stateNature20004046774164165 SteaneAMError correcting codes in quantum theoryPhys Rev Lett19967757931:CAS:528:DyaK28XksFKku7k%3D KaynakMNKhayatPRParthasarathySClassification codes for soft information generation from hard flash readsIEEE J Sel Areas Commun201432589289910.1109/jsac.2014.140509 ChaichanavongPSiegelPHTensor-product parity code for magnetic recordingIEEE Trans Magn200642235035210.1109/TMAG.2005.861043 HayashiMPrior en PJ Nadkarni (392_CR37) 2021; 2 392_CR100 MA Nielsen (392_CR128) 2011 R Johannesson (392_CR111) 2015 A Kitaev (392_CR57) 2006; 321 MG Majumdar (392_CR144) 2021; 20 E Dennis (392_CR58) 2002; 43 A Abeyesinghe (392_CR24) 2003; 68 C Piveteau (392_CR54) 2022; 6 J Wolf (392_CR156) 1965; 11 CH Bennett (392_CR18) 1996; 54 A Mondal (392_CR126) 2021; 57 N Delfosse (392_CR70) 2021; 5 B Schumacher (392_CR19) 2001; 63 D Gottesman (392_CR80) 1996; 54 392_CR109 392_CR105 392_CR103 392_CR102 392_CR101 ET Campbell (392_CR170) 2012; 2 AG Fowler (392_CR64) 2012; 2 392_CR32 S Lin (392_CR4) 2004 392_CR38 MM Wilde (392_CR17) 2013 T Brun (392_CR40) 2006; 314 GG La Guardia (392_CR89) 2012; 11 H Alhussien (392_CR161) 2010; 28 A Mondal (392_CR127) 2021; 57 AY Kitaev (392_CR55) 2003; 303 AG Fowler (392_CR62) 2009; 80 RE Blahut (392_CR122) 2008 L Slocombe (392_CR7) 2022; 5 I Devetak (392_CR20) 2005; 51 L Maccone (392_CR146) 2007; 77 392_CR121 GD Forney (392_CR112) 1973; 61 M Grassl (392_CR35) 2003; 14 JE Bourassa (392_CR172) 2021; 5 PAM Dirac (392_CR1) 1982 C Di Franco (392_CR12) 2013; 3 392_CR88 392_CR87 E Arikan (392_CR107) 2009; 55 BJ Brown (392_CR67) 2020; 2 BM Terhal (392_CR73) 2015; 87 392_CR86 G Smith (392_CR23) 2008; 321 D Leung (392_CR139) 2010; 56 S Sakata (392_CR124) 1988; 5 PJ Nadkarni (392_CR48) 2021; 20 392_CR92 CE Shannon (392_CR2) 1948; 27 392_CR91 392_CR90 C Galindo (392_CR47) 2021; 20 PJ Nadkarni (392_CR96) 2020; 102 392_CR95 392_CR94 WK Wootters (392_CR11) 1982; 299 M-H Hsieh (392_CR25) 2010; 56 392_CR125 C Lai (392_CR99) 2018; 64 M Horodecki (392_CR22) 2005; 436 A Ashikhmin (392_CR34) 2001; 47 S Bravyi (392_CR61) 2010; 51 SX Cui (392_CR28) 2016; 57 CH Bennett (392_CR150) 1999; 83 P Chaichanavong (392_CR158) 2006; 42 392_CR98 392_CR97 D Bruß (392_CR136) 2006; 4 E Knill (392_CR81) 1997; 55 392_CR119 392_CR118 392_CR6 B Greene (392_CR5) 2007 SS Garani (392_CR116) 2018; 106 392_CR113 AK Ekert (392_CR14) 1991; 67 R Gabrys (392_CR162) 2013; 59 392_CR143 392_CR142 392_CR141 SS Bullock (392_CR59) 2007; 40 392_CR140 TJ Richardson (392_CR115) 2001; 47 C Harney (392_CR30) 2022; 18 P Panteleev (392_CR52) 2021; 68 392_CR65 D Litinski (392_CR171) 2019; 3 AM Steane (392_CR33) 1996; 77 PJ Nadkarni (392_CR50) 2020; 1 AG Fowler (392_CR63) 2012; 86 NP Breuckmann (392_CR74) 2017; 2 WK Wootters (392_CR129) 2001; 1 T Jochym-O’Connor (392_CR72) 2021; 3 RJ Glauber (392_CR9) 1963; 130 AS Holevo (392_CR10) 1998; 53 AR Calderbank (392_CR31) 1996; 54 S Pirandola (392_CR29) 2019; 2 MN Kaynak (392_CR163) 2014; 32 R Raussendorf (392_CR130) 2012; 370 A Klappenecker (392_CR36) 2007; 463 DE Muller (392_CR110) 1954; 3 MM Wilde (392_CR147) 2012; 86 A Ketkar (392_CR85) 2006; 52 M Hayashi (392_CR145) 2016 392_CR132 JH Bae (392_CR117) 2019; 8 PJ Nadkarni (392_CR104) 2021; 20 A Barenco (392_CR134) 1995; 52 A Raina (392_CR77) 2020; 19 N Delfosse (392_CR69) 2014; 89 B Vasic (392_CR120) 2004 G Brassard (392_CR166) 1998; 120 392_CR84 A Bolt (392_CR173) 2016; 117 392_CR82 392_CR137 392_CR135 CH Bennett (392_CR15) 1993; 70 H Lu (392_CR76) 2019; 5 C Castelnovo (392_CR68) 2008; 78 392_CR165 RJ Glauber (392_CR8) 1963; 131 J Yard (392_CR27) 2011; 57 A Kumar Pati (392_CR13) 2000; 404 AG Fowler (392_CR155) 2011; 83 M-H Hsieh (392_CR43) 2009; 79 392_CR160 R Ahlswede (392_CR138) 2000; 46 392_CR45 L Liu (392_CR108) 2018; 67 392_CR44 M Hayashi (392_CR75) 2007; 76 PW Shor (392_CR79) 1995; 52 MB Hastings (392_CR149) 2009; 5 392_CR42 P Chaichanavong (392_CR157) 2006; 42 392_CR49 S Aaronson (392_CR131) 2004; 70 392_CR51 D Lidar (392_CR78) 2013 M-H Hsieh (392_CR26) 2008; 54 R Gallager (392_CR114) 1962; 8 A Kubica (392_CR71) 2023; 7 392_CR168 M Blaum (392_CR123) 1998; 44 392_CR154 392_CR153 P Huang (392_CR164) 2016; 62 392_CR152 392_CR151 J Fan (392_CR93) 2021; 69 392_CR56 C-Y Lai (392_CR41) 2013; 88 392_CR53 J Biamonte (392_CR133) 2017; 549 AM Steane (392_CR167) 1996; 452 PJ Nadkarni (392_CR39) 2021; 103 MM Wilde (392_CR148) 2012; 108 D Gottesman (392_CR16) 1999; 402 BJ Brown (392_CR66) 2016; 7 392_CR60 RW Hamming (392_CR3) 1950; 29 K Guenda (392_CR46) 2017; 86 J Garcia-Frias (392_CR106) 2005; 53 N Cai (392_CR21) 2004; 40 M Grassl (392_CR83) 1997; 56 392_CR159 S Bravyi (392_CR169) 2005; 71 |
| References_xml | – reference: HorodeckiMOppenheimJWinterAPartial quantum informationNature20054366736761:CAS:528:DC%2BD2MXmvFenu74%3D10.1038/nature03909 – reference: Xu J, Chaichanavong P, Burd G, Wu Z (2011) Tensor product codes containing an iterative code. US8086945B1 – reference: DelfosseNDecoding color codes by projection onto surface codesPhys Rev A2014891 – reference: BoltADuclos-CianciGPoulinDStaceTMFoliated quantum error-correcting codesPhys Rev Lett20161170705011:STN:280:DC%2BC2szkvVaksA%3D%3D10.1103/PhysRevLett.117.070501 – reference: MondalAGaraniSSEfficient parallel decoding architecture for cluster erasure correcting 2-D LDPC codes for 2-D data storageIEEE Trans Magn20215712116 – reference: SlocombeLSacchiMAl-KhaliliJAn open quantum systems approach to proton tunnelling in DNACommun Phys2022511091:CAS:528:DC%2BB38Xht1WgsL3L – reference: JohannessonRZigangirovKSFundamentals of convolutional coding2015AmsterdamWiley – reference: RaussendorfRKey ideas in quantum error correctionPhil. Trans. of The Royal Society20123704511456510.1098/rsta.2011.0494 – reference: Kobayashi H, Gall F, Nishimura H, Rotteler M (2010) Perfect quantum network communication based on classical network coding. In: Proceedings of the International Symposium on Information Theory – reference: Raina A (2019) Protocols for quantum information processing on graph states. PhD thesis, Indian Institute of Science, KA, India – reference: BravyiSHastingsMBMichalakisSTopological quantum order: stability under local perturbationsJ Math Phys2010519 – reference: ArikanEChannel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channelsIEEE Trans Inf Theory200955730513073 – reference: BrownBJNickersonNHBrowneDEFault-tolerant error correction with the gauge color codeNat Commun201671123021:CAS:528:DC%2BC28Xht1ygs7jM – reference: BreuckmannNPVuillotCCampbellEKrishnaATerhalBMHyperbolic and semi-hyperbolic surface codes for quantum storageQuant Sci Technol201723 – reference: CaiNWinterAYeungRWQuantum privacy and quantum wiretap channelsProbl Inf Transm2004404318336 – reference: FowlerAGWhitesideACMcInnesALRabbaniATopological code autotunePhys Rev X201224 – reference: GrasslMBethTPellizzariTCodes for the quantum erasure channelPhys Rev A199756133381:CAS:528:DyaK2sXksFSlsLk%3D10.1103/physreva.56.33 – reference: GottesmanDClass of quantum error-correcting codes saturating the quantum hamming boundPhys Rev A1996543186218681:CAS:528:DyaK28Xls1Oksbg%3D10.1103/physreva.54.1862 – reference: Nadkarni PJ, Garani SS (2019) Entanglement-assisted Quantum Reed-Solomon codes. In: IEEE Information Theory and Applications Workshop, San Diego, USA – reference: BennettCHBrassardGCrépeauCJozsaRPeresAWoottersWKTeleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channelsPhys Rev Lett1993701318951:STN:280:DC%2BC2sfpt1ygsA%3D%3D – reference: BiamonteJWittekPPancottiNRebentrostPWiebeNLloydSQuantum machine learningNature201754976711952021:CAS:528:DC%2BC2sXhsV2isLjI – reference: NadkarniPJRainaAGaraniSSModified graph-state codes for single-node recovery in quantum distributed storagePhys Rev A202010261:CAS:528:DC%2BB3MXivVOqs7o%3D – reference: AhlswedeRCaiNLiS-YYeungRWNetwork information flowIEEE Trans Inf Theory200046412041216 – reference: KnillELaflammeRTheory of quantum error-correcting codesPhys Rev A1997559009111:CAS:528:DyaK2sXhtVGru7g%3D10.1103/PhysRevA.55.900 – reference: AlhussienHMoonJAn iteratively decodable tensor product code with application to data storageIEEE J Sel Areas Commun201028222824010.1109/JSAC.2010.100212 – reference: HarneyCFletcherAIPirandolaSEnd-to-end capacities of hybrid quantum networksPhys Rev Appl20221811:CAS:528:DC%2BB38XitFSgs73J – reference: RainaANadkarniPJGaraniSSRecovery of quantum information from a node failure in a graphQuant Inf Process202019139 – reference: VasicBKurtasEMCoding and signal processing for magnetic recording systems2004New YorkCRC Press – reference: BennettCHShorPWSmolinJAThapliyalAVEntanglement-assisted classical capacity of noisy quantum channelsPhys Rev Lett1999831530811:CAS:528:DyaK1MXmsVersLw%3D – reference: SteaneAMError correcting codes in quantum theoryPhys Rev Lett19967757931:CAS:528:DyaK28XksFKku7k%3D – reference: YardJHaydenPDevetakIQuantum broadcast channelsIEEE Trans Inf Theory2011571071477162 – reference: Gottesman D (1997) Stabilizer codes and quantum error correction. Caltech. PhD thesis, Thesis. arXiv:quant-ph/9705052 – reference: Shao J, Zhou L, Sun Y (2018) Entanglement-assisted nonbinary quantum LDPC codes with finite field method. In: 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE. https://doi.org/10.1109/iciea.2018.8397697 – reference: Grassl M. Entanglement-assisted quantum communication beating the quantum singleton bound. arXiv:2007.01249 – reference: HsiehM-HDevetakIWinterAEntanglement-assisted capacity of quantum multiple-access channelsIEEE Trans Inf Theory200854730783090 – reference: LeungDOppenheimJWinterAQuantum network communication-the butterfly and beyondIEEE Trans Inf Theory201056734783490 – reference: Fan J, Hsieh M, Chen H, Chen H, Li Y (2018) Construction and performance of quantum burst error correction codes for correlated errors. In: 2018 IEEE International Symposium on Information Theory (ISIT), pp 2336–2340 . https://doi.org/10.1109/ISIT.2018.8437493 – reference: BlaumMBruckJVardyAInterleaving schemes for multidimensional cluster errorsIEEE Trans Inf Theory1998442730743 – reference: SteaneAMMultiple-particle interference and quantum error correctionProc R Soc Lond A19964522551257710.1098/rspa.1996.0166 – reference: Grassl M, Rotteler M (2005) Quantum block and convolutional codes from self-orthogonal product codes. In: Proceedings. International Symposium on Information Theory, 2005. ISIT 2005., pp. 1018–1022 . IEEE – reference: Berrou C, Glavieux A, Thitimajshima P (1993) Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1. In: Proceedings of ICC’93-IEEE International Conference on Communications, vol. 2, pp. 1064–1070. IEEE – reference: HsiehM-HWildeMMTrading classical communication, quantum communication, and entanglement in quantum Shannon theoryIEEE Trans Inf Theory201056947054730 – reference: Hu X, Srinivasa SG, Weathers A, Barndt R (2011) Trapping set based LDPC code design and related circuits, systems, and methods. Google Patents. US Patent App. 12/889,706 – reference: La GuardiaGGAsymmetric quantum Reed-Solomon and generalized Reed-Solomon codesQuant Inf Process201211259160410.1007/s11128-011-0269-3 – reference: KubicaADelfosseNEfficient color code decoders in d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ d \ge 2$$\end{document} dimensions from toric code decodersQuantum20237929 – reference: FowlerAGMariantoniMMartinisJMClelandANSurface codes: towards practical large-scale quantum computationPhys Rev A2012863 – reference: Nishimura H (2014) Quantum network coding and the current status of its studies. In: 2014 International Symposium on Information Theory and Its Applications, pp. 331–334. IEEE – reference: Yeo E, Yadav MK, Chaichanavong P, Burd G (2012) Multi-parity tensor-product code for data channel. US8321769B1, – reference: GuendaKJitmanSGulliverTAConstructions of good entanglement-assisted quantum error correcting codesDes Codes Crypt2017861121136 – reference: Bombín H (2013) An introduction to topological quantum codes. arXiv preprint arXiv:1311.0277 – reference: Nadkarni PJ, Garani SS (2018) Encoding of quantum stabilizer codes over qudits with d=pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=p^{k}$$\end{document}. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp 1–6. https://doi.org/10.1109/GLOCOMW.2018.8644150 – reference: DiracPAMThe principles of quantum mechanics1982OxfordOxford University Press – reference: Hayashi M, Iwama K, Nishimura H, Raymond R, Yamashita S (2007) Quantum network coding. In: STACS 2007: 24th Annual Symposium on Theoretical Aspects of Computer Science, Aachen, Germany, February 22-24, 2007. Proceedings 24, pp. 610–621. Springer – reference: AshikhminAKnillENonbinary quantum stabilizer codesIEEE Trans Inf Theory200147730653072 – reference: GrasslMRöttelerMBethTEfficient quantum circuits for non-qubit quantum error-correcting codesInt J Found Comput Sci20031405757775 – reference: Nadkarni PJ, Garani SS (2017) Entanglement assisted binary quantum tensor product codes. In: 2017 IEEE Information Theory Workshop (ITW), pp 219–223. https://doi.org/10.1109/ITW.2017.8277961 – reference: ChaichanavongPSiegelPHTensor-product parity codes: combination with constrained codes and application to perpendicular recordingIEEE Trans Magn200642221421910.1109/TMAG.2005.861747 – reference: BravyiSKitaevAUniversal quantum computation with ideal Clifford gates and noisy ancillasPhys Rev A2005711:CAS:528:DC%2BD2MXit1Khsrs%3D10.1103/PhysRevA.71.022316 – reference: KitaevAYFault-tolerant quantum computation by anyonsAnn Phys200330312301:CAS:528:DC%2BD3sXisl2hsg%3D%3D – reference: MullerDEApplication of Boolean algebra to switching circuit design and to error detectionTransactions of the IRE Professional Group on Electronic Computers19543612 – reference: Nadkarni PJ, Jayakumar P, Behera A, Garani SS (2023) Entanglement-assisted quantum Reed-Muller tensor product codes. arXiv:2303.08294 – reference: GalindoCHernandoFRuanoDEntanglement-assisted quantum error-correcting codes from RS codes and BCH codes with extension degree 2Quant Inf Process2021205158 – reference: WolfJOn codes derivable from the tensor product of check matricesIEEE Trans Inf Theory196511228128410.1109/tit.1965.1053771 – reference: Galindo C, Hernando F, Matsumoto R, Ruano D (2019) Entanglement-assisted quantum error-correcting codes over arbitrary finite fields. Quant Inf Process 18(4). https://doi.org/10.1007/s11128-019-2234-5 – reference: LinSCostelloDJError control coding20042USAPrentice-Hall Inc – reference: NadkarniPJGaraniSSNon-binary entanglement-assisted stabilizer codesQuant Inf Process2021208256 – reference: Bengtsson I, Zyczkowski K (2017) Geometry of Quantum States, 2nd edn. Cambridge University Press, USA . https://doi.org/10.1017/9781139207010 – reference: HastingsMBSuperadditivity of communication capacity using entangled inputsNat Phys2009542552571:CAS:528:DC%2BD1MXktVKjurw%3D – reference: GreeneBThe fabric of the cosmos: Space, time, and the texture of reality2007NY, USAKnopf Doubleday Publishing Group – reference: Gottesman D (1998) The Heisenberg representation of quantum computers. arXiv preprint quant-ph/9807006 – reference: MacconeLEntropic information-disturbance tradeoffEurophys Lett200777440002 – reference: BrassardGBraunsteinSLCleveRTeleportation as a quantum computationPhysica D19981201–2434710.1016/s0167-2789(98)00043-8 – reference: Grassl M, Geiselmann W, Beth T (1999) Quantum Reed-Solomon codes. In: Proceedings of the 13th International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC-13, pp. 231–244. Springer, Berlin – reference: HayashiMPrior entanglement between senders enables perfect quantum network coding with modificationPhys Rev A2007764 – reference: PirandolaSEnd-to-end capacities of a quantum communication networkCommun Phys20192151 – reference: Jochym-O’ConnorTYoderTJFour-dimensional toric code with non-clifford transversal gatesPhys Rev Res202131 – reference: ShorPWScheme for reducing decoherence in quantum computer memoryPhys Rev A1995522493249610.1103/PhysRevA.52.R2493 – reference: GabrysRYaakobiEDolecekLGraded bit-error-correcting codes with applications to flash memoryIEEE Trans Inf Theory20135942315232710.1109/tit.2012.2234207 – reference: Greenberger DM, Horne MA, Zeilinger A (1989) Going beyond Bell’s theorem. Bell’s theorem, quantum theory and conceptions of the universe, 69–72 – reference: WildeMMHaydenPGuhaSInformation trade-offs for optical quantum communicationPhys Rev Lett201210814 – reference: CampbellETAnwarHBrowneDEMagic-state distillation in all prime dimensions using quantum Reed-Muller codesPhys Rev X201221:CAS:528:DC%2BC3sXit1Cmu7Y%3D10.1103/PhysRevX.2.041021 – reference: HolevoASQuantum coding theoremsRuss Math Surv1998531295 – reference: Wolf JK (2006) An introduction to tensor product codes and applications to digital storage systems. In: 2006 IEEE Information Theory Workshop - ITW ’06 Chengdu, pp. 6–10. https://doi.org/10.1109/ITW2.2006.323741 – reference: CastelnovoCChamonCTopological order in a three-dimensional toric code at finite temperaturePhys Rev B20087815 – reference: Wilde MM (2008) Quantum coding with entanglement. PhD thesis, University of Southern California, CA, USA – reference: Aly SA (2008) Asymmetric quantum BCH codes. In: 2008 International Conference on Computer Engineering Systems, pp 157–162. https://doi.org/10.1109/ICCES.2008.4772987 – reference: MajumdarMGGaraniSSQuantum network recovery from multinode failure using network encoding with GHZ states on higher-order butterfly networksQuantum Inf Process20212017 – reference: Aharonov D, Ben-Or M (1997) Fault-tolerant quantum computation with constant error. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing. STOC ’97, pp. 176–188. Association for Computing Machinery, New York, NY, USA . https://doi.org/10.1145/258533.258579 – reference: BarencoABennettCHCleveRDiVincenzoDPMargolusNShorPSleatorTSmolinJAWeinfurterHElementary gates for quantum computationPhys Rev A199552534571:CAS:528:DyaK2MXpt1KqurY%3D – reference: NadkarniPJGaraniSSEncoding of nonbinary entanglement-unassisted and assisted stabilizer codesIEEE Trans Quant Eng20212122 – reference: BrunTDevetakIHsiehM-HCorrecting quantum errors with entanglementScience200631457984364391:CAS:528:DC%2BD28XhtVyqtr3F – reference: Giuliano L, Guardia Reginaldo P, Lavor C (2010) Nonbinary quantum Reed-Solomon codes. Int J Pure Appl Math 65(1) – reference: Richardson T (1998) Error floors of LDPC codes. In: Proceedings of the Annual Allerton Conference on Communication Control and Computing, vol. 41, pp. 1426–1435 (2003). The University; – reference: Fan J, Li Y, Hsieh M-H, Chen H (2016) On quantum tensor product codes. arXiv preprint arXiv:1605.09598 – reference: LitinskiDMagic state distillation: Not as costly as you thinkQuantum2019320510.22331/q-2019-12-02-205 – reference: Fowler AG (2013) Minimum weight perfect matching of fault-tolerant topological quantum error correction in average O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm O}(1) $$\end{document} parallel time. arXiv preprint arXiv:1307.1740 – reference: Nadkarni PJ, Raina A, Srinivasa SG (2017) Recovery of distributed quantum information using graph states from a node failure. In: 2017 IEEE Globecom Workshops (GC Wkshps). IEEE. https://doi.org/10.1109/glocomw.2017.8269075 – reference: Panteleev P, Kalachev G (2022) Asymptotically good quantum and locally testable classical LDPC codes. In: Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pp 375–388 – reference: Bravyi S, Duclos-Cianci G, Poulin D, Suchara M (2012) Subsystem surface codes with three-qubit check operators. arXiv preprint arXiv:1207.1443 – reference: PiveteauCRenesJMQuantum message-passing algorithm for optimal and efficient decodingQuantum20226784 – reference: EkertAKQuantum cryptography based on Bell’s theoremPhys Rev Lett19916766611:STN:280:DC%2BC2sfptVarsg%3D%3D – reference: Kumar PatiABraunsteinSLImpossibility of deleting an unknown quantum stateNature20004046774164165 – reference: Raveendran N, Nadkarni PJ, Garani SS, Vasić B (2017) Stochastic resonance decoding for quantum LDPC codes. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE – reference: KaynakMNKhayatPRParthasarathySClassification codes for soft information generation from hard flash readsIEEE J Sel Areas Commun201432589289910.1109/jsac.2014.140509 – reference: LidarDBrunTAQuantum error correction20132CambridgeCambridge University Press – reference: GlauberRJThe quantum theory of optical coherencePhys Rev196313062529 – reference: WoottersWKZurekWHA single quantum cannot be clonedNature19822998028031:CAS:528:DyaL3sXnvVCgsA%3D%3D – reference: ShannonCEA mathematical theory of communicationBell Syst Tech J1948273379423 – reference: NielsenMAChuangILQuantum Computation and Quantum Information: 10th2011AnniversaryUSACambridge University Press – reference: Riguang L, Zhi M. Non-binary entanglement-assisted stabilizer quantum codes. http://arxiv.org/abs/1105.5872v1 – reference: BaeJHAbotablALinH-PSongK-BLeeJAn overview of channel coding for 5G NR cellular communicationsAPSIPA Transactions on Signal and Information Processing2019817 – reference: RichardsonTJUrbankeRLEfficient encoding of low-density parity-check codesIEEE Trans Inf Theory2001472638656 – reference: Di FrancoCPaternostroMA no-go result on the purification of quantum statesNat Sci Rep2013311387 – reference: BennettCHDiVincenzoDPSmolinJAWoottersWKMixed-state entanglement and quantum error correctionPhys Rev A199654538241:CAS:528:DyaK28XmvVOmsrc%3D – reference: NadkarniPJGaraniSSQuantum error correction architecture for qudit stabilizer codesPhys Rev A202110341:CAS:528:DC%2BB3MXhtVyitbvO – reference: LuHLiZ-DYinX-FZhangRFangX-XLiLLiuN-LXuFChenY-APanJ-WExperimental quantum network codingnpj Quant Inf20195189 – reference: Richardson T, Urbanke R (2008) Modern Coding Theory. Cambridge University Press, UK . https://doi.org/10.1017/CBO9780511791338 – reference: WoottersWKEntanglement of formation and concurrenceQuantum Inf Comput2001112744 – reference: HuangPYaakobiEUchikawaHSiegelPHBinary linear locally repairable codesIEEE Trans Inf Theory201662116268628310.1109/TIT.2016.2605119 – reference: NadkarniPJGaraniSSEntanglement-assisted Reed-Solomon codes over qudits: theory and architectureQuant Inf Process202120168 – reference: Kovalev AA, Pryadko LP (2012) Improved quantum hypergraph-product LDPC codes. In: 2012 IEEE International Symposium on Information Theory Proceedings, pp. 348–352. IEEE – reference: BourassaJEAlexanderRNVasmerMPatilATzitrinIMatsuuraTSuDBaragiolaBQGuhaSDauphinaisGSabapathyKKMenicucciNCDhandIBlueprint for a scalable photonic fault-tolerant quantum computerQuantum2021539210.22331/q-2021-02-04-392 – reference: Calderbank AR, Rains EM, Shor PW, Sloane NJA (1997) Quantum error correction via codes over GF(4). In: Proceedings of IEEE International Symposium on Information Theory – reference: Weinert F (2009) Davisson—Germer experiment. In: Compendium of Quantum Physics, pp. 150–152. Springer, Berlin, Heidelberg – reference: SchumacherBWestmorelandMDOptimal signal ensemblesPhys Rev A2001632 – reference: Nadkarni PJ, Garani SS (2021) Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F}_{p}$$\end{document}-linear and Fpm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F}_{p^m}$$\end{document}-linear qudit codes from dual-containing classical codes. IEEE Trans Quant Eng 2 – reference: KitaevAAnyons in an exactly solved model and beyondAnn Phys2006321121111:CAS:528:DC%2BD28XjvVeisA%3D%3D – reference: CalderbankARShorPWGood quantum error-correcting codes existPhys Rev A199654210981:CAS:528:DyaK28XltVeiu7c%3D – reference: CuiSXFreedmanMHSattathOStongRMintonGQuantum max-flow/min-cutJ Math Phys2016576 – reference: MondalAGaraniSSEfficient hardware architectures for 2-D BCH codes in the frequency domain for two-dimensional data storage applicationsIEEE Trans Magn2021575114 – reference: GottesmanDChuangILDemonstrating the viability of universal quantum computation using teleportation and single-qubit operationsNature199940267603903931:CAS:528:DyaK1MXnvVyktLc%3D – reference: FowlerAGTwo-dimensional color-code quantum computationPhys Rev A2011834 – reference: LaiCAshikhminALinear programming bounds for entanglement-assisted quantum error-correcting codes by split weight enumeratorsIEEE Trans Inf Theory201864162263910.1109/TIT.2017.2711601 – reference: Hurley T, Hurley D, Hurley B. Entanglement-assisted quantum error-correcting codes from units. arXiv:1806.10875v1 – reference: WildeMMHaydenPGuhaSQuantum trade-off coding for bosonic communicationPhys Rev A2012866 – reference: LaiC-YBrunTAEntanglement increases the error-correcting ability of quantum error-correcting codesPhys Rev A2013881 – reference: HammingRWError detecting and error correcting codesBell Syst Tech J1950292147160 – reference: LiuLYanYLingCWuXConstruction of capacity-achieving lattice codes: polar latticesIEEE Trans Commun2018672915928 – reference: AaronsonSGottesmanDImproved simulation of stabilizer circuitsPhys Rev A2004701:CAS:528:DC%2BD2cXhtVGhtL%2FJ10.1103/PhysRevA.70.052328 – reference: BlahutREAlgebraic codes on lines, planes, and curves: An engineering approach2008UKCambridge University Press – reference: HayashiMQuantum Information Theory20162JapanSpringer – reference: FanJLiJWangJWeiZHsiehM-HAsymmetric quantum concatenated and tensor product codes with large Z-distancesIEEE Trans Commun202169639713983 – reference: Garcia-FriasJZhaoYNear-Shannon/Slepian-Wolf performance for unknown correlated sources over AWGN channelsIEEE Trans Commun2005534555559 – reference: BrußDLewensteinMSENASenUD’ARIANOGMMacchiavelloCDense coding with multipartite quantum statesInternational Journal of Quantum Information2006403415428 – reference: SmithGYardJQuantum communication with zero-capacity channelsScience20083215897181218151:CAS:528:DC%2BD1cXhtFCrtL3J – reference: Nadkarni P (2021) Entanglement-assisted additive qudit stabilizer codes. PhD thesis, Indian Institute of Science, KA, India – reference: DennisEKitaevALandahlAPreskillJTopological quantum memoryJ Math Phys200243944524505 – reference: GallagerRLow-density parity-check codesIRE Transactions on Information Theory1962812128 – reference: Kitaev A (2006) Protected qubit based on a superconducting current mirror. arXiv preprint arXiv:cond-mat/0609441 – reference: SakataSFinding a minimal set of linear recurring relations capable of generating a given finite two-dimensional arrayJ Symb Comput198853321337 – reference: AbeyesingheAHaydenPGeneralized remote state preparation: trading cbits, qubits, and ebits in quantum communicationPhys Rev A2003686 – reference: DevetakIThe private classical capacity and quantum capacity of a quantum channelIEEE Trans Inf Theory20055114455 – reference: Luo L, Ma Z, Wei Z, Leng R (2016) Non-binary entanglement-assisted quantum stabilizer codes. Sci Chin Inf Sci 60(4). https://doi.org/10.1007/s11432-015-0932-y – reference: ForneyGDThe Viterbi algorithmProc IEEE1973613268278 – reference: GlauberRJCoherent and incoherent states of the radiation fieldPhys Rev196313162766 – reference: PanteleevPKalachevGQuantum LDPC codes with almost linear minimum distanceIEEE Trans Inf Theory2021681213229 – reference: TerhalBMQuantum error correction for quantum memoriesRev Mod Phys2015872307 – reference: GaraniSSDolecekLBarryJSalaFVasićBSignal processing and coding techniques for 2-D magnetic recording: An overviewProc IEEE20181062286318 – reference: Gheorghiu V, Looi SY, Griffiths RB (2010) Location of quantum information in additive graph codes. Physical Review A 81(3) . https://doi.org/10.1103/physreva.81.032326 – reference: WildeMMQuantum information theory2013CambridgeCambridge University Press10.1017/CBO9781139525343 – reference: FowlerAGStephensAMGroszkowskiPHigh-threshold universal quantum computation on the surface codePhys Rev A2009805 – reference: Chilappagari SK, Sankaranarayanan S, Vasic B (2006) Error floors of LDPC codes on the binary symmetric channel. In: 2006 IEEE International Conference on Communications, vol. 3, pp. 1089–1094. IEEE – reference: KlappeneckerASarvepalliPKOn subsystem codes beating the quantum hamming or singleton boundProc R Soc A Math Phys Eng Sci2007463208728872905 – reference: BrownBJRobertsSUniversal fault-tolerant measurement-based quantum computationPhys Rev Res2020231:CAS:528:DC%2BB3cXitV2gsLrK – reference: BullockSSBrennenGKQudit surface codes and gauge theory with finite cyclic groupsJ Phys A: Math Theor200740133481 – reference: NadkarniPJGaraniSSCoding analog of superadditivity using entanglement-assisted quantum tensor product codes over Fpk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F} _{\rm p ^k}$$\end{document}IEEE Trans Quant Eng20201117 – reference: DelfosseNNickersonNHAlmost-linear time decoding algorithm for topological codesQuantum20215595 – reference: Raina A, Srinivasa SG (2014) Quantum communication over bit flip channels using entangled bipartite and tripartite states. In: 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1368–1375 . IEEE – reference: KetkarAKlappeneckerAKumarSSarvepalliPKNonbinary stabilizer codes over finite fieldsIEEE Trans Inf Theory200652114892491410.1109/tit.2006.883612 – reference: Varnava M, Browne DE, Rudolph T (2006) Loss tolerance in one-way quantum computation via counterfactual error correction. Phys Rev Lett 97(12). https://doi.org/10.1103/physrevlett.97.120501 – reference: HsiehM-HBrunTADevetakIEntanglement-assisted quantum quasicyclic low-density parity-check codesPhys Rev A2009793 – reference: Roy S, Srinivasa SG (2015) Two dimensional error-correcting codes using finite field Fourier transform. In: 2015 IEEE Information Theory Workshop-Fall (ITW), pp. 119–123. IEEE – reference: ChaichanavongPSiegelPHTensor-product parity code for magnetic recordingIEEE Trans Magn200642235035210.1109/TMAG.2005.861043 – volume: 299 start-page: 802 year: 1982 ident: 392_CR11 publication-title: Nature doi: 10.1038/299802a0 – volume: 67 start-page: 661 issue: 6 year: 1991 ident: 392_CR14 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.67.661 – volume: 47 start-page: 3065 issue: 7 year: 2001 ident: 392_CR34 publication-title: IEEE Trans Inf Theory doi: 10.1109/18.959288 – volume: 61 start-page: 268 issue: 3 year: 1973 ident: 392_CR112 publication-title: Proc IEEE doi: 10.1109/PROC.1973.9030 – ident: 392_CR154 doi: 10.1017/CBO9781139034807.021 – ident: 392_CR95 doi: 10.1109/glocomw.2017.8269075 – volume: 321 start-page: 2 issue: 1 year: 2006 ident: 392_CR57 publication-title: Ann Phys doi: 10.1016/j.aop.2005.10.005 – volume: 4 start-page: 415 issue: 03 year: 2006 ident: 392_CR136 publication-title: International Journal of Quantum Information doi: 10.1142/S0219749906001888 – volume-title: The fabric of the cosmos: Space, time, and the texture of reality year: 2007 ident: 392_CR5 – volume: 404 start-page: 164 issue: 6774 year: 2000 ident: 392_CR13 publication-title: Nature – ident: 392_CR152 doi: 10.1109/ICC.2017.7996747 – volume: 11 start-page: 591 issue: 2 year: 2012 ident: 392_CR89 publication-title: Quant Inf Process doi: 10.1007/s11128-011-0269-3 – ident: 392_CR141 – ident: 392_CR32 – ident: 392_CR103 – ident: 392_CR165 doi: 10.1109/ITW2.2006.323741 – ident: 392_CR38 doi: 10.1109/TQE.2021.3078152 – volume: 5 start-page: 89 issue: 1 year: 2019 ident: 392_CR76 publication-title: npj Quant Inf doi: 10.1038/s41534-019-0207-2 – volume: 2 issue: 3 year: 2017 ident: 392_CR74 publication-title: Quant Sci Technol – volume: 314 start-page: 436 issue: 5798 year: 2006 ident: 392_CR40 publication-title: Science doi: 10.1126/science.1131563 – volume: 89 issue: 1 year: 2014 ident: 392_CR69 publication-title: Phys Rev A doi: 10.1103/PhysRevA.89.012317 – volume: 70 start-page: 1895 issue: 13 year: 1993 ident: 392_CR15 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.70.1895 – volume: 87 start-page: 307 issue: 2 year: 2015 ident: 392_CR73 publication-title: Rev Mod Phys doi: 10.1103/RevModPhys.87.307 – volume-title: Fundamentals of convolutional coding year: 2015 ident: 392_CR111 doi: 10.1002/9781119098799 – volume: 70 year: 2004 ident: 392_CR131 publication-title: Phys Rev A doi: 10.1103/PhysRevA.70.052328 – volume: 44 start-page: 730 issue: 2 year: 1998 ident: 392_CR123 publication-title: IEEE Trans Inf Theory doi: 10.1109/18.661516 – volume: 5 start-page: 255 issue: 4 year: 2009 ident: 392_CR149 publication-title: Nat Phys doi: 10.1038/nphys1224 – volume: 27 start-page: 379 issue: 3 year: 1948 ident: 392_CR2 publication-title: Bell Syst Tech J doi: 10.1002/j.1538-7305.1948.tb01338.x – volume: 57 start-page: 1 issue: 5 year: 2021 ident: 392_CR126 publication-title: IEEE Trans Magn doi: 10.1109/TMAG.2021.3060807 – ident: 392_CR51 doi: 10.1109/ISIT.2012.6284206 – volume: 43 start-page: 4452 issue: 9 year: 2002 ident: 392_CR58 publication-title: J Math Phys doi: 10.1063/1.1499754 – ident: 392_CR44 – volume: 42 start-page: 350 issue: 2 year: 2006 ident: 392_CR158 publication-title: IEEE Trans Magn doi: 10.1109/TMAG.2005.861043 – volume: 7 start-page: 929 year: 2023 ident: 392_CR71 publication-title: Quantum doi: 10.22331/q-2023-02-21-929 – volume: 14 start-page: 757 issue: 05 year: 2003 ident: 392_CR35 publication-title: Int J Found Comput Sci doi: 10.1142/S0129054103002011 – volume: 2 issue: 3 year: 2020 ident: 392_CR67 publication-title: Phys Rev Res doi: 10.1103/PhysRevResearch.2.033305 – volume: 32 start-page: 892 issue: 5 year: 2014 ident: 392_CR163 publication-title: IEEE J Sel Areas Commun doi: 10.1109/jsac.2014.140509 – volume: 20 start-page: 1 year: 2021 ident: 392_CR48 publication-title: Quant Inf Process doi: 10.1007/s11128-020-02935-8 – volume: 3 start-page: 205 year: 2019 ident: 392_CR171 publication-title: Quantum doi: 10.22331/q-2019-12-02-205 – volume: 56 start-page: 33 issue: 1 year: 1997 ident: 392_CR83 publication-title: Phys Rev A doi: 10.1103/physreva.56.33 – ident: 392_CR87 doi: 10.1109/ICCES.2008.4772987 – ident: 392_CR86 doi: 10.1103/physrevlett.97.120501 – volume: 54 start-page: 3078 issue: 7 year: 2008 ident: 392_CR26 publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.2008.924726 – ident: 392_CR94 doi: 10.1109/ITW.2017.8277961 – volume: 5 start-page: 321 issue: 3 year: 1988 ident: 392_CR124 publication-title: J Symb Comput doi: 10.1016/S0747-7171(88)80033-6 – ident: 392_CR91 doi: 10.1007/s11432-015-0932-y – volume: 40 start-page: 318 issue: 4 year: 2004 ident: 392_CR21 publication-title: Probl Inf Transm doi: 10.1007/s11122-005-0002-x – volume: 102 issue: 6 year: 2020 ident: 392_CR96 publication-title: Phys Rev A doi: 10.1103/PhysRevA.102.062430 – volume: 1 start-page: 27 issue: 1 year: 2001 ident: 392_CR129 publication-title: Quantum Inf Comput – ident: 392_CR168 doi: 10.1145/258533.258579 – volume: 303 start-page: 2 issue: 1 year: 2003 ident: 392_CR55 publication-title: Ann Phys doi: 10.1016/S0003-4916(02)00018-0 – volume-title: Quantum Computation and Quantum Information: 10th year: 2011 ident: 392_CR128 – volume: 53 start-page: 1295 year: 1998 ident: 392_CR10 publication-title: Russ Math Surv doi: 10.1070/RM1998v053n06ABEH000091 – ident: 392_CR60 doi: 10.26421/QIC13.11-12-4 – volume: 88 issue: 1 year: 2013 ident: 392_CR41 publication-title: Phys Rev A – volume: 5 start-page: 109 issue: 1 year: 2022 ident: 392_CR7 publication-title: Commun Phys doi: 10.1038/s42005-022-00881-8 – volume: 40 start-page: 3481 issue: 13 year: 2007 ident: 392_CR59 publication-title: J Phys A: Math Theor doi: 10.1088/1751-8113/40/13/013 – volume: 452 start-page: 2551 year: 1996 ident: 392_CR167 publication-title: Proc R Soc Lond A doi: 10.1098/rspa.1996.0166 – volume: 131 start-page: 2766 issue: 6 year: 1963 ident: 392_CR8 publication-title: Phys Rev doi: 10.1103/PhysRev.131.2766 – ident: 392_CR151 doi: 10.1017/9781139207010 – ident: 392_CR53 doi: 10.1145/3519935.3520017 – ident: 392_CR135 doi: 10.1007/978-94-017-0849-4_10 – volume: 321 start-page: 1812 issue: 5897 year: 2008 ident: 392_CR23 publication-title: Science doi: 10.1126/science.1162242 – volume-title: Quantum Information Theory year: 2016 ident: 392_CR145 – volume: 77 start-page: 40002 issue: 4 year: 2007 ident: 392_CR146 publication-title: Europhys Lett doi: 10.1209/0295-5075/77/40002 – volume: 103 issue: 4 year: 2021 ident: 392_CR39 publication-title: Phys Rev A doi: 10.1103/PhysRevA.103.042420 – volume: 67 start-page: 915 issue: 2 year: 2018 ident: 392_CR108 publication-title: IEEE Trans Commun doi: 10.1109/TCOMM.2018.2876113 – ident: 392_CR132 – volume: 7 start-page: 12302 issue: 1 year: 2016 ident: 392_CR66 publication-title: Nat Commun doi: 10.1038/ncomms12302 – volume: 64 start-page: 622 issue: 1 year: 2018 ident: 392_CR99 publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.2017.2711601 – volume: 1 start-page: 1 year: 2020 ident: 392_CR50 publication-title: IEEE Trans Quant Eng doi: 10.1109/TQE.2020.3027035 – volume: 52 start-page: 2493 year: 1995 ident: 392_CR79 publication-title: Phys Rev A doi: 10.1103/PhysRevA.52.R2493 – volume: 56 start-page: 4705 issue: 9 year: 2010 ident: 392_CR25 publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.2010.2054532 – ident: 392_CR121 – ident: 392_CR92 doi: 10.1109/ISIT.2018.8437493 – volume: 54 start-page: 3824 issue: 5 year: 1996 ident: 392_CR18 publication-title: Phys Rev A doi: 10.1103/PhysRevA.54.3824 – ident: 392_CR118 – volume: 2 year: 2012 ident: 392_CR170 publication-title: Phys Rev X doi: 10.1103/PhysRevX.2.041021 – volume: 86 issue: 6 year: 2012 ident: 392_CR147 publication-title: Phys Rev A doi: 10.1103/PhysRevA.86.062306 – volume: 55 start-page: 900 year: 1997 ident: 392_CR81 publication-title: Phys Rev A doi: 10.1103/PhysRevA.55.900 – volume: 54 start-page: 1862 issue: 3 year: 1996 ident: 392_CR80 publication-title: Phys Rev A doi: 10.1103/physreva.54.1862 – volume: 19 start-page: 1 year: 2020 ident: 392_CR77 publication-title: Quant Inf Process doi: 10.1007/s11128-019-2494-0 – ident: 392_CR160 – volume: 78 issue: 15 year: 2008 ident: 392_CR68 publication-title: Phys Rev B doi: 10.1103/PhysRevB.78.155120 – volume: 3 start-page: 6 year: 1954 ident: 392_CR110 publication-title: Transactions of the IRE Professional Group on Electronic Computers doi: 10.1109/IREPGELC.1954.6499441 – ident: 392_CR109 doi: 10.1017/CBO9780511791338 – ident: 392_CR6 doi: 10.1007/978-3-540-70626-7_45 – volume: 68 start-page: 213 issue: 1 year: 2021 ident: 392_CR52 publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.2021.3119384 – volume: 56 start-page: 3478 issue: 7 year: 2010 ident: 392_CR139 publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.2010.2048442 – ident: 392_CR97 doi: 10.1109/iciea.2018.8397697 – ident: 392_CR49 doi: 10.1109/ISIT.2005.1523493 – ident: 392_CR45 – volume: 63 issue: 2 year: 2001 ident: 392_CR19 publication-title: Phys Rev A doi: 10.1103/PhysRevA.63.022308 – volume: 2 issue: 4 year: 2012 ident: 392_CR64 publication-title: Phys Rev X – volume: 3 issue: 1 year: 2021 ident: 392_CR72 publication-title: Phys Rev Res – volume: 57 start-page: 1 issue: 12 year: 2021 ident: 392_CR127 publication-title: IEEE Trans Magn doi: 10.1109/TMAG.2021.3119723 – volume: 370 start-page: 4511 year: 2012 ident: 392_CR130 publication-title: Phil. Trans. of The Royal Society doi: 10.1098/rsta.2011.0494 – ident: 392_CR88 – volume: 86 start-page: 121 issue: 1 year: 2017 ident: 392_CR46 publication-title: Des Codes Crypt doi: 10.1007/s10623-017-0330-z – volume: 51 start-page: 44 issue: 1 year: 2005 ident: 392_CR20 publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.2004.839515 – volume-title: Algebraic codes on lines, planes, and curves: An engineering approach year: 2008 ident: 392_CR122 – volume-title: Quantum information theory year: 2013 ident: 392_CR17 doi: 10.1017/CBO9781139525343 – volume: 6 start-page: 784 year: 2022 ident: 392_CR54 publication-title: Quantum doi: 10.22331/q-2022-08-23-784 – ident: 392_CR159 – ident: 392_CR153 doi: 10.1103/physreva.81.032326 – volume: 3 start-page: 1387 issue: 1 year: 2013 ident: 392_CR12 publication-title: Nat Sci Rep – volume: 2 start-page: 51 issue: 1 year: 2019 ident: 392_CR29 publication-title: Commun Phys doi: 10.1038/s42005-019-0147-3 – volume: 83 issue: 4 year: 2011 ident: 392_CR155 publication-title: Phys Rev A doi: 10.1103/PhysRevA.83.042310 – volume: 57 start-page: 7147 issue: 10 year: 2011 ident: 392_CR27 publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.2011.2165811 – volume: 8 start-page: 17 year: 2019 ident: 392_CR117 publication-title: APSIPA Transactions on Signal and Information Processing – volume: 29 start-page: 147 issue: 2 year: 1950 ident: 392_CR3 publication-title: Bell Syst Tech J doi: 10.1002/j.1538-7305.1950.tb00463.x – volume: 86 issue: 3 year: 2012 ident: 392_CR63 publication-title: Phys Rev A doi: 10.1103/PhysRevA.86.032324 – volume: 53 start-page: 555 issue: 4 year: 2005 ident: 392_CR106 publication-title: IEEE Trans Commun doi: 10.1109/TCOMM.2005.844959 – ident: 392_CR65 – volume: 549 start-page: 195 issue: 7671 year: 2017 ident: 392_CR133 publication-title: Nature doi: 10.1038/nature23474 – volume: 52 start-page: 3457 issue: 5 year: 1995 ident: 392_CR134 publication-title: Phys Rev A doi: 10.1103/PhysRevA.52.3457 – volume: 83 start-page: 3081 issue: 15 year: 1999 ident: 392_CR150 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.83.3081 – volume: 20 start-page: 1 year: 2021 ident: 392_CR144 publication-title: Quantum Inf Process doi: 10.1007/s11128-021-03350-3 – volume: 5 start-page: 392 year: 2021 ident: 392_CR172 publication-title: Quantum doi: 10.22331/q-2021-02-04-392 – volume: 402 start-page: 390 issue: 6760 year: 1999 ident: 392_CR16 publication-title: Nature doi: 10.1038/46503 – ident: 392_CR84 doi: 10.1007/3-540-46796-3_23 – ident: 392_CR82 doi: 10.1109/18.681315 – volume: 55 start-page: 3051 issue: 7 year: 2009 ident: 392_CR107 publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.2009.2021379 – volume: 130 start-page: 2529 issue: 6 year: 1963 ident: 392_CR9 publication-title: Phys Rev doi: 10.1103/PhysRev.130.2529 – volume-title: Coding and signal processing for magnetic recording systems year: 2004 ident: 392_CR120 doi: 10.1201/9780203490310 – volume: 71 year: 2005 ident: 392_CR169 publication-title: Phys Rev A doi: 10.1103/PhysRevA.71.022316 – ident: 392_CR140 – volume-title: Error control coding year: 2004 ident: 392_CR4 – ident: 392_CR102 – volume: 62 start-page: 6268 issue: 11 year: 2016 ident: 392_CR164 publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.2016.2605119 – volume: 54 start-page: 1098 issue: 2 year: 1996 ident: 392_CR31 publication-title: Phys Rev A doi: 10.1103/PhysRevA.54.1098 – volume: 52 start-page: 4892 issue: 11 year: 2006 ident: 392_CR85 publication-title: IEEE Trans Inf Theory doi: 10.1109/tit.2006.883612 – volume: 68 issue: 6 year: 2003 ident: 392_CR24 publication-title: Phys Rev A doi: 10.1103/PhysRevA.68.062319 – volume: 2 start-page: 1 year: 2021 ident: 392_CR37 publication-title: IEEE Trans Quant Eng – volume: 8 start-page: 21 issue: 1 year: 1962 ident: 392_CR114 publication-title: IRE Transactions on Information Theory doi: 10.1109/TIT.1962.1057683 – volume: 20 start-page: 158 issue: 5 year: 2021 ident: 392_CR47 publication-title: Quant Inf Process doi: 10.1007/s11128-021-03101-4 – volume: 5 start-page: 595 year: 2021 ident: 392_CR70 publication-title: Quantum doi: 10.22331/q-2021-12-02-595 – volume: 57 issue: 6 year: 2016 ident: 392_CR28 publication-title: J Math Phys – volume: 46 start-page: 1204 issue: 4 year: 2000 ident: 392_CR138 publication-title: IEEE Trans Inf Theory doi: 10.1109/18.850663 – ident: 392_CR125 doi: 10.1109/ITWF.2015.7360746 – volume: 436 start-page: 673 year: 2005 ident: 392_CR22 publication-title: Nature doi: 10.1038/nature03909 – volume: 77 start-page: 793 issue: 5 year: 1996 ident: 392_CR33 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.77.793 – volume: 80 issue: 5 year: 2009 ident: 392_CR62 publication-title: Phys Rev A doi: 10.1103/PhysRevA.80.052312 – volume: 42 start-page: 214 issue: 2 year: 2006 ident: 392_CR157 publication-title: IEEE Trans Magn doi: 10.1109/TMAG.2005.861747 – volume: 28 start-page: 228 issue: 2 year: 2010 ident: 392_CR161 publication-title: IEEE J Sel Areas Commun doi: 10.1109/JSAC.2010.100212 – volume: 76 issue: 4 year: 2007 ident: 392_CR75 publication-title: Phys Rev A doi: 10.1103/PhysRevA.76.040301 – ident: 392_CR105 – ident: 392_CR98 doi: 10.1109/GLOCOMW.2018.8644150 – volume: 11 start-page: 281 issue: 2 year: 1965 ident: 392_CR156 publication-title: IEEE Trans Inf Theory doi: 10.1109/tit.1965.1053771 – volume: 20 start-page: 256 issue: 8 year: 2021 ident: 392_CR104 publication-title: Quant Inf Process doi: 10.1007/s11128-021-03174-1 – volume: 47 start-page: 638 issue: 2 year: 2001 ident: 392_CR115 publication-title: IEEE Trans Inf Theory doi: 10.1109/18.910579 – volume: 18 issue: 1 year: 2022 ident: 392_CR30 publication-title: Phys Rev Appl doi: 10.1103/PhysRevApplied.18.014012 – volume: 79 issue: 3 year: 2009 ident: 392_CR43 publication-title: Phys Rev A doi: 10.1103/PhysRevA.79.032340 – ident: 392_CR113 doi: 10.1109/ICC.1993.397441 – ident: 392_CR42 – volume: 69 start-page: 3971 issue: 6 year: 2021 ident: 392_CR93 publication-title: IEEE Trans Commun doi: 10.1109/TCOMM.2021.3064566 – volume-title: Quantum error correction year: 2013 ident: 392_CR78 doi: 10.1017/CBO9781139034807 – ident: 392_CR101 doi: 10.1007/s11128-019-2234-5 – volume-title: The principles of quantum mechanics year: 1982 ident: 392_CR1 – volume: 463 start-page: 2887 issue: 2087 year: 2007 ident: 392_CR36 publication-title: Proc R Soc A Math Phys Eng Sci – ident: 392_CR142 doi: 10.1109/ISIT.2010.5513644 – volume: 59 start-page: 2315 issue: 4 year: 2013 ident: 392_CR162 publication-title: IEEE Trans Inf Theory doi: 10.1109/tit.2012.2234207 – volume: 106 start-page: 286 issue: 2 year: 2018 ident: 392_CR116 publication-title: Proc IEEE doi: 10.1109/JPROC.2018.2795961 – volume: 117 start-page: 070501 year: 2016 ident: 392_CR173 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.117.070501 – volume: 51 issue: 9 year: 2010 ident: 392_CR61 publication-title: J Math Phys doi: 10.1063/1.3490195 – volume: 108 issue: 14 year: 2012 ident: 392_CR148 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.108.140501 – ident: 392_CR137 doi: 10.1109/ALLERTON.2014.7028615 – volume: 120 start-page: 43 issue: 1–2 year: 1998 ident: 392_CR166 publication-title: Physica D doi: 10.1016/s0167-2789(98)00043-8 – ident: 392_CR56 – ident: 392_CR90 – ident: 392_CR100 – ident: 392_CR119 doi: 10.1109/ICC.2006.254892 – ident: 392_CR143 doi: 10.1007/978-3-540-70918-3_52 |
| SSID | ssib052472747 ssj0028602 |
| Score | 2.2940404 |
| SecondaryResourceType | review_article |
| Snippet | Quantum information processing is now a well-evolved field of study with roots to quantum physics that has significantly evolved from pioneering works over... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 449 |
| SubjectTerms | 20th century Algorithms Binary codes Chemistry and Materials Science Chemistry/Food Science Coding Coding theory Communications systems Data processing Engineering Error correcting codes Error correction Error correction & detection Fault tolerance Fields (mathematics) Information processing Information theory Materials Science Mindfulness Physics Protocol Quantum computers Quantum computing Quantum entanglement Quantum phenomena Quantum physics Quantum theory Reed-Solomon codes Review Article Satellite communications Tensors |
| Title | Theory Behind Quantum Error Correcting Codes: An Overview |
| URI | https://link.springer.com/article/10.1007/s41745-023-00392-7 https://www.proquest.com/docview/3257113365 |
| Volume | 103 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 0019-4964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028602 issn: 0970-4140 databaseCode: AFBBN dateStart: 20170301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB76uHgRRcVqLTl408Vms3kJIm1pLILxgYXeQvaFB21rH_r3nd0mLQr2tpBkD9_uzHyT3ZkP4BwjjsgZ50TzSBIWSJ9wdJAkwhGyax1p26z6IQ0GQ3Y_8kcVSMtaGHOtsvSJ1lHLiTD_yK883FsuJlSBfzv9JEY1ypyulhIaeSGtIG9si7Eq1KnpjFWDerefPr2UO8ynLDRpmG3AF7YJw_SiqKSx9XQM-bkpWPaIqVlF6vk7Wm0o6J9TUxuMkj3YLVik01kt-z5U1PgA4lWdvdNVb5hoO89LBG354fRns8nM6RkVDmHuOONQqvm10xk7j1_GU6jvQxgm_dfegBTKCESgySyIG2BIYYGnZciNyXmCtqnQFNNZGclYBLnyXe1HsfZpqHOXU93ONYuQG3Ap0O6OoDaejNUxOG0T4SOumDRK6JTGChljqLwcuZ-npG6AWyKQiaJtuFGveM_WDY8tahmillnUsrABF-tvpqumGVvfbpbAZoUBzbPNcjfgsgR78_j_2U62z3YKO9Sur7l704TaYrZUZ0grFrwF1Si5a0G9k3S7aavYOT9jpMdd |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELUQPcAFgQBRKOADnMAicZwNqUJtKWpZyqJW4hbiTRygLV2o-Dm-jbGbtAIJbtwiZTmMX2beSzzzEDqAiiNSxjnRPJKEBdInHBIkieAI2LWOtB1WfdMKGh12-eg_LqDPvBfGbKvMc6JN1LInzDfyEw-w5YKgCvyz_hsxrlHm72puoZFm1gqybEeMZY0dV-pjAhJuWG6ew3ofUnpRb9caJHMZIALgNyJuAOmZBZ6WITfw9QR1qNAUpKGMZCyCVPmu9qNY-zTUqcupdlLNIqizXArHuEZACSgwj8Ug_grVeuvuIUe0T1loZJ8d-Bc6hIGcyTp3bP8eAz1gGqQ9Ynpkgep-r45zyvvjL60tfheraCVjrbgyhdkaWlDddRRP-_pxVT2DsMf3Y1ik8SuuDwa9Aa4Z1w9h9lTDoVTDU1zp4tt3k5nUZAN1_iVGm2ix2-uqLYQdwygirpg0zuuUxgoYaqi8FLimp6QuIjePQCKyMeXGLeMlmQ1YtlFLIGqJjVoSFtHR7J7-dEjHn1eX8sAm2Qs7TObwKqLjPNjz078_bfvvp-2jpUb75jq5braudtAytWtt9v2U0OJoMFa7QGlGfC_DDUZP_w3VL9iaATQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theory+Behind+Quantum+Error+Correcting+Codes%3A+An+Overview&rft.jtitle=Journal+of+the+Indian+Institute+of+Science&rft.au=Garani%2C+Shayan+Srinivasa&rft.au=Nadkarni%2C+Priya+J.&rft.au=Raina%2C+Ankur&rft.date=2023-04-01&rft.pub=Springer+India&rft.issn=0970-4140&rft.eissn=0019-4964&rft.volume=103&rft.issue=2&rft.spage=449&rft.epage=495&rft_id=info:doi/10.1007%2Fs41745-023-00392-7&rft.externalDocID=10_1007_s41745_023_00392_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0970-4140&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0970-4140&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0970-4140&client=summon |