An Optimal and Stable Algorithm for Clustering Numerical Data
In the conventional k-means framework, seeding is the first step toward optimization before the objects are clustered. In random seeding, two main issues arise: the clustering results may be less than optimal and different clustering results may be obtained for every run. In real-world applications,...
Saved in:
| Published in | Algorithms Vol. 14; no. 7; p. 197 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.07.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1999-4893 1999-4893 |
| DOI | 10.3390/a14070197 |
Cover
| Abstract | In the conventional k-means framework, seeding is the first step toward optimization before the objects are clustered. In random seeding, two main issues arise: the clustering results may be less than optimal and different clustering results may be obtained for every run. In real-world applications, optimal and stable clustering is highly desirable. This report introduces a new clustering algorithm called the zero k-approximate modal haplotype (Zk-AMH) algorithm that uses a simple and novel seeding mechanism known as zero-point multidimensional spaces. The Zk-AMH provides cluster optimality and stability, therefore resolving the aforementioned issues. Notably, the Zk-AMH algorithm yielded identical mean scores to maximum, and minimum scores in 100 runs, producing zero standard deviation to show its stability. Additionally, when the Zk-AMH algorithm was applied to eight datasets, it achieved the highest mean scores for four datasets, produced an approximately equal score for one dataset, and yielded marginally lower scores for the other three datasets. With its optimality and stability, the Zk-AMH algorithm could be a suitable alternative for developing future clustering tools. |
|---|---|
| AbstractList | In the conventional k-means framework, seeding is the first step toward optimization before the objects are clustered. In random seeding, two main issues arise: the clustering results may be less than optimal and different clustering results may be obtained for every run. In real-world applications, optimal and stable clustering is highly desirable. This report introduces a new clustering algorithm called the zero k-approximate modal haplotype (Zk-AMH) algorithm that uses a simple and novel seeding mechanism known as zero-point multidimensional spaces. The Zk-AMH provides cluster optimality and stability, therefore resolving the aforementioned issues. Notably, the Zk-AMH algorithm yielded identical mean scores to maximum, and minimum scores in 100 runs, producing zero standard deviation to show its stability. Additionally, when the Zk-AMH algorithm was applied to eight datasets, it achieved the highest mean scores for four datasets, produced an approximately equal score for one dataset, and yielded marginally lower scores for the other three datasets. With its optimality and stability, the Zk-AMH algorithm could be a suitable alternative for developing future clustering tools. |
| Author | Mohd Sapawi, Azizian Seman, Ali |
| Author_xml | – sequence: 1 givenname: Ali orcidid: 0000-0003-2630-2800 surname: Seman fullname: Seman, Ali – sequence: 2 givenname: Azizian surname: Mohd Sapawi fullname: Mohd Sapawi, Azizian |
| BookMark | eNp9kE1LAzEQhoNUsK0e_AcLnhRW87lJDh5K_SoUe1DPIdlN6pbtpmazSP-90ZXiydO8Mzw8zMwEjFrfWgDOEbwmRMIbjSjkEEl-BMZISplTIcnoTz4Bk67bQFgwWaAxuJ212WoX661uMt1W2UvUprHZrFn7UMf3beZ8yOZN30Ub6nadPffbFMpE3-moT8Gx001nz37rFLw93L_On_Ll6nExny3zkiARc1cJy0UFK8QcQq6gJSfIIG6wdsIxjCGTUKamgthaSkprKqm5dogiQTEmU7AYvJXXG7ULad2wV17X6mfgw1rpEOuysYoYUxZEsIILTLlkpqiILq2EjBvpkEmuq8HVtzu9_9RNcxAiqL6fqA5PTPDFAO-C_-htF9XG96FNtyrMGCVUYs4SdTlQZfBdF6z7x_gFEQ99Rw |
| Cites_doi | 10.1002/9780470382776 10.1007/978-1-4757-0450-1 10.1016/j.patrec.2009.09.011 10.1023/A:1009769707641 10.1137/1.9780898718348 10.1145/331499.331504 10.1016/j.asoc.2019.105763 10.3233/IFS-1994-2306 10.1186/1756-0500-5-557 10.1007/978-3-030-00084-4_27 10.1109/21.299710 10.1017/CBO9780511607493 10.1016/j.eswa.2015.05.014 10.1080/01621459.1983.10478008 10.1007/978-3-030-33585-4 10.1002/9780470316801 10.1089/omi.2014.0136 10.1016/j.cie.2020.106290 10.1002/9781118887486.ch6 10.1016/j.patcog.2019.04.014 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ADTOC UNPAY DOA |
| DOI | 10.3390/a14070197 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database (Proquest) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1999-4893 |
| ExternalDocumentID | oai_doaj_org_article_3bbc638567824795b6d3ace9057b9f1b 10.3390/a14070197 10_3390_a14070197 |
| GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS TR2 TUS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U ADTOC C1A ICD IPNFZ ITC RIG UNPAY |
| ID | FETCH-LOGICAL-c318t-fd8e78d0d15f11f64c731b17b2af8f522059092afd02ee43cebd9a7af14184223 |
| IEDL.DBID | DOA |
| ISSN | 1999-4893 |
| IngestDate | Tue Oct 14 19:07:23 EDT 2025 Sun Oct 26 04:01:15 EDT 2025 Fri Jul 25 11:51:51 EDT 2025 Thu Oct 16 04:24:39 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c318t-fd8e78d0d15f11f64c731b17b2af8f522059092afd02ee43cebd9a7af14184223 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2630-2800 |
| OpenAccessLink | https://doaj.org/article/3bbc638567824795b6d3ace9057b9f1b |
| PQID | 2554349275 |
| PQPubID | 2032439 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3bbc638567824795b6d3ace9057b9f1b unpaywall_primary_10_3390_a14070197 proquest_journals_2554349275 crossref_primary_10_3390_a14070197 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-01 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Algorithms |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Xie (ref_16) 2019; 84 Zhang (ref_25) 2020; 2020 Pei (ref_23) 1999; 21 ref_11 ref_10 Chiu (ref_22) 1994; 2 ref_32 Seman (ref_17) 2012; 5 ref_19 Flaut (ref_14) 2019; Volume 179 ref_18 Seman (ref_28) 2015; 19 Jain (ref_31) 2010; 31 Alibuhtto (ref_15) 2019; 8 Fowlkes (ref_33) 1983; 78 Huang (ref_13) 1999; 7 Huang (ref_12) 1998; 2 Seman (ref_27) 2018; 17 ref_1 Stetco (ref_20) 2015; 42 Jain (ref_3) 1999; 31 Ronald (ref_21) 1994; 24 ref_2 (ref_30) 2010; 2 Sieranoja (ref_26) 2019; 93 ref_29 Manochandar (ref_24) 2020; 141 ref_9 ref_8 ref_5 ref_4 ref_7 ref_6 |
| References_xml | – ident: ref_9 – ident: ref_32 – ident: ref_5 doi: 10.1002/9780470382776 – ident: ref_11 doi: 10.1007/978-1-4757-0450-1 – volume: 31 start-page: 651 year: 2010 ident: ref_31 article-title: Data clustering: 50 years beyond K-means publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2009.09.011 – volume: 2020 start-page: 3650926 year: 2020 ident: ref_25 article-title: A robust k-means clustering algorithm based on observation point mechanism publication-title: Hindawi Complex. – volume: 2 start-page: 283 year: 1998 ident: ref_12 article-title: Extensions to the k-means algorithm for clustering large data sets with categorical values publication-title: Data Min. Knowl. Discov. doi: 10.1023/A:1009769707641 – ident: ref_2 doi: 10.1137/1.9780898718348 – ident: ref_1 – ident: ref_18 – volume: 8 start-page: 111 year: 2019 ident: ref_15 article-title: New approach for finding number of clusters usingdistance based k-means algorithm publication-title: Int. J. Eng. Sci. Math. – volume: 7 start-page: 46 year: 1999 ident: ref_13 article-title: A fuzzy k-modes algorithm for clustering categorical data publication-title: IEEE Trans. Fuzzy Syst. – volume: 31 start-page: 264 year: 1999 ident: ref_3 article-title: Data clustering: A review publication-title: ACM Comput. Surv. doi: 10.1145/331499.331504 – volume: 84 start-page: 105763 year: 2019 ident: ref_16 article-title: Improving k-means clustering with enhanced firefly publication-title: Algorithms Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105763 – volume: 2 start-page: 267 year: 1994 ident: ref_22 article-title: Fuzzy model identification based on cluster estimation publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/IFS-1994-2306 – volume: 5 start-page: 1 year: 2012 ident: ref_17 article-title: An efficient clustering algorithm for partitioning y-short tandem repeats data publication-title: BMC Res. Notes doi: 10.1186/1756-0500-5-557 – volume: 17 start-page: 587 year: 2018 ident: ref_27 article-title: Extensions to the k-amh algorithm for numerical clustering publication-title: J. ICT – volume: Volume 179 start-page: 525 year: 2019 ident: ref_14 article-title: Cluster Analysis: An Application to a Real Mixed-Type Data set publication-title: Models and Theories in Social Systems. Studies in Systems, Decision and Control doi: 10.1007/978-3-030-00084-4_27 – volume: 24 start-page: 1279 year: 1994 ident: ref_21 article-title: Approximate clustering via the mountain method publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/21.299710 – ident: ref_6 – volume: 21 start-page: 320 year: 1999 ident: ref_23 article-title: An initialization method of cluster centers publication-title: J. Electron. Sci. – ident: ref_8 doi: 10.1017/CBO9780511607493 – volume: 42 start-page: 7541 year: 2015 ident: ref_20 article-title: Fuzzy c-means++: Fuzzy c-means with effective seeding initialization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.05.014 – ident: ref_10 – volume: 78 start-page: 553 year: 1983 ident: ref_33 article-title: A method for comparing two hierarchical clusterings publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1983.10478008 – ident: ref_29 doi: 10.1007/978-3-030-33585-4 – ident: ref_4 doi: 10.1002/9780470316801 – volume: 19 start-page: 361 year: 2015 ident: ref_28 article-title: Towards development of clustering applications for large-scale comparative genotyping and kinship analysis using y-short tandem repeats publication-title: OMICS doi: 10.1089/omi.2014.0136 – volume: 141 start-page: 106290 year: 2020 ident: ref_24 article-title: Development of new seed with modified validity measures for k-means clustering publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.106290 – volume: 2 start-page: 235 year: 2010 ident: ref_30 article-title: Clustering stability: An overview publication-title: Found. Trends Mach. Learn. – ident: ref_19 – ident: ref_7 doi: 10.1002/9781118887486.ch6 – volume: 93 start-page: 95 year: 2019 ident: ref_26 article-title: How much can k-means be improved by using better initialization and repeats? publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.04.014 |
| SSID | ssj0065961 |
| Score | 2.2030568 |
| Snippet | In the conventional k-means framework, seeding is the first step toward optimization before the objects are clustered. In random seeding, two main issues... |
| SourceID | doaj unpaywall proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 197 |
| SubjectTerms | Algorithms categorical clustering Cluster analysis Clustering Datasets fuzzy clustering Heuristic Methods numerical clustering Optimization partitional clustering algorithm Stability |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7BcigXWloQSymyKNeIPGwnPlTVLg8hJLYVAolb5CccQnaBrKr--85kk6Uc4JZYVpTMZGa-scffABx6KwqXOhEZbmTEVcArZXkkacdXFbHmgRb0Lyfy_IZf3IrbFZj0Z2GorLL3ia2jdlNLa-RHCH05Menl4ufsMaKuUbS72rfQ0F1rBfejpRhbhbWUmLEGsDY-nfy-6n2zFEomC36hDJP9I43pBfGR56-iUkve_wpxfpjXM_33j66q_4LP2SfY6FAjGy3UvAkrvv4MH_uODKwz0C-A2Tz7hU7gASfr2jGEkqbybFTd4ac09w8MISo7rubEjoAxi03miw2bip3oRm_Bzdnp9fF51DVIiCyaYhMFV_i8cLFLREiSILnNs8QkuUl1KIKgM7QqVnjj4tR7nllvnNK5DgnHxA6BwTYM6mntd4DhiIhj41NhHZeeeO4LHyQxnrkiztwQDnoBlbMFD0aJ-QNJsVxKcQhjEt1yAlFXtwPTp7uys4QyM8ai0QuMkinPlTDSZdp6hcDRqJCYIez1gi87e3ouX7Q_hO9LZbz9JrvvP-QrrKdUm9KW3e7BoHma-28ILhqz3_0x_wAIWMyp priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9gAXylMsFGQB13TjxI_4gNBSqCokFg6sVE6Rn6Uiza62CQh-PePEu6JISIhbbNmSo_HMfDMefwZ44S2vXOF4ZpgRGVMBv5RlmYgnvqrKNQsxof9-IU6W7N0pP00Jt8tUVomh-PlgpIcr8pEdZUbZTGJTztYuvPqWMklURP8dObyuw57giMUnsLdcfJx_Ho6S09yRTqjE2H6mMZqI9OPyihMauPqvAMwbfbvWP77rpvnN1xzvQ71d5Vhi8vWw78yh_fkHgeP__8ZtuJVgKJmP--YOXPPtXdjfPvFAksbfg5fzlnxAq3KBg3XrCGJT03gyb85Wm_PuywVBzEuOmj7SLaATJIt-PAFqyBvd6fuwPH776egkSy8uZBZ1u8uCq7ysXO4oD5QGwawsqaHSFDpUgcdLuSpX2HB54T0rrTdOaakDZRgpItJ4AJN21fqHQLCH57nxBbeOCR-J8ysfRKRQc1Veuik824qgXo_EGjUGJFFO9U5OU3gdhbMbELmwh47V5qxOqlWXxli0IhzdbsGk4ka4UluvEIkaFaiZwsFWtHVS0MsaIykWiRkln8Lznbj_vpJH_zTqMdwsYs3LUM57AJNu0_snCFo68zTtzF81lOOl priority: 102 providerName: Unpaywall |
| Title | An Optimal and Stable Algorithm for Clustering Numerical Data |
| URI | https://www.proquest.com/docview/2554349275 https://www.mdpi.com/1999-4893/14/7/197/pdf?version=1625052393 https://doaj.org/article/3bbc638567824795b6d3ace9057b9f1b |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: AMVHM dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: 8FG dateStart: 20080301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED7xGGDhjSiUygLWqHnYjj22hVIhURCiUpkiO7ZhCAFBK8S_59ykFQyIhS22PFh3vrvvi-3PAGc2Z8LEhgWaah5Q6fBL5jTgfsdXilBR53_oXw_5YESvxmz87akvfyaskgeuDNdOtM5xjTBMqjFNJdPcJCq3EnGGli7SPvuGQs7JVJWDOZM8qnSEEiT1bYU0wuuOpz-qz0yk_weyXJuWr-rzQxXFtyLT34KNGh2STjWrbViy5Q5szl9eIHUg7gKydnKDwf6Mg1VpCEJGXVjSKR5fkOw_PROEoqRXTL0KAtYmMpxWGzMFOVcTtQej_sV9bxDUDyEEOYbcJHBG2FSY0ETMRZHjNE-TSEepjpUTjvm7sjKU2DBhbC1NcquNVKlyEUUChwBgH1bKl9IeAMEeFobaxiw3lFuvZy-s417ZzIgwMQ04mRsoe630LjLkCd6K2cKKDeh60y0GeInqWQc6Lqsdl_3luAY054bP6rh5z5DgUK-XmLIGnC6c8ftMDv9jJkewHvuTKrNDuE1YmbxN7TFCjYluwbLoX7ZgtXsxvL1rzdYYtkbD287DF9WK0qY |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hONBLS1_qtrS1-jhGJI7txIdVtby0FNhWFUjcUju24RCyW8gK8ef4bZ3JJttyaG_cksiKrM_jmW_8-Abgky9l7riTkRVWRUIHfNKliBTt-Oo8NiLQgv7xRI1PxdczebYCd_1dGDpW2fvE1lG7aUlr5FtIfQUp6WXyy-xXRFWjaHe1L6FhutIKbthKjHUXOw797Q2mcNfDg10c78-c7--d7IyjrspAVKI9N1Fwuc9yF7tEhiQJSpRZmtgks9yEPEi6iKpjjS8u5t6LtPTWaZOZkAjMjjgJH2AIWKPOYfK3tr03-f6jjwVKapUs9IzSVMdbBtMZ0j_P7kXBtljAPYa7Pq9n5vbGVNVfwW5_Ax53LJWNFmb1FFZ8_Qye9BUgWOcQnsNwVLNv6HQusbGpHUPqaivPRtU5QtdcXDKkxGynmpMaA8ZINpkvNogqtmsa8wJOHwSql7BaT2v_Chh-kXFsPZelE8qTrn7ugyKFNZfHqRvAhx6gYrbQ3SgwXyEUiyWKA9gm6JYNSCq7_TC9Oi-6mVek1pboZCRGZS4yLa1yqSm9RqJqdUjsADZ74Itu_l4Xf6xtAB-Xg_Hvnrz-_0_ew_r45PioODqYHL6BR5zOxbRHfjdhtbma-7dIbBr7rrMeBj8f2mB_A8oQCb4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRQIulKe6tIDF4xht4thOfKjQ0mVpKSwcqNRbsGO7HNLs0mZV9a_x65jJY6EHuPWWWFYUfR7PwzP-BuC1L2XuuJORFVZFQgd80qWIFGV8dR4bEehA__NcHRyLjyfyZAN-DXdhqKxy0ImtonaLks7Ix-j6CmLSy-Q49GURX6ezt8ufEXWQokzr0E6jE5Ejf3WJ4dvF3uEU1_oN57P33_YPor7DQFSiLDdRcLnPche7RIYkCUqUWZrYJLPchDxIuoSqY40vLubei7T01mmTmZAIjIw4kR6g-r-VEYs73VKffRisgJJaJR2TUZrqeGwwkCHm8-ya_WvbBFzzbe-s6qW5ujRV9ZeZm92He71_yiadQD2ADV8_hK2h9wPrVcEj2JvU7AuqmzOcbGrH0Gm1lWeT6hSBan6cMXSG2X61Ih4GtI5svupSQxWbmsY8huMbAeoJbNaL2m8DwxEZx9ZzWTqhPDHq5z4o4lZzeZy6EbwcACqWHeNGgZEKoVisURzBO4JuPYFIstuBxflp0e-5IrW2RPUi0R5zkWlplUtN6TW6qFaHxI5gdwC-6HfuRfFHzkbwar0Y__6Tp___yAu4jWJafDqcH-3AXU4FMW2t7y5sNucr_ww9msY-b0WHwfebltXfgkQHWA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9gAXylMsFGQB13TjxI_4gNBSqCokFg6sVE6Rn6Uiza62CQh-PePEu6JISIhbbNmSo_HMfDMefwZ44S2vXOF4ZpgRGVMBv5RlmYgnvqrKNQsxof9-IU6W7N0pP00Jt8tUVomh-PlgpIcr8pEdZUbZTGJTztYuvPqWMklURP8dObyuw57giMUnsLdcfJx_Ho6S09yRTqjE2H6mMZqI9OPyihMauPqvAMwbfbvWP77rpvnN1xzvQ71d5Vhi8vWw78yh_fkHgeP__8ZtuJVgKJmP--YOXPPtXdjfPvFAksbfg5fzlnxAq3KBg3XrCGJT03gyb85Wm_PuywVBzEuOmj7SLaATJIt-PAFqyBvd6fuwPH776egkSy8uZBZ1u8uCq7ysXO4oD5QGwawsqaHSFDpUgcdLuSpX2HB54T0rrTdOaakDZRgpItJ4AJN21fqHQLCH57nxBbeOCR-J8ysfRKRQc1Veuik824qgXo_EGjUGJFFO9U5OU3gdhbMbELmwh47V5qxOqlWXxli0IhzdbsGk4ka4UluvEIkaFaiZwsFWtHVS0MsaIykWiRkln8Lznbj_vpJH_zTqMdwsYs3LUM57AJNu0_snCFo68zTtzF81lOOl |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Optimal+and+Stable+Algorithm+for+Clustering+Numerical+Data&rft.jtitle=Algorithms&rft.au=Ali+Seman&rft.au=Azizian+Mohd+Sapawi&rft.date=2021-07-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=14&rft.issue=7&rft.spage=197&rft_id=info:doi/10.3390%2Fa14070197&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3bbc638567824795b6d3ace9057b9f1b |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |