Preparation of laccase mimicking nanozymes and their catalytic oxidation of phenolic pollutants
The construction of a nanozyme that mimics a natural enzyme is a promising strategy to obtain a highly stable catalyst. Laccases are members of copper-containing oxidases, as environmental catalysts, and show significant potential in biotechnology and environmental remediation. In this study, inspir...
        Saved in:
      
    
          | Published in | Catalysis science & technology Vol. 11; no. 1; pp. 342 - 341 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Cambridge
          Royal Society of Chemistry
    
        25.05.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2044-4753 2044-4761  | 
| DOI | 10.1039/d1cy00074h | 
Cover
| Abstract | The construction of a nanozyme that mimics a natural enzyme is a promising strategy to obtain a highly stable catalyst. Laccases are members of copper-containing oxidases, as environmental catalysts, and show significant potential in biotechnology and environmental remediation. In this study, inspired by the active site and electron transfer of laccase, a new laccase mimic (defined as CA-Cu) was synthesized
via
the coordination of copper with a cysteine (Cys)-aspartic acid (Asp) dipeptide. The as-prepared CA-Cu nanozyme exhibits significant laccase-like activity and catalytic oxidation of a wide range of phenolic pollutants, such as 2,4-dichlorophenol, phenol,
p
-chlorophenol, 2,6-dimethoxyphenol, hydroquinone,
o
-nitrophenol and
o
-aminophenol hydroquinone. It has a similar
K
m
(Michaelis constant), a higher
v
max
(maximum rate) and better recyclability than laccase at the same mass concentration. In addition, the CA-Cu nanozyme is robust in a broad temperature range (0-100 °C), at extreme pH and under long-term storage. Surprisingly, the catalytic performance of the CA-Cu nanozyme was enhanced under high-salt conditions or at high concentrations of heavy metal ions, which lead to severe loss in the catalytic activity of laccase. We believe that this nanozyme is a promising environmental catalyst for the treatment of phenolic pollutants under high-salt or heavy metal ion conditions.
The construction of a nanozyme that mimics a natural enzyme is a promising strategy to obtain a highly stable catalyst. | 
    
|---|---|
| AbstractList | The construction of a nanozyme that mimics a natural enzyme is a promising strategy to obtain a highly stable catalyst. Laccases are members of copper-containing oxidases, as environmental catalysts, and show significant potential in biotechnology and environmental remediation. In this study, inspired by the active site and electron transfer of laccase, a new laccase mimic (defined as CA-Cu) was synthesized
via
the coordination of copper with a cysteine (Cys)-aspartic acid (Asp) dipeptide. The as-prepared CA-Cu nanozyme exhibits significant laccase-like activity and catalytic oxidation of a wide range of phenolic pollutants, such as 2,4-dichlorophenol, phenol,
p
-chlorophenol, 2,6-dimethoxyphenol, hydroquinone,
o
-nitrophenol and
o
-aminophenol hydroquinone. It has a similar
K
m
(Michaelis constant), a higher
v
max
(maximum rate) and better recyclability than laccase at the same mass concentration. In addition, the CA-Cu nanozyme is robust in a broad temperature range (0-100 °C), at extreme pH and under long-term storage. Surprisingly, the catalytic performance of the CA-Cu nanozyme was enhanced under high-salt conditions or at high concentrations of heavy metal ions, which lead to severe loss in the catalytic activity of laccase. We believe that this nanozyme is a promising environmental catalyst for the treatment of phenolic pollutants under high-salt or heavy metal ion conditions.
The construction of a nanozyme that mimics a natural enzyme is a promising strategy to obtain a highly stable catalyst. The construction of a nanozyme that mimics a natural enzyme is a promising strategy to obtain a highly stable catalyst. Laccases are members of copper-containing oxidases, as environmental catalysts, and show significant potential in biotechnology and environmental remediation. In this study, inspired by the active site and electron transfer of laccase, a new laccase mimic (defined as CA-Cu) was synthesized via the coordination of copper with a cysteine (Cys)–aspartic acid (Asp) dipeptide. The as-prepared CA-Cu nanozyme exhibits significant laccase-like activity and catalytic oxidation of a wide range of phenolic pollutants, such as 2,4-dichlorophenol, phenol, p-chlorophenol, 2,6-dimethoxyphenol, hydroquinone, o-nitrophenol and o-aminophenol hydroquinone. It has a similar Km (Michaelis constant), a higher vmax (maximum rate) and better recyclability than laccase at the same mass concentration. In addition, the CA-Cu nanozyme is robust in a broad temperature range (0–100 °C), at extreme pH and under long-term storage. Surprisingly, the catalytic performance of the CA-Cu nanozyme was enhanced under high-salt conditions or at high concentrations of heavy metal ions, which lead to severe loss in the catalytic activity of laccase. We believe that this nanozyme is a promising environmental catalyst for the treatment of phenolic pollutants under high-salt or heavy metal ion conditions. The construction of a nanozyme that mimics a natural enzyme is a promising strategy to obtain a highly stable catalyst. Laccases are members of copper-containing oxidases, as environmental catalysts, and show significant potential in biotechnology and environmental remediation. In this study, inspired by the active site and electron transfer of laccase, a new laccase mimic (defined as CA-Cu) was synthesized via the coordination of copper with a cysteine (Cys)–aspartic acid (Asp) dipeptide. The as-prepared CA-Cu nanozyme exhibits significant laccase-like activity and catalytic oxidation of a wide range of phenolic pollutants, such as 2,4-dichlorophenol, phenol, p -chlorophenol, 2,6-dimethoxyphenol, hydroquinone, o -nitrophenol and o -aminophenol hydroquinone. It has a similar K m (Michaelis constant), a higher v max (maximum rate) and better recyclability than laccase at the same mass concentration. In addition, the CA-Cu nanozyme is robust in a broad temperature range (0–100 °C), at extreme pH and under long-term storage. Surprisingly, the catalytic performance of the CA-Cu nanozyme was enhanced under high-salt conditions or at high concentrations of heavy metal ions, which lead to severe loss in the catalytic activity of laccase. We believe that this nanozyme is a promising environmental catalyst for the treatment of phenolic pollutants under high-salt or heavy metal ion conditions.  | 
    
| Author | Xu, Xiaojian He, Zhimin Wang, Jinghui Qi, Wei Su, Rongxin Huang, Renliang  | 
    
| AuthorAffiliation | Tianjin University Tianjin Key Laboratory of Membrane Science and Desalination Technology School of Marine Science and Technology School of Chemical Engineering and Technology State Key Laboratory of Chemical Engineering Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)  | 
    
| AuthorAffiliation_xml | – name: Tianjin University – name: School of Marine Science and Technology – name: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – name: State Key Laboratory of Chemical Engineering – name: Tianjin Key Laboratory of Membrane Science and Desalination Technology – name: School of Chemical Engineering and Technology  | 
    
| Author_xml | – sequence: 1 givenname: Xiaojian surname: Xu fullname: Xu, Xiaojian – sequence: 2 givenname: Jinghui surname: Wang fullname: Wang, Jinghui – sequence: 3 givenname: Renliang surname: Huang fullname: Huang, Renliang – sequence: 4 givenname: Wei surname: Qi fullname: Qi, Wei – sequence: 5 givenname: Rongxin surname: Su fullname: Su, Rongxin – sequence: 6 givenname: Zhimin surname: He fullname: He, Zhimin  | 
    
| BookMark | eNptkc1LxDAQxYOs4LruxbsQ8CZUk6Zp06OsHyss6EEPnsqYpG7WNqlJFqx_vXVXVhBP8xh-b4Z5c4hG1lmN0DEl55Sw8kJR2RNCimy5h8YpybIkK3I62mnODtA0hNXAkKykRKRjVD143YGHaJzFrsYNSAlB49a0Rr4Z-4otWPfZtzpgsArHpTYeS4jQ9NFI7D6M2pm7pbauGbqda5p1BBvDEdqvoQl6-lMn6Onm-nE2Txb3t3ezy0UiGRUxUamqKVNSwQsRg-QpUM1KqLmqNWEilapIaZ5LLkAwAZBpTmhdEp3JAgRnE3S6ndt5977WIVYrt_Z2WFmlnFFOeS7YQJ1tKeldCF7XVedNC76vKKm-M6yu6Ox5k-F8gMkfWJq4uTV6MM3_lpOtxQe5G_37FvYFYkaBRg | 
    
| CitedBy_id | crossref_primary_10_1016_j_aca_2023_341771 crossref_primary_10_1002_smll_202311275 crossref_primary_10_1016_j_saa_2023_123003 crossref_primary_10_1021_acsmeasuresciau_4c00085 crossref_primary_10_1021_acs_nanolett_4c06230 crossref_primary_10_1039_D3NJ03952H crossref_primary_10_1016_j_cej_2024_158021 crossref_primary_10_1016_j_microc_2024_111748 crossref_primary_10_1039_D1NJ05658A crossref_primary_10_1016_j_jcis_2024_04_124 crossref_primary_10_1039_D2EN00027J crossref_primary_10_1039_D3NR01625K crossref_primary_10_1016_j_clay_2024_107507 crossref_primary_10_1007_s11426_022_1544_x crossref_primary_10_1016_j_colsurfb_2023_113241 crossref_primary_10_1016_j_talanta_2024_126630 crossref_primary_10_1016_j_snb_2024_135845 crossref_primary_10_1021_acsami_4c00844 crossref_primary_10_1016_j_ccr_2022_214760 crossref_primary_10_1016_j_saa_2024_125599 crossref_primary_10_1002_adom_202401318 crossref_primary_10_1186_s12951_022_01560_0 crossref_primary_10_1016_j_jwpe_2024_106901 crossref_primary_10_1016_j_talanta_2024_125840 crossref_primary_10_1016_j_rineng_2025_104656 crossref_primary_10_1016_j_scitotenv_2021_148359 crossref_primary_10_1016_j_aca_2022_339725 crossref_primary_10_1016_j_ijbiomac_2024_137053 crossref_primary_10_1016_j_jenvman_2024_121807 crossref_primary_10_1039_D1CC06612A crossref_primary_10_1016_j_ijbiomac_2024_136121 crossref_primary_10_1007_s12274_022_4538_5 crossref_primary_10_1039_D3AY02328A crossref_primary_10_3390_bios13030314 crossref_primary_10_1039_D1CS01178B crossref_primary_10_1021_acsomega_3c06847 crossref_primary_10_1002_cnma_202400336 crossref_primary_10_1016_j_sbsr_2023_100595 crossref_primary_10_1021_acs_analchem_4c00815 crossref_primary_10_1039_D3EN00844D crossref_primary_10_1021_acsaenm_3c00487 crossref_primary_10_1016_j_aca_2024_343333 crossref_primary_10_1016_j_aca_2024_343298 crossref_primary_10_1021_acs_analchem_3c01488 crossref_primary_10_1016_j_ccr_2024_215761 crossref_primary_10_1016_j_jwpe_2023_104695 crossref_primary_10_3390_nano11082116 crossref_primary_10_1021_acsanm_1c03896 crossref_primary_10_3390_foods14010133 crossref_primary_10_1016_j_isci_2022_105831 crossref_primary_10_1007_s11356_023_31429_0 crossref_primary_10_1016_j_cej_2022_137701 crossref_primary_10_1016_j_snb_2022_131429 crossref_primary_10_1039_D2DT03268F crossref_primary_10_1007_s00396_024_05337_9 crossref_primary_10_1016_j_jhazmat_2023_131776 crossref_primary_10_1016_j_jclepro_2023_136832 crossref_primary_10_1016_j_snr_2024_100209 crossref_primary_10_1016_j_snb_2023_134773 crossref_primary_10_1007_s00604_022_05194_9 crossref_primary_10_1016_j_saa_2024_124446 crossref_primary_10_1016_j_cjche_2023_12_015 crossref_primary_10_1016_j_jhazmat_2022_128688 crossref_primary_10_1016_j_jhazmat_2024_136294 crossref_primary_10_1039_D4NH00371C crossref_primary_10_1016_j_talanta_2024_126639 crossref_primary_10_1016_j_jhazmat_2022_130198 crossref_primary_10_1039_D3NR02081A crossref_primary_10_1039_D3RA06619C crossref_primary_10_1016_j_biotechadv_2023_108299 crossref_primary_10_1016_j_ijbiomac_2025_141503 crossref_primary_10_1021_acssuschemeng_1c06340 crossref_primary_10_26599_NR_2025_94907239 crossref_primary_10_1016_j_microc_2024_110094 crossref_primary_10_1016_j_microc_2024_111380  | 
    
| Cites_doi | 10.1039/C8CS00457A 10.1039/C6CC08542C 10.1039/C8CC01202D 10.1039/C7CY01654A 10.1039/C4CC03851G 10.1039/C5NR04790K 10.1039/C5NR00783F 10.21608/ejss.2019.18503.1318 10.1039/c3cs35486e 10.1039/C4CC07275H 10.1007/s10562-017-2106-5 10.1073/pnas.0705137104 10.1039/C8TB00310F 10.1021/tx300503q 10.1002/chem.201800770 10.1021/bc700184b 10.1039/c3ta15051h 10.1126/science.1190094 10.1021/ja507269n 10.1021/acs.chemmater.6b04283 10.1002/anie.201706910 10.1039/C5CC00040H 10.1002/anie.201708573 10.1021/ja073947a 10.1021/acsnano.7b00352 10.1002/chem.201801010 10.1039/D0CY00724B 10.1002/adma.200903783 10.1039/C7RA06973A 10.1128/AEM.69.10.6257-6263.2003 10.1016/j.enzmictec.2017.02.008 10.1021/jacs.5b08533 10.1039/C1CY00124H 10.1021/acsami.6b00306 10.1016/j.bios.2015.05.025 10.1021/acsbiomaterials.8b00489 10.1016/j.cej.2013.02.074 10.1021/acsami.6b15124 10.1038/s41929-017-0008-y 10.1021/ja508361h 10.1021/acs.analchem.8b03807 10.1021/acs.analchem.6b00975 10.1039/c3nr03693f 10.1039/C4NR03848G 10.1038/nnano.2007.260 10.1016/j.bios.2018.03.045 10.1021/acscatal.7b00189 10.1021/acs.accounts.8b00011 10.3109/07388551.2012.725390 10.1021/bi0201318 10.1016/j.biortech.2009.10.087 10.1007/s11427-016-5044-3 10.1021/ja0114052 10.1039/C5CC03398E 10.1021/nn501235j 10.1039/C4CC03082F 10.1039/C5RA13265G 10.1039/C5NR04685H 10.1021/acs.chemmater.8b02365 10.1021/acsami.5b03486 10.1016/j.apcatb.2019.05.012 10.1007/s12274-017-1426-5 10.1039/C5CY01725D  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright Royal Society of Chemistry 2021 | 
    
| Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 | 
    
| DBID | AAYXX CITATION 7SR 8BQ 8FD JG9  | 
    
| DOI | 10.1039/d1cy00074h | 
    
| DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database  | 
    
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX  | 
    
| DatabaseTitleList | Materials Research Database CrossRef  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Chemistry | 
    
| EISSN | 2044-4761 | 
    
| EndPage | 341 | 
    
| ExternalDocumentID | 10_1039_D1CY00074H d1cy00074h  | 
    
| GroupedDBID | 0-7 0R 705 AAEMU AAGNR AAIWI AAJAE AANOJ ABASK ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFVBQ AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV BLAPV BSQNT C6K CKLOX ECGLT EE0 EF- H13 HZ H~N J3I JG O-G O9- OK1 R7G RCNCU RIG RNS RPMJG RRC RSCEA SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH 0R~ AARTK AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH ACAYK AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRZK AGEGJ AHGCF AKMSF APEMP CITATION EBS GGIMP HZ~ RAOCF RVUXY 7SR 8BQ 8FD AKBGW JG9  | 
    
| ID | FETCH-LOGICAL-c318t-d2df13dcdab08df152a1e39af5dfe0382cd72166c58a838aa4e501f90e4c7a853 | 
    
| ISSN | 2044-4753 | 
    
| IngestDate | Sun Jun 29 16:47:16 EDT 2025 Wed Oct 01 03:10:42 EDT 2025 Thu Apr 24 23:05:42 EDT 2025 Mon Apr 25 05:28:05 EDT 2022  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c318t-d2df13dcdab08df152a1e39af5dfe0382cd72166c58a838aa4e501f90e4c7a853 | 
    
| Notes | 10.1039/d1cy00074h Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-0797-3473 0000-0001-9778-9113  | 
    
| PQID | 2531515683 | 
    
| PQPubID | 2047527 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | proquest_journals_2531515683 crossref_primary_10_1039_D1CY00074H rsc_primary_d1cy00074h crossref_citationtrail_10_1039_D1CY00074H  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20210525 | 
    
| PublicationDateYYYYMMDD | 2021-05-25 | 
    
| PublicationDate_xml | – month: 5 year: 2021 text: 20210525 day: 25  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Cambridge | 
    
| PublicationPlace_xml | – name: Cambridge | 
    
| PublicationTitle | Catalysis science & technology | 
    
| PublicationYear | 2021 | 
    
| Publisher | Royal Society of Chemistry | 
    
| Publisher_xml | – name: Royal Society of Chemistry | 
    
| References | Liu (D1CY00074H-(cit24)/*[position()=1]) 2015; 137 Wu (D1CY00074H-(cit5)/*[position()=1]) 2019; 48 Bertrand (D1CY00074H-(cit66)/*[position()=1]) 2002; 41 Li (D1CY00074H-(cit20)/*[position()=1]) 2017; 56 Abou Hussien (D1CY00074H-(cit50)/*[position()=1]) 2020; 60 Li (D1CY00074H-(cit34)/*[position()=1]) 2015; 51 Kotov (D1CY00074H-(cit4)/*[position()=1]) 2010; 330 Gao (D1CY00074H-(cit3)/*[position()=1]) 2007; 2 Kumar (D1CY00074H-(cit1)/*[position()=1]) 2017; 7 Liu (D1CY00074H-(cit41)/*[position()=1]) 2017; 10 Huang (D1CY00074H-(cit9)/*[position()=1]) 2015; 51 Duan (D1CY00074H-(cit11)/*[position()=1]) 2015; 74 Najafpour (D1CY00074H-(cit29)/*[position()=1]) 2017; 7 Sun (D1CY00074H-(cit22)/*[position()=1]) 2014; 50 Vazquez-Gonzalez (D1CY00074H-(cit31)/*[position()=1]) 2017; 11 Alarcon-Payan (D1CY00074H-(cit61)/*[position()=1]) 2017; 100 Dong (D1CY00074H-(cit32)/*[position()=1]) 2015; 7 Cheng (D1CY00074H-(cit44)/*[position()=1]) 2016; 88 Qiu (D1CY00074H-(cit6)/*[position()=1]) 2018; 90 Nie (D1CY00074H-(cit26)/*[position()=1]) 2014; 2 Song (D1CY00074H-(cit30)/*[position()=1]) 2010; 22 Liu (D1CY00074H-(cit23)/*[position()=1]) 2014; 6 Ren (D1CY00074H-(cit48)/*[position()=1]) 2015; 7 Huang (D1CY00074H-(cit12)/*[position()=1]) 2018; 45 Singh (D1CY00074H-(cit36)/*[position()=1]) 2018; 24 Chen (D1CY00074H-(cit15)/*[position()=1]) 2018; 51 Yoon (D1CY00074H-(cit65)/*[position()=1]) 2007; 104 Clark (D1CY00074H-(cit54)/*[position()=1]) 2015; 7 Niu (D1CY00074H-(cit16)/*[position()=1]) 2018; 30 Majeau (D1CY00074H-(cit59)/*[position()=1]) 2010; 101 Pardo (D1CY00074H-(cit46)/*[position()=1]) 2016; 6 Liang (D1CY00074H-(cit47)/*[position()=1]) 2017; 9 Ba (D1CY00074H-(cit60)/*[position()=1]) 2013; 33 Fei (D1CY00074H-(cit2)/*[position()=1]) 2018; 1 Wang (D1CY00074H-(cit49)/*[position()=1]) 2017; 147 Tian (D1CY00074H-(cit8)/*[position()=1]) 2018; 110 Singh (D1CY00074H-(cit42)/*[position()=1]) 2017; 56 Tang (D1CY00074H-(cit14)/*[position()=1]) 2018; 45 Tian (D1CY00074H-(cit33)/*[position()=1]) 2013; 5 Wang (D1CY00074H-(cit55)/*[position()=1]) 2014; 136 Batrakova (D1CY00074H-(cit19)/*[position()=1]) 2007; 18 Liang (D1CY00074H-(cit56)/*[position()=1]) 2017; 9 Gao (D1CY00074H-(cit10)/*[position()=1]) 2016; 59 Wu (D1CY00074H-(cit17)/*[position()=1]) 2018; 54 Sobanska (D1CY00074H-(cit28)/*[position()=1]) 2017; 7 Lee (D1CY00074H-(cit63)/*[position()=1]) 2002; 124 Singh (D1CY00074H-(cit21)/*[position()=1]) 2018; 6 Yoon (D1CY00074H-(cit64)/*[position()=1]) 2007; 129 Larrondo (D1CY00074H-(cit67)/*[position()=1]) 2003; 69 Xu (D1CY00074H-(cit58)/*[position()=1]) 2013; 222 Chaudhari (D1CY00074H-(cit37)/*[position()=1]) 2012; 2 Shi (D1CY00074H-(cit53)/*[position()=1]) 2015; 7 Sharma (D1CY00074H-(cit7)/*[position()=1]) 2014; 50 Ragg (D1CY00074H-(cit27)/*[position()=1]) 2014; 8 Popov (D1CY00074H-(cit18)/*[position()=1]) 2018; 4 Chai (D1CY00074H-(cit39)/*[position()=1]) 2015; 5 Kluenker (D1CY00074H-(cit38)/*[position()=1]) 2017; 29 Wang (D1CY00074H-(cit51)/*[position()=1]) 2019; 254 Valles (D1CY00074H-(cit62)/*[position()=1]) 2020; 10 Wei (D1CY00074H-(cit57)/*[position()=1]) 2013; 42 Konczol (D1CY00074H-(cit35)/*[position()=1]) 2013; 26 Yang (D1CY00074H-(cit13)/*[position()=1]) 2018; 45 Yuan (D1CY00074H-(cit40)/*[position()=1]) 2016; 8 Wang (D1CY00074H-(cit25)/*[position()=1]) 2014; 50 Hadt (D1CY00074H-(cit52)/*[position()=1]) 2014; 136 Sang (D1CY00074H-(cit43)/*[position()=1]) 2018; 24 Fan (D1CY00074H-(cit45)/*[position()=1]) 2017; 53  | 
    
| References_xml | – volume: 48 start-page: 1004 year: 2019 ident: D1CY00074H-(cit5)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00457A – volume: 53 start-page: 424 year: 2017 ident: D1CY00074H-(cit45)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC08542C – volume: 54 start-page: 6520 year: 2018 ident: D1CY00074H-(cit17)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC01202D – volume: 7 start-page: 4451 year: 2017 ident: D1CY00074H-(cit29)/*[position()=1] publication-title: Catal. Sci. Technol. doi: 10.1039/C7CY01654A – volume: 50 start-page: 9196 year: 2014 ident: D1CY00074H-(cit22)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C4CC03851G – volume: 7 start-page: 16763 year: 2015 ident: D1CY00074H-(cit54)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR04790K – volume: 7 start-page: 7394 year: 2015 ident: D1CY00074H-(cit53)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR00783F – volume: 60 start-page: 67 year: 2020 ident: D1CY00074H-(cit50)/*[position()=1] publication-title: Egypt. J. Soil Sci. doi: 10.21608/ejss.2019.18503.1318 – volume: 42 start-page: 6060 year: 2013 ident: D1CY00074H-(cit57)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs35486e – volume: 45 start-page: 256 year: 2018 ident: D1CY00074H-(cit12)/*[position()=1] publication-title: Prog. Biochem. Biophys. – volume: 50 start-page: 15856 year: 2014 ident: D1CY00074H-(cit7)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C4CC07275H – volume: 45 start-page: 118 year: 2018 ident: D1CY00074H-(cit14)/*[position()=1] publication-title: Prog. Biochem. Biophys. – volume: 147 start-page: 2144 year: 2017 ident: D1CY00074H-(cit49)/*[position()=1] publication-title: Catal. Lett. doi: 10.1007/s10562-017-2106-5 – volume: 104 start-page: 13609 year: 2007 ident: D1CY00074H-(cit65)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0705137104 – volume: 6 start-page: 1600 year: 2018 ident: D1CY00074H-(cit21)/*[position()=1] publication-title: J. Mater. Chem. B doi: 10.1039/C8TB00310F – volume: 26 start-page: 693 year: 2013 ident: D1CY00074H-(cit35)/*[position()=1] publication-title: Chem. Res. Toxicol. doi: 10.1021/tx300503q – volume: 24 start-page: 8393 year: 2018 ident: D1CY00074H-(cit36)/*[position()=1] publication-title: Chemistry doi: 10.1002/chem.201800770 – volume: 18 start-page: 1498 year: 2007 ident: D1CY00074H-(cit19)/*[position()=1] publication-title: Bioconjugate Chem. doi: 10.1021/bc700184b – volume: 2 start-page: 2910 year: 2014 ident: D1CY00074H-(cit26)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c3ta15051h – volume: 330 start-page: 188 year: 2010 ident: D1CY00074H-(cit4)/*[position()=1] publication-title: Science doi: 10.1126/science.1190094 – volume: 136 start-page: 13983 year: 2014 ident: D1CY00074H-(cit55)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja507269n – volume: 29 start-page: 1134 year: 2017 ident: D1CY00074H-(cit38)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b04283 – volume: 56 start-page: 13661 year: 2017 ident: D1CY00074H-(cit20)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201706910 – volume: 51 start-page: 4386 year: 2015 ident: D1CY00074H-(cit9)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC00040H – volume: 56 start-page: 14267 year: 2017 ident: D1CY00074H-(cit42)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201708573 – volume: 129 start-page: 13127 year: 2007 ident: D1CY00074H-(cit64)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja073947a – volume: 11 start-page: 3247 year: 2017 ident: D1CY00074H-(cit31)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b00352 – volume: 24 start-page: 7259 year: 2018 ident: D1CY00074H-(cit43)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201801010 – volume: 10 start-page: 5386 year: 2020 ident: D1CY00074H-(cit62)/*[position()=1] publication-title: Catal. Sci. Technol. doi: 10.1039/D0CY00724B – volume: 22 start-page: 2206 year: 2010 ident: D1CY00074H-(cit30)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200903783 – volume: 45 start-page: 237 year: 2018 ident: D1CY00074H-(cit13)/*[position()=1] publication-title: Prog. Biochem. Biophys. – volume: 7 start-page: 37568 year: 2017 ident: D1CY00074H-(cit1)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C7RA06973A – volume: 69 start-page: 6257 year: 2003 ident: D1CY00074H-(cit67)/*[position()=1] publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.69.10.6257-6263.2003 – volume: 100 start-page: 71 year: 2017 ident: D1CY00074H-(cit61)/*[position()=1] publication-title: Enzyme Microb. Technol. doi: 10.1016/j.enzmictec.2017.02.008 – volume: 137 start-page: 14952 year: 2015 ident: D1CY00074H-(cit24)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08533 – volume: 2 start-page: 119 year: 2012 ident: D1CY00074H-(cit37)/*[position()=1] publication-title: Catal. Sci. Technol. doi: 10.1039/C1CY00124H – volume: 8 start-page: 9855 year: 2016 ident: D1CY00074H-(cit40)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b00306 – volume: 74 start-page: 134 year: 2015 ident: D1CY00074H-(cit11)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.05.025 – volume: 4 start-page: 2453 year: 2018 ident: D1CY00074H-(cit18)/*[position()=1] publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.8b00489 – volume: 222 start-page: 321 year: 2013 ident: D1CY00074H-(cit58)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.02.074 – volume: 9 start-page: 1352 year: 2017 ident: D1CY00074H-(cit56)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b15124 – volume: 1 start-page: 63 year: 2018 ident: D1CY00074H-(cit2)/*[position()=1] publication-title: Nat. Catal. doi: 10.1038/s41929-017-0008-y – volume: 136 start-page: 15034 year: 2014 ident: D1CY00074H-(cit52)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja508361h – volume: 90 start-page: 11775 year: 2018 ident: D1CY00074H-(cit6)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b03807 – volume: 88 start-page: 5489 year: 2016 ident: D1CY00074H-(cit44)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b00975 – volume: 5 start-page: 11604 year: 2013 ident: D1CY00074H-(cit33)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c3nr03693f – volume: 6 start-page: 11904 year: 2014 ident: D1CY00074H-(cit23)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR03848G – volume: 2 start-page: 577 year: 2007 ident: D1CY00074H-(cit3)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.260 – volume: 110 start-page: 110 year: 2018 ident: D1CY00074H-(cit8)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.03.045 – volume: 7 start-page: 2935 year: 2017 ident: D1CY00074H-(cit28)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.7b00189 – volume: 51 start-page: 789 year: 2018 ident: D1CY00074H-(cit15)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00011 – volume: 33 start-page: 404 year: 2013 ident: D1CY00074H-(cit60)/*[position()=1] publication-title: Crit. Rev. Biotechnol. doi: 10.3109/07388551.2012.725390 – volume: 41 start-page: 7325 year: 2002 ident: D1CY00074H-(cit66)/*[position()=1] publication-title: Biochemistry doi: 10.1021/bi0201318 – volume: 101 start-page: 2331 year: 2010 ident: D1CY00074H-(cit59)/*[position()=1] publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.10.087 – volume: 59 start-page: 400 year: 2016 ident: D1CY00074H-(cit10)/*[position()=1] publication-title: Sci. China: Life Sci. doi: 10.1007/s11427-016-5044-3 – volume: 124 start-page: 6180 year: 2002 ident: D1CY00074H-(cit63)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0114052 – volume: 9 start-page: 1352 year: 2017 ident: D1CY00074H-(cit47)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b15124 – volume: 51 start-page: 10925 year: 2015 ident: D1CY00074H-(cit34)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC03398E – volume: 8 start-page: 5182 year: 2014 ident: D1CY00074H-(cit27)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn501235j – volume: 50 start-page: 11147 year: 2014 ident: D1CY00074H-(cit25)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C4CC03082F – volume: 5 start-page: 78771 year: 2015 ident: D1CY00074H-(cit39)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C5RA13265G – volume: 7 start-page: 19641 year: 2015 ident: D1CY00074H-(cit48)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR04685H – volume: 30 start-page: 7027 year: 2018 ident: D1CY00074H-(cit16)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b02365 – volume: 7 start-page: 15403 year: 2015 ident: D1CY00074H-(cit32)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b03486 – volume: 254 start-page: 452 year: 2019 ident: D1CY00074H-(cit51)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.05.012 – volume: 10 start-page: 1125 year: 2017 ident: D1CY00074H-(cit41)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-017-1426-5 – volume: 6 start-page: 3900 year: 2016 ident: D1CY00074H-(cit46)/*[position()=1] publication-title: Catal. Sci. Technol. doi: 10.1039/C5CY01725D  | 
    
| SSID | ssj0000491082 | 
    
| Score | 2.5920238 | 
    
| Snippet | The construction of a nanozyme that mimics a natural enzyme is a promising strategy to obtain a highly stable catalyst. Laccases are members of... | 
    
| SourceID | proquest crossref rsc  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 342 | 
    
| SubjectTerms | Aminophenol Aspartic acid Catalysts Catalytic activity Catalytic oxidation Chlorophenol Copper Electron transfer Heavy metals Hydroquinone Laccase Metal ions Nitrophenol Oxidation Pollutants Recyclability  | 
    
| Title | Preparation of laccase mimicking nanozymes and their catalytic oxidation of phenolic pollutants | 
    
| URI | https://www.proquest.com/docview/2531515683 | 
    
| Volume | 11 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAUL databaseName: Royal Society of Chemistry Gold Collection (IReL) customDbUrl: https://pubs.rsc.org eissn: 2044-4761 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000491082 issn: 2044-4753 databaseCode: AETIL dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb5swELbS9GF7mbof1bJ2k6WtD1NEZ2wg8Fi1ibIq66aJqOwJGWxUpha6lEhL_5z9pTuDMUyLpm0vCDkYyN2H73w-f4fQG7DQ4GVnjuWBsbVg9BNWkHnUoow7vpeIxOdqN_KHC2--dM4jNxoMfvSyltZVcpzeb91X8j9ahTbQq9ol-w-aNTeFBjgH_cIRNAzHv9Lxp5VsqLsbp--ag6Du5Pgmv8lTFQIfF7wo7zeKj0knSuarcR2w2Sie1vJ7LkxnleulOIJV2QZ4Z64pnjoWg0qzl7QbgRRmqt8C89FaKS3Kefm1B7xLHZU-h5e6WucdlnT7ZxVT4dqIqjBsnWNwKfN-UILaaj292cCss5lU6KPNO63zSnT1um54o6QGR0MVfCz7bQ09uxmf7T4OSW-0ZQ6hPcsNBplstQqEKVJVYaeb2mW66mxfu95_8TGeLReLOJxG4RGb3X6zVF0ytX5_xM4a4OygXQqWgwzR7sk0fL8wkTyYY9mkrkpm_lLLg8uCd91Tf_V8uunMzqqtNVP7NOEeeqQnI_ikQdZjNJDFE_TASPEpinsIw2WGNcKwQRg2CMOAMFwjDBuEYYMw1blFGO4Q9gwtZ9PwdG7pkhxWCoN_ZQkqMpuJVPCE-HDqUm5LFvDMFZkkzKepUGxQXur63Gc-5450iZ0FRDrphINruI-GRVnI5wjbHH6nlDtikjmBI5J0koAgWcIl3J05I_S2FVecar56VTblOq7zJlgQn9mnX2rRzkfotbn2tmFp2XrVYSv1WH_FdzEFIwQ-veezEdoHTZj-neJe_LnfAXrYfQKHaFit1vIleKpV8kpD5SfE3Zo7 | 
    
| linkProvider | Royal Society of Chemistry | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+of+laccase+mimicking+nanozymes+and+their+catalytic+oxidation+of+phenolic+pollutants&rft.jtitle=Catalysis+science+%26+technology&rft.au=Xu%2C+Xiaojian&rft.au=Wang%2C+Jinghui&rft.au=Huang%2C+Renliang&rft.au=Qi%2C+Wei&rft.date=2021-05-25&rft.pub=Royal+Society+of+Chemistry&rft.issn=2044-4753&rft.eissn=2044-4761&rft.volume=11&rft.issue=10&rft.spage=3402&rft.epage=3410&rft_id=info:doi/10.1039%2Fd1cy00074h&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2044-4753&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2044-4753&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2044-4753&client=summon |