Detection and time–frequency analysis of multiple plant-wide oscillations using adaptive multivariate intrinsic chirp component decomposition
Analyzing plant-wide oscillations is a challenging task owing to the presence of noise, nonstationarity, and multiple modes in a process control system. Multivariate intrinsic chirp component decomposition (MICCD) is a novel powerful tool for multivariate signal processing. Nevertheless, MICCD requi...
Saved in:
| Published in | Control engineering practice Vol. 141; p. 105715 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.12.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0967-0661 1873-6939 |
| DOI | 10.1016/j.conengprac.2023.105715 |
Cover
| Abstract | Analyzing plant-wide oscillations is a challenging task owing to the presence of noise, nonstationarity, and multiple modes in a process control system. Multivariate intrinsic chirp component decomposition (MICCD) is a novel powerful tool for multivariate signal processing. Nevertheless, MICCD requires users to provide component number in advance, which restricts its adaptability. This study proposes an adaptive MICCD (AMICCD) that can adaptively determine the component number by utilizing the permutation entropy of instantaneous frequency. An AMICCD-based time–frequency analysis framework is presented to detect and characterize the multiple plant-wide oscillations. Compared to the latest methods, such as multivariate empirical mode decomposition and multivariate intrinsic time-scale decomposition, the proposed method can process not only single/multiple plant-wide oscillations, but also time-invariant/time-varying plant-wide oscillations. In particular, the proposed method can directly provide the time–frequency curves of multiple plant-wide oscillations, which have not been achieved by the state-of-the-art techniques. Finally, the effectiveness and advantages of the proposed approach are demonstrated on a wide variety of simulations and industrial cases.
•An AMICCD algorithm is proposed.•Compared with the SOTA, AMICCD shows the best decomposition performance.•An AMICCD-based detector is developed for detecting plant-wide oscillations. |
|---|---|
| AbstractList | Analyzing plant-wide oscillations is a challenging task owing to the presence of noise, nonstationarity, and multiple modes in a process control system. Multivariate intrinsic chirp component decomposition (MICCD) is a novel powerful tool for multivariate signal processing. Nevertheless, MICCD requires users to provide component number in advance, which restricts its adaptability. This study proposes an adaptive MICCD (AMICCD) that can adaptively determine the component number by utilizing the permutation entropy of instantaneous frequency. An AMICCD-based time–frequency analysis framework is presented to detect and characterize the multiple plant-wide oscillations. Compared to the latest methods, such as multivariate empirical mode decomposition and multivariate intrinsic time-scale decomposition, the proposed method can process not only single/multiple plant-wide oscillations, but also time-invariant/time-varying plant-wide oscillations. In particular, the proposed method can directly provide the time–frequency curves of multiple plant-wide oscillations, which have not been achieved by the state-of-the-art techniques. Finally, the effectiveness and advantages of the proposed approach are demonstrated on a wide variety of simulations and industrial cases.
•An AMICCD algorithm is proposed.•Compared with the SOTA, AMICCD shows the best decomposition performance.•An AMICCD-based detector is developed for detecting plant-wide oscillations. |
| ArticleNumber | 105715 |
| Author | Lang, Xun Wu, Xialai Xie, Lei Chen, Qiming Wen, Qingsong Su, Hongye Shi, Yao |
| Author_xml | – sequence: 1 givenname: Qiming orcidid: 0000-0003-2104-2587 surname: Chen fullname: Chen, Qiming organization: DAMO Academy, Alibaba Group, Hangzhou, China – sequence: 2 givenname: Qingsong orcidid: 0000-0003-4516-2524 surname: Wen fullname: Wen, Qingsong organization: DAMO Academy, Alibaba Group (U.S.) Inc., Bellevue, WA 98004, USA – sequence: 3 givenname: Xialai surname: Wu fullname: Wu, Xialai organization: School of Engineering, Huzhou University, Huzhou, Zhejiang, China – sequence: 4 givenname: Xun orcidid: 0000-0001-7380-6935 surname: Lang fullname: Lang, Xun email: langxun@ynu.edu.cn organization: Department of Electronic Engineering, Information School, Yunnan University, Kunming 650091, China – sequence: 5 givenname: Yao orcidid: 0000-0002-6557-6823 surname: Shi fullname: Shi, Yao organization: State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China – sequence: 6 givenname: Lei orcidid: 0000-0002-7669-1886 surname: Xie fullname: Xie, Lei organization: State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China – sequence: 7 givenname: Hongye surname: Su fullname: Su, Hongye organization: State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China |
| BookMark | eNqNkUtKBDEURYMo2H72kA1Um1Tq05kI_hUEJzoOqeSVvqY6VSbplp65Awfu0JWYsgXBiY4SLu8e8k72yLbrHRBCOZtyxquj-dSkwD0OXptpznKR4rLm5RaZ8FktskoKuU0mTFZ1xqqK75K9EOYsVaXkE_J2DhFMxN5R7SyNuICP1_fWw_MSnFmnUHfrgIH2LV0su4hDB3TotIvZC1qgfTDYdXoEBLoM6B6ptnqIuILN_Ep71BEouujRBTTUPKEfqOkXw_jwSC183QOOkAOy0-ouwOH3uU8eLi_uz66z27urm7OT28wIPosZiLoomOBi1lhR103J86aQjREil601orCSSQvStsLystKmllKyXDOrm6rMC7FPjjdc4_sQPLTKYPxaI3qNneJMjXrVXP3oVaNetdGbALNfgMHjQvv1f6qnmyqkBVcIXiWJyTZY9OkvlO3xb8gnqxKkBg |
| CitedBy_id | crossref_primary_10_1016_j_jprocont_2024_103226 |
| Cites_doi | 10.1016/j.conengprac.2018.08.019 10.1109/TII.2022.3188844 10.1109/ACCESS.2018.2877150 10.1109/MSP.2013.2267931 10.1016/j.conengprac.2016.06.020 10.1109/JSEN.2017.2737467 10.1016/j.jprocont.2019.04.002 10.1016/j.compchemeng.2021.107231 10.1109/TSP.2019.2951223 10.1021/acs.iecr.9b01456 10.1021/acs.iecr.7b03042 10.1016/j.sigpro.2014.07.008 10.1016/S0967-0661(02)00035-7 10.1109/ACCESS.2019.2925861 10.1109/TCST.2004.839570 10.1142/S1793536913500076 10.1103/PhysRevLett.88.174102 10.1109/TSP.2011.2173681 10.1016/j.jprocont.2019.04.007 10.1016/j.jprocont.2020.09.008 10.1016/j.sigpro.2017.01.027 10.1021/acs.iecr.9b06351 10.1016/j.jprocont.2011.07.006 10.1016/j.sigpro.2020.107667 10.1109/JAS.2019.1911555 10.1109/TSP.2014.2314061 10.1016/j.conengprac.2004.12.003 10.1109/TSP.2011.2106779 10.1016/j.conengprac.2012.02.008 10.1109/TCST.2019.2940374 10.1016/j.conengprac.2020.104307 10.1016/j.sigpro.2021.108009 10.1016/j.jprocont.2017.08.005 10.1016/j.sigpro.2003.12.006 10.1021/ie0602299 10.1016/j.compchemeng.2018.06.007 10.1016/j.conengprac.2007.01.014 10.1016/j.jprocont.2013.11.009 10.1098/rspa.2009.0502 10.1016/j.jprocont.2015.11.002 10.1016/j.dsp.2021.103167 10.1016/j.conengprac.2016.03.012 10.1016/j.jprocont.2019.01.001 10.1109/TCST.2019.2896223 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.conengprac.2023.105715 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-6939 |
| ExternalDocumentID | 10_1016_j_conengprac_2023_105715 S0967066123002848 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K UNMZH WUQ XFK XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c318t-e374403138bd377b512b49bc3329fdc34d909de9df3d156ac799902a0dab65243 |
| IEDL.DBID | .~1 |
| ISSN | 0967-0661 |
| IngestDate | Sat Oct 25 05:14:08 EDT 2025 Thu Apr 24 23:08:20 EDT 2025 Fri Feb 23 02:34:58 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Adaptive multivariate intrinsic chirp component decomposition Multivariate signal decomposition Multivariate time–frequency analysis Plant-wide oscillation detection Control performance assessment |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c318t-e374403138bd377b512b49bc3329fdc34d909de9df3d156ac799902a0dab65243 |
| ORCID | 0000-0002-6557-6823 0000-0003-2104-2587 0000-0001-7380-6935 0000-0003-4516-2524 0000-0002-7669-1886 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_conengprac_2023_105715 crossref_primary_10_1016_j_conengprac_2023_105715 elsevier_sciencedirect_doi_10_1016_j_conengprac_2023_105715 |
| PublicationCentury | 2000 |
| PublicationDate | December 2023 2023-12-00 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: December 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Control engineering practice |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Lang, Zheng, Zhang, Lu, Xie, Horch (b26) 2018; 6 Lang, Zheng, Xie, Horch, Su (b25) 2019; 28 Yang, Peng, Dong, Zhang, Meng (b44) 2014; 62 ur Rehman, Park, Huang, Mandic (b39) 2013; 5 Dambros, Trierweiler, Farenzena, Kloft (b19) 2019; 58 Thornhill (b35) 2005; 13 Chen, Dong, Xing, Peng, Zhang, Meng (b9) 2017; 17 Chen, Lang, Lu, ur Rehman, Xie, Su (b10) 2021; 147 Djurović, Stanković (b20) 2004; 84 Ying, Zheng, Pan, Liu (b46) 2021; 117 Chen, Chen, Lang, Xie, Jiang, Su (b7) 2020 Choudhury, Shah, Thornhill (b16) 2008 Dambros, Trierweiler, Farenzena, Kempf, Longhi, Teixeira (b18) 2019; 78 Lilly, Olhede (b28) 2011; 60 Wang, Zheng, Wong (b40) 2020; 96 Tangirala, Kanodia, Shah (b34) 2007; 46 Aftab, Hovd, Sivalingam (b2) 2018; 81 Thornhill, Shah, Huang, Vishnubhotla (b36) 2002; 10 Lang, Zhang, Xie, Li, Horch, Su (b24) 2022; 19 Xie, Lang, Horch, Yang (b43) 2016; 55 ur Rehman, Aftab (b37) 2019; 67 Chen, Lang, Xie, Su (b11) 2019; 7 Chen, Peng, Yang, Dong, Zhang (b14) 2017; 137 Chen, Chen, Lang, Xie, Lu, Su (b8) 2020; 97 Srinivasan, Rengaswamy, Miller (b33) 2007; 15 Xia, Howell (b41) 2005; 13 Aftab, Hovd, Sivalingam (b1) 2017; 60 Chen, Lang, Xie, Su (b12) 2019 Lang, Zhong, Xie, Chen (b27) 2017 Lang, Zhang, Xie, Horch, Su (b22) 2018; 57 Lindner, Auret, Bauer (b29) 2019; 28 Aftab, Hovd, Sivalingam (b3) 2018; 117 Mandic, ur Rehman, Wu, Huang (b30) 2013; 30 Yang, Shi, Liu, Li (b45) 2019; 7 Chen, Lang, Xie, Su (b13) 2021 Chen, Xie, Su (b15) 2020 El-Ferik, Shareef, Ettaleb (b21) 2012; 22 Lang, Zhang, Xie, Jin, Horch, Su (b23) 2020; 59 Rehman, Mandic (b31) 2010; 466 Aftab, Hovd, Sivalingam (b4) 2019; 83 Yuan, Qin (b47) 2014; 24 Dambros, Trierweiler, Farenzena (b17) 2019; 78 Ur Rehman, Mandic (b38) 2011; 59 Bandt, Pompe (b5) 2002; 88 Bauer, Horch, Xie, Jelali, Thornhill (b6) 2016; 38 Srinivasan, Rengaswamy (b32) 2012; 20 Zhang, Bi, Razul, See (b48) 2015; 106 Xie, Lang, Chen, Horch, Su (b42) 2016; 51 Dambros (10.1016/j.conengprac.2023.105715_b19) 2019; 58 Aftab (10.1016/j.conengprac.2023.105715_b3) 2018; 117 Dambros (10.1016/j.conengprac.2023.105715_b17) 2019; 78 Srinivasan (10.1016/j.conengprac.2023.105715_b32) 2012; 20 Chen (10.1016/j.conengprac.2023.105715_b13) 2021 ur Rehman (10.1016/j.conengprac.2023.105715_b39) 2013; 5 Chen (10.1016/j.conengprac.2023.105715_b12) 2019 Lindner (10.1016/j.conengprac.2023.105715_b29) 2019; 28 Chen (10.1016/j.conengprac.2023.105715_b9) 2017; 17 Xie (10.1016/j.conengprac.2023.105715_b42) 2016; 51 Chen (10.1016/j.conengprac.2023.105715_b14) 2017; 137 Lang (10.1016/j.conengprac.2023.105715_b27) 2017 Xie (10.1016/j.conengprac.2023.105715_b43) 2016; 55 Aftab (10.1016/j.conengprac.2023.105715_b4) 2019; 83 Bandt (10.1016/j.conengprac.2023.105715_b5) 2002; 88 Chen (10.1016/j.conengprac.2023.105715_b10) 2021; 147 Choudhury (10.1016/j.conengprac.2023.105715_b16) 2008 Lang (10.1016/j.conengprac.2023.105715_b23) 2020; 59 Lang (10.1016/j.conengprac.2023.105715_b22) 2018; 57 Yang (10.1016/j.conengprac.2023.105715_b45) 2019; 7 Rehman (10.1016/j.conengprac.2023.105715_b31) 2010; 466 Srinivasan (10.1016/j.conengprac.2023.105715_b33) 2007; 15 El-Ferik (10.1016/j.conengprac.2023.105715_b21) 2012; 22 Ur Rehman (10.1016/j.conengprac.2023.105715_b38) 2011; 59 Dambros (10.1016/j.conengprac.2023.105715_b18) 2019; 78 Bauer (10.1016/j.conengprac.2023.105715_b6) 2016; 38 Lang (10.1016/j.conengprac.2023.105715_b24) 2022; 19 Lilly (10.1016/j.conengprac.2023.105715_b28) 2011; 60 Tangirala (10.1016/j.conengprac.2023.105715_b34) 2007; 46 ur Rehman (10.1016/j.conengprac.2023.105715_b37) 2019; 67 Thornhill (10.1016/j.conengprac.2023.105715_b36) 2002; 10 Chen (10.1016/j.conengprac.2023.105715_b7) 2020 Wang (10.1016/j.conengprac.2023.105715_b40) 2020; 96 Chen (10.1016/j.conengprac.2023.105715_b8) 2020; 97 Chen (10.1016/j.conengprac.2023.105715_b15) 2020 Lang (10.1016/j.conengprac.2023.105715_b25) 2019; 28 Aftab (10.1016/j.conengprac.2023.105715_b1) 2017; 60 Yuan (10.1016/j.conengprac.2023.105715_b47) 2014; 24 Ying (10.1016/j.conengprac.2023.105715_b46) 2021; 117 Zhang (10.1016/j.conengprac.2023.105715_b48) 2015; 106 Chen (10.1016/j.conengprac.2023.105715_b11) 2019; 7 Mandic (10.1016/j.conengprac.2023.105715_b30) 2013; 30 Yang (10.1016/j.conengprac.2023.105715_b44) 2014; 62 Aftab (10.1016/j.conengprac.2023.105715_b2) 2018; 81 Djurović (10.1016/j.conengprac.2023.105715_b20) 2004; 84 Thornhill (10.1016/j.conengprac.2023.105715_b35) 2005; 13 Lang (10.1016/j.conengprac.2023.105715_b26) 2018; 6 Xia (10.1016/j.conengprac.2023.105715_b41) 2005; 13 |
| References_xml | – volume: 7 start-page: 1446 year: 2019 end-page: 1454 ident: b45 article-title: A novel MDFA-MKECA method with application to industrial batch process monitoring publication-title: IEEE/CAA Journal of Automatica Sinica – volume: 78 start-page: 139 year: 2019 end-page: 154 ident: b18 article-title: Oscillation detection in process industries–part II: Industrial application publication-title: Journal of Process Control – volume: 147 year: 2021 ident: b10 article-title: Detection and root cause analysis of multiple plant-wide oscillations using multivariate nonlinear chirp mode decomposition and multivariate granger causality publication-title: Computers & Chemical Engineering – start-page: 2772 year: 2020 end-page: 2777 ident: b7 article-title: Diagnosis of nonlinearity-induced oscillations in process control loops based on adaptive chirp mode decomposition publication-title: 2020 American control conference – year: 2020 ident: b15 article-title: Multivariate nonlinear chirp mode decomposition publication-title: Signal Processing – volume: 46 start-page: 801 year: 2007 end-page: 817 ident: b34 article-title: Non-negative matrix factorization for detection and diagnosis of plantwide oscillations publication-title: Industrial & Engineering Chemistry Research – volume: 17 start-page: 5994 year: 2017 end-page: 6005 ident: b9 article-title: Separation of overlapped non-stationary signals by ridge path regrouping and intrinsic chirp component decomposition publication-title: IEEE Sensors Journal – year: 2021 ident: b13 article-title: Multivariate intrinsic chirp mode decomposition publication-title: Signal Processing – volume: 15 start-page: 1135 year: 2007 end-page: 1148 ident: b33 article-title: A modified empirical mode decomposition (EMD) process for oscillation characterization in control loops publication-title: Control Engineering Practice – volume: 62 start-page: 2751 year: 2014 end-page: 2764 ident: b44 article-title: General parameterized time-frequency transform publication-title: IEEE Transactions on Signal Processing – volume: 81 start-page: 162 year: 2018 end-page: 171 ident: b2 article-title: Improved oscillation detection via noise-assisted data analysis publication-title: Control Engineering Practice – volume: 28 start-page: 2608 year: 2019 end-page: 2615 ident: b25 article-title: Direct multivariate intrinsic time-scale decomposition for oscillation monitoring publication-title: IEEE Transactions on Control Systems Technology – volume: 60 start-page: 68 year: 2017 end-page: 81 ident: b1 article-title: Detecting non-linearity induced oscillations via the dyadic filter bank property of multivariate empirical mode decomposition publication-title: Journal of Process Control – volume: 59 start-page: 11537 year: 2020 end-page: 11551 ident: b23 article-title: Use of fast multivariate empirical mode decomposition for oscillation monitoring in noisy process plant publication-title: Industrial and Engineering Chemistry Research – volume: 30 start-page: 74 year: 2013 end-page: 86 ident: b30 article-title: Empirical mode decomposition-based time-frequency analysis of multivariate signals: The power of adaptive data analysis publication-title: IEEE Signal Processing Magazine – volume: 106 start-page: 141 year: 2015 end-page: 158 ident: b48 article-title: Robust time-varying filtering and separation of some nonstationary signals in low SNR environments publication-title: Signal Processing – volume: 57 start-page: 954 year: 2018 end-page: 966 ident: b22 article-title: Time-frequency analysis of plant-wide oscillations using multivariate intrinsic time-scale decomposition publication-title: Industrial and Engineering Chemistry Research – volume: 6 start-page: 65521 year: 2018 end-page: 65538 ident: b26 article-title: Fast multivariate empirical mode decomposition publication-title: IEEE Access – volume: 20 start-page: 733 year: 2012 end-page: 746 ident: b32 article-title: Automatic oscillation detection and characterization in closed-loop systems publication-title: Control Engineering Practice – volume: 38 start-page: 1 year: 2016 end-page: 10 ident: b6 article-title: The current state of control loop performance monitoring–a survey of application in industry publication-title: Journal of Process Control – volume: 97 year: 2020 ident: b8 article-title: Detection and diagnosis of oscillations in process control by fast adaptive chirp mode decomposition publication-title: Control Engineering Practice – volume: 78 start-page: 108 year: 2019 end-page: 123 ident: b17 article-title: Oscillation detection in process industries–part I: review of the detection methods publication-title: Journal of Process Control – volume: 67 start-page: 6039 year: 2019 end-page: 6052 ident: b37 article-title: Multivariate variational mode decomposition publication-title: IEEE Transactions on Signal Processing – volume: 51 start-page: 48 year: 2016 end-page: 57 ident: b42 article-title: Time-varying oscillation detector based on improved LMD and robust Lempel–Ziv complexity publication-title: Control Engineering Practice – volume: 117 start-page: 320 year: 2018 end-page: 330 ident: b3 article-title: Plant-wide oscillation detection using multivariate empirical mode decomposition publication-title: Computers & Chemical Engineering – start-page: 601 year: 2017 end-page: 606 ident: b27 article-title: Application of improved multivariate empirical mode decomposition to plant-wide oscillations characterization publication-title: 2017 6th international symposium on advanced control of industrial processes – volume: 58 start-page: 14180 year: 2019 end-page: 14192 ident: b19 article-title: Oscillation detection in process industries by a machine learning-based approach publication-title: Industrial and Engineering Chemistry Research – volume: 88 start-page: 174102 year: 2002 ident: b5 article-title: Permutation entropy: a natural complexity measure for time series publication-title: Physical Review Letters – volume: 5 year: 2013 ident: b39 article-title: EMD via MEMD: multivariate noise-aided computation of standard EMD publication-title: Advances in Adaptive Data Analysis – volume: 24 start-page: 450 year: 2014 end-page: 459 ident: b47 article-title: Root cause diagnosis of plant-wide oscillations using granger causality publication-title: Journal of Process Control – volume: 7 start-page: 91446 year: 2019 end-page: 91462 ident: b11 article-title: Detecting nonlinear oscillations in process control loop based on an improved VMD publication-title: IEEE Access – volume: 83 start-page: 177 year: 2019 end-page: 186 ident: b4 article-title: Diagnosis of plant-wide oscillations by combining multivariate empirical mode decomposition and delay vector variance publication-title: Journal of Process Control – start-page: 298 year: 2019 end-page: 303 ident: b12 article-title: Detecting oscillations via adaptive chirp mode decomposition publication-title: 2019 CAA symposium on fault detection, supervision and safety for technical processes – volume: 28 start-page: 908 year: 2019 end-page: 919 ident: b29 article-title: A systematic workflow for oscillation diagnosis using transfer entropy publication-title: IEEE Transactions on Control Systems Technology – volume: 60 start-page: 600 year: 2011 end-page: 612 ident: b28 article-title: Analysis of modulated multivariate oscillations publication-title: IEEE Transactions on Signal Processing – volume: 59 start-page: 2421 year: 2011 end-page: 2426 ident: b38 article-title: Filter bank property of multivariate empirical mode decomposition publication-title: IEEE Transactions on Signal Processing – volume: 137 start-page: 319 year: 2017 end-page: 327 ident: b14 article-title: Intrinsic chirp component decomposition by using Fourier series representation publication-title: Signal Processing – volume: 19 start-page: 5809 year: 2022 end-page: 5820 ident: b24 article-title: Detrending and denoising of industrial oscillation data publication-title: IEEE Transactions on Industrial Informatics – volume: 10 start-page: 833 year: 2002 end-page: 846 ident: b36 article-title: Spectral principal component analysis of dynamic process data publication-title: Control Engineering Practice – volume: 466 start-page: 1291 year: 2010 end-page: 1302 ident: b31 article-title: Multivariate empirical mode decomposition publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences – volume: 13 start-page: 434 year: 2005 end-page: 443 ident: b35 article-title: Finding the source of nonlinearity in a process with plant-wide oscillation publication-title: IEEE Transactions on Control Systems Technology – volume: 55 start-page: 91 year: 2016 end-page: 100 ident: b43 article-title: Online oscillation detection in the presence of signal intermittency publication-title: Control Engineering Practice – year: 2008 ident: b16 article-title: Diagnosis of process nonlinearities and valve stiction: data driven approaches – volume: 13 start-page: 1027 year: 2005 end-page: 1035 ident: b41 article-title: Isolating multiple sources of plant-wide oscillations via independent component analysis publication-title: Control Engineering Practice – volume: 84 start-page: 631 year: 2004 end-page: 643 ident: b20 article-title: An algorithm for the wigner distribution based instantaneous frequency estimation in a high noise environment publication-title: Signal Processing – volume: 96 start-page: 67 year: 2020 end-page: 81 ident: b40 article-title: Trajectory-based operation monitoring of transition procedure in multimode process publication-title: Journal of Process Control – volume: 22 start-page: 321 year: 2012 end-page: 329 ident: b21 article-title: Detection and diagnosis of plant-wide oscillations using GA based factorization publication-title: Journal of Process Control – volume: 117 year: 2021 ident: b46 article-title: Permutation entropy-based improved uniform phase empirical mode decomposition for mechanical fault diagnosis publication-title: Digital Signal Processing – volume: 81 start-page: 162 year: 2018 ident: 10.1016/j.conengprac.2023.105715_b2 article-title: Improved oscillation detection via noise-assisted data analysis publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2018.08.019 – volume: 19 start-page: 5809 issue: 4 year: 2022 ident: 10.1016/j.conengprac.2023.105715_b24 article-title: Detrending and denoising of industrial oscillation data publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2022.3188844 – volume: 6 start-page: 65521 year: 2018 ident: 10.1016/j.conengprac.2023.105715_b26 article-title: Fast multivariate empirical mode decomposition publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2877150 – volume: 30 start-page: 74 issue: 6 year: 2013 ident: 10.1016/j.conengprac.2023.105715_b30 article-title: Empirical mode decomposition-based time-frequency analysis of multivariate signals: The power of adaptive data analysis publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2013.2267931 – volume: 55 start-page: 91 year: 2016 ident: 10.1016/j.conengprac.2023.105715_b43 article-title: Online oscillation detection in the presence of signal intermittency publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2016.06.020 – volume: 17 start-page: 5994 issue: 18 year: 2017 ident: 10.1016/j.conengprac.2023.105715_b9 article-title: Separation of overlapped non-stationary signals by ridge path regrouping and intrinsic chirp component decomposition publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2017.2737467 – volume: 78 start-page: 108 year: 2019 ident: 10.1016/j.conengprac.2023.105715_b17 article-title: Oscillation detection in process industries–part I: review of the detection methods publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2019.04.002 – volume: 147 year: 2021 ident: 10.1016/j.conengprac.2023.105715_b10 article-title: Detection and root cause analysis of multiple plant-wide oscillations using multivariate nonlinear chirp mode decomposition and multivariate granger causality publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2021.107231 – start-page: 298 year: 2019 ident: 10.1016/j.conengprac.2023.105715_b12 article-title: Detecting oscillations via adaptive chirp mode decomposition – volume: 67 start-page: 6039 issue: 23 year: 2019 ident: 10.1016/j.conengprac.2023.105715_b37 article-title: Multivariate variational mode decomposition publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2019.2951223 – volume: 58 start-page: 14180 issue: 31 year: 2019 ident: 10.1016/j.conengprac.2023.105715_b19 article-title: Oscillation detection in process industries by a machine learning-based approach publication-title: Industrial and Engineering Chemistry Research doi: 10.1021/acs.iecr.9b01456 – volume: 57 start-page: 954 issue: 3 year: 2018 ident: 10.1016/j.conengprac.2023.105715_b22 article-title: Time-frequency analysis of plant-wide oscillations using multivariate intrinsic time-scale decomposition publication-title: Industrial and Engineering Chemistry Research doi: 10.1021/acs.iecr.7b03042 – volume: 106 start-page: 141 year: 2015 ident: 10.1016/j.conengprac.2023.105715_b48 article-title: Robust time-varying filtering and separation of some nonstationary signals in low SNR environments publication-title: Signal Processing doi: 10.1016/j.sigpro.2014.07.008 – volume: 10 start-page: 833 issue: 8 year: 2002 ident: 10.1016/j.conengprac.2023.105715_b36 article-title: Spectral principal component analysis of dynamic process data publication-title: Control Engineering Practice doi: 10.1016/S0967-0661(02)00035-7 – volume: 7 start-page: 91446 year: 2019 ident: 10.1016/j.conengprac.2023.105715_b11 article-title: Detecting nonlinear oscillations in process control loop based on an improved VMD publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2925861 – start-page: 601 year: 2017 ident: 10.1016/j.conengprac.2023.105715_b27 article-title: Application of improved multivariate empirical mode decomposition to plant-wide oscillations characterization – volume: 13 start-page: 434 issue: 3 year: 2005 ident: 10.1016/j.conengprac.2023.105715_b35 article-title: Finding the source of nonlinearity in a process with plant-wide oscillation publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2004.839570 – volume: 5 issue: 02 year: 2013 ident: 10.1016/j.conengprac.2023.105715_b39 article-title: EMD via MEMD: multivariate noise-aided computation of standard EMD publication-title: Advances in Adaptive Data Analysis doi: 10.1142/S1793536913500076 – volume: 88 start-page: 174102 issue: 17 year: 2002 ident: 10.1016/j.conengprac.2023.105715_b5 article-title: Permutation entropy: a natural complexity measure for time series publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.88.174102 – volume: 60 start-page: 600 issue: 2 year: 2011 ident: 10.1016/j.conengprac.2023.105715_b28 article-title: Analysis of modulated multivariate oscillations publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2011.2173681 – volume: 78 start-page: 139 year: 2019 ident: 10.1016/j.conengprac.2023.105715_b18 article-title: Oscillation detection in process industries–part II: Industrial application publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2019.04.007 – volume: 96 start-page: 67 year: 2020 ident: 10.1016/j.conengprac.2023.105715_b40 article-title: Trajectory-based operation monitoring of transition procedure in multimode process publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2020.09.008 – volume: 137 start-page: 319 year: 2017 ident: 10.1016/j.conengprac.2023.105715_b14 article-title: Intrinsic chirp component decomposition by using Fourier series representation publication-title: Signal Processing doi: 10.1016/j.sigpro.2017.01.027 – volume: 59 start-page: 11537 issue: 25 year: 2020 ident: 10.1016/j.conengprac.2023.105715_b23 article-title: Use of fast multivariate empirical mode decomposition for oscillation monitoring in noisy process plant publication-title: Industrial and Engineering Chemistry Research doi: 10.1021/acs.iecr.9b06351 – volume: 22 start-page: 321 issue: 1 year: 2012 ident: 10.1016/j.conengprac.2023.105715_b21 article-title: Detection and diagnosis of plant-wide oscillations using GA based factorization publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2011.07.006 – year: 2020 ident: 10.1016/j.conengprac.2023.105715_b15 article-title: Multivariate nonlinear chirp mode decomposition publication-title: Signal Processing doi: 10.1016/j.sigpro.2020.107667 – volume: 7 start-page: 1446 issue: 5 year: 2019 ident: 10.1016/j.conengprac.2023.105715_b45 article-title: A novel MDFA-MKECA method with application to industrial batch process monitoring publication-title: IEEE/CAA Journal of Automatica Sinica doi: 10.1109/JAS.2019.1911555 – volume: 62 start-page: 2751 issue: 11 year: 2014 ident: 10.1016/j.conengprac.2023.105715_b44 article-title: General parameterized time-frequency transform publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2014.2314061 – start-page: 2772 year: 2020 ident: 10.1016/j.conengprac.2023.105715_b7 article-title: Diagnosis of nonlinearity-induced oscillations in process control loops based on adaptive chirp mode decomposition – volume: 13 start-page: 1027 issue: 8 year: 2005 ident: 10.1016/j.conengprac.2023.105715_b41 article-title: Isolating multiple sources of plant-wide oscillations via independent component analysis publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2004.12.003 – volume: 59 start-page: 2421 issue: 5 year: 2011 ident: 10.1016/j.conengprac.2023.105715_b38 article-title: Filter bank property of multivariate empirical mode decomposition publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2011.2106779 – volume: 20 start-page: 733 issue: 8 year: 2012 ident: 10.1016/j.conengprac.2023.105715_b32 article-title: Automatic oscillation detection and characterization in closed-loop systems publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2012.02.008 – year: 2008 ident: 10.1016/j.conengprac.2023.105715_b16 – volume: 28 start-page: 2608 issue: 6 year: 2019 ident: 10.1016/j.conengprac.2023.105715_b25 article-title: Direct multivariate intrinsic time-scale decomposition for oscillation monitoring publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2019.2940374 – volume: 97 year: 2020 ident: 10.1016/j.conengprac.2023.105715_b8 article-title: Detection and diagnosis of oscillations in process control by fast adaptive chirp mode decomposition publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2020.104307 – year: 2021 ident: 10.1016/j.conengprac.2023.105715_b13 article-title: Multivariate intrinsic chirp mode decomposition publication-title: Signal Processing doi: 10.1016/j.sigpro.2021.108009 – volume: 60 start-page: 68 year: 2017 ident: 10.1016/j.conengprac.2023.105715_b1 article-title: Detecting non-linearity induced oscillations via the dyadic filter bank property of multivariate empirical mode decomposition publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2017.08.005 – volume: 84 start-page: 631 issue: 3 year: 2004 ident: 10.1016/j.conengprac.2023.105715_b20 article-title: An algorithm for the wigner distribution based instantaneous frequency estimation in a high noise environment publication-title: Signal Processing doi: 10.1016/j.sigpro.2003.12.006 – volume: 46 start-page: 801 issue: 3 year: 2007 ident: 10.1016/j.conengprac.2023.105715_b34 article-title: Non-negative matrix factorization for detection and diagnosis of plantwide oscillations publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/ie0602299 – volume: 117 start-page: 320 year: 2018 ident: 10.1016/j.conengprac.2023.105715_b3 article-title: Plant-wide oscillation detection using multivariate empirical mode decomposition publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2018.06.007 – volume: 15 start-page: 1135 issue: 9 year: 2007 ident: 10.1016/j.conengprac.2023.105715_b33 article-title: A modified empirical mode decomposition (EMD) process for oscillation characterization in control loops publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2007.01.014 – volume: 24 start-page: 450 issue: 2 year: 2014 ident: 10.1016/j.conengprac.2023.105715_b47 article-title: Root cause diagnosis of plant-wide oscillations using granger causality publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2013.11.009 – volume: 466 start-page: 1291 issue: 2117 year: 2010 ident: 10.1016/j.conengprac.2023.105715_b31 article-title: Multivariate empirical mode decomposition publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences doi: 10.1098/rspa.2009.0502 – volume: 38 start-page: 1 year: 2016 ident: 10.1016/j.conengprac.2023.105715_b6 article-title: The current state of control loop performance monitoring–a survey of application in industry publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2015.11.002 – volume: 117 year: 2021 ident: 10.1016/j.conengprac.2023.105715_b46 article-title: Permutation entropy-based improved uniform phase empirical mode decomposition for mechanical fault diagnosis publication-title: Digital Signal Processing doi: 10.1016/j.dsp.2021.103167 – volume: 51 start-page: 48 year: 2016 ident: 10.1016/j.conengprac.2023.105715_b42 article-title: Time-varying oscillation detector based on improved LMD and robust Lempel–Ziv complexity publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2016.03.012 – volume: 83 start-page: 177 year: 2019 ident: 10.1016/j.conengprac.2023.105715_b4 article-title: Diagnosis of plant-wide oscillations by combining multivariate empirical mode decomposition and delay vector variance publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2019.01.001 – volume: 28 start-page: 908 issue: 3 year: 2019 ident: 10.1016/j.conengprac.2023.105715_b29 article-title: A systematic workflow for oscillation diagnosis using transfer entropy publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2019.2896223 |
| SSID | ssj0016991 |
| Score | 2.4171774 |
| Snippet | Analyzing plant-wide oscillations is a challenging task owing to the presence of noise, nonstationarity, and multiple modes in a process control system.... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 105715 |
| SubjectTerms | Adaptive multivariate intrinsic chirp component decomposition Control performance assessment Multivariate signal decomposition Multivariate time–frequency analysis Plant-wide oscillation detection |
| Title | Detection and time–frequency analysis of multiple plant-wide oscillations using adaptive multivariate intrinsic chirp component decomposition |
| URI | https://dx.doi.org/10.1016/j.conengprac.2023.105715 |
| Volume | 141 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6939 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016991 issn: 0967-0661 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-6939 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016991 issn: 0967-0661 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection customDbUrl: eissn: 1873-6939 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016991 issn: 0967-0661 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6939 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016991 issn: 0967-0661 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6939 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016991 issn: 0967-0661 databaseCode: AKRWK dateStart: 19930201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6LXvQgPvFNDl672yax3eBpUZdVcS-64K0kTaqVpZalKl7Ef-DBf-gvcaZpVwVBwVtbMqSdSecB33xDyJ6xzDdSK49xHnlCqK6nQ2Y9IwwTKvAtq3gKzofhYCROr_avWuSw6YVBWGXt-51Pr7x1_aRTa7NTZFnnApLvCAImuF4sHAQ2_AoR4RSD9vMU5hGE0k3Ng8XYbR_UaB6H8YKS0-bX2I_UxjHi1dBbHJD7U4j6Enb6i2Shzhdpz73SEmnZfJnMf2ERXCGvR7asAFU5VbmhOC3-_eUtnTiQ9BM8dLwj9C6lDX6QFmNQqfeYGUuRznJcQ-Io4uCvqTKqQD_o1j9APQ0pKc3yEnYEs9LkJpsUFOHo-GklNba6dvivVTLqH18eDrx6zoKXwB9depYjSyAPeFcbHkUacgAtpE44ZzI1CRdG-tJYaVJuoNxTSQRZpc-Ub5QO95nga2Qmh-3WCeW-Bucf2ATyPMGiFNIHKRPZDUGvyPy-QaJGtXFSk5DjLIxx3KDNbuNPo8RolNgZZYMEU8nCEXH8QeagsV787VDFEC9-ld78l_QWmcM7h3zZJjPl5N7uQP5S6t3qgO6S2d7J2WD4AaPf9X8 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-DupBfOLbHLzWbZNsu8GTrC7r86KCt5I0qVaWWpaqeBH_gQf_ob_Emab1AYKCt5JmaDuTTr6BL98QsmUs843UymOcR54QquPpkFnPCMOECnzLKp2Ck9OwfyEOL9uXI6TbnIVBWmWd-11Or7J1PdKqvdkqsqx1BuA7gg0TUi8WDqIzSsZFm0VYgW0_ffA8glC6tnkwG4_bBzWdx5G8oOa0-RUeSNrGPuJV11vskPvTHvVl3-nNkOkaMNJd906zZMTmc2Tqi4zgPHnZs2XFqMqpyg3FdvFvz6_p0LGkH2HQCY_Q25Q2BEJaDMCn3kNmLEU9y0HNiaNIhL-iyqgCE6Gbfw8FNWBSmuUlPBHiSpPrbFhQ5KPjp5XU2OraEcAWyEVv_7zb9-pGC14Cv3TpWY4ygTzgHW14FGkAAVpInXDOZGoSLoz0pbHSpNxAvaeSCGClz5RvlA7bTPBFMpbD45YI5b6G7B_YBICeYFEK-EHKRHZC8CtKvy-TqHFtnNQq5NgMYxA3dLOb-DMoMQYldkFZJsGHZeGUOP5gs9NEL_62qmLYMH61XvmX9SaZ6J-fHMfHB6dHq2QS7zgazBoZK4d3dh3ATKk3qsX6Dk3F9xQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+and+time%E2%80%93frequency+analysis+of+multiple+plant-wide+oscillations+using+adaptive+multivariate+intrinsic+chirp+component+decomposition&rft.jtitle=Control+engineering+practice&rft.au=Chen%2C+Qiming&rft.au=Wen%2C+Qingsong&rft.au=Wu%2C+Xialai&rft.au=Lang%2C+Xun&rft.date=2023-12-01&rft.pub=Elsevier+Ltd&rft.issn=0967-0661&rft.eissn=1873-6939&rft.volume=141&rft_id=info:doi/10.1016%2Fj.conengprac.2023.105715&rft.externalDocID=S0967066123002848 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon |