Prediction of compressive strength of nano silica and micro silica from rice husk ash using multivariate regression models
The use of agricultural by-products, such as Rice Husk Ash (RHA), in concrete production has gained significant attention as a sustainable alternative to traditional construction materials. This study aims to evaluate and compare the effects of Nano-Rice Husk Ash (NRHA) and Micro-Rice Husk Ash (MRHA...
Saved in:
| Published in | AI in Civil Engineering Vol. 3; no. 1; p. 22 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Singapore
Springer Nature Singapore
01.12.2024
Springer Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2097-0943 2730-5392 2730-5392 |
| DOI | 10.1007/s43503-024-00043-5 |
Cover
| Abstract | The use of agricultural by-products, such as Rice Husk Ash (RHA), in concrete production has gained significant attention as a sustainable alternative to traditional construction materials. This study aims to evaluate and compare the effects of Nano-Rice Husk Ash (NRHA) and Micro-Rice Husk Ash (MRHA) on the compressive strength of concrete. Concrete samples were prepared with varying replacement levels of NRHA (0% to 3%) and MRHA (0% to 14%) and underwent thorough examination through both slump and compressive strength tests conducted at 7, 21, 28, and 56 days. The results showed that NRHA achieved maximum compressive strength at a 1% replacement level, while MRHA reached its peak at a 0.5% replacement level. However, a comparison of the compressive strength of NRHA at 1% (22 N/mm
2
) against MRHA at 0.5% (21.5 N/mm
2
) revealed that the marginal difference in strength made MRHA a more cost-effective option due to the lower expenses involved in its preparation. Thus, MRHA presents a more economical solution for achieving comparable compressive strength. Furthermore, the study applied linear, non-linear, and mixed regression analyses to model the properties of NRHA and MRHA concrete based on a comprehensive set of variables. The analysis found that the blended ordinary and logarithmic models provided the best fit, offering superior accuracy compared to linear and non-linear models. |
|---|---|
| AbstractList | The use of agricultural by-products, such as Rice Husk Ash (RHA), in concrete production has gained significant attention as a sustainable alternative to traditional construction materials. This study aims to evaluate and compare the effects of Nano-Rice Husk Ash (NRHA) and Micro-Rice Husk Ash (MRHA) on the compressive strength of concrete. Concrete samples were prepared with varying replacement levels of NRHA (0% to 3%) and MRHA (0% to 14%) and underwent thorough examination through both slump and compressive strength tests conducted at 7, 21, 28, and 56 days. The results showed that NRHA achieved maximum compressive strength at a 1% replacement level, while MRHA reached its peak at a 0.5% replacement level. However, a comparison of the compressive strength of NRHA at 1% (22 N/mm2) against MRHA at 0.5% (21.5 N/mm2) revealed that the marginal difference in strength made MRHA a more cost-effective option due to the lower expenses involved in its preparation. Thus, MRHA presents a more economical solution for achieving comparable compressive strength. Furthermore, the study applied linear, non-linear, and mixed regression analyses to model the properties of NRHA and MRHA concrete based on a comprehensive set of variables. The analysis found that the blended ordinary and logarithmic models provided the best fit, offering superior accuracy compared to linear and non-linear models. The use of agricultural by-products, such as Rice Husk Ash (RHA), in concrete production has gained significant attention as a sustainable alternative to traditional construction materials. This study aims to evaluate and compare the effects of Nano-Rice Husk Ash (NRHA) and Micro-Rice Husk Ash (MRHA) on the compressive strength of concrete. Concrete samples were prepared with varying replacement levels of NRHA (0% to 3%) and MRHA (0% to 14%) and underwent thorough examination through both slump and compressive strength tests conducted at 7, 21, 28, and 56 days. The results showed that NRHA achieved maximum compressive strength at a 1% replacement level, while MRHA reached its peak at a 0.5% replacement level. However, a comparison of the compressive strength of NRHA at 1% (22 N/mm.sup.2) against MRHA at 0.5% (21.5 N/mm.sup.2) revealed that the marginal difference in strength made MRHA a more cost-effective option due to the lower expenses involved in its preparation. Thus, MRHA presents a more economical solution for achieving comparable compressive strength. Furthermore, the study applied linear, non-linear, and mixed regression analyses to model the properties of NRHA and MRHA concrete based on a comprehensive set of variables. The analysis found that the blended ordinary and logarithmic models provided the best fit, offering superior accuracy compared to linear and non-linear models. The use of agricultural by-products, such as Rice Husk Ash (RHA), in concrete production has gained significant attention as a sustainable alternative to traditional construction materials. This study aims to evaluate and compare the effects of Nano-Rice Husk Ash (NRHA) and Micro-Rice Husk Ash (MRHA) on the compressive strength of concrete. Concrete samples were prepared with varying replacement levels of NRHA (0% to 3%) and MRHA (0% to 14%) and underwent thorough examination through both slump and compressive strength tests conducted at 7, 21, 28, and 56 days. The results showed that NRHA achieved maximum compressive strength at a 1% replacement level, while MRHA reached its peak at a 0.5% replacement level. However, a comparison of the compressive strength of NRHA at 1% (22 N/mm 2 ) against MRHA at 0.5% (21.5 N/mm 2 ) revealed that the marginal difference in strength made MRHA a more cost-effective option due to the lower expenses involved in its preparation. Thus, MRHA presents a more economical solution for achieving comparable compressive strength. Furthermore, the study applied linear, non-linear, and mixed regression analyses to model the properties of NRHA and MRHA concrete based on a comprehensive set of variables. The analysis found that the blended ordinary and logarithmic models provided the best fit, offering superior accuracy compared to linear and non-linear models. |
| ArticleNumber | 22 |
| Audience | Academic |
| Author | Enikuomehin, Jesse T. Raji, Mustapha A. Fapohunda, Christopher A. Oyelade, Akintoye O. Abiodun, Yetunde O. Anyaegbuna, Kosisochukwu L. Olagunju, Olusola G. Falola, Boluwatife M. Olaniyi, Yusuf A. Abdulkareem, Musa O. |
| Author_xml | – sequence: 1 givenname: Mustapha A. surname: Raji fullname: Raji, Mustapha A. organization: Department of Civil and Environmental Engineering, Faculty of Engineering, University of Lagos – sequence: 2 givenname: Boluwatife M. surname: Falola fullname: Falola, Boluwatife M. organization: Department of Civil and Environmental Engineering, Faculty of Engineering, University of Lagos – sequence: 3 givenname: Jesse T. surname: Enikuomehin fullname: Enikuomehin, Jesse T. organization: Department of Civil and Environmental Engineering, Faculty of Engineering, University of Lagos – sequence: 4 givenname: Akintoye O. orcidid: 0000-0001-6869-6436 surname: Oyelade fullname: Oyelade, Akintoye O. email: aoyelade@unilag.edu.ng organization: Department of Civil and Environmental Engineering, Faculty of Engineering, University of Lagos – sequence: 5 givenname: Yetunde O. surname: Abiodun fullname: Abiodun, Yetunde O. organization: Department of Civil and Environmental Engineering, Faculty of Engineering, University of Lagos – sequence: 6 givenname: Yusuf A. surname: Olaniyi fullname: Olaniyi, Yusuf A. organization: Department of Civil and Environmental Engineering, Faculty of Engineering, University of Lagos – sequence: 7 givenname: Olusola G. surname: Olagunju fullname: Olagunju, Olusola G. organization: Department of Civil and Environmental Engineering, Faculty of Engineering, University of Lagos – sequence: 8 givenname: Kosisochukwu L. surname: Anyaegbuna fullname: Anyaegbuna, Kosisochukwu L. organization: Department of Civil and Environmental Engineering, Faculty of Engineering, University of Lagos – sequence: 9 givenname: Musa O. surname: Abdulkareem fullname: Abdulkareem, Musa O. organization: Department of Civil and Environmental Engineering, Faculty of Engineering, University of Lagos – sequence: 10 givenname: Christopher A. surname: Fapohunda fullname: Fapohunda, Christopher A. organization: Department of Civil Engineering, Federal University Oye-Ekiti |
| BookMark | eNqNkc1q3TAQhUVIIWmaF-hK0LVT_ViWtQyhbQKBZNGuxVge-yq1pVvJTkmfvrpxaKGLULSQGM43M-foLTkOMSAh7zm74Izpj7mWismKibpijNWyUkfkVGjJKiWNOC5vZnTFTC1PyHnOD0UkjJGS81Py6z5h793iY6BxoC7O-4Q5-0ekeUkYxmV3qAcIkWY_eQcUQk9n79KfwpDiTJN3SHdr_k4h7-iafRjpvE6Lf4TkYUGacHzuXAbNsccpvyNvBpgynr_cZ-Tb509fr66r27svN1eXt5WT3KgKTKM76fjQsY7zDpSGlrcIXBissTeq65tWNDWC1hKd0k3baZAdU5q3joM8I3Lru4Y9PP2EabL75GdIT5Yze0jQbgnakqB9TtCqQn3YqH2KP1bMi32IawplUSt5LXTNRCuK6mJTjTCh9WGISwJXTo8lovJNgy_1y7YYaRpjdAHaDSj55ZxwsM4vcIi_gH56fSPxD_pfNl7M5yIOI6a_Nl6hfgM_YLUI |
| CitedBy_id | crossref_primary_10_1007_s44290_025_00210_2 crossref_primary_10_1007_s43503_025_00050_0 |
| Cites_doi | 10.4314/just.v1i1.2s 10.1016/j.conbuildmat.2020.120677 10.1016/j.jobe.2021.102569 10.1016/j.conbuildmat.2020.121753 10.29007/1h88 10.1016/j.ijsbe.2017.07.004 10.1016/j.cscm.2024.e03542 10.3390/gels9080613 10.1016/j.cscm.2023.e02028 10.1016/j.conbuildmat.2017.07.165 10.1016/j.conbuildmat.2020.119121 10.1007/s10971-013-3245-9 10.20546/ijcmas.2017.610.138 10.1016/j.conbuildmat.2021.122526 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 COPYRIGHT 2024 Springer Copyright Springer Nature B.V. Dec 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: COPYRIGHT 2024 Springer – notice: Copyright Springer Nature B.V. Dec 2024 |
| DBID | C6C AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| DOI | 10.1007/s43503-024-00043-5 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2730-5392 |
| ExternalDocumentID | 10.1007/s43503-024-00043-5 A819566997 10_1007_s43503_024_00043_5 |
| GeographicLocations | Nigeria |
| GeographicLocations_xml | – name: Nigeria |
| GroupedDBID | 0R~ AAKKN ABEEZ ACACY ACULB AFGXO AFKRA ALMA_UNASSIGNED_HOLDINGS ARCSS BENPR C24 C6C CCPQU EBS GROUPED_DOAJ IAO ICD ITC PHGZM PHGZT PIMPY SOJ AAYXX CITATION PUEGO M~E ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c3195-a967b3c1fb0b11ba57a818ea129e4ed95bd68264ea773ec5768b7a3b05718c1a3 |
| IEDL.DBID | UNPAY |
| ISSN | 2097-0943 2730-5392 |
| IngestDate | Sun Sep 07 10:58:04 EDT 2025 Tue Sep 30 18:43:44 EDT 2025 Tue Jun 10 21:00:12 EDT 2025 Thu Apr 24 22:55:04 EDT 2025 Wed Oct 01 02:35:21 EDT 2025 Thu May 22 04:32:28 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Rice husk ash Micro silica Compressive strength Agricultural waste Sustainable construction Nano silica |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3195-a967b3c1fb0b11ba57a818ea129e4ed95bd68264ea773ec5768b7a3b05718c1a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6869-6436 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1007/s43503-024-00043-5 |
| PQID | 3142740282 |
| PQPubID | 7115380 |
| ParticipantIDs | unpaywall_primary_10_1007_s43503_024_00043_5 proquest_journals_3142740282 gale_infotracacademiconefile_A819566997 crossref_citationtrail_10_1007_s43503_024_00043_5 crossref_primary_10_1007_s43503_024_00043_5 springer_journals_10_1007_s43503_024_00043_5 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20241200 2024-12-00 20241201 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 20241200 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore |
| PublicationTitle | AI in Civil Engineering |
| PublicationTitleAbbrev | AI Civ. Eng |
| PublicationYear | 2024 |
| Publisher | Springer Nature Singapore Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Nature Singapore – name: Springer – name: Springer Nature B.V |
| References | PN Babaso (43_CR4) 2017; 6 J Alieu (43_CR1) 2024; 1 AS Faried (43_CR11) 2021 II Obianyo (43_CR16) 2020; 263 M Seifan (43_CR19) 2020; 252 RK Sandhu (43_CR18) 2017; 153 C Fapohunda (43_CR10) 2017; 6 K Amutha (43_CR3) 2014; 69 43_CR20 Z Ma (43_CR14) 2023; 18 K Vijay (43_CR21) 2021; 61 43_CR5 R Jin (43_CR13) 2021; 2 FY Al-saffar (43_CR2) 2023 43_CR6 M Doğruyol (43_CR8) 2024 43_CR15 M Hamza Hasnain (43_CR12) 2021 43_CR9 43_CR7 PP Saloni (43_CR17) 2021 |
| References_xml | – ident: 43_CR20 – volume: 1 start-page: 15 issue: 1 year: 2024 ident: 43_CR1 publication-title: Journal of Science and Technology (Ghana) doi: 10.4314/just.v1i1.2s – volume: 263 year: 2020 ident: 43_CR16 publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2020.120677 – year: 2021 ident: 43_CR11 publication-title: Journal of Building Engineering doi: 10.1016/j.jobe.2021.102569 – year: 2021 ident: 43_CR12 publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2020.121753 – volume: 2 start-page: 28 year: 2021 ident: 43_CR13 publication-title: Series in Built Environment doi: 10.29007/1h88 – volume: 6 start-page: 675 issue: 2 year: 2017 ident: 43_CR10 publication-title: International Journal of Sustainable Built Environment doi: 10.1016/j.ijsbe.2017.07.004 – year: 2024 ident: 43_CR8 publication-title: Case Studies in Construction Materials doi: 10.1016/j.cscm.2024.e03542 – year: 2023 ident: 43_CR2 publication-title: Gels doi: 10.3390/gels9080613 – volume: 18 issue: February year: 2023 ident: 43_CR14 publication-title: Case Studies in Construction Materials doi: 10.1016/j.cscm.2023.e02028 – volume: 61 start-page: 69 year: 2021 ident: 43_CR21 publication-title: Recent Advances in Structural Engineering: Lecture Notes in Civil Engineering. – volume: 153 start-page: 751 year: 2017 ident: 43_CR18 publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2017.07.165 – volume: 252 issue: 2020 year: 2020 ident: 43_CR19 publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2020.119121 – ident: 43_CR7 – volume: 69 start-page: 465 issue: 3 year: 2014 ident: 43_CR3 publication-title: Journal of Sol-Gel Science and Technology doi: 10.1007/s10971-013-3245-9 – volume: 6 start-page: 1144 issue: 10 year: 2017 ident: 43_CR4 publication-title: International Journal of Current Microbiology and Applied Sciences doi: 10.20546/ijcmas.2017.610.138 – ident: 43_CR6 – ident: 43_CR5 – ident: 43_CR9 – ident: 43_CR15 – year: 2021 ident: 43_CR17 publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2021.122526 |
| SSID | ssj0002993311 ssib059950776 |
| Score | 2.291784 |
| Snippet | The use of agricultural by-products, such as Rice Husk Ash (RHA), in concrete production has gained significant attention as a sustainable alternative to... |
| SourceID | unpaywall proquest gale crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 22 |
| SubjectTerms | Artificial Intelligence Cement Civil Engineering Composite materials Concrete Construction industry Energy consumption Engineering Mechanical properties Nanoparticles Original Article Particle size Rice Silica Sustainable development Waste management Waste materials |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6N7gF4mIYAUTaQH5B4YBFN7CTLwzQNtKlCopoQlfpmnR2nRXRu17Sb4K_fnZt0Gw8Vr84PW77z-c7-7juAD4rsbqXKLKJFbSJlXByZ48JEriLfgslV4ooP9L8Psv5QfRulox0YtLkwDKtsbWIw1OXM8hn5ZxkrCqA4QjidX0dcNYpvV9sSGtiUVihPAsXYE9hNmBmrA7tfzgeXP1oNY3Yt5q_ZnMKQMZYyFOlNekxLWijZZNaE_DryJRhulKiQfC2j9NHu9a8Nf3CZ-hyervwc_9zidPpgv7rYh73G0RRna814ATvOv4S_lwu-mGFhiFklGE8ecLA3TnDSiB8vJ9zu0c9E_YvP8wT6Ulwxaq9t4IQUwVREYrKqfwusJ4LB82MRsIk3FHuT-yoWbrxG2HoRiu3Ur2B4cf7zaz9qqi9EVnIBRyyy3EgbV6Zn4thgmiNt7g7JQXDKlUVqyoxiE-Uwz6WzHLeYHCVNMm13Nkb5Gjp-5t0bEMoUzHSWOCa7IQ8F0SZVWhy71NoyNdiFuJ1VbRtqcq6QMdUbUuUgCU2S0EESOu3Cp8038zUxx9a3P7KwNK9a-rPFJvmAxsf8V_qMrxOzrCjyLhy28tTNcq71vfJ14aiV8f3jbf0ebfTgP4b5dnvnB_AsYWUMaJpD6CwXK_eOfKKled8o-h1zqQUq priority: 102 providerName: ProQuest – databaseName: SpringerLINK dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50PagH8YnrixwED1qwTdra4yKKCIoHBW8hSdNdcc3KdlfRX-9Mtq2riOg1bdOQSTIzmW--AdgXeO4WIk8C3NQ6ENqGgT7JdGALtC2IXCUs6EL_6jq5uBOX9_F9lRRW1mj3OiTpT-om2Q0VO2F_IuEzoXkQz8Ic2h8RFWw4_eQcJwYt4qhpblrwwOXcF-KNjol6NBO8yp75udsvGur7OT0VMF2E-bF7Vm-vqt-f0knny7BUGZOsM5H-CsxYtwqLUxSDa_B-M6RQDE0_GxSMEOQe-fpiGaWJuO6oR-1OuQErH-gGjymXsyfC6dUNlILCiHyI9cblI1NljxFcvss8GvEFvW00WNnQdieYWsd8eZ1yHe7Oz25PL4Kq3kJgOJVsVFmSam7CQh_rMNQqThWqc6vQJLDC5lms8wS9EWFVmnJryFPRqeI45ajgTKj4BrTcwNlNYEJnxG0WWaK3QZtEKRMVcXZiY2PyWKs2hPUcS1ORkVNNjL5saJS9XCTKRXq5yLgNh803zxMqjl_fPiDRSdqn2LNRVboBjo8Yr2SHAohJkmVpG3Zq6cpqA5eShwL9dXJI23BUS_zz8W__PWpWxR-GufW_3rdhIaKl6vE0O9AaDcd2F62ikd7zm-ADMI3_ww priority: 102 providerName: Springer Nature |
| Title | Prediction of compressive strength of nano silica and micro silica from rice husk ash using multivariate regression models |
| URI | https://link.springer.com/article/10.1007/s43503-024-00043-5 https://www.proquest.com/docview/3142740282 https://doi.org/10.1007/s43503-024-00043-5 |
| UnpaywallVersion | publishedVersion |
| Volume | 3 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2730-5392 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002993311 issn: 2730-5392 databaseCode: DOA dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2730-5392 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib059950776 issn: 2097-0943 databaseCode: M~E dateStart: 20210101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2730-5392 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002993311 issn: 2730-5392 databaseCode: BENPR dateStart: 20221201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2730-5392 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002993311 issn: 2730-5392 databaseCode: C6C dateStart: 20221201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2730-5392 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002993311 issn: 2730-5392 databaseCode: C24 dateStart: 20221201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH-C9jDtwIe2aZ2g8mEShxFWN3bSHEtVhCZRVWiV2MmyHaed6FzUtCA48LfzXpIWVk2IXXxwHMfx13vP_r3fA_gqcN_NRBoFuKhNIIzjgekkJnAZ6hZErsIzOtC_GETnI_HjSl5VNDnkC7Nxf_89R3FOiJ-2KPyfw0BuQz2SqHfXoD4aDLu_KHpciyhFS4gciuNWIFHqVx4y_67kLym0uRe_uBR9D--W_kbf3-np9IXcOdstAxjlBV0hwU2uT5YLc2IfNsgc3_ZLe7BTqZ-sW86Xfdhy_gM8DOd0XUNDxGYZI5R5gY69dYxcSfx4MaF8r_2M5b_plI9pn7I_hOVbZZCbCiOCIjZZ5tdM5xNGkPoxKxCLt2iRo1LL5m5c4m49K0Lw5B9hdNb_2TsPqpgMgQ0prKNOotiElmemZTg3WsYaRb7TqDY44dJEmjRCi0U4Hcehs2TNmFiHBtVC3rFch5-g5mfefQYmTEL8Z21HFDiot2ht25lMOk5am0qjG8BXY6RsRVhOcTOmak21XPSkwp5URU8q2YBv63duSrqOV0sf0dArWstYs9WVSwK2j1ixVJcuGaMoSeIGHKxmh6oWea5CLtCmJ6O1AcerGfP8-LXvHq9n1Rua-eX_ih9AbTFfukNUlhamCfXT_mB42YTtXltQGvWaxcEDpheP_Wa1ip4Al2AO2w |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtNAEB2V9lA4IBBFBArsAcShtai9azt7qFCBVilto6pqpd6W3fU6qQibECetysfxbcxs7LTlEHHp1XZsK28882Z35g3AO4F-txRFFuFHbSJhXByZtjSRK5FbkLhKXNKC_lE365yJb-fp-RL8aXphqKyy8YnBURdDS2vkH3ksMIGiDOHT6FdEU6Nod7UZoaHr0QrFdpAYqxs7Dtz1FaZw1fb-V8T7fZLs7Z5-6UT1lIHIchpUqGWWG27j0myZODY6zTUGMacxEDrhCpmaIkMOLpzOc-4s8XOTa26Q6MRtG2uO930AK4ILicnfyufd7vFJY9Gk5kV6OfNVH3T-nIehwMkWyaBKwetOntDPh9yFypsSEZq9eZTeiZb_xoxbm7ePYHXqR_r6Sg8Gt-Lj3hN4XBNbtjOzxKew5Pwz-H08po0gAp8NS0b166Hu9tIxalLxvUmfjnvth6y6oPVDpn3BflKVYHOAGmAYSR-x_rT6wXTVZ1Ss32OhFvISc32ky2zserOKXs_CcJ9qDc7uBYfnsOyH3r0AJowkZbXEkbgOMiKtbVKmsu1Sa4vU6BbEzb-qbC2FThM5Bmou4hyQUIiECkiotAUb89-MZkIgC6_-QGAp8hJ4Z6vrZgd8P9LbUju0fZllUuYtWG_wVLX7qNSNsbdgs8H45vSi527O7eA_XvPl4oe_hdXO6dGhOtzvHryChwkZZqjkWYflyXjqXiMfm5g3tdEz-H7f39lfOoBBxA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RkEo5IPpAXZ4-VOqhRJDYScgRLax4FXEAiZtlO84uYutdbXap4Ncz403SBSFEr07iWB7bM-P55huAHwLP3ULkSYCbWgdC2zDQ-5kObIG2BZGrhAVd6P--SI6vxelNfDOTxe_R7nVIcprTQCxNbrw7zIvdJvENlTzhgCLhs6J5EH-ABYHajWoYtJN2vaKITYv4appbFzx8OfdFeaM9oiHNBK8yaV7v9pm2enlmzwRPl2Bx4obq4a_q92f0U2cFlivDkh1MV8JnmLPuCyzN0A1-hcfLEYVlSBRsUDBCk3sU7L1llDLiuuMetTvlBqy8pds8plzO_hBmr26gdBRGRESsNynvmCp7jKDzXeaRiffoeaPxyka2O8XXOuZL7ZTf4LpzdNU-DqraC4HhVL5RZUmquQkLvafDUKs4VajarULzwAqbZ7HOE_RMhFVpyq0hr0WniuOUo7IzoeKrMO8Gzn4HJnRGPGeRJaobtE-UMlERZ_s2NiaPtWpBWM-xNBUxOdXH6MuGUtnLRaJcpJeLjFvwq_lmOKXlePPtnyQ6SXsWezaqSj3A8RH7lTygYGKSZFnago1aurLazKXkoUDfnZzTFuzUEv_3-K3_7jSr4h3DXPu_3rfh4-VhR56fXJytw6eIVq2H2WzA_Hg0sZtoLI31lt8PT5UkByM |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UD8aDH1EjBk0PJh50Slm7sSMxEmKi8SCJnpq268CAxTDQyF_ve9tAJIbgteu6rl_vvb7f-z1CzjicuwmPAw82tfa4tszT9Uh7NgHdAslVWIIX-vcPQavN757Fc0GTg7EwC_776xTEOSJ-ajyLf_Y9sU42AgF6d4lstB8eGy-YPa6KlKI5RA7EcdUTIPWLCJm_G_klhRbP4jmn6BbZHLt39fWp-v05udPcyRMYpRldIcJNelfjkb4ykwUyx9V-aZdsF-onbeTrZY-sWbdPJo9DdNfgFNFBQhFlnqFjPyzFUBLXGXWx3Ck3oOkr3vJR5WL6hli-aQGGqVAkKKLdcdqjKu1ShNR3aIZY_ACLHJRaOrSdHHfraJaCJz0g7ebt003LK3IyeMbHtI4qCkLtG5boqmZMKxEqEPlWgdpguY0joeMALBZuVRj61qA1o0Pla1ALWd0w5R-Skhs4e0Qo1xHyn9UsUuCA3qKUqSUiqlthTCy0KhM2nSNpCsJyzJvRlzOq5WwkJYykzEZSijK5mL3zntN1LK19jlMvcS9Dy0YVIQnQP2TFkg10MgZBFIVlUpmuDlls8lT6jINNj0ZrmVxOV8zP42XfvZytqhW6efy_6hVSGg3H9gSUpZE-LXbJNx_nCXQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+compressive+strength+of+nano+silica+and+micro+silica+from+rice+husk+ash+using+multivariate+regression+models&rft.jtitle=AI+in+Civil+Engineering&rft.au=Raji%2C+Mustapha+A&rft.au=Falola%2C+Boluwatife+M&rft.au=Enikuomehin%2C+Jesse+T&rft.au=Oyelade%2C+Akintoye+O&rft.date=2024-12-01&rft.pub=Springer&rft.issn=2097-0943&rft.volume=3&rft.issue=1&rft_id=info:doi/10.1007%2Fs43503-024-00043-5&rft.externalDocID=A819566997 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2097-0943&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2097-0943&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2097-0943&client=summon |