An Optimal and Stable Algorithm for Clustering Numerical Data

In the conventional k-means framework, seeding is the first step toward optimization before the objects are clustered. In random seeding, two main issues arise: the clustering results may be less than optimal and different clustering results may be obtained for every run. In real-world applications,...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms Vol. 14; no. 7; p. 197
Main Authors Seman, Ali, Mohd Sapawi, Azizian
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2021
Subjects
Online AccessGet full text
ISSN1999-4893
1999-4893
DOI10.3390/a14070197

Cover

Abstract In the conventional k-means framework, seeding is the first step toward optimization before the objects are clustered. In random seeding, two main issues arise: the clustering results may be less than optimal and different clustering results may be obtained for every run. In real-world applications, optimal and stable clustering is highly desirable. This report introduces a new clustering algorithm called the zero k-approximate modal haplotype (Zk-AMH) algorithm that uses a simple and novel seeding mechanism known as zero-point multidimensional spaces. The Zk-AMH provides cluster optimality and stability, therefore resolving the aforementioned issues. Notably, the Zk-AMH algorithm yielded identical mean scores to maximum, and minimum scores in 100 runs, producing zero standard deviation to show its stability. Additionally, when the Zk-AMH algorithm was applied to eight datasets, it achieved the highest mean scores for four datasets, produced an approximately equal score for one dataset, and yielded marginally lower scores for the other three datasets. With its optimality and stability, the Zk-AMH algorithm could be a suitable alternative for developing future clustering tools.
AbstractList In the conventional k-means framework, seeding is the first step toward optimization before the objects are clustered. In random seeding, two main issues arise: the clustering results may be less than optimal and different clustering results may be obtained for every run. In real-world applications, optimal and stable clustering is highly desirable. This report introduces a new clustering algorithm called the zero k-approximate modal haplotype (Zk-AMH) algorithm that uses a simple and novel seeding mechanism known as zero-point multidimensional spaces. The Zk-AMH provides cluster optimality and stability, therefore resolving the aforementioned issues. Notably, the Zk-AMH algorithm yielded identical mean scores to maximum, and minimum scores in 100 runs, producing zero standard deviation to show its stability. Additionally, when the Zk-AMH algorithm was applied to eight datasets, it achieved the highest mean scores for four datasets, produced an approximately equal score for one dataset, and yielded marginally lower scores for the other three datasets. With its optimality and stability, the Zk-AMH algorithm could be a suitable alternative for developing future clustering tools.
Author Mohd Sapawi, Azizian
Seman, Ali
Author_xml – sequence: 1
  givenname: Ali
  orcidid: 0000-0003-2630-2800
  surname: Seman
  fullname: Seman, Ali
– sequence: 2
  givenname: Azizian
  surname: Mohd Sapawi
  fullname: Mohd Sapawi, Azizian
BookMark eNp9kE1LAzEQhoNUsK0e_AcLnhRW87lJDh5K_SoUe1DPIdlN6pbtpmazSP-90ZXiydO8Mzw8zMwEjFrfWgDOEbwmRMIbjSjkEEl-BMZISplTIcnoTz4Bk67bQFgwWaAxuJ212WoX661uMt1W2UvUprHZrFn7UMf3beZ8yOZN30Ub6nadPffbFMpE3-moT8Gx001nz37rFLw93L_On_Ll6nExny3zkiARc1cJy0UFK8QcQq6gJSfIIG6wdsIxjCGTUKamgthaSkprKqm5dogiQTEmU7AYvJXXG7ULad2wV17X6mfgw1rpEOuysYoYUxZEsIILTLlkpqiILq2EjBvpkEmuq8HVtzu9_9RNcxAiqL6fqA5PTPDFAO-C_-htF9XG96FNtyrMGCVUYs4SdTlQZfBdF6z7x_gFEQ99Rw
Cites_doi 10.1002/9780470382776
10.1007/978-1-4757-0450-1
10.1016/j.patrec.2009.09.011
10.1023/A:1009769707641
10.1137/1.9780898718348
10.1145/331499.331504
10.1016/j.asoc.2019.105763
10.3233/IFS-1994-2306
10.1186/1756-0500-5-557
10.1007/978-3-030-00084-4_27
10.1109/21.299710
10.1017/CBO9780511607493
10.1016/j.eswa.2015.05.014
10.1080/01621459.1983.10478008
10.1007/978-3-030-33585-4
10.1002/9780470316801
10.1089/omi.2014.0136
10.1016/j.cie.2020.106290
10.1002/9781118887486.ch6
10.1016/j.patcog.2019.04.014
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ADTOC
UNPAY
DOA
DOI 10.3390/a14070197
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database (Proquest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1999-4893
ExternalDocumentID oai_doaj_org_article_3bbc638567824795b6d3ace9057b9f1b
10.3390/a14070197
10_3390_a14070197
GroupedDBID 23M
2WC
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
J9A
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
TR2
TUS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
C1A
ICD
IPNFZ
ITC
RIG
UNPAY
ID FETCH-LOGICAL-c318t-fd8e78d0d15f11f64c731b17b2af8f522059092afd02ee43cebd9a7af14184223
IEDL.DBID DOA
ISSN 1999-4893
IngestDate Tue Oct 14 19:07:23 EDT 2025
Sun Oct 26 04:01:15 EDT 2025
Fri Jul 25 11:51:51 EDT 2025
Thu Oct 16 04:24:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c318t-fd8e78d0d15f11f64c731b17b2af8f522059092afd02ee43cebd9a7af14184223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2630-2800
OpenAccessLink https://doaj.org/article/3bbc638567824795b6d3ace9057b9f1b
PQID 2554349275
PQPubID 2032439
ParticipantIDs doaj_primary_oai_doaj_org_article_3bbc638567824795b6d3ace9057b9f1b
unpaywall_primary_10_3390_a14070197
proquest_journals_2554349275
crossref_primary_10_3390_a14070197
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Algorithms
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Xie (ref_16) 2019; 84
Zhang (ref_25) 2020; 2020
Pei (ref_23) 1999; 21
ref_11
ref_10
Chiu (ref_22) 1994; 2
ref_32
Seman (ref_17) 2012; 5
ref_19
Flaut (ref_14) 2019; Volume 179
ref_18
Seman (ref_28) 2015; 19
Jain (ref_31) 2010; 31
Alibuhtto (ref_15) 2019; 8
Fowlkes (ref_33) 1983; 78
Huang (ref_13) 1999; 7
Huang (ref_12) 1998; 2
Seman (ref_27) 2018; 17
ref_1
Stetco (ref_20) 2015; 42
Jain (ref_3) 1999; 31
Ronald (ref_21) 1994; 24
ref_2
(ref_30) 2010; 2
Sieranoja (ref_26) 2019; 93
ref_29
Manochandar (ref_24) 2020; 141
ref_9
ref_8
ref_5
ref_4
ref_7
ref_6
References_xml – ident: ref_9
– ident: ref_32
– ident: ref_5
  doi: 10.1002/9780470382776
– ident: ref_11
  doi: 10.1007/978-1-4757-0450-1
– volume: 31
  start-page: 651
  year: 2010
  ident: ref_31
  article-title: Data clustering: 50 years beyond K-means
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2009.09.011
– volume: 2020
  start-page: 3650926
  year: 2020
  ident: ref_25
  article-title: A robust k-means clustering algorithm based on observation point mechanism
  publication-title: Hindawi Complex.
– volume: 2
  start-page: 283
  year: 1998
  ident: ref_12
  article-title: Extensions to the k-means algorithm for clustering large data sets with categorical values
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009769707641
– ident: ref_2
  doi: 10.1137/1.9780898718348
– ident: ref_1
– ident: ref_18
– volume: 8
  start-page: 111
  year: 2019
  ident: ref_15
  article-title: New approach for finding number of clusters usingdistance based k-means algorithm
  publication-title: Int. J. Eng. Sci. Math.
– volume: 7
  start-page: 46
  year: 1999
  ident: ref_13
  article-title: A fuzzy k-modes algorithm for clustering categorical data
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 31
  start-page: 264
  year: 1999
  ident: ref_3
  article-title: Data clustering: A review
  publication-title: ACM Comput. Surv.
  doi: 10.1145/331499.331504
– volume: 84
  start-page: 105763
  year: 2019
  ident: ref_16
  article-title: Improving k-means clustering with enhanced firefly
  publication-title: Algorithms Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105763
– volume: 2
  start-page: 267
  year: 1994
  ident: ref_22
  article-title: Fuzzy model identification based on cluster estimation
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/IFS-1994-2306
– volume: 5
  start-page: 1
  year: 2012
  ident: ref_17
  article-title: An efficient clustering algorithm for partitioning y-short tandem repeats data
  publication-title: BMC Res. Notes
  doi: 10.1186/1756-0500-5-557
– volume: 17
  start-page: 587
  year: 2018
  ident: ref_27
  article-title: Extensions to the k-amh algorithm for numerical clustering
  publication-title: J. ICT
– volume: Volume 179
  start-page: 525
  year: 2019
  ident: ref_14
  article-title: Cluster Analysis: An Application to a Real Mixed-Type Data set
  publication-title: Models and Theories in Social Systems. Studies in Systems, Decision and Control
  doi: 10.1007/978-3-030-00084-4_27
– volume: 24
  start-page: 1279
  year: 1994
  ident: ref_21
  article-title: Approximate clustering via the mountain method
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.299710
– ident: ref_6
– volume: 21
  start-page: 320
  year: 1999
  ident: ref_23
  article-title: An initialization method of cluster centers
  publication-title: J. Electron. Sci.
– ident: ref_8
  doi: 10.1017/CBO9780511607493
– volume: 42
  start-page: 7541
  year: 2015
  ident: ref_20
  article-title: Fuzzy c-means++: Fuzzy c-means with effective seeding initialization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.05.014
– ident: ref_10
– volume: 78
  start-page: 553
  year: 1983
  ident: ref_33
  article-title: A method for comparing two hierarchical clusterings
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1983.10478008
– ident: ref_29
  doi: 10.1007/978-3-030-33585-4
– ident: ref_4
  doi: 10.1002/9780470316801
– volume: 19
  start-page: 361
  year: 2015
  ident: ref_28
  article-title: Towards development of clustering applications for large-scale comparative genotyping and kinship analysis using y-short tandem repeats
  publication-title: OMICS
  doi: 10.1089/omi.2014.0136
– volume: 141
  start-page: 106290
  year: 2020
  ident: ref_24
  article-title: Development of new seed with modified validity measures for k-means clustering
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106290
– volume: 2
  start-page: 235
  year: 2010
  ident: ref_30
  article-title: Clustering stability: An overview
  publication-title: Found. Trends Mach. Learn.
– ident: ref_19
– ident: ref_7
  doi: 10.1002/9781118887486.ch6
– volume: 93
  start-page: 95
  year: 2019
  ident: ref_26
  article-title: How much can k-means be improved by using better initialization and repeats?
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.04.014
SSID ssj0065961
Score 2.2030568
Snippet In the conventional k-means framework, seeding is the first step toward optimization before the objects are clustered. In random seeding, two main issues...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 197
SubjectTerms Algorithms
categorical clustering
Cluster analysis
Clustering
Datasets
fuzzy clustering
Heuristic
Methods
numerical clustering
Optimization
partitional clustering algorithm
Stability
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7BcigXWloQSymyKNeIPGwnPlTVLg8hJLYVAolb5CccQnaBrKr--85kk6Uc4JZYVpTMZGa-scffABx6KwqXOhEZbmTEVcArZXkkacdXFbHmgRb0Lyfy_IZf3IrbFZj0Z2GorLL3ia2jdlNLa-RHCH05Menl4ufsMaKuUbS72rfQ0F1rBfejpRhbhbWUmLEGsDY-nfy-6n2zFEomC36hDJP9I43pBfGR56-iUkve_wpxfpjXM_33j66q_4LP2SfY6FAjGy3UvAkrvv4MH_uODKwz0C-A2Tz7hU7gASfr2jGEkqbybFTd4ac09w8MISo7rubEjoAxi03miw2bip3oRm_Bzdnp9fF51DVIiCyaYhMFV_i8cLFLREiSILnNs8QkuUl1KIKgM7QqVnjj4tR7nllvnNK5DgnHxA6BwTYM6mntd4DhiIhj41NhHZeeeO4LHyQxnrkiztwQDnoBlbMFD0aJ-QNJsVxKcQhjEt1yAlFXtwPTp7uys4QyM8ai0QuMkinPlTDSZdp6hcDRqJCYIez1gi87e3ouX7Q_hO9LZbz9JrvvP-QrrKdUm9KW3e7BoHma-28ILhqz3_0x_wAIWMyp
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9gAXylMsFGQB13TjxI_4gNBSqCokFg6sVE6Rn6Uiza62CQh-PePEu6JISIhbbNmSo_HMfDMefwZ44S2vXOF4ZpgRGVMBv5RlmYgnvqrKNQsxof9-IU6W7N0pP00Jt8tUVomh-PlgpIcr8pEdZUbZTGJTztYuvPqWMklURP8dObyuw57giMUnsLdcfJx_Ho6S09yRTqjE2H6mMZqI9OPyihMauPqvAMwbfbvWP77rpvnN1xzvQ71d5Vhi8vWw78yh_fkHgeP__8ZtuJVgKJmP--YOXPPtXdjfPvFAksbfg5fzlnxAq3KBg3XrCGJT03gyb85Wm_PuywVBzEuOmj7SLaATJIt-PAFqyBvd6fuwPH776egkSy8uZBZ1u8uCq7ysXO4oD5QGwawsqaHSFDpUgcdLuSpX2HB54T0rrTdOaakDZRgpItJ4AJN21fqHQLCH57nxBbeOCR-J8ysfRKRQc1Veuik824qgXo_EGjUGJFFO9U5OU3gdhbMbELmwh47V5qxOqlWXxli0IhzdbsGk4ka4UluvEIkaFaiZwsFWtHVS0MsaIykWiRkln8Lznbj_vpJH_zTqMdwsYs3LUM57AJNu0_snCFo68zTtzF81lOOl
  priority: 102
  providerName: Unpaywall
Title An Optimal and Stable Algorithm for Clustering Numerical Data
URI https://www.proquest.com/docview/2554349275
https://www.mdpi.com/1999-4893/14/7/197/pdf?version=1625052393
https://doaj.org/article/3bbc638567824795b6d3ace9057b9f1b
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: AMVHM
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: 8FG
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED7xGGDhjSiUygLWqHnYjj22hVIhURCiUpkiO7ZhCAFBK8S_59ykFQyIhS22PFh3vrvvi-3PAGc2Z8LEhgWaah5Q6fBL5jTgfsdXilBR53_oXw_5YESvxmz87akvfyaskgeuDNdOtM5xjTBMqjFNJdPcJCq3EnGGli7SPvuGQs7JVJWDOZM8qnSEEiT1bYU0wuuOpz-qz0yk_weyXJuWr-rzQxXFtyLT34KNGh2STjWrbViy5Q5szl9eIHUg7gKydnKDwf6Mg1VpCEJGXVjSKR5fkOw_PROEoqRXTL0KAtYmMpxWGzMFOVcTtQej_sV9bxDUDyEEOYbcJHBG2FSY0ETMRZHjNE-TSEepjpUTjvm7sjKU2DBhbC1NcquNVKlyEUUChwBgH1bKl9IeAMEeFobaxiw3lFuvZy-s417ZzIgwMQ04mRsoe630LjLkCd6K2cKKDeh60y0GeInqWQc6Lqsdl_3luAY054bP6rh5z5DgUK-XmLIGnC6c8ftMDv9jJkewHvuTKrNDuE1YmbxN7TFCjYluwbLoX7ZgtXsxvL1rzdYYtkbD287DF9WK0qY
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hONBLS1_qtrS1-jhGJI7txIdVtby0FNhWFUjcUju24RCyW8gK8ef4bZ3JJttyaG_cksiKrM_jmW_8-Abgky9l7riTkRVWRUIHfNKliBTt-Oo8NiLQgv7xRI1PxdczebYCd_1dGDpW2fvE1lG7aUlr5FtIfQUp6WXyy-xXRFWjaHe1L6FhutIKbthKjHUXOw797Q2mcNfDg10c78-c7--d7IyjrspAVKI9N1Fwuc9yF7tEhiQJSpRZmtgks9yEPEi6iKpjjS8u5t6LtPTWaZOZkAjMjjgJH2AIWKPOYfK3tr03-f6jjwVKapUs9IzSVMdbBtMZ0j_P7kXBtljAPYa7Pq9n5vbGVNVfwW5_Ax53LJWNFmb1FFZ8_Qye9BUgWOcQnsNwVLNv6HQusbGpHUPqaivPRtU5QtdcXDKkxGynmpMaA8ZINpkvNogqtmsa8wJOHwSql7BaT2v_Chh-kXFsPZelE8qTrn7ugyKFNZfHqRvAhx6gYrbQ3SgwXyEUiyWKA9gm6JYNSCq7_TC9Oi-6mVek1pboZCRGZS4yLa1yqSm9RqJqdUjsADZ74Itu_l4Xf6xtAB-Xg_Hvnrz-_0_ew_r45PioODqYHL6BR5zOxbRHfjdhtbma-7dIbBr7rrMeBj8f2mB_A8oQCb4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRQIulKe6tIDF4xht4thOfKjQ0mVpKSwcqNRbsGO7HNLs0mZV9a_x65jJY6EHuPWWWFYUfR7PwzP-BuC1L2XuuJORFVZFQgd80qWIFGV8dR4bEehA__NcHRyLjyfyZAN-DXdhqKxy0ImtonaLks7Ix-j6CmLSy-Q49GURX6ezt8ufEXWQokzr0E6jE5Ejf3WJ4dvF3uEU1_oN57P33_YPor7DQFSiLDdRcLnPche7RIYkCUqUWZrYJLPchDxIuoSqY40vLubei7T01mmTmZAIjIw4kR6g-r-VEYs73VKffRisgJJaJR2TUZrqeGwwkCHm8-ya_WvbBFzzbe-s6qW5ujRV9ZeZm92He71_yiadQD2ADV8_hK2h9wPrVcEj2JvU7AuqmzOcbGrH0Gm1lWeT6hSBan6cMXSG2X61Ih4GtI5svupSQxWbmsY8huMbAeoJbNaL2m8DwxEZx9ZzWTqhPDHq5z4o4lZzeZy6EbwcACqWHeNGgZEKoVisURzBO4JuPYFIstuBxflp0e-5IrW2RPUi0R5zkWlplUtN6TW6qFaHxI5gdwC-6HfuRfFHzkbwar0Y__6Tp___yAu4jWJafDqcH-3AXU4FMW2t7y5sNucr_ww9msY-b0WHwfebltXfgkQHWA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9gAXylMsFGQB13TjxI_4gNBSqCokFg6sVE6Rn6Uiza62CQh-PePEu6JISIhbbNmSo_HMfDMefwZ44S2vXOF4ZpgRGVMBv5RlmYgnvqrKNQsxof9-IU6W7N0pP00Jt8tUVomh-PlgpIcr8pEdZUbZTGJTztYuvPqWMklURP8dObyuw57giMUnsLdcfJx_Ho6S09yRTqjE2H6mMZqI9OPyihMauPqvAMwbfbvWP77rpvnN1xzvQ71d5Vhi8vWw78yh_fkHgeP__8ZtuJVgKJmP--YOXPPtXdjfPvFAksbfg5fzlnxAq3KBg3XrCGJT03gyb85Wm_PuywVBzEuOmj7SLaATJIt-PAFqyBvd6fuwPH776egkSy8uZBZ1u8uCq7ysXO4oD5QGwawsqaHSFDpUgcdLuSpX2HB54T0rrTdOaakDZRgpItJ4AJN21fqHQLCH57nxBbeOCR-J8ysfRKRQc1Veuik824qgXo_EGjUGJFFO9U5OU3gdhbMbELmwh47V5qxOqlWXxli0IhzdbsGk4ka4UluvEIkaFaiZwsFWtHVS0MsaIykWiRkln8Lznbj_vpJH_zTqMdwsYs3LUM57AJNu0_snCFo68zTtzF81lOOl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Optimal+and+Stable+Algorithm+for+Clustering+Numerical+Data&rft.jtitle=Algorithms&rft.au=Ali+Seman&rft.au=Azizian+Mohd+Sapawi&rft.date=2021-07-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=14&rft.issue=7&rft.spage=197&rft_id=info:doi/10.3390%2Fa14070197&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3bbc638567824795b6d3ace9057b9f1b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon