Detection and time–frequency analysis of multiple plant-wide oscillations using adaptive multivariate intrinsic chirp component decomposition

Analyzing plant-wide oscillations is a challenging task owing to the presence of noise, nonstationarity, and multiple modes in a process control system. Multivariate intrinsic chirp component decomposition (MICCD) is a novel powerful tool for multivariate signal processing. Nevertheless, MICCD requi...

Full description

Saved in:
Bibliographic Details
Published inControl engineering practice Vol. 141; p. 105715
Main Authors Chen, Qiming, Wen, Qingsong, Wu, Xialai, Lang, Xun, Shi, Yao, Xie, Lei, Su, Hongye
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2023
Subjects
Online AccessGet full text
ISSN0967-0661
1873-6939
DOI10.1016/j.conengprac.2023.105715

Cover

Abstract Analyzing plant-wide oscillations is a challenging task owing to the presence of noise, nonstationarity, and multiple modes in a process control system. Multivariate intrinsic chirp component decomposition (MICCD) is a novel powerful tool for multivariate signal processing. Nevertheless, MICCD requires users to provide component number in advance, which restricts its adaptability. This study proposes an adaptive MICCD (AMICCD) that can adaptively determine the component number by utilizing the permutation entropy of instantaneous frequency. An AMICCD-based time–frequency analysis framework is presented to detect and characterize the multiple plant-wide oscillations. Compared to the latest methods, such as multivariate empirical mode decomposition and multivariate intrinsic time-scale decomposition, the proposed method can process not only single/multiple plant-wide oscillations, but also time-invariant/time-varying plant-wide oscillations. In particular, the proposed method can directly provide the time–frequency curves of multiple plant-wide oscillations, which have not been achieved by the state-of-the-art techniques. Finally, the effectiveness and advantages of the proposed approach are demonstrated on a wide variety of simulations and industrial cases. •An AMICCD algorithm is proposed.•Compared with the SOTA, AMICCD shows the best decomposition performance.•An AMICCD-based detector is developed for detecting plant-wide oscillations.
AbstractList Analyzing plant-wide oscillations is a challenging task owing to the presence of noise, nonstationarity, and multiple modes in a process control system. Multivariate intrinsic chirp component decomposition (MICCD) is a novel powerful tool for multivariate signal processing. Nevertheless, MICCD requires users to provide component number in advance, which restricts its adaptability. This study proposes an adaptive MICCD (AMICCD) that can adaptively determine the component number by utilizing the permutation entropy of instantaneous frequency. An AMICCD-based time–frequency analysis framework is presented to detect and characterize the multiple plant-wide oscillations. Compared to the latest methods, such as multivariate empirical mode decomposition and multivariate intrinsic time-scale decomposition, the proposed method can process not only single/multiple plant-wide oscillations, but also time-invariant/time-varying plant-wide oscillations. In particular, the proposed method can directly provide the time–frequency curves of multiple plant-wide oscillations, which have not been achieved by the state-of-the-art techniques. Finally, the effectiveness and advantages of the proposed approach are demonstrated on a wide variety of simulations and industrial cases. •An AMICCD algorithm is proposed.•Compared with the SOTA, AMICCD shows the best decomposition performance.•An AMICCD-based detector is developed for detecting plant-wide oscillations.
ArticleNumber 105715
Author Lang, Xun
Wu, Xialai
Xie, Lei
Chen, Qiming
Wen, Qingsong
Su, Hongye
Shi, Yao
Author_xml – sequence: 1
  givenname: Qiming
  orcidid: 0000-0003-2104-2587
  surname: Chen
  fullname: Chen, Qiming
  organization: DAMO Academy, Alibaba Group, Hangzhou, China
– sequence: 2
  givenname: Qingsong
  orcidid: 0000-0003-4516-2524
  surname: Wen
  fullname: Wen, Qingsong
  organization: DAMO Academy, Alibaba Group (U.S.) Inc., Bellevue, WA 98004, USA
– sequence: 3
  givenname: Xialai
  surname: Wu
  fullname: Wu, Xialai
  organization: School of Engineering, Huzhou University, Huzhou, Zhejiang, China
– sequence: 4
  givenname: Xun
  orcidid: 0000-0001-7380-6935
  surname: Lang
  fullname: Lang, Xun
  email: langxun@ynu.edu.cn
  organization: Department of Electronic Engineering, Information School, Yunnan University, Kunming 650091, China
– sequence: 5
  givenname: Yao
  orcidid: 0000-0002-6557-6823
  surname: Shi
  fullname: Shi, Yao
  organization: State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
– sequence: 6
  givenname: Lei
  orcidid: 0000-0002-7669-1886
  surname: Xie
  fullname: Xie, Lei
  organization: State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
– sequence: 7
  givenname: Hongye
  surname: Su
  fullname: Su, Hongye
  organization: State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
BookMark eNqNkUtKBDEURYMo2H72kA1Um1Tq05kI_hUEJzoOqeSVvqY6VSbplp65Awfu0JWYsgXBiY4SLu8e8k72yLbrHRBCOZtyxquj-dSkwD0OXptpznKR4rLm5RaZ8FktskoKuU0mTFZ1xqqK75K9EOYsVaXkE_J2DhFMxN5R7SyNuICP1_fWw_MSnFmnUHfrgIH2LV0su4hDB3TotIvZC1qgfTDYdXoEBLoM6B6ptnqIuILN_Ep71BEouujRBTTUPKEfqOkXw_jwSC183QOOkAOy0-ouwOH3uU8eLi_uz66z27urm7OT28wIPosZiLoomOBi1lhR103J86aQjREil601orCSSQvStsLystKmllKyXDOrm6rMC7FPjjdc4_sQPLTKYPxaI3qNneJMjXrVXP3oVaNetdGbALNfgMHjQvv1f6qnmyqkBVcIXiWJyTZY9OkvlO3xb8gnqxKkBg
CitedBy_id crossref_primary_10_1016_j_jprocont_2024_103226
Cites_doi 10.1016/j.conengprac.2018.08.019
10.1109/TII.2022.3188844
10.1109/ACCESS.2018.2877150
10.1109/MSP.2013.2267931
10.1016/j.conengprac.2016.06.020
10.1109/JSEN.2017.2737467
10.1016/j.jprocont.2019.04.002
10.1016/j.compchemeng.2021.107231
10.1109/TSP.2019.2951223
10.1021/acs.iecr.9b01456
10.1021/acs.iecr.7b03042
10.1016/j.sigpro.2014.07.008
10.1016/S0967-0661(02)00035-7
10.1109/ACCESS.2019.2925861
10.1109/TCST.2004.839570
10.1142/S1793536913500076
10.1103/PhysRevLett.88.174102
10.1109/TSP.2011.2173681
10.1016/j.jprocont.2019.04.007
10.1016/j.jprocont.2020.09.008
10.1016/j.sigpro.2017.01.027
10.1021/acs.iecr.9b06351
10.1016/j.jprocont.2011.07.006
10.1016/j.sigpro.2020.107667
10.1109/JAS.2019.1911555
10.1109/TSP.2014.2314061
10.1016/j.conengprac.2004.12.003
10.1109/TSP.2011.2106779
10.1016/j.conengprac.2012.02.008
10.1109/TCST.2019.2940374
10.1016/j.conengprac.2020.104307
10.1016/j.sigpro.2021.108009
10.1016/j.jprocont.2017.08.005
10.1016/j.sigpro.2003.12.006
10.1021/ie0602299
10.1016/j.compchemeng.2018.06.007
10.1016/j.conengprac.2007.01.014
10.1016/j.jprocont.2013.11.009
10.1098/rspa.2009.0502
10.1016/j.jprocont.2015.11.002
10.1016/j.dsp.2021.103167
10.1016/j.conengprac.2016.03.012
10.1016/j.jprocont.2019.01.001
10.1109/TCST.2019.2896223
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.conengprac.2023.105715
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-6939
ExternalDocumentID 10_1016_j_conengprac_2023_105715
S0967066123002848
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
UNMZH
WUQ
XFK
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c318t-e374403138bd377b512b49bc3329fdc34d909de9df3d156ac799902a0dab65243
IEDL.DBID .~1
ISSN 0967-0661
IngestDate Sat Oct 25 05:14:08 EDT 2025
Thu Apr 24 23:08:20 EDT 2025
Fri Feb 23 02:34:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Adaptive multivariate intrinsic chirp component decomposition
Multivariate signal decomposition
Multivariate time–frequency analysis
Plant-wide oscillation detection
Control performance assessment
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c318t-e374403138bd377b512b49bc3329fdc34d909de9df3d156ac799902a0dab65243
ORCID 0000-0002-6557-6823
0000-0003-2104-2587
0000-0001-7380-6935
0000-0003-4516-2524
0000-0002-7669-1886
ParticipantIDs crossref_citationtrail_10_1016_j_conengprac_2023_105715
crossref_primary_10_1016_j_conengprac_2023_105715
elsevier_sciencedirect_doi_10_1016_j_conengprac_2023_105715
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationTitle Control engineering practice
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lang, Zheng, Zhang, Lu, Xie, Horch (b26) 2018; 6
Lang, Zheng, Xie, Horch, Su (b25) 2019; 28
Yang, Peng, Dong, Zhang, Meng (b44) 2014; 62
ur Rehman, Park, Huang, Mandic (b39) 2013; 5
Dambros, Trierweiler, Farenzena, Kloft (b19) 2019; 58
Thornhill (b35) 2005; 13
Chen, Dong, Xing, Peng, Zhang, Meng (b9) 2017; 17
Chen, Lang, Lu, ur Rehman, Xie, Su (b10) 2021; 147
Djurović, Stanković (b20) 2004; 84
Ying, Zheng, Pan, Liu (b46) 2021; 117
Chen, Chen, Lang, Xie, Jiang, Su (b7) 2020
Choudhury, Shah, Thornhill (b16) 2008
Dambros, Trierweiler, Farenzena, Kempf, Longhi, Teixeira (b18) 2019; 78
Lilly, Olhede (b28) 2011; 60
Wang, Zheng, Wong (b40) 2020; 96
Tangirala, Kanodia, Shah (b34) 2007; 46
Aftab, Hovd, Sivalingam (b2) 2018; 81
Thornhill, Shah, Huang, Vishnubhotla (b36) 2002; 10
Lang, Zhang, Xie, Li, Horch, Su (b24) 2022; 19
Xie, Lang, Horch, Yang (b43) 2016; 55
ur Rehman, Aftab (b37) 2019; 67
Chen, Lang, Xie, Su (b11) 2019; 7
Chen, Peng, Yang, Dong, Zhang (b14) 2017; 137
Chen, Chen, Lang, Xie, Lu, Su (b8) 2020; 97
Srinivasan, Rengaswamy, Miller (b33) 2007; 15
Xia, Howell (b41) 2005; 13
Aftab, Hovd, Sivalingam (b1) 2017; 60
Chen, Lang, Xie, Su (b12) 2019
Lang, Zhong, Xie, Chen (b27) 2017
Lang, Zhang, Xie, Horch, Su (b22) 2018; 57
Lindner, Auret, Bauer (b29) 2019; 28
Aftab, Hovd, Sivalingam (b3) 2018; 117
Mandic, ur Rehman, Wu, Huang (b30) 2013; 30
Yang, Shi, Liu, Li (b45) 2019; 7
Chen, Lang, Xie, Su (b13) 2021
Chen, Xie, Su (b15) 2020
El-Ferik, Shareef, Ettaleb (b21) 2012; 22
Lang, Zhang, Xie, Jin, Horch, Su (b23) 2020; 59
Rehman, Mandic (b31) 2010; 466
Aftab, Hovd, Sivalingam (b4) 2019; 83
Yuan, Qin (b47) 2014; 24
Dambros, Trierweiler, Farenzena (b17) 2019; 78
Ur Rehman, Mandic (b38) 2011; 59
Bandt, Pompe (b5) 2002; 88
Bauer, Horch, Xie, Jelali, Thornhill (b6) 2016; 38
Srinivasan, Rengaswamy (b32) 2012; 20
Zhang, Bi, Razul, See (b48) 2015; 106
Xie, Lang, Chen, Horch, Su (b42) 2016; 51
Dambros (10.1016/j.conengprac.2023.105715_b19) 2019; 58
Aftab (10.1016/j.conengprac.2023.105715_b3) 2018; 117
Dambros (10.1016/j.conengprac.2023.105715_b17) 2019; 78
Srinivasan (10.1016/j.conengprac.2023.105715_b32) 2012; 20
Chen (10.1016/j.conengprac.2023.105715_b13) 2021
ur Rehman (10.1016/j.conengprac.2023.105715_b39) 2013; 5
Chen (10.1016/j.conengprac.2023.105715_b12) 2019
Lindner (10.1016/j.conengprac.2023.105715_b29) 2019; 28
Chen (10.1016/j.conengprac.2023.105715_b9) 2017; 17
Xie (10.1016/j.conengprac.2023.105715_b42) 2016; 51
Chen (10.1016/j.conengprac.2023.105715_b14) 2017; 137
Lang (10.1016/j.conengprac.2023.105715_b27) 2017
Xie (10.1016/j.conengprac.2023.105715_b43) 2016; 55
Aftab (10.1016/j.conengprac.2023.105715_b4) 2019; 83
Bandt (10.1016/j.conengprac.2023.105715_b5) 2002; 88
Chen (10.1016/j.conengprac.2023.105715_b10) 2021; 147
Choudhury (10.1016/j.conengprac.2023.105715_b16) 2008
Lang (10.1016/j.conengprac.2023.105715_b23) 2020; 59
Lang (10.1016/j.conengprac.2023.105715_b22) 2018; 57
Yang (10.1016/j.conengprac.2023.105715_b45) 2019; 7
Rehman (10.1016/j.conengprac.2023.105715_b31) 2010; 466
Srinivasan (10.1016/j.conengprac.2023.105715_b33) 2007; 15
El-Ferik (10.1016/j.conengprac.2023.105715_b21) 2012; 22
Ur Rehman (10.1016/j.conengprac.2023.105715_b38) 2011; 59
Dambros (10.1016/j.conengprac.2023.105715_b18) 2019; 78
Bauer (10.1016/j.conengprac.2023.105715_b6) 2016; 38
Lang (10.1016/j.conengprac.2023.105715_b24) 2022; 19
Lilly (10.1016/j.conengprac.2023.105715_b28) 2011; 60
Tangirala (10.1016/j.conengprac.2023.105715_b34) 2007; 46
ur Rehman (10.1016/j.conengprac.2023.105715_b37) 2019; 67
Thornhill (10.1016/j.conengprac.2023.105715_b36) 2002; 10
Chen (10.1016/j.conengprac.2023.105715_b7) 2020
Wang (10.1016/j.conengprac.2023.105715_b40) 2020; 96
Chen (10.1016/j.conengprac.2023.105715_b8) 2020; 97
Chen (10.1016/j.conengprac.2023.105715_b15) 2020
Lang (10.1016/j.conengprac.2023.105715_b25) 2019; 28
Aftab (10.1016/j.conengprac.2023.105715_b1) 2017; 60
Yuan (10.1016/j.conengprac.2023.105715_b47) 2014; 24
Ying (10.1016/j.conengprac.2023.105715_b46) 2021; 117
Zhang (10.1016/j.conengprac.2023.105715_b48) 2015; 106
Chen (10.1016/j.conengprac.2023.105715_b11) 2019; 7
Mandic (10.1016/j.conengprac.2023.105715_b30) 2013; 30
Yang (10.1016/j.conengprac.2023.105715_b44) 2014; 62
Aftab (10.1016/j.conengprac.2023.105715_b2) 2018; 81
Djurović (10.1016/j.conengprac.2023.105715_b20) 2004; 84
Thornhill (10.1016/j.conengprac.2023.105715_b35) 2005; 13
Lang (10.1016/j.conengprac.2023.105715_b26) 2018; 6
Xia (10.1016/j.conengprac.2023.105715_b41) 2005; 13
References_xml – volume: 7
  start-page: 1446
  year: 2019
  end-page: 1454
  ident: b45
  article-title: A novel MDFA-MKECA method with application to industrial batch process monitoring
  publication-title: IEEE/CAA Journal of Automatica Sinica
– volume: 78
  start-page: 139
  year: 2019
  end-page: 154
  ident: b18
  article-title: Oscillation detection in process industries–part II: Industrial application
  publication-title: Journal of Process Control
– volume: 147
  year: 2021
  ident: b10
  article-title: Detection and root cause analysis of multiple plant-wide oscillations using multivariate nonlinear chirp mode decomposition and multivariate granger causality
  publication-title: Computers & Chemical Engineering
– start-page: 2772
  year: 2020
  end-page: 2777
  ident: b7
  article-title: Diagnosis of nonlinearity-induced oscillations in process control loops based on adaptive chirp mode decomposition
  publication-title: 2020 American control conference
– year: 2020
  ident: b15
  article-title: Multivariate nonlinear chirp mode decomposition
  publication-title: Signal Processing
– volume: 46
  start-page: 801
  year: 2007
  end-page: 817
  ident: b34
  article-title: Non-negative matrix factorization for detection and diagnosis of plantwide oscillations
  publication-title: Industrial & Engineering Chemistry Research
– volume: 17
  start-page: 5994
  year: 2017
  end-page: 6005
  ident: b9
  article-title: Separation of overlapped non-stationary signals by ridge path regrouping and intrinsic chirp component decomposition
  publication-title: IEEE Sensors Journal
– year: 2021
  ident: b13
  article-title: Multivariate intrinsic chirp mode decomposition
  publication-title: Signal Processing
– volume: 15
  start-page: 1135
  year: 2007
  end-page: 1148
  ident: b33
  article-title: A modified empirical mode decomposition (EMD) process for oscillation characterization in control loops
  publication-title: Control Engineering Practice
– volume: 62
  start-page: 2751
  year: 2014
  end-page: 2764
  ident: b44
  article-title: General parameterized time-frequency transform
  publication-title: IEEE Transactions on Signal Processing
– volume: 81
  start-page: 162
  year: 2018
  end-page: 171
  ident: b2
  article-title: Improved oscillation detection via noise-assisted data analysis
  publication-title: Control Engineering Practice
– volume: 28
  start-page: 2608
  year: 2019
  end-page: 2615
  ident: b25
  article-title: Direct multivariate intrinsic time-scale decomposition for oscillation monitoring
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 60
  start-page: 68
  year: 2017
  end-page: 81
  ident: b1
  article-title: Detecting non-linearity induced oscillations via the dyadic filter bank property of multivariate empirical mode decomposition
  publication-title: Journal of Process Control
– volume: 59
  start-page: 11537
  year: 2020
  end-page: 11551
  ident: b23
  article-title: Use of fast multivariate empirical mode decomposition for oscillation monitoring in noisy process plant
  publication-title: Industrial and Engineering Chemistry Research
– volume: 30
  start-page: 74
  year: 2013
  end-page: 86
  ident: b30
  article-title: Empirical mode decomposition-based time-frequency analysis of multivariate signals: The power of adaptive data analysis
  publication-title: IEEE Signal Processing Magazine
– volume: 106
  start-page: 141
  year: 2015
  end-page: 158
  ident: b48
  article-title: Robust time-varying filtering and separation of some nonstationary signals in low SNR environments
  publication-title: Signal Processing
– volume: 57
  start-page: 954
  year: 2018
  end-page: 966
  ident: b22
  article-title: Time-frequency analysis of plant-wide oscillations using multivariate intrinsic time-scale decomposition
  publication-title: Industrial and Engineering Chemistry Research
– volume: 6
  start-page: 65521
  year: 2018
  end-page: 65538
  ident: b26
  article-title: Fast multivariate empirical mode decomposition
  publication-title: IEEE Access
– volume: 20
  start-page: 733
  year: 2012
  end-page: 746
  ident: b32
  article-title: Automatic oscillation detection and characterization in closed-loop systems
  publication-title: Control Engineering Practice
– volume: 38
  start-page: 1
  year: 2016
  end-page: 10
  ident: b6
  article-title: The current state of control loop performance monitoring–a survey of application in industry
  publication-title: Journal of Process Control
– volume: 97
  year: 2020
  ident: b8
  article-title: Detection and diagnosis of oscillations in process control by fast adaptive chirp mode decomposition
  publication-title: Control Engineering Practice
– volume: 78
  start-page: 108
  year: 2019
  end-page: 123
  ident: b17
  article-title: Oscillation detection in process industries–part I: review of the detection methods
  publication-title: Journal of Process Control
– volume: 67
  start-page: 6039
  year: 2019
  end-page: 6052
  ident: b37
  article-title: Multivariate variational mode decomposition
  publication-title: IEEE Transactions on Signal Processing
– volume: 51
  start-page: 48
  year: 2016
  end-page: 57
  ident: b42
  article-title: Time-varying oscillation detector based on improved LMD and robust Lempel–Ziv complexity
  publication-title: Control Engineering Practice
– volume: 117
  start-page: 320
  year: 2018
  end-page: 330
  ident: b3
  article-title: Plant-wide oscillation detection using multivariate empirical mode decomposition
  publication-title: Computers & Chemical Engineering
– start-page: 601
  year: 2017
  end-page: 606
  ident: b27
  article-title: Application of improved multivariate empirical mode decomposition to plant-wide oscillations characterization
  publication-title: 2017 6th international symposium on advanced control of industrial processes
– volume: 58
  start-page: 14180
  year: 2019
  end-page: 14192
  ident: b19
  article-title: Oscillation detection in process industries by a machine learning-based approach
  publication-title: Industrial and Engineering Chemistry Research
– volume: 88
  start-page: 174102
  year: 2002
  ident: b5
  article-title: Permutation entropy: a natural complexity measure for time series
  publication-title: Physical Review Letters
– volume: 5
  year: 2013
  ident: b39
  article-title: EMD via MEMD: multivariate noise-aided computation of standard EMD
  publication-title: Advances in Adaptive Data Analysis
– volume: 24
  start-page: 450
  year: 2014
  end-page: 459
  ident: b47
  article-title: Root cause diagnosis of plant-wide oscillations using granger causality
  publication-title: Journal of Process Control
– volume: 7
  start-page: 91446
  year: 2019
  end-page: 91462
  ident: b11
  article-title: Detecting nonlinear oscillations in process control loop based on an improved VMD
  publication-title: IEEE Access
– volume: 83
  start-page: 177
  year: 2019
  end-page: 186
  ident: b4
  article-title: Diagnosis of plant-wide oscillations by combining multivariate empirical mode decomposition and delay vector variance
  publication-title: Journal of Process Control
– start-page: 298
  year: 2019
  end-page: 303
  ident: b12
  article-title: Detecting oscillations via adaptive chirp mode decomposition
  publication-title: 2019 CAA symposium on fault detection, supervision and safety for technical processes
– volume: 28
  start-page: 908
  year: 2019
  end-page: 919
  ident: b29
  article-title: A systematic workflow for oscillation diagnosis using transfer entropy
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 60
  start-page: 600
  year: 2011
  end-page: 612
  ident: b28
  article-title: Analysis of modulated multivariate oscillations
  publication-title: IEEE Transactions on Signal Processing
– volume: 59
  start-page: 2421
  year: 2011
  end-page: 2426
  ident: b38
  article-title: Filter bank property of multivariate empirical mode decomposition
  publication-title: IEEE Transactions on Signal Processing
– volume: 137
  start-page: 319
  year: 2017
  end-page: 327
  ident: b14
  article-title: Intrinsic chirp component decomposition by using Fourier series representation
  publication-title: Signal Processing
– volume: 19
  start-page: 5809
  year: 2022
  end-page: 5820
  ident: b24
  article-title: Detrending and denoising of industrial oscillation data
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 10
  start-page: 833
  year: 2002
  end-page: 846
  ident: b36
  article-title: Spectral principal component analysis of dynamic process data
  publication-title: Control Engineering Practice
– volume: 466
  start-page: 1291
  year: 2010
  end-page: 1302
  ident: b31
  article-title: Multivariate empirical mode decomposition
  publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
– volume: 13
  start-page: 434
  year: 2005
  end-page: 443
  ident: b35
  article-title: Finding the source of nonlinearity in a process with plant-wide oscillation
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 55
  start-page: 91
  year: 2016
  end-page: 100
  ident: b43
  article-title: Online oscillation detection in the presence of signal intermittency
  publication-title: Control Engineering Practice
– year: 2008
  ident: b16
  article-title: Diagnosis of process nonlinearities and valve stiction: data driven approaches
– volume: 13
  start-page: 1027
  year: 2005
  end-page: 1035
  ident: b41
  article-title: Isolating multiple sources of plant-wide oscillations via independent component analysis
  publication-title: Control Engineering Practice
– volume: 84
  start-page: 631
  year: 2004
  end-page: 643
  ident: b20
  article-title: An algorithm for the wigner distribution based instantaneous frequency estimation in a high noise environment
  publication-title: Signal Processing
– volume: 96
  start-page: 67
  year: 2020
  end-page: 81
  ident: b40
  article-title: Trajectory-based operation monitoring of transition procedure in multimode process
  publication-title: Journal of Process Control
– volume: 22
  start-page: 321
  year: 2012
  end-page: 329
  ident: b21
  article-title: Detection and diagnosis of plant-wide oscillations using GA based factorization
  publication-title: Journal of Process Control
– volume: 117
  year: 2021
  ident: b46
  article-title: Permutation entropy-based improved uniform phase empirical mode decomposition for mechanical fault diagnosis
  publication-title: Digital Signal Processing
– volume: 81
  start-page: 162
  year: 2018
  ident: 10.1016/j.conengprac.2023.105715_b2
  article-title: Improved oscillation detection via noise-assisted data analysis
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2018.08.019
– volume: 19
  start-page: 5809
  issue: 4
  year: 2022
  ident: 10.1016/j.conengprac.2023.105715_b24
  article-title: Detrending and denoising of industrial oscillation data
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2022.3188844
– volume: 6
  start-page: 65521
  year: 2018
  ident: 10.1016/j.conengprac.2023.105715_b26
  article-title: Fast multivariate empirical mode decomposition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2877150
– volume: 30
  start-page: 74
  issue: 6
  year: 2013
  ident: 10.1016/j.conengprac.2023.105715_b30
  article-title: Empirical mode decomposition-based time-frequency analysis of multivariate signals: The power of adaptive data analysis
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2013.2267931
– volume: 55
  start-page: 91
  year: 2016
  ident: 10.1016/j.conengprac.2023.105715_b43
  article-title: Online oscillation detection in the presence of signal intermittency
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2016.06.020
– volume: 17
  start-page: 5994
  issue: 18
  year: 2017
  ident: 10.1016/j.conengprac.2023.105715_b9
  article-title: Separation of overlapped non-stationary signals by ridge path regrouping and intrinsic chirp component decomposition
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2017.2737467
– volume: 78
  start-page: 108
  year: 2019
  ident: 10.1016/j.conengprac.2023.105715_b17
  article-title: Oscillation detection in process industries–part I: review of the detection methods
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2019.04.002
– volume: 147
  year: 2021
  ident: 10.1016/j.conengprac.2023.105715_b10
  article-title: Detection and root cause analysis of multiple plant-wide oscillations using multivariate nonlinear chirp mode decomposition and multivariate granger causality
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2021.107231
– start-page: 298
  year: 2019
  ident: 10.1016/j.conengprac.2023.105715_b12
  article-title: Detecting oscillations via adaptive chirp mode decomposition
– volume: 67
  start-page: 6039
  issue: 23
  year: 2019
  ident: 10.1016/j.conengprac.2023.105715_b37
  article-title: Multivariate variational mode decomposition
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2019.2951223
– volume: 58
  start-page: 14180
  issue: 31
  year: 2019
  ident: 10.1016/j.conengprac.2023.105715_b19
  article-title: Oscillation detection in process industries by a machine learning-based approach
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/acs.iecr.9b01456
– volume: 57
  start-page: 954
  issue: 3
  year: 2018
  ident: 10.1016/j.conengprac.2023.105715_b22
  article-title: Time-frequency analysis of plant-wide oscillations using multivariate intrinsic time-scale decomposition
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/acs.iecr.7b03042
– volume: 106
  start-page: 141
  year: 2015
  ident: 10.1016/j.conengprac.2023.105715_b48
  article-title: Robust time-varying filtering and separation of some nonstationary signals in low SNR environments
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2014.07.008
– volume: 10
  start-page: 833
  issue: 8
  year: 2002
  ident: 10.1016/j.conengprac.2023.105715_b36
  article-title: Spectral principal component analysis of dynamic process data
  publication-title: Control Engineering Practice
  doi: 10.1016/S0967-0661(02)00035-7
– volume: 7
  start-page: 91446
  year: 2019
  ident: 10.1016/j.conengprac.2023.105715_b11
  article-title: Detecting nonlinear oscillations in process control loop based on an improved VMD
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2925861
– start-page: 601
  year: 2017
  ident: 10.1016/j.conengprac.2023.105715_b27
  article-title: Application of improved multivariate empirical mode decomposition to plant-wide oscillations characterization
– volume: 13
  start-page: 434
  issue: 3
  year: 2005
  ident: 10.1016/j.conengprac.2023.105715_b35
  article-title: Finding the source of nonlinearity in a process with plant-wide oscillation
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2004.839570
– volume: 5
  issue: 02
  year: 2013
  ident: 10.1016/j.conengprac.2023.105715_b39
  article-title: EMD via MEMD: multivariate noise-aided computation of standard EMD
  publication-title: Advances in Adaptive Data Analysis
  doi: 10.1142/S1793536913500076
– volume: 88
  start-page: 174102
  issue: 17
  year: 2002
  ident: 10.1016/j.conengprac.2023.105715_b5
  article-title: Permutation entropy: a natural complexity measure for time series
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.88.174102
– volume: 60
  start-page: 600
  issue: 2
  year: 2011
  ident: 10.1016/j.conengprac.2023.105715_b28
  article-title: Analysis of modulated multivariate oscillations
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2011.2173681
– volume: 78
  start-page: 139
  year: 2019
  ident: 10.1016/j.conengprac.2023.105715_b18
  article-title: Oscillation detection in process industries–part II: Industrial application
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2019.04.007
– volume: 96
  start-page: 67
  year: 2020
  ident: 10.1016/j.conengprac.2023.105715_b40
  article-title: Trajectory-based operation monitoring of transition procedure in multimode process
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2020.09.008
– volume: 137
  start-page: 319
  year: 2017
  ident: 10.1016/j.conengprac.2023.105715_b14
  article-title: Intrinsic chirp component decomposition by using Fourier series representation
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2017.01.027
– volume: 59
  start-page: 11537
  issue: 25
  year: 2020
  ident: 10.1016/j.conengprac.2023.105715_b23
  article-title: Use of fast multivariate empirical mode decomposition for oscillation monitoring in noisy process plant
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/acs.iecr.9b06351
– volume: 22
  start-page: 321
  issue: 1
  year: 2012
  ident: 10.1016/j.conengprac.2023.105715_b21
  article-title: Detection and diagnosis of plant-wide oscillations using GA based factorization
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2011.07.006
– year: 2020
  ident: 10.1016/j.conengprac.2023.105715_b15
  article-title: Multivariate nonlinear chirp mode decomposition
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2020.107667
– volume: 7
  start-page: 1446
  issue: 5
  year: 2019
  ident: 10.1016/j.conengprac.2023.105715_b45
  article-title: A novel MDFA-MKECA method with application to industrial batch process monitoring
  publication-title: IEEE/CAA Journal of Automatica Sinica
  doi: 10.1109/JAS.2019.1911555
– volume: 62
  start-page: 2751
  issue: 11
  year: 2014
  ident: 10.1016/j.conengprac.2023.105715_b44
  article-title: General parameterized time-frequency transform
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2014.2314061
– start-page: 2772
  year: 2020
  ident: 10.1016/j.conengprac.2023.105715_b7
  article-title: Diagnosis of nonlinearity-induced oscillations in process control loops based on adaptive chirp mode decomposition
– volume: 13
  start-page: 1027
  issue: 8
  year: 2005
  ident: 10.1016/j.conengprac.2023.105715_b41
  article-title: Isolating multiple sources of plant-wide oscillations via independent component analysis
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2004.12.003
– volume: 59
  start-page: 2421
  issue: 5
  year: 2011
  ident: 10.1016/j.conengprac.2023.105715_b38
  article-title: Filter bank property of multivariate empirical mode decomposition
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2011.2106779
– volume: 20
  start-page: 733
  issue: 8
  year: 2012
  ident: 10.1016/j.conengprac.2023.105715_b32
  article-title: Automatic oscillation detection and characterization in closed-loop systems
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2012.02.008
– year: 2008
  ident: 10.1016/j.conengprac.2023.105715_b16
– volume: 28
  start-page: 2608
  issue: 6
  year: 2019
  ident: 10.1016/j.conengprac.2023.105715_b25
  article-title: Direct multivariate intrinsic time-scale decomposition for oscillation monitoring
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2019.2940374
– volume: 97
  year: 2020
  ident: 10.1016/j.conengprac.2023.105715_b8
  article-title: Detection and diagnosis of oscillations in process control by fast adaptive chirp mode decomposition
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2020.104307
– year: 2021
  ident: 10.1016/j.conengprac.2023.105715_b13
  article-title: Multivariate intrinsic chirp mode decomposition
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2021.108009
– volume: 60
  start-page: 68
  year: 2017
  ident: 10.1016/j.conengprac.2023.105715_b1
  article-title: Detecting non-linearity induced oscillations via the dyadic filter bank property of multivariate empirical mode decomposition
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2017.08.005
– volume: 84
  start-page: 631
  issue: 3
  year: 2004
  ident: 10.1016/j.conengprac.2023.105715_b20
  article-title: An algorithm for the wigner distribution based instantaneous frequency estimation in a high noise environment
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2003.12.006
– volume: 46
  start-page: 801
  issue: 3
  year: 2007
  ident: 10.1016/j.conengprac.2023.105715_b34
  article-title: Non-negative matrix factorization for detection and diagnosis of plantwide oscillations
  publication-title: Industrial & Engineering Chemistry Research
  doi: 10.1021/ie0602299
– volume: 117
  start-page: 320
  year: 2018
  ident: 10.1016/j.conengprac.2023.105715_b3
  article-title: Plant-wide oscillation detection using multivariate empirical mode decomposition
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2018.06.007
– volume: 15
  start-page: 1135
  issue: 9
  year: 2007
  ident: 10.1016/j.conengprac.2023.105715_b33
  article-title: A modified empirical mode decomposition (EMD) process for oscillation characterization in control loops
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2007.01.014
– volume: 24
  start-page: 450
  issue: 2
  year: 2014
  ident: 10.1016/j.conengprac.2023.105715_b47
  article-title: Root cause diagnosis of plant-wide oscillations using granger causality
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2013.11.009
– volume: 466
  start-page: 1291
  issue: 2117
  year: 2010
  ident: 10.1016/j.conengprac.2023.105715_b31
  article-title: Multivariate empirical mode decomposition
  publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
  doi: 10.1098/rspa.2009.0502
– volume: 38
  start-page: 1
  year: 2016
  ident: 10.1016/j.conengprac.2023.105715_b6
  article-title: The current state of control loop performance monitoring–a survey of application in industry
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2015.11.002
– volume: 117
  year: 2021
  ident: 10.1016/j.conengprac.2023.105715_b46
  article-title: Permutation entropy-based improved uniform phase empirical mode decomposition for mechanical fault diagnosis
  publication-title: Digital Signal Processing
  doi: 10.1016/j.dsp.2021.103167
– volume: 51
  start-page: 48
  year: 2016
  ident: 10.1016/j.conengprac.2023.105715_b42
  article-title: Time-varying oscillation detector based on improved LMD and robust Lempel–Ziv complexity
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2016.03.012
– volume: 83
  start-page: 177
  year: 2019
  ident: 10.1016/j.conengprac.2023.105715_b4
  article-title: Diagnosis of plant-wide oscillations by combining multivariate empirical mode decomposition and delay vector variance
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2019.01.001
– volume: 28
  start-page: 908
  issue: 3
  year: 2019
  ident: 10.1016/j.conengprac.2023.105715_b29
  article-title: A systematic workflow for oscillation diagnosis using transfer entropy
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2019.2896223
SSID ssj0016991
Score 2.4171774
Snippet Analyzing plant-wide oscillations is a challenging task owing to the presence of noise, nonstationarity, and multiple modes in a process control system....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105715
SubjectTerms Adaptive multivariate intrinsic chirp component decomposition
Control performance assessment
Multivariate signal decomposition
Multivariate time–frequency analysis
Plant-wide oscillation detection
Title Detection and time–frequency analysis of multiple plant-wide oscillations using adaptive multivariate intrinsic chirp component decomposition
URI https://dx.doi.org/10.1016/j.conengprac.2023.105715
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6939
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016991
  issn: 0967-0661
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-6939
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016991
  issn: 0967-0661
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-6939
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016991
  issn: 0967-0661
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6939
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016991
  issn: 0967-0661
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6939
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016991
  issn: 0967-0661
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6LXvQgPvFNDl672yax3eBpUZdVcS-64K0kTaqVpZalKl7Ef-DBf-gvcaZpVwVBwVtbMqSdSecB33xDyJ6xzDdSK49xHnlCqK6nQ2Y9IwwTKvAtq3gKzofhYCROr_avWuSw6YVBWGXt-51Pr7x1_aRTa7NTZFnnApLvCAImuF4sHAQ2_AoR4RSD9vMU5hGE0k3Ng8XYbR_UaB6H8YKS0-bX2I_UxjHi1dBbHJD7U4j6Enb6i2Shzhdpz73SEmnZfJnMf2ERXCGvR7asAFU5VbmhOC3-_eUtnTiQ9BM8dLwj9C6lDX6QFmNQqfeYGUuRznJcQ-Io4uCvqTKqQD_o1j9APQ0pKc3yEnYEs9LkJpsUFOHo-GklNba6dvivVTLqH18eDrx6zoKXwB9depYjSyAPeFcbHkUacgAtpE44ZzI1CRdG-tJYaVJuoNxTSQRZpc-Ub5QO95nga2Qmh-3WCeW-Bucf2ATyPMGiFNIHKRPZDUGvyPy-QaJGtXFSk5DjLIxx3KDNbuNPo8RolNgZZYMEU8nCEXH8QeagsV787VDFEC9-ld78l_QWmcM7h3zZJjPl5N7uQP5S6t3qgO6S2d7J2WD4AaPf9X8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-DupBfOLbHLzWbZNsu8GTrC7r86KCt5I0qVaWWpaqeBH_gQf_ob_Emab1AYKCt5JmaDuTTr6BL98QsmUs843UymOcR54QquPpkFnPCMOECnzLKp2Ck9OwfyEOL9uXI6TbnIVBWmWd-11Or7J1PdKqvdkqsqx1BuA7gg0TUi8WDqIzSsZFm0VYgW0_ffA8glC6tnkwG4_bBzWdx5G8oOa0-RUeSNrGPuJV11vskPvTHvVl3-nNkOkaMNJd906zZMTmc2Tqi4zgPHnZs2XFqMqpyg3FdvFvz6_p0LGkH2HQCY_Q25Q2BEJaDMCn3kNmLEU9y0HNiaNIhL-iyqgCE6Gbfw8FNWBSmuUlPBHiSpPrbFhQ5KPjp5XU2OraEcAWyEVv_7zb9-pGC14Cv3TpWY4ygTzgHW14FGkAAVpInXDOZGoSLoz0pbHSpNxAvaeSCGClz5RvlA7bTPBFMpbD45YI5b6G7B_YBICeYFEK-EHKRHZC8CtKvy-TqHFtnNQq5NgMYxA3dLOb-DMoMQYldkFZJsGHZeGUOP5gs9NEL_62qmLYMH61XvmX9SaZ6J-fHMfHB6dHq2QS7zgazBoZK4d3dh3ATKk3qsX6Dk3F9xQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+and+time%E2%80%93frequency+analysis+of+multiple+plant-wide+oscillations+using+adaptive+multivariate+intrinsic+chirp+component+decomposition&rft.jtitle=Control+engineering+practice&rft.au=Chen%2C+Qiming&rft.au=Wen%2C+Qingsong&rft.au=Wu%2C+Xialai&rft.au=Lang%2C+Xun&rft.date=2023-12-01&rft.pub=Elsevier+Ltd&rft.issn=0967-0661&rft.eissn=1873-6939&rft.volume=141&rft_id=info:doi/10.1016%2Fj.conengprac.2023.105715&rft.externalDocID=S0967066123002848
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon