Preparation of laccase mimicking nanozymes and their catalytic oxidation of phenolic pollutants

The construction of a nanozyme that mimics a natural enzyme is a promising strategy to obtain a highly stable catalyst. Laccases are members of copper-containing oxidases, as environmental catalysts, and show significant potential in biotechnology and environmental remediation. In this study, inspir...

Full description

Saved in:
Bibliographic Details
Published inCatalysis science & technology Vol. 11; no. 1; pp. 342 - 341
Main Authors Xu, Xiaojian, Wang, Jinghui, Huang, Renliang, Qi, Wei, Su, Rongxin, He, Zhimin
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 25.05.2021
Subjects
Online AccessGet full text
ISSN2044-4753
2044-4761
DOI10.1039/d1cy00074h

Cover

Abstract The construction of a nanozyme that mimics a natural enzyme is a promising strategy to obtain a highly stable catalyst. Laccases are members of copper-containing oxidases, as environmental catalysts, and show significant potential in biotechnology and environmental remediation. In this study, inspired by the active site and electron transfer of laccase, a new laccase mimic (defined as CA-Cu) was synthesized via the coordination of copper with a cysteine (Cys)-aspartic acid (Asp) dipeptide. The as-prepared CA-Cu nanozyme exhibits significant laccase-like activity and catalytic oxidation of a wide range of phenolic pollutants, such as 2,4-dichlorophenol, phenol, p -chlorophenol, 2,6-dimethoxyphenol, hydroquinone, o -nitrophenol and o -aminophenol hydroquinone. It has a similar K m (Michaelis constant), a higher v max (maximum rate) and better recyclability than laccase at the same mass concentration. In addition, the CA-Cu nanozyme is robust in a broad temperature range (0-100 °C), at extreme pH and under long-term storage. Surprisingly, the catalytic performance of the CA-Cu nanozyme was enhanced under high-salt conditions or at high concentrations of heavy metal ions, which lead to severe loss in the catalytic activity of laccase. We believe that this nanozyme is a promising environmental catalyst for the treatment of phenolic pollutants under high-salt or heavy metal ion conditions. The construction of a nanozyme that mimics a natural enzyme is a promising strategy to obtain a highly stable catalyst.
AbstractList The construction of a nanozyme that mimics a natural enzyme is a promising strategy to obtain a highly stable catalyst. Laccases are members of copper-containing oxidases, as environmental catalysts, and show significant potential in biotechnology and environmental remediation. In this study, inspired by the active site and electron transfer of laccase, a new laccase mimic (defined as CA-Cu) was synthesized via the coordination of copper with a cysteine (Cys)-aspartic acid (Asp) dipeptide. The as-prepared CA-Cu nanozyme exhibits significant laccase-like activity and catalytic oxidation of a wide range of phenolic pollutants, such as 2,4-dichlorophenol, phenol, p -chlorophenol, 2,6-dimethoxyphenol, hydroquinone, o -nitrophenol and o -aminophenol hydroquinone. It has a similar K m (Michaelis constant), a higher v max (maximum rate) and better recyclability than laccase at the same mass concentration. In addition, the CA-Cu nanozyme is robust in a broad temperature range (0-100 °C), at extreme pH and under long-term storage. Surprisingly, the catalytic performance of the CA-Cu nanozyme was enhanced under high-salt conditions or at high concentrations of heavy metal ions, which lead to severe loss in the catalytic activity of laccase. We believe that this nanozyme is a promising environmental catalyst for the treatment of phenolic pollutants under high-salt or heavy metal ion conditions. The construction of a nanozyme that mimics a natural enzyme is a promising strategy to obtain a highly stable catalyst.
The construction of a nanozyme that mimics a natural enzyme is a promising strategy to obtain a highly stable catalyst. Laccases are members of copper-containing oxidases, as environmental catalysts, and show significant potential in biotechnology and environmental remediation. In this study, inspired by the active site and electron transfer of laccase, a new laccase mimic (defined as CA-Cu) was synthesized via the coordination of copper with a cysteine (Cys)–aspartic acid (Asp) dipeptide. The as-prepared CA-Cu nanozyme exhibits significant laccase-like activity and catalytic oxidation of a wide range of phenolic pollutants, such as 2,4-dichlorophenol, phenol, p-chlorophenol, 2,6-dimethoxyphenol, hydroquinone, o-nitrophenol and o-aminophenol hydroquinone. It has a similar Km (Michaelis constant), a higher vmax (maximum rate) and better recyclability than laccase at the same mass concentration. In addition, the CA-Cu nanozyme is robust in a broad temperature range (0–100 °C), at extreme pH and under long-term storage. Surprisingly, the catalytic performance of the CA-Cu nanozyme was enhanced under high-salt conditions or at high concentrations of heavy metal ions, which lead to severe loss in the catalytic activity of laccase. We believe that this nanozyme is a promising environmental catalyst for the treatment of phenolic pollutants under high-salt or heavy metal ion conditions.
The construction of a nanozyme that mimics a natural enzyme is a promising strategy to obtain a highly stable catalyst. Laccases are members of copper-containing oxidases, as environmental catalysts, and show significant potential in biotechnology and environmental remediation. In this study, inspired by the active site and electron transfer of laccase, a new laccase mimic (defined as CA-Cu) was synthesized via the coordination of copper with a cysteine (Cys)–aspartic acid (Asp) dipeptide. The as-prepared CA-Cu nanozyme exhibits significant laccase-like activity and catalytic oxidation of a wide range of phenolic pollutants, such as 2,4-dichlorophenol, phenol, p -chlorophenol, 2,6-dimethoxyphenol, hydroquinone, o -nitrophenol and o -aminophenol hydroquinone. It has a similar K m (Michaelis constant), a higher v max (maximum rate) and better recyclability than laccase at the same mass concentration. In addition, the CA-Cu nanozyme is robust in a broad temperature range (0–100 °C), at extreme pH and under long-term storage. Surprisingly, the catalytic performance of the CA-Cu nanozyme was enhanced under high-salt conditions or at high concentrations of heavy metal ions, which lead to severe loss in the catalytic activity of laccase. We believe that this nanozyme is a promising environmental catalyst for the treatment of phenolic pollutants under high-salt or heavy metal ion conditions.
Author Xu, Xiaojian
He, Zhimin
Wang, Jinghui
Qi, Wei
Su, Rongxin
Huang, Renliang
AuthorAffiliation Tianjin University
Tianjin Key Laboratory of Membrane Science and Desalination Technology
School of Marine Science and Technology
School of Chemical Engineering and Technology
State Key Laboratory of Chemical Engineering
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
AuthorAffiliation_xml – name: Tianjin University
– name: School of Marine Science and Technology
– name: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– name: State Key Laboratory of Chemical Engineering
– name: Tianjin Key Laboratory of Membrane Science and Desalination Technology
– name: School of Chemical Engineering and Technology
Author_xml – sequence: 1
  givenname: Xiaojian
  surname: Xu
  fullname: Xu, Xiaojian
– sequence: 2
  givenname: Jinghui
  surname: Wang
  fullname: Wang, Jinghui
– sequence: 3
  givenname: Renliang
  surname: Huang
  fullname: Huang, Renliang
– sequence: 4
  givenname: Wei
  surname: Qi
  fullname: Qi, Wei
– sequence: 5
  givenname: Rongxin
  surname: Su
  fullname: Su, Rongxin
– sequence: 6
  givenname: Zhimin
  surname: He
  fullname: He, Zhimin
BookMark eNptkc1LxDAQxYOs4LruxbsQ8CZUk6Zp06OsHyss6EEPnsqYpG7WNqlJFqx_vXVXVhBP8xh-b4Z5c4hG1lmN0DEl55Sw8kJR2RNCimy5h8YpybIkK3I62mnODtA0hNXAkKykRKRjVD143YGHaJzFrsYNSAlB49a0Rr4Z-4otWPfZtzpgsArHpTYeS4jQ9NFI7D6M2pm7pbauGbqda5p1BBvDEdqvoQl6-lMn6Onm-nE2Txb3t3ezy0UiGRUxUamqKVNSwQsRg-QpUM1KqLmqNWEilapIaZ5LLkAwAZBpTmhdEp3JAgRnE3S6ndt5977WIVYrt_Z2WFmlnFFOeS7YQJ1tKeldCF7XVedNC76vKKm-M6yu6Ox5k-F8gMkfWJq4uTV6MM3_lpOtxQe5G_37FvYFYkaBRg
CitedBy_id crossref_primary_10_1016_j_aca_2023_341771
crossref_primary_10_1002_smll_202311275
crossref_primary_10_1016_j_saa_2023_123003
crossref_primary_10_1021_acsmeasuresciau_4c00085
crossref_primary_10_1021_acs_nanolett_4c06230
crossref_primary_10_1039_D3NJ03952H
crossref_primary_10_1016_j_cej_2024_158021
crossref_primary_10_1016_j_microc_2024_111748
crossref_primary_10_1039_D1NJ05658A
crossref_primary_10_1016_j_jcis_2024_04_124
crossref_primary_10_1039_D2EN00027J
crossref_primary_10_1039_D3NR01625K
crossref_primary_10_1016_j_clay_2024_107507
crossref_primary_10_1007_s11426_022_1544_x
crossref_primary_10_1016_j_colsurfb_2023_113241
crossref_primary_10_1016_j_talanta_2024_126630
crossref_primary_10_1016_j_snb_2024_135845
crossref_primary_10_1021_acsami_4c00844
crossref_primary_10_1016_j_ccr_2022_214760
crossref_primary_10_1016_j_saa_2024_125599
crossref_primary_10_1002_adom_202401318
crossref_primary_10_1186_s12951_022_01560_0
crossref_primary_10_1016_j_jwpe_2024_106901
crossref_primary_10_1016_j_talanta_2024_125840
crossref_primary_10_1016_j_rineng_2025_104656
crossref_primary_10_1016_j_scitotenv_2021_148359
crossref_primary_10_1016_j_aca_2022_339725
crossref_primary_10_1016_j_ijbiomac_2024_137053
crossref_primary_10_1016_j_jenvman_2024_121807
crossref_primary_10_1039_D1CC06612A
crossref_primary_10_1016_j_ijbiomac_2024_136121
crossref_primary_10_1007_s12274_022_4538_5
crossref_primary_10_1039_D3AY02328A
crossref_primary_10_3390_bios13030314
crossref_primary_10_1039_D1CS01178B
crossref_primary_10_1021_acsomega_3c06847
crossref_primary_10_1002_cnma_202400336
crossref_primary_10_1016_j_sbsr_2023_100595
crossref_primary_10_1021_acs_analchem_4c00815
crossref_primary_10_1039_D3EN00844D
crossref_primary_10_1021_acsaenm_3c00487
crossref_primary_10_1016_j_aca_2024_343333
crossref_primary_10_1016_j_aca_2024_343298
crossref_primary_10_1021_acs_analchem_3c01488
crossref_primary_10_1016_j_ccr_2024_215761
crossref_primary_10_1016_j_jwpe_2023_104695
crossref_primary_10_3390_nano11082116
crossref_primary_10_1021_acsanm_1c03896
crossref_primary_10_3390_foods14010133
crossref_primary_10_1016_j_isci_2022_105831
crossref_primary_10_1007_s11356_023_31429_0
crossref_primary_10_1016_j_cej_2022_137701
crossref_primary_10_1016_j_snb_2022_131429
crossref_primary_10_1039_D2DT03268F
crossref_primary_10_1007_s00396_024_05337_9
crossref_primary_10_1016_j_jhazmat_2023_131776
crossref_primary_10_1016_j_jclepro_2023_136832
crossref_primary_10_1016_j_snr_2024_100209
crossref_primary_10_1016_j_snb_2023_134773
crossref_primary_10_1007_s00604_022_05194_9
crossref_primary_10_1016_j_saa_2024_124446
crossref_primary_10_1016_j_cjche_2023_12_015
crossref_primary_10_1016_j_jhazmat_2022_128688
crossref_primary_10_1016_j_jhazmat_2024_136294
crossref_primary_10_1039_D4NH00371C
crossref_primary_10_1016_j_talanta_2024_126639
crossref_primary_10_1016_j_jhazmat_2022_130198
crossref_primary_10_1039_D3NR02081A
crossref_primary_10_1039_D3RA06619C
crossref_primary_10_1016_j_biotechadv_2023_108299
crossref_primary_10_1016_j_ijbiomac_2025_141503
crossref_primary_10_1021_acssuschemeng_1c06340
crossref_primary_10_26599_NR_2025_94907239
crossref_primary_10_1016_j_microc_2024_110094
crossref_primary_10_1016_j_microc_2024_111380
Cites_doi 10.1039/C8CS00457A
10.1039/C6CC08542C
10.1039/C8CC01202D
10.1039/C7CY01654A
10.1039/C4CC03851G
10.1039/C5NR04790K
10.1039/C5NR00783F
10.21608/ejss.2019.18503.1318
10.1039/c3cs35486e
10.1039/C4CC07275H
10.1007/s10562-017-2106-5
10.1073/pnas.0705137104
10.1039/C8TB00310F
10.1021/tx300503q
10.1002/chem.201800770
10.1021/bc700184b
10.1039/c3ta15051h
10.1126/science.1190094
10.1021/ja507269n
10.1021/acs.chemmater.6b04283
10.1002/anie.201706910
10.1039/C5CC00040H
10.1002/anie.201708573
10.1021/ja073947a
10.1021/acsnano.7b00352
10.1002/chem.201801010
10.1039/D0CY00724B
10.1002/adma.200903783
10.1039/C7RA06973A
10.1128/AEM.69.10.6257-6263.2003
10.1016/j.enzmictec.2017.02.008
10.1021/jacs.5b08533
10.1039/C1CY00124H
10.1021/acsami.6b00306
10.1016/j.bios.2015.05.025
10.1021/acsbiomaterials.8b00489
10.1016/j.cej.2013.02.074
10.1021/acsami.6b15124
10.1038/s41929-017-0008-y
10.1021/ja508361h
10.1021/acs.analchem.8b03807
10.1021/acs.analchem.6b00975
10.1039/c3nr03693f
10.1039/C4NR03848G
10.1038/nnano.2007.260
10.1016/j.bios.2018.03.045
10.1021/acscatal.7b00189
10.1021/acs.accounts.8b00011
10.3109/07388551.2012.725390
10.1021/bi0201318
10.1016/j.biortech.2009.10.087
10.1007/s11427-016-5044-3
10.1021/ja0114052
10.1039/C5CC03398E
10.1021/nn501235j
10.1039/C4CC03082F
10.1039/C5RA13265G
10.1039/C5NR04685H
10.1021/acs.chemmater.8b02365
10.1021/acsami.5b03486
10.1016/j.apcatb.2019.05.012
10.1007/s12274-017-1426-5
10.1039/C5CY01725D
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1039/d1cy00074h
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2044-4761
EndPage 341
ExternalDocumentID 10_1039_D1CY00074H
d1cy00074h
GroupedDBID 0-7
0R
705
AAEMU
AAGNR
AAIWI
AAJAE
AANOJ
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFVBQ
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
ECGLT
EE0
EF-
H13
HZ
H~N
J3I
JG
O-G
O9-
OK1
R7G
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
0R~
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
ACAYK
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AGEGJ
AHGCF
AKMSF
APEMP
CITATION
EBS
GGIMP
HZ~
RAOCF
RVUXY
7SR
8BQ
8FD
AKBGW
JG9
ID FETCH-LOGICAL-c318t-d2df13dcdab08df152a1e39af5dfe0382cd72166c58a838aa4e501f90e4c7a853
ISSN 2044-4753
IngestDate Sun Jun 29 16:47:16 EDT 2025
Wed Oct 01 03:10:42 EDT 2025
Thu Apr 24 23:05:42 EDT 2025
Mon Apr 25 05:28:05 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-d2df13dcdab08df152a1e39af5dfe0382cd72166c58a838aa4e501f90e4c7a853
Notes 10.1039/d1cy00074h
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0797-3473
0000-0001-9778-9113
PQID 2531515683
PQPubID 2047527
PageCount 9
ParticipantIDs proquest_journals_2531515683
crossref_primary_10_1039_D1CY00074H
rsc_primary_d1cy00074h
crossref_citationtrail_10_1039_D1CY00074H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210525
PublicationDateYYYYMMDD 2021-05-25
PublicationDate_xml – month: 5
  year: 2021
  text: 20210525
  day: 25
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Catalysis science & technology
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Liu (D1CY00074H-(cit24)/*[position()=1]) 2015; 137
Wu (D1CY00074H-(cit5)/*[position()=1]) 2019; 48
Bertrand (D1CY00074H-(cit66)/*[position()=1]) 2002; 41
Li (D1CY00074H-(cit20)/*[position()=1]) 2017; 56
Abou Hussien (D1CY00074H-(cit50)/*[position()=1]) 2020; 60
Li (D1CY00074H-(cit34)/*[position()=1]) 2015; 51
Kotov (D1CY00074H-(cit4)/*[position()=1]) 2010; 330
Gao (D1CY00074H-(cit3)/*[position()=1]) 2007; 2
Kumar (D1CY00074H-(cit1)/*[position()=1]) 2017; 7
Liu (D1CY00074H-(cit41)/*[position()=1]) 2017; 10
Huang (D1CY00074H-(cit9)/*[position()=1]) 2015; 51
Duan (D1CY00074H-(cit11)/*[position()=1]) 2015; 74
Najafpour (D1CY00074H-(cit29)/*[position()=1]) 2017; 7
Sun (D1CY00074H-(cit22)/*[position()=1]) 2014; 50
Vazquez-Gonzalez (D1CY00074H-(cit31)/*[position()=1]) 2017; 11
Alarcon-Payan (D1CY00074H-(cit61)/*[position()=1]) 2017; 100
Dong (D1CY00074H-(cit32)/*[position()=1]) 2015; 7
Cheng (D1CY00074H-(cit44)/*[position()=1]) 2016; 88
Qiu (D1CY00074H-(cit6)/*[position()=1]) 2018; 90
Nie (D1CY00074H-(cit26)/*[position()=1]) 2014; 2
Song (D1CY00074H-(cit30)/*[position()=1]) 2010; 22
Liu (D1CY00074H-(cit23)/*[position()=1]) 2014; 6
Ren (D1CY00074H-(cit48)/*[position()=1]) 2015; 7
Huang (D1CY00074H-(cit12)/*[position()=1]) 2018; 45
Singh (D1CY00074H-(cit36)/*[position()=1]) 2018; 24
Chen (D1CY00074H-(cit15)/*[position()=1]) 2018; 51
Yoon (D1CY00074H-(cit65)/*[position()=1]) 2007; 104
Clark (D1CY00074H-(cit54)/*[position()=1]) 2015; 7
Niu (D1CY00074H-(cit16)/*[position()=1]) 2018; 30
Majeau (D1CY00074H-(cit59)/*[position()=1]) 2010; 101
Pardo (D1CY00074H-(cit46)/*[position()=1]) 2016; 6
Liang (D1CY00074H-(cit47)/*[position()=1]) 2017; 9
Ba (D1CY00074H-(cit60)/*[position()=1]) 2013; 33
Fei (D1CY00074H-(cit2)/*[position()=1]) 2018; 1
Wang (D1CY00074H-(cit49)/*[position()=1]) 2017; 147
Tian (D1CY00074H-(cit8)/*[position()=1]) 2018; 110
Singh (D1CY00074H-(cit42)/*[position()=1]) 2017; 56
Tang (D1CY00074H-(cit14)/*[position()=1]) 2018; 45
Tian (D1CY00074H-(cit33)/*[position()=1]) 2013; 5
Wang (D1CY00074H-(cit55)/*[position()=1]) 2014; 136
Batrakova (D1CY00074H-(cit19)/*[position()=1]) 2007; 18
Liang (D1CY00074H-(cit56)/*[position()=1]) 2017; 9
Gao (D1CY00074H-(cit10)/*[position()=1]) 2016; 59
Wu (D1CY00074H-(cit17)/*[position()=1]) 2018; 54
Sobanska (D1CY00074H-(cit28)/*[position()=1]) 2017; 7
Lee (D1CY00074H-(cit63)/*[position()=1]) 2002; 124
Singh (D1CY00074H-(cit21)/*[position()=1]) 2018; 6
Yoon (D1CY00074H-(cit64)/*[position()=1]) 2007; 129
Larrondo (D1CY00074H-(cit67)/*[position()=1]) 2003; 69
Xu (D1CY00074H-(cit58)/*[position()=1]) 2013; 222
Chaudhari (D1CY00074H-(cit37)/*[position()=1]) 2012; 2
Shi (D1CY00074H-(cit53)/*[position()=1]) 2015; 7
Sharma (D1CY00074H-(cit7)/*[position()=1]) 2014; 50
Ragg (D1CY00074H-(cit27)/*[position()=1]) 2014; 8
Popov (D1CY00074H-(cit18)/*[position()=1]) 2018; 4
Chai (D1CY00074H-(cit39)/*[position()=1]) 2015; 5
Kluenker (D1CY00074H-(cit38)/*[position()=1]) 2017; 29
Wang (D1CY00074H-(cit51)/*[position()=1]) 2019; 254
Valles (D1CY00074H-(cit62)/*[position()=1]) 2020; 10
Wei (D1CY00074H-(cit57)/*[position()=1]) 2013; 42
Konczol (D1CY00074H-(cit35)/*[position()=1]) 2013; 26
Yang (D1CY00074H-(cit13)/*[position()=1]) 2018; 45
Yuan (D1CY00074H-(cit40)/*[position()=1]) 2016; 8
Wang (D1CY00074H-(cit25)/*[position()=1]) 2014; 50
Hadt (D1CY00074H-(cit52)/*[position()=1]) 2014; 136
Sang (D1CY00074H-(cit43)/*[position()=1]) 2018; 24
Fan (D1CY00074H-(cit45)/*[position()=1]) 2017; 53
References_xml – volume: 48
  start-page: 1004
  year: 2019
  ident: D1CY00074H-(cit5)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00457A
– volume: 53
  start-page: 424
  year: 2017
  ident: D1CY00074H-(cit45)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC08542C
– volume: 54
  start-page: 6520
  year: 2018
  ident: D1CY00074H-(cit17)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC01202D
– volume: 7
  start-page: 4451
  year: 2017
  ident: D1CY00074H-(cit29)/*[position()=1]
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C7CY01654A
– volume: 50
  start-page: 9196
  year: 2014
  ident: D1CY00074H-(cit22)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC03851G
– volume: 7
  start-page: 16763
  year: 2015
  ident: D1CY00074H-(cit54)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR04790K
– volume: 7
  start-page: 7394
  year: 2015
  ident: D1CY00074H-(cit53)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR00783F
– volume: 60
  start-page: 67
  year: 2020
  ident: D1CY00074H-(cit50)/*[position()=1]
  publication-title: Egypt. J. Soil Sci.
  doi: 10.21608/ejss.2019.18503.1318
– volume: 42
  start-page: 6060
  year: 2013
  ident: D1CY00074H-(cit57)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs35486e
– volume: 45
  start-page: 256
  year: 2018
  ident: D1CY00074H-(cit12)/*[position()=1]
  publication-title: Prog. Biochem. Biophys.
– volume: 50
  start-page: 15856
  year: 2014
  ident: D1CY00074H-(cit7)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC07275H
– volume: 45
  start-page: 118
  year: 2018
  ident: D1CY00074H-(cit14)/*[position()=1]
  publication-title: Prog. Biochem. Biophys.
– volume: 147
  start-page: 2144
  year: 2017
  ident: D1CY00074H-(cit49)/*[position()=1]
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-017-2106-5
– volume: 104
  start-page: 13609
  year: 2007
  ident: D1CY00074H-(cit65)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0705137104
– volume: 6
  start-page: 1600
  year: 2018
  ident: D1CY00074H-(cit21)/*[position()=1]
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C8TB00310F
– volume: 26
  start-page: 693
  year: 2013
  ident: D1CY00074H-(cit35)/*[position()=1]
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx300503q
– volume: 24
  start-page: 8393
  year: 2018
  ident: D1CY00074H-(cit36)/*[position()=1]
  publication-title: Chemistry
  doi: 10.1002/chem.201800770
– volume: 18
  start-page: 1498
  year: 2007
  ident: D1CY00074H-(cit19)/*[position()=1]
  publication-title: Bioconjugate Chem.
  doi: 10.1021/bc700184b
– volume: 2
  start-page: 2910
  year: 2014
  ident: D1CY00074H-(cit26)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta15051h
– volume: 330
  start-page: 188
  year: 2010
  ident: D1CY00074H-(cit4)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1190094
– volume: 136
  start-page: 13983
  year: 2014
  ident: D1CY00074H-(cit55)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja507269n
– volume: 29
  start-page: 1134
  year: 2017
  ident: D1CY00074H-(cit38)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b04283
– volume: 56
  start-page: 13661
  year: 2017
  ident: D1CY00074H-(cit20)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201706910
– volume: 51
  start-page: 4386
  year: 2015
  ident: D1CY00074H-(cit9)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC00040H
– volume: 56
  start-page: 14267
  year: 2017
  ident: D1CY00074H-(cit42)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201708573
– volume: 129
  start-page: 13127
  year: 2007
  ident: D1CY00074H-(cit64)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja073947a
– volume: 11
  start-page: 3247
  year: 2017
  ident: D1CY00074H-(cit31)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00352
– volume: 24
  start-page: 7259
  year: 2018
  ident: D1CY00074H-(cit43)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201801010
– volume: 10
  start-page: 5386
  year: 2020
  ident: D1CY00074H-(cit62)/*[position()=1]
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/D0CY00724B
– volume: 22
  start-page: 2206
  year: 2010
  ident: D1CY00074H-(cit30)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200903783
– volume: 45
  start-page: 237
  year: 2018
  ident: D1CY00074H-(cit13)/*[position()=1]
  publication-title: Prog. Biochem. Biophys.
– volume: 7
  start-page: 37568
  year: 2017
  ident: D1CY00074H-(cit1)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C7RA06973A
– volume: 69
  start-page: 6257
  year: 2003
  ident: D1CY00074H-(cit67)/*[position()=1]
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.69.10.6257-6263.2003
– volume: 100
  start-page: 71
  year: 2017
  ident: D1CY00074H-(cit61)/*[position()=1]
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/j.enzmictec.2017.02.008
– volume: 137
  start-page: 14952
  year: 2015
  ident: D1CY00074H-(cit24)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b08533
– volume: 2
  start-page: 119
  year: 2012
  ident: D1CY00074H-(cit37)/*[position()=1]
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C1CY00124H
– volume: 8
  start-page: 9855
  year: 2016
  ident: D1CY00074H-(cit40)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b00306
– volume: 74
  start-page: 134
  year: 2015
  ident: D1CY00074H-(cit11)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2015.05.025
– volume: 4
  start-page: 2453
  year: 2018
  ident: D1CY00074H-(cit18)/*[position()=1]
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.8b00489
– volume: 222
  start-page: 321
  year: 2013
  ident: D1CY00074H-(cit58)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.02.074
– volume: 9
  start-page: 1352
  year: 2017
  ident: D1CY00074H-(cit56)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b15124
– volume: 1
  start-page: 63
  year: 2018
  ident: D1CY00074H-(cit2)/*[position()=1]
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-017-0008-y
– volume: 136
  start-page: 15034
  year: 2014
  ident: D1CY00074H-(cit52)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja508361h
– volume: 90
  start-page: 11775
  year: 2018
  ident: D1CY00074H-(cit6)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b03807
– volume: 88
  start-page: 5489
  year: 2016
  ident: D1CY00074H-(cit44)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b00975
– volume: 5
  start-page: 11604
  year: 2013
  ident: D1CY00074H-(cit33)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c3nr03693f
– volume: 6
  start-page: 11904
  year: 2014
  ident: D1CY00074H-(cit23)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR03848G
– volume: 2
  start-page: 577
  year: 2007
  ident: D1CY00074H-(cit3)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.260
– volume: 110
  start-page: 110
  year: 2018
  ident: D1CY00074H-(cit8)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.03.045
– volume: 7
  start-page: 2935
  year: 2017
  ident: D1CY00074H-(cit28)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b00189
– volume: 51
  start-page: 789
  year: 2018
  ident: D1CY00074H-(cit15)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00011
– volume: 33
  start-page: 404
  year: 2013
  ident: D1CY00074H-(cit60)/*[position()=1]
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.3109/07388551.2012.725390
– volume: 41
  start-page: 7325
  year: 2002
  ident: D1CY00074H-(cit66)/*[position()=1]
  publication-title: Biochemistry
  doi: 10.1021/bi0201318
– volume: 101
  start-page: 2331
  year: 2010
  ident: D1CY00074H-(cit59)/*[position()=1]
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2009.10.087
– volume: 59
  start-page: 400
  year: 2016
  ident: D1CY00074H-(cit10)/*[position()=1]
  publication-title: Sci. China: Life Sci.
  doi: 10.1007/s11427-016-5044-3
– volume: 124
  start-page: 6180
  year: 2002
  ident: D1CY00074H-(cit63)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0114052
– volume: 9
  start-page: 1352
  year: 2017
  ident: D1CY00074H-(cit47)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b15124
– volume: 51
  start-page: 10925
  year: 2015
  ident: D1CY00074H-(cit34)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC03398E
– volume: 8
  start-page: 5182
  year: 2014
  ident: D1CY00074H-(cit27)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn501235j
– volume: 50
  start-page: 11147
  year: 2014
  ident: D1CY00074H-(cit25)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC03082F
– volume: 5
  start-page: 78771
  year: 2015
  ident: D1CY00074H-(cit39)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA13265G
– volume: 7
  start-page: 19641
  year: 2015
  ident: D1CY00074H-(cit48)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR04685H
– volume: 30
  start-page: 7027
  year: 2018
  ident: D1CY00074H-(cit16)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b02365
– volume: 7
  start-page: 15403
  year: 2015
  ident: D1CY00074H-(cit32)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b03486
– volume: 254
  start-page: 452
  year: 2019
  ident: D1CY00074H-(cit51)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.05.012
– volume: 10
  start-page: 1125
  year: 2017
  ident: D1CY00074H-(cit41)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1426-5
– volume: 6
  start-page: 3900
  year: 2016
  ident: D1CY00074H-(cit46)/*[position()=1]
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C5CY01725D
SSID ssj0000491082
Score 2.5920238
Snippet The construction of a nanozyme that mimics a natural enzyme is a promising strategy to obtain a highly stable catalyst. Laccases are members of...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 342
SubjectTerms Aminophenol
Aspartic acid
Catalysts
Catalytic activity
Catalytic oxidation
Chlorophenol
Copper
Electron transfer
Heavy metals
Hydroquinone
Laccase
Metal ions
Nitrophenol
Oxidation
Pollutants
Recyclability
Title Preparation of laccase mimicking nanozymes and their catalytic oxidation of phenolic pollutants
URI https://www.proquest.com/docview/2531515683
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection (IReL)
  customDbUrl: https://pubs.rsc.org
  eissn: 2044-4761
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000491082
  issn: 2044-4753
  databaseCode: AETIL
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb5swELbS9GF7mbof1bJ2k6WtD1NEZ2wg8Fi1ibIq66aJqOwJGWxUpha6lEhL_5z9pTuDMUyLpm0vCDkYyN2H73w-f4fQG7DQ4GVnjuWBsbVg9BNWkHnUoow7vpeIxOdqN_KHC2--dM4jNxoMfvSyltZVcpzeb91X8j9ahTbQq9ol-w-aNTeFBjgH_cIRNAzHv9Lxp5VsqLsbp--ag6Du5Pgmv8lTFQIfF7wo7zeKj0knSuarcR2w2Sie1vJ7LkxnleulOIJV2QZ4Z64pnjoWg0qzl7QbgRRmqt8C89FaKS3Kefm1B7xLHZU-h5e6WucdlnT7ZxVT4dqIqjBsnWNwKfN-UILaaj292cCss5lU6KPNO63zSnT1um54o6QGR0MVfCz7bQ09uxmf7T4OSW-0ZQ6hPcsNBplstQqEKVJVYaeb2mW66mxfu95_8TGeLReLOJxG4RGb3X6zVF0ytX5_xM4a4OygXQqWgwzR7sk0fL8wkTyYY9mkrkpm_lLLg8uCd91Tf_V8uunMzqqtNVP7NOEeeqQnI_ikQdZjNJDFE_TASPEpinsIw2WGNcKwQRg2CMOAMFwjDBuEYYMw1blFGO4Q9gwtZ9PwdG7pkhxWCoN_ZQkqMpuJVPCE-HDqUm5LFvDMFZkkzKepUGxQXur63Gc-5450iZ0FRDrphINruI-GRVnI5wjbHH6nlDtikjmBI5J0koAgWcIl3J05I_S2FVecar56VTblOq7zJlgQn9mnX2rRzkfotbn2tmFp2XrVYSv1WH_FdzEFIwQ-veezEdoHTZj-neJe_LnfAXrYfQKHaFit1vIleKpV8kpD5SfE3Zo7
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+of+laccase+mimicking+nanozymes+and+their+catalytic+oxidation+of+phenolic+pollutants&rft.jtitle=Catalysis+science+%26+technology&rft.au=Xu%2C+Xiaojian&rft.au=Wang%2C+Jinghui&rft.au=Huang%2C+Renliang&rft.au=Qi%2C+Wei&rft.date=2021-05-25&rft.pub=Royal+Society+of+Chemistry&rft.issn=2044-4753&rft.eissn=2044-4761&rft.volume=11&rft.issue=10&rft.spage=3402&rft.epage=3410&rft_id=info:doi/10.1039%2Fd1cy00074h&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2044-4753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2044-4753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2044-4753&client=summon