Three-dimensional Discrete Element Method simulation system of the interaction between irregular structure wheel and lunar soil simulant
•Based on the theory of terramechanics, the 3D dynamic simulation system was established by combining CATIA and PFC3D.•The rationality of the simulation system was verified by the wheel soil-bin test.•In addition to the flat surface of ground, two kinds of lunar environments simulant were added to t...
Saved in:
| Published in | Advances in engineering software (1992) Vol. 148; p. 102873 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.10.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0965-9978 |
| DOI | 10.1016/j.advengsoft.2020.102873 |
Cover
| Abstract | •Based on the theory of terramechanics, the 3D dynamic simulation system was established by combining CATIA and PFC3D.•The rationality of the simulation system was verified by the wheel soil-bin test.•In addition to the flat surface of ground, two kinds of lunar environments simulant were added to the simulation system.•The distribution of lunar soil stimulant can be observed more clearly by the changes of color gradients and the post-processing of IV program.
The experimental execution, theoretical analysis, structural optimization and performance prediction of lunar rover wheels are subject to many limitations due to the particularity and complexity of the lunar environment. The numerical simulation has notable advantages in analyzing the interaction between wheels and lunar soil simulant and designing the lunar rover wheels applied to complex environments. In this paper, based on the theory of terramechanics, a three-dimensional (3D) dynamic system that simulated the interaction between irregular structure wheels and lunar soil simulant was established using the interface code and embedded FISH language of PFC3D. The rationality of the simulation system was verified by the wheel soil-bin test. Then, in order to improve and optimize the 3D dynamic simulation system, the interaction between wheel and lunar soil simulant was simulated in two different kinds of simulated lunar environments besides the flat ground, and the climbing property of the wheel was analyzed qualitatively. Finally, the mesoscopic changes of lunar soil stimulant particles were characterized by the color gradient variations, and the simulation results were processed in the IV program so that the distribution of lunar soil stimulant particles under the wheel could be observed more clearly. This research provided a reliable method for the study of the interaction between irregular wheel and loose lunar soil in complex environments and of designing the wheel structure. |
|---|---|
| AbstractList | •Based on the theory of terramechanics, the 3D dynamic simulation system was established by combining CATIA and PFC3D.•The rationality of the simulation system was verified by the wheel soil-bin test.•In addition to the flat surface of ground, two kinds of lunar environments simulant were added to the simulation system.•The distribution of lunar soil stimulant can be observed more clearly by the changes of color gradients and the post-processing of IV program.
The experimental execution, theoretical analysis, structural optimization and performance prediction of lunar rover wheels are subject to many limitations due to the particularity and complexity of the lunar environment. The numerical simulation has notable advantages in analyzing the interaction between wheels and lunar soil simulant and designing the lunar rover wheels applied to complex environments. In this paper, based on the theory of terramechanics, a three-dimensional (3D) dynamic system that simulated the interaction between irregular structure wheels and lunar soil simulant was established using the interface code and embedded FISH language of PFC3D. The rationality of the simulation system was verified by the wheel soil-bin test. Then, in order to improve and optimize the 3D dynamic simulation system, the interaction between wheel and lunar soil simulant was simulated in two different kinds of simulated lunar environments besides the flat ground, and the climbing property of the wheel was analyzed qualitatively. Finally, the mesoscopic changes of lunar soil stimulant particles were characterized by the color gradient variations, and the simulation results were processed in the IV program so that the distribution of lunar soil stimulant particles under the wheel could be observed more clearly. This research provided a reliable method for the study of the interaction between irregular wheel and loose lunar soil in complex environments and of designing the wheel structure. |
| ArticleNumber | 102873 |
| Author | Hu, Zhenyu Li, Tao Li, Jianqiao Pang, Hao Dong, Wenchao Zhang, Hua Zhang, Rui Liu, Fang |
| Author_xml | – sequence: 1 givenname: Rui surname: Zhang fullname: Zhang, Rui email: zhangrui@jlu.edu.cn organization: Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, PR China – sequence: 2 givenname: Hao surname: Pang fullname: Pang, Hao organization: Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, PR China – sequence: 3 givenname: Wenchao surname: Dong fullname: Dong, Wenchao organization: Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, PR China – sequence: 4 givenname: Tao surname: Li fullname: Li, Tao organization: Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, PR China – sequence: 5 givenname: Fang surname: Liu fullname: Liu, Fang organization: Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, PR China – sequence: 6 givenname: Hua surname: Zhang fullname: Zhang, Hua organization: Aerospace System Engineering Shanghai, Shanghai, PR China – sequence: 7 givenname: Zhenyu surname: Hu fullname: Hu, Zhenyu organization: Aerospace System Engineering Shanghai, Shanghai, PR China – sequence: 8 givenname: Jianqiao surname: Li fullname: Li, Jianqiao organization: Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, PR China |
| BookMark | eNqNkE1OwzAUhL0oEi1wB18gxc6_N0hQyo9UxKasLcd-aVwlNrKdVr0BxyZpKyGxgdWT5s180swMTYw1gBCmZE4JzW-3c6F2YDbe1mEek3iU47JIJmhKWJ5FjBXlJZp5vyWEpiSmU_S1bhxApHQHxmtrRIsftZcOAuBlC4Ma8BuExirsdde3Igwm7A8-QIdtjUMDWJsATsjjp4KwBzBYOwebwe6wD66XoXeA9w1Ai4VRuO3N-LG6PVNNuEYXtWg93JzvFfp4Wq4XL9Hq_fl1cb-KZELLEFWKpbISVLBM5SrNEhkXhVQ5KVVBgJRJHaeQJiolVc4kk1lBVCoVI1TkwKhMrtDdiSud9d5BzaUOx1bBCd1ySvi4Jd_yny35uCU_bTkAyl-AT6c74Q7_iT6cojAU3Glw3EsNRoLSDmTgyuq_Id-RlZ5Z |
| CitedBy_id | crossref_primary_10_1016_j_ijmst_2024_08_006 crossref_primary_10_1016_j_jterra_2023_08_003 crossref_primary_10_1016_j_asr_2024_09_031 crossref_primary_10_1061_JAEEEZ_ASENG_4988 crossref_primary_10_1088_2631_8695_ad5c2a crossref_primary_10_35633_inmateh_73_31 crossref_primary_10_1016_j_actaastro_2024_12_062 crossref_primary_10_1007_s12210_021_00990_6 crossref_primary_10_1016_j_powtec_2024_120293 crossref_primary_10_3390_ma17194789 crossref_primary_10_32604_cmes_2021_017321 crossref_primary_10_1186_s10033_024_01107_4 crossref_primary_10_1007_s11831_023_09961_6 crossref_primary_10_1016_j_powtec_2023_119197 crossref_primary_10_1016_j_jrmge_2025_01_029 crossref_primary_10_1016_j_advengsoft_2024_103759 crossref_primary_10_1016_j_advengsoft_2024_103735 crossref_primary_10_1016_j_ijmecsci_2023_108264 crossref_primary_10_1016_j_advengsoft_2023_103513 |
| Cites_doi | 10.3390/en12091801 10.1016/j.advengsoft.2017.10.001 10.1016/j.jterra.2009.02.003 10.1016/j.jterra.2014.05.005 10.1016/j.advengsoft.2016.08.002 10.1126/science.178.4064.977 10.1002/swe.20034 10.1166/asl.2011.1384 10.1016/j.jterra.2004.02.002 10.1002/nag.1089 10.1016/j.jterra.2014.08.003 10.4028/www.scientific.net/AMM.80-81.580 10.3901/JME.2015.03.037 10.1016/j.jterra.2018.12.002 10.1016/j.jterra.2013.09.002 10.1016/j.advengsoft.2014.09.001 10.3390/en10101544 10.1002/nag.728 10.1016/j.jterra.2008.11.001 10.4028/www.scientific.net/AMR.644.366 10.1016/j.jterra.2005.11.001 10.4028/www.scientific.net/AMM.215-216.964 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.advengsoft.2020.102873 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Computer Science |
| ExternalDocumentID | 10_1016_j_advengsoft_2020_102873 S0965997820304087 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c318t-bd94cba1a95d6d453c277cd608d70e083f24e43d40b69c9c570d4cd901a6e91c3 |
| IEDL.DBID | .~1 |
| ISSN | 0965-9978 |
| IngestDate | Sat Oct 25 04:55:42 EDT 2025 Thu Apr 24 23:09:43 EDT 2025 Fri Feb 23 02:48:39 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | 3D dynamic simulation system Soil-bin test Lunar soil simulant PFC3D Irregular structure wheel |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c318t-bd94cba1a95d6d453c277cd608d70e083f24e43d40b69c9c570d4cd901a6e91c3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_advengsoft_2020_102873 crossref_primary_10_1016_j_advengsoft_2020_102873 elsevier_sciencedirect_doi_10_1016_j_advengsoft_2020_102873 |
| PublicationCentury | 2000 |
| PublicationDate | October 2020 2020-10-00 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Advances in engineering software (1992) |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Smith, Peng (bib0016) 2013; 50 Ye, Jing (bib0001) 2006; 4 Eto T., Oda M., Kaneko Y., Maeda T.. The study of the mobile lunar explorer. Des Planet Mob Veh1993:203-14. Meguid, Dang (bib0024) 2013; 37 Jayalekshmi, Kumar (bib0030) 2019; 82 Wang, Zhong (bib0011) 2019; 12 Hambleton, Drescher (bib0005) 2008; 45 Chen (bib0031) 1981 Zhang, Zhou, Chen, Li (bib0034) 2011; 4 Cao, Xiang, Ma, Li (bib0010) 2013; 644 Chiroux, Foster, Johnson, Shoop, Raper (bib0007) 2005; 162 Ma, Shao, Chen, Song (bib0035) 2016; 100 Zhou, Liu, Zhang, Xu, Hu, Li (bib0019) 2011; 80-1 Zhang, Li, Zhou, Xu (bib0033) 2007; 23 Murugaratnam, Utili, Petrinic (bib0021) 2015; 79 Fujii, Oida, Nakashima, Momozu, Kanamori, Sasaki (bib0013) 2002; 22 Zhang, Chen, Li (bib0004) 2009 Li, Zhou, Jia, Chen, Ren (bib0017) 2006 Fujii, Oida, Kanamori (bib0012) 2002 Hambleton, Drescher (bib0006) 2009; 46 Oida, Momozu (bib0022) 2002; 4 Orr (bib0009) 2010 Nakashima, Fujii, Oida (bib0014) 2007; 44 Zhao, Zang, Chen, Zheng (bib0026) 2018; 15 Kuroda, Teshima, Sato, Kubota (bib0002) 2004 Wei, Zou, Zhao, Li, Zhou (bib0015) 2012; 215-6 Looper, Mazur, Blake, Spence, Schwadron, Golightly (bib0037) 2013; 11 Shi, Yang, Chu, Shen, Kong (bib0027) 2017; 10 Utili, Nova (bib0028) 2008; 32 Yu, Yu, Chen, Fu (bib0018) 2011; 42 Nakashima, Oida (bib0023) 2004; 41 Zhao, Zang (bib0025) 2014; 55 Zhang, Lu, Wu, Zhou, Zhang (bib0020) 2018; 115 Wang, Sun, Bao (bib0029) 2015; 51 Taheri, Sandu, Taheri, Pinto, Gorsich (bib0032) 2015; 57 Zisk (bib0036) 1973; 178 Azimi, József, Angeles (bib0008) 2011 Jayalekshmi (10.1016/j.advengsoft.2020.102873_bib0030) 2019; 82 Zisk (10.1016/j.advengsoft.2020.102873_bib0036) 1973; 178 Li (10.1016/j.advengsoft.2020.102873_bib0017) 2006 Zhang (10.1016/j.advengsoft.2020.102873_bib0020) 2018; 115 Taheri (10.1016/j.advengsoft.2020.102873_bib0032) 2015; 57 Fujii (10.1016/j.advengsoft.2020.102873_bib0012) 2002 Yu (10.1016/j.advengsoft.2020.102873_bib0018) 2011; 42 Nakashima (10.1016/j.advengsoft.2020.102873_bib0023) 2004; 41 Zhao (10.1016/j.advengsoft.2020.102873_bib0025) 2014; 55 10.1016/j.advengsoft.2020.102873_bib0003 Zhao (10.1016/j.advengsoft.2020.102873_bib0026) 2018; 15 Wang (10.1016/j.advengsoft.2020.102873_bib0011) 2019; 12 Murugaratnam (10.1016/j.advengsoft.2020.102873_bib0021) 2015; 79 Shi (10.1016/j.advengsoft.2020.102873_bib0027) 2017; 10 Fujii (10.1016/j.advengsoft.2020.102873_bib0013) 2002; 22 Wang (10.1016/j.advengsoft.2020.102873_bib0029) 2015; 51 Hambleton (10.1016/j.advengsoft.2020.102873_bib0005) 2008; 45 Utili (10.1016/j.advengsoft.2020.102873_bib0028) 2008; 32 Zhou (10.1016/j.advengsoft.2020.102873_bib0019) 2011; 80-1 Meguid (10.1016/j.advengsoft.2020.102873_bib0024) 2013; 37 Smith (10.1016/j.advengsoft.2020.102873_bib0016) 2013; 50 Ma (10.1016/j.advengsoft.2020.102873_bib0035) 2016; 100 Zhang (10.1016/j.advengsoft.2020.102873_bib0034) 2011; 4 Wei (10.1016/j.advengsoft.2020.102873_bib0015) 2012; 215-6 Kuroda (10.1016/j.advengsoft.2020.102873_bib0002) 2004 Looper (10.1016/j.advengsoft.2020.102873_bib0037) 2013; 11 Ye (10.1016/j.advengsoft.2020.102873_bib0001) 2006; 4 Azimi (10.1016/j.advengsoft.2020.102873_bib0008) 2011 Hambleton (10.1016/j.advengsoft.2020.102873_bib0006) 2009; 46 Chen (10.1016/j.advengsoft.2020.102873_bib0031) 1981 Nakashima (10.1016/j.advengsoft.2020.102873_bib0014) 2007; 44 Orr (10.1016/j.advengsoft.2020.102873_bib0009) 2010 Oida (10.1016/j.advengsoft.2020.102873_bib0022) 2002; 4 Cao (10.1016/j.advengsoft.2020.102873_bib0010) 2013; 644 Zhang (10.1016/j.advengsoft.2020.102873_bib0033) 2007; 23 Zhang (10.1016/j.advengsoft.2020.102873_bib0004) 2009 Chiroux (10.1016/j.advengsoft.2020.102873_bib0007) 2005; 162 |
| References_xml | – volume: 57 start-page: 1 year: 2015 end-page: 22 ident: bib0032 article-title: A technical survey on Terramechanics models for tire–terrain interaction used in modeling and simulation of wheeled vehicles publication-title: J Terramech – volume: 79 start-page: 13 year: 2015 end-page: 26 ident: bib0021 article-title: A combined DEM- FEM numerical method for shot peening parameter optimisation publication-title: Adv Eng Softw – volume: 50 start-page: 277 year: 2013 end-page: 287 ident: bib0016 article-title: Modeling of wheel–soil interaction over rough terrain using the discrete element method publication-title: J Terramech – volume: 4 start-page: 1500 year: 2011 end-page: 1508 ident: bib0034 article-title: Research on the nonlinear mechanical model of cohesive soil based on distinct element method publication-title: Adv Sci Lett – volume: 51 start-page: 37 year: 2015 end-page: 44 ident: bib0029 article-title: Study on the Foot configuration parameters of lunar rover and it's influences on the driving performance publication-title: J Mech Eng – year: 2006 ident: bib0017 article-title: Stimulation of lunar soil for vehicle-terramechanics research in laboratory publication-title: 10th European conference of the international society for terrain-vehicle systems – volume: 4 start-page: 1 year: 2006 end-page: 7 ident: bib0001 article-title: Retrospect to human deep space exploration history, and its prospect in China publication-title: Eng Sci – volume: 178 start-page: 977 year: 1973 end-page: 980 ident: bib0036 article-title: Lunar topography: first radar-interferometer measurements of the alphonsus-ptolemaeus-arzachel region publication-title: Science – year: 2011 ident: bib0008 article-title: Wheel-soil interaction model for rover simulation based on plasticity theory publication-title: 2011 IEEE/RSJ international conference on intelligent robots and systems – volume: 42 start-page: 99 year: 2011 end-page: 103 ident: bib0018 article-title: Design of 3D DEM boundary modeling software publication-title: J Agr Mach – volume: 22 start-page: 129 year: 2002 end-page: 136 ident: bib0013 article-title: Analysis of lunar terrain-wheel system interaction by DEM publication-title: J Terramech – volume: 37 start-page: 130 year: 2013 end-page: 149 ident: bib0024 article-title: An efficient finite–discrete element method for quasi-static nonlinear soil–structure interaction problems publication-title: Int J Numer Anal Met – year: 2009 ident: bib0004 article-title: Research on the continuum/discontinuum multiscale analytical system of the interaction between rigid wheel and lunar soil publication-title: Proceedings of the IEEE international conference on granular computing – volume: 46 start-page: 35 year: 2009 end-page: 47 ident: bib0006 article-title: Modeling wheel-induced rutting in soils: rolling publication-title: J Terramech – volume: 115 start-page: 283 year: 2018 end-page: 296 ident: bib0020 article-title: An evaluation on SP surface property by means of combined FEM-DEM shot dynamics simulation publication-title: Adv Eng Softw – volume: 32 start-page: 1997 year: 2008 end-page: 2031 ident: bib0028 article-title: DEM analysis of bonded granular geomaterials publication-title: Int J Numer Anal Met – volume: 80-1 start-page: 580 year: 2011 end-page: 584 ident: bib0019 article-title: DEM simulation in effects of the section structure of smooth rigid wheel on dynamic mechanical behavior of lunar soil simulant publication-title: Appl Mech Mater – start-page: 8 year: 1981 end-page: 9 ident: bib0031 article-title: Soil-vehicle system mechanics – volume: 41 start-page: 127 year: 2004 end-page: 137 ident: bib0023 article-title: Algorithm and implementation of soil-tire contact analysis code based ondynamic FE-DE method publication-title: J Terramech – volume: 82 start-page: 35 year: 2019 end-page: 42 ident: bib0030 article-title: Studies on the sinkages of rigid plain wheels and lugged wheels on TRI-1 lunar soil simulant publication-title: J Terramech – volume: 45 start-page: 201 year: 2008 end-page: 211 ident: bib0005 article-title: Modeling wheel-induced rutting in soils: interaction publication-title: J Terramech – year: 2010 ident: bib0009 article-title: PhD Thesis – year: 2004 ident: bib0002 article-title: Mobility performance evaluation of planetary rover with similarity model experiment publication-title: Proceedings of the IEEE international conference on robotics and automation – volume: 162 start-page: 707 year: 2005 end-page: 722 ident: bib0007 article-title: Three-dimensional finite element analysis of soil interaction with a rigid wheel publication-title: Appl Math Comput – volume: 215-6 start-page: 964 year: 2012 end-page: 969 ident: bib0015 article-title: Study on the tractive ability of lunar rover wheel by discrete element method publication-title: Appl Mech Mater – volume: 55 start-page: 29 year: 2014 end-page: 37 ident: bib0025 article-title: Analysis of rigid tire traction performance on a sandy soil by 3D finite element–discrete element method publication-title: J Terramech – volume: 44 start-page: 153 year: 2007 end-page: 162 ident: bib0014 article-title: Parametric analysis of lugged wheel performance for a lunar 5microrover by means of DEM publication-title: J Terramech – reference: Eto T., Oda M., Kaneko Y., Maeda T.. The study of the mobile lunar explorer. Des Planet Mob Veh1993:203-14. – volume: 644 start-page: 366 year: 2013 end-page: 369 ident: bib0010 article-title: Application analysis of vibrating wheel-soil model based on ABAQUS publication-title: Adv Mater Res – volume: 10 start-page: 1 year: 2017 end-page: 15 ident: bib0027 article-title: Study of anti-sliding stability of a dam foundation based on the fracture flow method with 3D discrete element code publication-title: Energies – volume: 12 start-page: 1801 year: 2019 ident: bib0011 article-title: A mixing behavior study of biomass particles and sands in fluidized bed based on CFD-DEM simulation publication-title: Energies – volume: 4 start-page: 1 year: 2002 end-page: 7 ident: bib0022 article-title: Simulation of soil behavior and reaction by machine part by means of DEM publication-title: Agric Eng Int – volume: 23 start-page: 13 year: 2007 end-page: 19 ident: bib0033 article-title: Simulation of dynamic behavior of soil ahead of the bulldozing plates with different surface configurations by discrete element method publication-title: J Agr Eng – volume: 100 start-page: 266 year: 2016 end-page: 276 ident: bib0035 article-title: Trajectory optimization for lunar soft landing with a Hamiltonian-based adaptive mesh refinement strategy publication-title: Adv Eng Softw – volume: 11 start-page: 142 year: 2013 end-page: 152 ident: bib0037 article-title: The radiation environment near the lunar surface: CRaTER observations and Geant4 simulations publication-title: Space Weather – start-page: 1 year: 2002 end-page: 10 ident: bib0012 article-title: Analysis of interaction between lunar terrain and treaded wheel by distinct element method publication-title: Proceedings of the 14th international conference of the international society for terrain-vehicle systems – volume: 15 start-page: 963 year: 2018 end-page: 978 ident: bib0026 article-title: Improving the 3D finite-discrete element method and its application in the simulation of Wheel–Sand interactions publication-title: Int J Comp Meth – volume: 12 start-page: 1801 year: 2019 ident: 10.1016/j.advengsoft.2020.102873_bib0011 article-title: A mixing behavior study of biomass particles and sands in fluidized bed based on CFD-DEM simulation publication-title: Energies doi: 10.3390/en12091801 – volume: 115 start-page: 283 year: 2018 ident: 10.1016/j.advengsoft.2020.102873_bib0020 article-title: An evaluation on SP surface property by means of combined FEM-DEM shot dynamics simulation publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.10.001 – volume: 46 start-page: 35 year: 2009 ident: 10.1016/j.advengsoft.2020.102873_bib0006 article-title: Modeling wheel-induced rutting in soils: rolling publication-title: J Terramech doi: 10.1016/j.jterra.2009.02.003 – volume: 162 start-page: 707 year: 2005 ident: 10.1016/j.advengsoft.2020.102873_bib0007 article-title: Three-dimensional finite element analysis of soil interaction with a rigid wheel publication-title: Appl Math Comput – volume: 22 start-page: 129 year: 2002 ident: 10.1016/j.advengsoft.2020.102873_bib0013 article-title: Analysis of lunar terrain-wheel system interaction by DEM publication-title: J Terramech – volume: 55 start-page: 29 year: 2014 ident: 10.1016/j.advengsoft.2020.102873_bib0025 article-title: Analysis of rigid tire traction performance on a sandy soil by 3D finite element–discrete element method publication-title: J Terramech doi: 10.1016/j.jterra.2014.05.005 – volume: 100 start-page: 266 year: 2016 ident: 10.1016/j.advengsoft.2020.102873_bib0035 article-title: Trajectory optimization for lunar soft landing with a Hamiltonian-based adaptive mesh refinement strategy publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.08.002 – ident: 10.1016/j.advengsoft.2020.102873_bib0003 – volume: 178 start-page: 977 year: 1973 ident: 10.1016/j.advengsoft.2020.102873_bib0036 article-title: Lunar topography: first radar-interferometer measurements of the alphonsus-ptolemaeus-arzachel region publication-title: Science doi: 10.1126/science.178.4064.977 – volume: 23 start-page: 13 year: 2007 ident: 10.1016/j.advengsoft.2020.102873_bib0033 article-title: Simulation of dynamic behavior of soil ahead of the bulldozing plates with different surface configurations by discrete element method publication-title: J Agr Eng – volume: 4 start-page: 1 year: 2006 ident: 10.1016/j.advengsoft.2020.102873_bib0001 article-title: Retrospect to human deep space exploration history, and its prospect in China publication-title: Eng Sci – volume: 11 start-page: 142 year: 2013 ident: 10.1016/j.advengsoft.2020.102873_bib0037 article-title: The radiation environment near the lunar surface: CRaTER observations and Geant4 simulations publication-title: Space Weather doi: 10.1002/swe.20034 – year: 2011 ident: 10.1016/j.advengsoft.2020.102873_bib0008 article-title: Wheel-soil interaction model for rover simulation based on plasticity theory – start-page: 8 year: 1981 ident: 10.1016/j.advengsoft.2020.102873_bib0031 – volume: 4 start-page: 1500 year: 2011 ident: 10.1016/j.advengsoft.2020.102873_bib0034 article-title: Research on the nonlinear mechanical model of cohesive soil based on distinct element method publication-title: Adv Sci Lett doi: 10.1166/asl.2011.1384 – year: 2009 ident: 10.1016/j.advengsoft.2020.102873_bib0004 article-title: Research on the continuum/discontinuum multiscale analytical system of the interaction between rigid wheel and lunar soil – volume: 41 start-page: 127 year: 2004 ident: 10.1016/j.advengsoft.2020.102873_bib0023 article-title: Algorithm and implementation of soil-tire contact analysis code based ondynamic FE-DE method publication-title: J Terramech doi: 10.1016/j.jterra.2004.02.002 – volume: 37 start-page: 130 year: 2013 ident: 10.1016/j.advengsoft.2020.102873_bib0024 article-title: An efficient finite–discrete element method for quasi-static nonlinear soil–structure interaction problems publication-title: Int J Numer Anal Met doi: 10.1002/nag.1089 – volume: 57 start-page: 1 year: 2015 ident: 10.1016/j.advengsoft.2020.102873_bib0032 article-title: A technical survey on Terramechanics models for tire–terrain interaction used in modeling and simulation of wheeled vehicles publication-title: J Terramech doi: 10.1016/j.jterra.2014.08.003 – start-page: 1 year: 2002 ident: 10.1016/j.advengsoft.2020.102873_bib0012 article-title: Analysis of interaction between lunar terrain and treaded wheel by distinct element method – year: 2004 ident: 10.1016/j.advengsoft.2020.102873_bib0002 article-title: Mobility performance evaluation of planetary rover with similarity model experiment – year: 2006 ident: 10.1016/j.advengsoft.2020.102873_bib0017 article-title: Stimulation of lunar soil for vehicle-terramechanics research in laboratory – volume: 42 start-page: 99 year: 2011 ident: 10.1016/j.advengsoft.2020.102873_bib0018 article-title: Design of 3D DEM boundary modeling software publication-title: J Agr Mach – volume: 80-1 start-page: 580 year: 2011 ident: 10.1016/j.advengsoft.2020.102873_bib0019 article-title: DEM simulation in effects of the section structure of smooth rigid wheel on dynamic mechanical behavior of lunar soil simulant publication-title: Appl Mech Mater doi: 10.4028/www.scientific.net/AMM.80-81.580 – volume: 15 start-page: 963 year: 2018 ident: 10.1016/j.advengsoft.2020.102873_bib0026 article-title: Improving the 3D finite-discrete element method and its application in the simulation of Wheel–Sand interactions publication-title: Int J Comp Meth – volume: 51 start-page: 37 year: 2015 ident: 10.1016/j.advengsoft.2020.102873_bib0029 article-title: Study on the Foot configuration parameters of lunar rover and it's influences on the driving performance publication-title: J Mech Eng doi: 10.3901/JME.2015.03.037 – volume: 82 start-page: 35 year: 2019 ident: 10.1016/j.advengsoft.2020.102873_bib0030 article-title: Studies on the sinkages of rigid plain wheels and lugged wheels on TRI-1 lunar soil simulant publication-title: J Terramech doi: 10.1016/j.jterra.2018.12.002 – volume: 50 start-page: 277 year: 2013 ident: 10.1016/j.advengsoft.2020.102873_bib0016 article-title: Modeling of wheel–soil interaction over rough terrain using the discrete element method publication-title: J Terramech doi: 10.1016/j.jterra.2013.09.002 – volume: 79 start-page: 13 year: 2015 ident: 10.1016/j.advengsoft.2020.102873_bib0021 article-title: A combined DEM- FEM numerical method for shot peening parameter optimisation publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2014.09.001 – volume: 10 start-page: 1 year: 2017 ident: 10.1016/j.advengsoft.2020.102873_bib0027 article-title: Study of anti-sliding stability of a dam foundation based on the fracture flow method with 3D discrete element code publication-title: Energies doi: 10.3390/en10101544 – volume: 4 start-page: 1 year: 2002 ident: 10.1016/j.advengsoft.2020.102873_bib0022 article-title: Simulation of soil behavior and reaction by machine part by means of DEM publication-title: Agric Eng Int – volume: 32 start-page: 1997 year: 2008 ident: 10.1016/j.advengsoft.2020.102873_bib0028 article-title: DEM analysis of bonded granular geomaterials publication-title: Int J Numer Anal Met doi: 10.1002/nag.728 – volume: 45 start-page: 201 year: 2008 ident: 10.1016/j.advengsoft.2020.102873_bib0005 article-title: Modeling wheel-induced rutting in soils: interaction publication-title: J Terramech doi: 10.1016/j.jterra.2008.11.001 – volume: 644 start-page: 366 year: 2013 ident: 10.1016/j.advengsoft.2020.102873_bib0010 article-title: Application analysis of vibrating wheel-soil model based on ABAQUS publication-title: Adv Mater Res doi: 10.4028/www.scientific.net/AMR.644.366 – volume: 44 start-page: 153 year: 2007 ident: 10.1016/j.advengsoft.2020.102873_bib0014 article-title: Parametric analysis of lugged wheel performance for a lunar 5microrover by means of DEM publication-title: J Terramech doi: 10.1016/j.jterra.2005.11.001 – year: 2010 ident: 10.1016/j.advengsoft.2020.102873_bib0009 – volume: 215-6 start-page: 964 year: 2012 ident: 10.1016/j.advengsoft.2020.102873_bib0015 article-title: Study on the tractive ability of lunar rover wheel by discrete element method publication-title: Appl Mech Mater doi: 10.4028/www.scientific.net/AMM.215-216.964 |
| SSID | ssj0014021 |
| Score | 2.3750389 |
| Snippet | •Based on the theory of terramechanics, the 3D dynamic simulation system was established by combining CATIA and PFC3D.•The rationality of the simulation system... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 102873 |
| SubjectTerms | 3D dynamic simulation system Irregular structure wheel Lunar soil simulant PFC3D Soil-bin test |
| Title | Three-dimensional Discrete Element Method simulation system of the interaction between irregular structure wheel and lunar soil simulant |
| URI | https://dx.doi.org/10.1016/j.advengsoft.2020.102873 |
| Volume | 148 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0965-9978 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0014021 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0965-9978 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0014021 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0965-9978 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0014021 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0965-9978 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0014021 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0965-9978 databaseCode: AKRWK dateStart: 19920101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014021 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG6IXvTgAzXig8zB60ph3_FEEIIauAgJt0237eoaXMgC8ebZn-1020VMTDTxuN3OZtNpZ74m33xDyJXK0Ylk0vIV8QlPIrUYZnmLY-51fDsQspAUGgy9_ti5n7iTCumUtTCKVmliv47pRbQ2Iw2zmo15mjYelW5JGCq9N7yS00BVlOPnVReD6_c1zQPvD0XtlZpsqdmGzaM5XkxgRHlaYMDDm2Kr0DEIfPvnFLWRdnoHZM_gRWjrXzokFZlVyb7BjmBO5gKHyvYM5ViV7G5oDR6RjxF6TVpCqflrJQ64TTFmIGiGruaQw6BoJw2L9NU09QIt9AyzBBAogtKWyHUlBBiCF6R5XrSzz0FL0a5yCW_PUk6BZQKmq0y9maVT89VseUzGve6o07dMGwaL44FfWrEIHR6zJgtd4QnHtXnL97nwaCB8KhHCJS1HOrZwaOyFPOSuT4XDBQIN5smwye0TspXNMnlKIAkkpwJRg2BK-g-xmRtTiRskEa4nGa0Rv1z5iBuNctUqYxqVZLSX6MtnkfJZpH1WI8215VzrdPzB5qZ0bvRtz0WYTn61PvuX9TnZUU-aFnhBttBD8hLhzTKuF_u3Trbbdw_94ScQzf5_ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtswEB2kySHtIYvboNnnkKtq2qI29BRkgbPYl9iAbwJFUokCVzZkB73lnM_uUKSyAAEaIFeSIwgccuYN8PgG4Mjk6FwL7UWG-EQ3kXmCsrwnKffyyI-VriWF-oOwN-KX42C8BCfNWxhDq3Sx38b0Olq7kbbbzfasKNo3RrckSYzeG5XkLI6-wAoPupGpwH49PvM8qICoH1-Z1Z5Z7ug8luQlFIWU2zlFPCoVu7WQQRz57-eoV3nnfAPWHGDEY_tPm7CkyxasO_CI7mrOaajpz9CMteDbK7HB7_A0JLdpTxk5fyvFgacFBQ1CzXhmSeTYr_tJ47z447p6oVV6xmmOhBTRiEtU9ikEOoYXFlVV97Ov0GrRPlQa_95pPUFRKpw8lGZmWkzcV8vFDxidnw1Pep7rw-BJuvELL1MJl5noiCRQoeKBL2mXpQpZrCKmCcPlXa65rzjLwkQmMoiY4lIR0hChTjrS34Llclrqn4B5rCVTBBuUMNp_BM6CjGk6IbkKQi3YNkTNzqfSiZSbXhmTtGGj3acvPkuNz1Lrs23oPFvOrFDHB2x-N85N3xy6lPLJf613PmV9CKu9Yf86vb4YXO3CVzNjOYJ7sEze0vuEdRbZQX2W_wHlIwAj |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+Discrete+Element+Method+simulation+system+of+the+interaction+between+irregular+structure+wheel+and+lunar+soil+simulant&rft.jtitle=Advances+in+engineering+software+%281992%29&rft.au=Zhang%2C+Rui&rft.au=Pang%2C+Hao&rft.au=Dong%2C+Wenchao&rft.au=Li%2C+Tao&rft.date=2020-10-01&rft.pub=Elsevier+Ltd&rft.issn=0965-9978&rft.volume=148&rft_id=info:doi/10.1016%2Fj.advengsoft.2020.102873&rft.externalDocID=S0965997820304087 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-9978&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-9978&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-9978&client=summon |