Radial Basis Function (RBF) and Multilayer Perceptron (MLP) Comparative Analysis on Building Renovation Cost Estimation: The Case of Greece
Renovation of buildings has become a major area of development for the construction industry. In the building construction sector, generating a precise and trustworthy cost estimate before building begins is the greatest challenge. Emphasizing the value of using ANN models to forecast the total cost...
Saved in:
| Published in | Algorithms Vol. 17; no. 9; p. 390 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.09.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1999-4893 1999-4893 |
| DOI | 10.3390/a17090390 |
Cover
| Abstract | Renovation of buildings has become a major area of development for the construction industry. In the building construction sector, generating a precise and trustworthy cost estimate before building begins is the greatest challenge. Emphasizing the value of using ANN models to forecast the total cost of a building renovation project is the ultimate objective. As a result, building firms may be able to avoid financial losses as long as there is as little discrepancy between projected and actual costs for remodeling works in progress. To address the gap in the research, Greek contractors specializing in building renovations provided a sizable dataset of real project cost data. To build cost prediction ANNs, the collected data had to be organized, assessed, and appropriately encoded. The network was developed, trained, and tested using IBM SPSS Statistics software 28.0.0.0. The dependent variable is the final cost. The independent variables are initial cost, estimated completion time, actual completion time, delay time, initial and final demolition-drainage costs, cost of expenses, initial and final plumbing costs, initial and final heating costs, initial and final electrical costs, initial and final masonry costs, initial and final construction costs of plasterboard construction, initial and final cost of bathrooms, initial and final cost of flooring, initial and final cost of frames, initial and final cost of doors, initial and final cost of paint, and initial and final cost of kitchen construction. The first procedure that was employed was the radial basis function (RBF). The efficiency of the RBFNN model was evaluated and analyzed during training and testing, with up to 6% sum of squares error and nearly 0% relative error in the training sample, which accounted for roughly 70% of the total sample. The second procedure implemented was the method called the multi-layer perceptron (MLP). The efficiency of the MLPNN model was assessed and examined during training and testing; the training sample, which made up around 70% of the overall sample, had a relative error of 0–7% and a sum of squares error ranging from 1% to 5%, confirming specifically the efficacy of RBFNN in calculating the overall cost of renovations. |
|---|---|
| AbstractList | Renovation of buildings has become a major area of development for the construction industry. In the building construction sector, generating a precise and trustworthy cost estimate before building begins is the greatest challenge. Emphasizing the value of using ANN models to forecast the total cost of a building renovation project is the ultimate objective. As a result, building firms may be able to avoid financial losses as long as there is as little discrepancy between projected and actual costs for remodeling works in progress. To address the gap in the research, Greek contractors specializing in building renovations provided a sizable dataset of real project cost data. To build cost prediction ANNs, the collected data had to be organized, assessed, and appropriately encoded. The network was developed, trained, and tested using IBM SPSS Statistics software 28.0.0.0. The dependent variable is the final cost. The independent variables are initial cost, estimated completion time, actual completion time, delay time, initial and final demolition-drainage costs, cost of expenses, initial and final plumbing costs, initial and final heating costs, initial and final electrical costs, initial and final masonry costs, initial and final construction costs of plasterboard construction, initial and final cost of bathrooms, initial and final cost of flooring, initial and final cost of frames, initial and final cost of doors, initial and final cost of paint, and initial and final cost of kitchen construction. The first procedure that was employed was the radial basis function (RBF). The efficiency of the RBFNN model was evaluated and analyzed during training and testing, with up to 6% sum of squares error and nearly 0% relative error in the training sample, which accounted for roughly 70% of the total sample. The second procedure implemented was the method called the multi-layer perceptron (MLP). The efficiency of the MLPNN model was assessed and examined during training and testing; the training sample, which made up around 70% of the overall sample, had a relative error of 0–7% and a sum of squares error ranging from 1% to 5%, confirming specifically the efficacy of RBFNN in calculating the overall cost of renovations. |
| Author | Papadimitriou, Vasso E. Aretoulis, Georgios N. Papathanasiou, Jason |
| Author_xml | – sequence: 1 givenname: Vasso E. surname: Papadimitriou fullname: Papadimitriou, Vasso E. – sequence: 2 givenname: Georgios N. orcidid: 0000-0002-9248-3454 surname: Aretoulis fullname: Aretoulis, Georgios N. – sequence: 3 givenname: Jason surname: Papathanasiou fullname: Papathanasiou, Jason |
| BookMark | eNp9kc9qGzEQxpeSQpO0h76BoJc64FZaaXel3uIlTgIODSY9i7H-pDKKtJW0KX6GvnTWdgk99fR9M_PxY5g5q05CDKaqPhL8hVKBvwLpsMCTe1OdEiHEnHFBT_7x76qznLcYt41oyWn1Zw3agUcLyC6j5RhUcTGgz-vFcoYgaHQ3-uI87ExC9yYpM5S0n9-t7meoj08DJCju2aDLAH63Z0zTxei8duERrU2Iz3Ag9jEXdJWLezrU39DDT4N6yAZFi66TMcq8r95a8Nl8-Kvn1Y_l1UN_M199v77tL1dzRQkv8w1vue5ANy1wgbHaMKtq0Jo39abFhJlG1JZiokRXa5i05oxw2wkAghlp6Xl1e-TqCFs5pGmltJMRnDw0YnqUkIpT3kjNWddwqy2vMdNmuh81lNYtwY2yHYeJdXFkjWGA3W_w_hVIsNy_RL6-ZAp_OoaHFH-NJhe5jWOaDpclJQTXghG2T82OKZVizsnY_xBfAOpel8g |
| Cites_doi | 10.1080/01446190210151050 10.25103/jestr.145.24 10.1016/j.heliyon.2019.e01625 10.1016/j.acme.2018.01.014 10.1155/2018/7952434 10.1061/9780784479070.038 10.1080/014461900370799 10.1016/j.ijproman.2011.09.002 10.1016/j.proeng.2013.04.041 10.19026/rjaset.12.2747 10.3390/buildings14041072 10.1016/j.ijproman.2004.04.002 10.3846/13923730.2014.897988 10.1016/S0925-2312(97)00094-5 10.1016/j.phpro.2012.02.262 10.1016/S0957-4174(97)00046-8 10.3923/jai.2011.63.75 10.1081/JA-120004171 10.1061/(ASCE)CO.1943-7862.0001678 10.1016/j.buildenv.2004.03.009 10.1080/09613219508727476 10.1016/S0169-2070(97)00044-7 10.1061/(ASCE)CO.1943-7862.0001183 10.1016/j.autcon.2008.07.001 10.1080/01446193.2013.802363 10.3390/su16114322 10.1007/s00521-008-0214-2 10.1016/j.autcon.2015.12.021 10.1111/0885-9507.00219 10.3390/buildings13020382 10.1061/(ASCE)0733-9364(2003)129:4(405) 10.1061/(ASCE)0733-9364(1998)124:1(18) 10.1108/eb021106 10.1007/s42452-020-03497-1 |
| ContentType | Journal Article |
| Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U ADTOC UNPAY DOA |
| DOI | 10.3390/a17090390 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Proquest Central ProQuest Technology Collection (LUT) ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ DIrectory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1999-4893 |
| ExternalDocumentID | oai_doaj_org_article_d84758fdf8204de8933e3326105cf78a 10.3390/a17090390 10_3390_a17090390 |
| GeographicLocations | Greece |
| GeographicLocations_xml | – name: Greece |
| GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS TR2 TUS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI Q9U ADTOC C1A IPNFZ PUEGO RIG UNPAY |
| ID | FETCH-LOGICAL-c318t-b868d7ad56a8900cb4fc2add852b6014e592f301c972da01c28418f79aa104163 |
| IEDL.DBID | BENPR |
| ISSN | 1999-4893 |
| IngestDate | Fri Oct 03 12:44:29 EDT 2025 Sun Sep 07 11:15:23 EDT 2025 Fri Jul 25 12:17:03 EDT 2025 Thu Oct 16 04:37:46 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c318t-b868d7ad56a8900cb4fc2add852b6014e592f301c972da01c28418f79aa104163 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9248-3454 |
| OpenAccessLink | https://www.proquest.com/docview/3110294140?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 3110294140 |
| PQPubID | 2032439 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d84758fdf8204de8933e3326105cf78a unpaywall_primary_10_3390_a17090390 proquest_journals_3110294140 crossref_primary_10_3390_a17090390 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-01 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Algorithms |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Bayram (ref_55) 2016; 22 Borghese (ref_46) 1998; 19 Adeli (ref_11) 2001; 16 Attalla (ref_45) 2003; 129 Shehatto (ref_25) 2014; 4 ref_58 ref_56 Wang (ref_23) 2012; 30 ref_10 ref_54 Benedict (ref_53) 2014; 2 ref_16 Cheng (ref_21) 2009; 18 Emsley (ref_18) 2002; 20 Buscema (ref_12) 2002; Volume 37 Akintoye (ref_14) 2000; 18 Adeli (ref_43) 1998; 124 ref_60 Anagnostopoulos (ref_35) 2021; 14 Alqahtani (ref_37) 2014; 13 Elmousalami (ref_5) 2019; 5 ref_24 Naik (ref_4) 2015; 1 Ambrule (ref_28) 2017; 5 Sitthikankun (ref_32) 2021; 12 Zhang (ref_9) 1998; 14 ref_27 Aretoulis (ref_33) 2006; 6 Juszczyk (ref_39) 2018; 18 Odeyinka (ref_50) 2013; 31 Gajzler (ref_13) 2013; Volume 57 Mirahadi (ref_2) 2016; 65 Chua (ref_17) 1997; 13 Amusan (ref_49) 2013; 13 Elfaki (ref_26) 2014; 2014 Chandanshive (ref_30) 2019; 3 Kulkarni (ref_3) 2017; 1 (ref_19) 2004; 22 Arafa (ref_22) 2011; 4 ref_34 Moahamad (ref_51) 2014; 2 Ahmed (ref_7) 2022; 20 Bhokha (ref_59) 1999; 6 Bala (ref_52) 2014; 12 Ebadati (ref_15) 2020; 2 Kim (ref_20) 2004; 39 Antoniou (ref_36) 2016; 12 Yadav (ref_8) 2016; 5 Minli (ref_1) 2012; 24 Li (ref_41) 1995; 23 ref_47 Yu (ref_57) 2009; 18 Zaki (ref_42) 2021; 9 ref_44 Elmousalami (ref_6) 2020; 146 ref_40 Abd (ref_29) 2019; 12 Juszczyk (ref_38) 2018; 2018 ref_48 Hakami (ref_31) 2019; 7 |
| References_xml | – volume: 20 start-page: 465 year: 2002 ident: ref_18 article-title: Data Modelling and the Application of a Neural Network Approach to the Prediction of Total Construction Costs publication-title: Constr. Manag. Econ. doi: 10.1080/01446190210151050 – volume: 14 start-page: 210 year: 2021 ident: ref_35 article-title: Predicting Roundabout Lane Capacity Using Artificial Neural Networks publication-title: J. Eng. Sci. Technol. Rev. doi: 10.25103/jestr.145.24 – volume: 2014 start-page: 107926 year: 2014 ident: ref_26 article-title: Using Intelligent Techniques in Construction Project Cost Estimation: 10-Year Survey publication-title: Adv. Civ. Eng. – volume: 5 start-page: e01625 year: 2019 ident: ref_5 article-title: Intelligent Methodology for Project Conceptual Cost Prediction publication-title: Heliyon doi: 10.1016/j.heliyon.2019.e01625 – volume: 2 start-page: 181 year: 2014 ident: ref_53 article-title: Project Cost Estimation: Issues and the Possible Solutions publication-title: Int. J. Eng. Tech. Res. (IJETR) – volume: 5 start-page: 430 year: 2016 ident: ref_8 article-title: Cost Estimation Model (Cem) for Residential Building Using Artificial Neural Network publication-title: Int. J. Eng. Res. Technol. (IJERT) – volume: 18 start-page: 973 year: 2018 ident: ref_39 article-title: Prediction of Site Overhead Costs with the Use of Artificial Neural Network Based Model publication-title: Arch. Civ. Mech. Eng. doi: 10.1016/j.acme.2018.01.014 – volume: 20 start-page: 3365 year: 2022 ident: ref_7 article-title: Role of Artificial Neural Networks in AI publication-title: Neuro Quantology – volume: 2018 start-page: 7952434 year: 2018 ident: ref_38 article-title: ANN Based Approach for Estimation of Construction Costs of Sports Fields publication-title: Complexity doi: 10.1155/2018/7952434 – ident: ref_54 doi: 10.1061/9780784479070.038 – volume: 18 start-page: 161 year: 2000 ident: ref_14 article-title: A Survey of Current Cost Estimating Practices in the UK publication-title: Constr. Manag. Econ. doi: 10.1080/014461900370799 – volume: 30 start-page: 470 year: 2012 ident: ref_23 article-title: Predicting Construction Cost and Schedule Success Using Artificial Neural Networks Ensemble and Support Vector Machines Classification Models publication-title: Int. J. Proj. Manag. doi: 10.1016/j.ijproman.2011.09.002 – volume: Volume 57 start-page: 302 year: 2013 ident: ref_13 article-title: The Idea of Knowledge Supplementation and Explanation Using Neural Networks to Support Decisions in Construction Engineering publication-title: Procedia Engineering doi: 10.1016/j.proeng.2013.04.041 – ident: ref_58 – volume: 12 start-page: 1 year: 2021 ident: ref_32 article-title: Construction Cost Estimation for Government Building Using Artificial Neural Network Technique publication-title: Int. Trans. J. Eng. Manag. Appl. Sci. Technol. – volume: 12 start-page: 716 year: 2016 ident: ref_36 article-title: Analytical Formulation for Early Cost Estimation and Material Consumption of Road Overpass Bridges publication-title: Res. J. Appl. Sci. Eng. Technol. doi: 10.19026/rjaset.12.2747 – ident: ref_44 doi: 10.3390/buildings14041072 – volume: 12 start-page: 518 year: 2014 ident: ref_52 article-title: A Computer-Based Cost Prediction Model for Institutional Building Projects in Nigeria an Artificial Neural Network Approach publication-title: J. Eng. Des. Technol. – ident: ref_27 – volume: 22 start-page: 595 year: 2004 ident: ref_19 article-title: A Neural Network Approach for Early Cost Estimation of Structural Systems of Buildings publication-title: Int. J. Proj. Manag. doi: 10.1016/j.ijproman.2004.04.002 – ident: ref_48 – ident: ref_10 – volume: 22 start-page: 480 year: 2016 ident: ref_55 article-title: Comparison of Multi Layer Perceptron (MLP) and Radial Basis Function (RBF) for Construction Cost Estimation: The Case of Turkey publication-title: J. Civ. Eng. Manag. doi: 10.3846/13923730.2014.897988 – volume: 19 start-page: 259 year: 1998 ident: ref_46 article-title: Hierarchical RBF Networks and Local Parameters Estimate publication-title: Neurocomputing doi: 10.1016/S0925-2312(97)00094-5 – volume: 12 start-page: 1 year: 2019 ident: ref_29 article-title: Predicting the Final Cost of Iraqi Construction Project Using Artificial Neural Network (ANN) publication-title: Indian J. Sci. Technol. – volume: 6 start-page: 323 year: 2006 ident: ref_33 article-title: A Prototype System for the Prediction of Final Cost in Construction Projects publication-title: Oper. Res. – volume: 24 start-page: 1781 year: 2012 ident: ref_1 article-title: Research on the Application of Artificial Neural Networks in Tender Offer for Construction Projects publication-title: Phys. Procedia doi: 10.1016/j.phpro.2012.02.262 – volume: 13 start-page: 317 year: 1997 ident: ref_17 article-title: Neural Networks for Construction Project Success publication-title: Expert. Syst. Appl. doi: 10.1016/S0957-4174(97)00046-8 – volume: 13 start-page: 51 year: 2014 ident: ref_37 article-title: Artificial Neural Networks Incorporating Cost Significant Items towards Enhancing Estimation for (Life-Cycle) Costing of Construction Projects publication-title: Australlian J. Constr. Econ. Build. – volume: 4 start-page: 63 year: 2011 ident: ref_22 article-title: Early Stage Cost Estimation of Buildings Construction Projects Using Artificial Neural Networks Structural Behavior of Reinforced Concrete Pile Cap Using Non-Linear Finite Element Analysis View Project publication-title: J. Artif. Intell. doi: 10.3923/jai.2011.63.75 – volume: Volume 37 start-page: 1093 year: 2002 ident: ref_12 article-title: A Brief Overview and Introduction to Artificial Neural Networks publication-title: Substance Use and Misuse doi: 10.1081/JA-120004171 – volume: 5 start-page: 63 year: 2017 ident: ref_28 article-title: Use of Arificial Neural Network for Pre Design Cost Estimation of Building Projects publication-title: Int. J. Recent. Innov. Trends Comput. Commun. – volume: 4 start-page: 9 year: 2014 ident: ref_25 article-title: A Neural Network Model for Building Construction Projects Cost Estimating publication-title: J. Constr. Eng. Proj. Manag. – volume: 146 start-page: 8 year: 2020 ident: ref_6 article-title: Artificial Intelligence and Parametric Construction Cost Estimate Modeling: State-of-the-Art Review publication-title: J. Constr. Eng. Manag. doi: 10.1061/(ASCE)CO.1943-7862.0001678 – volume: 39 start-page: 1333 year: 2004 ident: ref_20 article-title: Neural Network Model Incorporating a Genetic Algorithm in Estimating Construction Costs publication-title: Build. Environ. doi: 10.1016/j.buildenv.2004.03.009 – ident: ref_24 – ident: ref_34 – volume: 23 start-page: 279 year: 1995 ident: ref_41 article-title: Neural Networks for Construction Cost Estimation publication-title: Build. Res. Inf. doi: 10.1080/09613219508727476 – volume: 9 start-page: 2320 year: 2021 ident: ref_42 article-title: Prediction of construction cost by neural network publication-title: Int. J. Creat. Res. Thoughts (IJCRT) – volume: 14 start-page: 35 year: 1998 ident: ref_9 article-title: Forecasting with Artificial Neural Networks: The State of the Art publication-title: Int. J. Forecast. doi: 10.1016/S0169-2070(97)00044-7 – ident: ref_47 – volume: 7 start-page: 110 year: 2019 ident: ref_31 article-title: Preliminary Construction Cost Estimate in Yemen by Artificial Neural Network publication-title: Balt. J. Real Estate Econ. Constr. Manag. – ident: ref_56 doi: 10.1061/(ASCE)CO.1943-7862.0001183 – volume: 1 start-page: 70 year: 2017 ident: ref_3 article-title: Artificial Neural Networks for Construction Management: A Review publication-title: J. Soft Comput. Civil Eng. – volume: 18 start-page: 164 year: 2009 ident: ref_21 article-title: Web-Based Conceptual Cost Estimates for Construction Projects Using Evolutionary Fuzzy Neural Inference Model publication-title: Autom. Constr. doi: 10.1016/j.autcon.2008.07.001 – volume: 31 start-page: 423 year: 2013 ident: ref_50 article-title: Artificial Neural Network Cost Flow Risk Assessment Model publication-title: Constr. Manag. Econ. doi: 10.1080/01446193.2013.802363 – ident: ref_40 – ident: ref_60 doi: 10.3390/su16114322 – volume: 2 start-page: 129 year: 2014 ident: ref_51 article-title: Parametric Cost Estimating of Sterile Building Using Artificial Neural Network & Genetic Algorithm Model publication-title: Int. J. Eng. Tech. Res. (IJETR) – volume: 18 start-page: 769 year: 2009 ident: ref_57 article-title: A Hybrid MPSO-BP Structure Adaptive Algorithm for RBFNs publication-title: Neural Comput. Appl. doi: 10.1007/s00521-008-0214-2 – volume: 65 start-page: 102 year: 2016 ident: ref_2 article-title: Simulation-Based Construction Productivity Forecast Using Neural-Network-Driven Fuzzy Reasoning publication-title: Autom. Constr. doi: 10.1016/j.autcon.2015.12.021 – volume: 13 start-page: 33 year: 2013 ident: ref_49 article-title: Expert System-Based Predictive Cost Model for Building Works: Neural Network Approach publication-title: Int. J. Basic Appl. Sci. IJBAS-IJENS – volume: 16 start-page: 126 year: 2001 ident: ref_11 article-title: Neural Networks in Civil Engineering: 1989–2000 publication-title: Comput.-Aided Civil Infrastruct. Eng. doi: 10.1111/0885-9507.00219 – ident: ref_16 doi: 10.3390/buildings13020382 – volume: 1 start-page: 299 year: 2015 ident: ref_4 article-title: Project Cost and Duration Optimization Using Soft Computing Techniques publication-title: Artic. J. Adv. Manag. Sci. – volume: 3 start-page: 91 year: 2019 ident: ref_30 article-title: Estimation of Building Construction Cost Using Artificial Neural Networks publication-title: J. Soft Comput. Civil Eng. – volume: 129 start-page: 405 year: 2003 ident: ref_45 article-title: Predicting Cost Deviation in Reconstruction Projects: Artificial Neural Networks versus Regression publication-title: J. Constr. Eng. Manag. doi: 10.1061/(ASCE)0733-9364(2003)129:4(405) – volume: 124 start-page: 18 year: 1998 ident: ref_43 article-title: Regularization neural network for construction cost estimation publication-title: J. Constr. Eng. Manag. doi: 10.1061/(ASCE)0733-9364(1998)124:1(18) – volume: 6 start-page: 133 year: 1999 ident: ref_59 article-title: Application of Artificial Neural Network to Forecast Construction Duration of Buildings at the Predesign Stage publication-title: Eng. Constr. Archit. Manag. doi: 10.1108/eb021106 – volume: 2 start-page: 1703 year: 2020 ident: ref_15 article-title: Cost Estimation and Prediction in Construction Projects: A Systematic Review on Machine Learning Techniques publication-title: SN Appl. Sci. doi: 10.1007/s42452-020-03497-1 |
| SSID | ssj0065961 |
| Score | 2.3303938 |
| Snippet | Renovation of buildings has become a major area of development for the construction industry. In the building construction sector, generating a precise and... |
| SourceID | doaj unpaywall proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 390 |
| SubjectTerms | Artificial intelligence artificial neural network Bathrooms building cost estimation models buildings renovation Civil engineering Completion time Construction costs Construction industry Cost analysis Cost estimates cost estimation Data collection Delay time Dependent variables Drywall Error analysis Flooring Independent variables Industrial development Literature reviews Masonry Masonry construction multilayer perceptron algorithm Multilayer perceptrons Multilayers Neural networks Radial basis function radial basis function algorithm Renovation Renovation & restoration Sums |
| SummonAdditionalLinks | – databaseName: DOAJ DIrectory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3iRS9-i6urDOpBD2W3bdIm3tzFZRFXlkVhbyVpEhCWKvuB-Bv8006adl0P4sVToc0hZGbevCmTN4RctrWIOMttEGojAqoUDbgRaWBiqxE0mdXS3R0ePCb9Z3o_ZuOVUV-uJ8zLA_uDa2mET8attpiqqDZuOryJkXMgL8htyktq1OaiLqY8BidMJKHXEYqxqG_JMHX_IxzwrmSfUqT_B7PcWBRv8uNdTiYrSaa3Q7Yqdgi3fle7ZM0Ue2S7nrwAVSDuk8-RkxSYQEfOXmbQw9zkzheuRp3eNchCQ3mvdiKRT8PQt65M3ffBw_Aaut-C31BrkgB-7VQTsmFk6kmpuHY2hzuEAX_D8QbQraCLmQ9eLbiendwckOfe3VO3H1RjFYIcA3geKJ5wnUrNEslFu50ravMIYY6zSGF5Rg0TkcW4z0UaaYlPzGAht6mQEms35G-HZL14LcwRAa2jWCEkKGUttTKXMTcJw3U0FIylpkHO6-PO3rx6RoZVh7NJtrRJg3ScIZYLnOB1-QLdIKvcIPvLDRqkWZsxq6JwlsXIbSJBsYZskIulaX_fyfF_7OSEbEZIfHwfWpOsz6cLc4rEZa7OSh_9Ai3A6nY priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Ja9tAFB6Cc2gvTVfqNi2vy6E5KLWlGWmmt9jEhNIEY2pIT2JWKDVKiGVC-hf6p_uNJTlxoaUngeYhhnnb9zRvYez9wKlUChuSofMq4cbwRHpVJD4LDkZTBKdj7fDpWX4y55_PxfkOe9PVwty5v88Qjn_UwyL-SVCIyndzAbjdY7vzs-nRt_VtscLn4XCbjkHb9Ft-Zt2OfwtD3ltVl_rmWi8Wd9zJZO-2KKfJIvlxuKrNof35R4_Gf-70IXvQgkk6arj_iO346jHb6wY1UKu3T9ivWexAsKCRXn5f0gSuLLKDPsxGkwPSlaN1Ge5CA37TtMl0uYrrp1-mBzS-7Q9OXQsTwuqoHahNM98NVgXtsqZjWI2mIPITQQppDEdJF4Fiio_1T9l8cvx1fJK0UxgSC32vEyNz6QrtRK6lGgys4cGmsIpSpAbRHPdCpQFmwqoidRpPOLyhDIXSGqEe4N4z1qsuKv-ckXNpZmBBjAmBB211Jn0uQMeHSojC99nbjmflZdNso0SQEo-33Bxvn40iNzcEsT_2-gWYUbbqVjo4XSGDCwA43HnISOYzIFWgSRsKqftsv5OFslXaZZkBCqWKI-Tss3cb-fj7Tl78F9VLdj8FEGry0vZZr75a-VcAMrV53YrybxNh7bc priority: 102 providerName: Unpaywall |
| Title | Radial Basis Function (RBF) and Multilayer Perceptron (MLP) Comparative Analysis on Building Renovation Cost Estimation: The Case of Greece |
| URI | https://www.proquest.com/docview/3110294140 https://doi.org/10.3390/a17090390 https://doaj.org/article/d84758fdf8204de8933e3326105cf78a |
| UnpaywallVersion | publishedVersion |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: AMVHM dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: 8FG dateStart: 20080301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1da9swFL206cP20n2zdF0Q2x7WB9PYlmxpMEYd4pWxhhAW6J6MPkchOGmSMvYb-qd7ZVtp97A9GVvCGF3p3HPlq3MBPgyNSDjTLoqNFRFVikbcijyyqTMImswZ6c8OX0yy8zn9dsku92ASzsL4tMqAiQ1Qm6X2e-SnKfqpRFCMB76sriNfNcr_XQ0lNGRXWsF8biTG9uEg8cpYPTgoxpPpLGBzxkQWt_pCKQb7pzLO_T6FB-QHXqkR7_-LcT66qVfyz2-5WDxwPuVTOOxYIzlrzfwM9mz9HJ6EigykW6Av4HbmpQYWpJCbqw0p0Wf5cScfZ0V5QmRtSHPediGRZ5Npm9Ky9u0X36cnZHQvBE6CVgnB1qKrnE1mNlRQxb6bLRkjPLQnHz8RnG5khB6RLB3xuTzavoR5Of4xOo-6cguRxoW9jRTPuMmlYZnkYjjUijqdIPxxligM26hlInGIB1rkiZF4Rc8Wc5cLKTGmQ173Cnr1sravgRiTpAqhQinnqJNaptxmDPvRWDCW2z68C8NdrVpVjQqjEW-TameTPhTeELsOXgi7ebBc_6q6dVUZ9K6MO-OQyVBjkX2lNkVKirRRu5zLPhwHM1bd6txU93OpD-93pv33lxz9_yVv4HGCVKfNPDuG3nZ9Y98iVdmqAezz8uugm4WDJuDHu_lkevbzDhym7GQ |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEB7S5JBe-i51mrZLH9AcRKx9SLuFUCrXxmlsY0wCuakr7W4JGNm1HEJ-Q_9Tf1tn9XDSQ3vLSaBdFrEzO_PNamY-gPddo6gUuQtCY1XAs4wH0qo4sMwZNJrCGe1rh8eTaHjGv52L8y343dbC-LTK1iZWhtoscn9HfsjQT1HFMR74vPwZeNYo_3e1pdDQDbWCOapajDWFHSf2-gpDuPLo-CvK-wOlg_5pbxg0LANBjvq8DjIZSRNrIyItVbebZ9zlFE-9FDTDaIVboajDY5CrmBqNTzTooXSx0hpDGYQzuO492OGMKwz-dpL-ZDprfUEkVBTW_YwYU91DHcb-XsQ7gFtesCIL-Avh7l4WS319pefzW85u8AgeNCiVfKnV6jFs2eIJPGwZIEhjEJ7Cr5lvbTAniS4vSjJAH-nlTD7OksEB0YUhVX3vXCOuJ9M6hWblx8ej6QHp3TQeJ21vFIKjScPUTWa2ZWzFueWa9NEc1ZWWnwiqN-mhByYLR3zuUG6fwdmdbPxz2C4WhX0BxBjKMjRNWeYcdzrXTNpI4DweKiFi24G37Xany7qLR4rRj5dJupFJBxIviM0E33i7erFY_Uibc5wa9OZCOuMQOXFjEe0xyxACI0zNXSx1B_ZbMaaNNSjTG93twLuNaP_9JXv_X-QN7A5Px6N0dDw5eQn3KcKsOuttH7bXq0v7CmHSOnvd6CKB73et_n8AE-gkyA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkEvvBELBUY8JHqIduPEiY2EELttaOlDqxWVekud2K6QVtlls1XV38A_4tcxTuJtOcCtp0ixZUWe8TffOPMAeDfQkgle2iDURgZxUcSBMDINTGQ1gSa3Wrnc4cOjZPc4_nbCT9bgt8-FcWGVHhMboNaz0t2R9yOyU0zG5A_0bRcWMd7OPs9_Bq6DlPvT6ttptCqyby4vyH2rP-1tk6zfM5btfB_tBl2HgaAkXV4GhUiETpXmiRJyMCiL2JaMTrzgrCBPJTZcMktHoJQp04qeBOahsKlUitwYojK07i24nboq7i5LPfvqrUDCZRK2lYyiSA76KkzdjYiD_mv2r2kT8Be3vXtezdXlhZpOr5m57AHc6_gpfmkV6iGsmeoR3Pe9H7CDgsfwa-KKGkxxqOofNWZkHZ2E8cNkmG2hqjQ2mb1TRYwex23wzMKNHx6Mt3B0VXIcfVUUpNFh16MbJ8b3aqW59RJ3CIjaHMuPSIqNI7K9OLPoooZK8wSOb2Tbn8J6NavMM0CtWVQQKBWFtbFVpYqESTjNi0PJeWp68MZvdz5v63fk5Pc4meQrmfRg6ASxmuBKbjcvZouzvDvBuSY7zoXVljhTrA3xvMhERH6JoJY2FaoHm16MeYcDdX6ltT14uxLtv7_k-f8XeQ13SOnzg72j_RewwYhfteFum7C-XJybl8SPlsWrRhERTm9a8_8ADk8iYg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Ja9tAFB6Cc2gvTVfqNi2vy6E5KLWlGWmmt9jEhNIEY2pIT2JWKDVKiGVC-hf6p_uNJTlxoaUngeYhhnnb9zRvYez9wKlUChuSofMq4cbwRHpVJD4LDkZTBKdj7fDpWX4y55_PxfkOe9PVwty5v88Qjn_UwyL-SVCIyndzAbjdY7vzs-nRt_VtscLn4XCbjkHb9Ft-Zt2OfwtD3ltVl_rmWi8Wd9zJZO-2KKfJIvlxuKrNof35R4_Gf-70IXvQgkk6arj_iO346jHb6wY1UKu3T9ivWexAsKCRXn5f0gSuLLKDPsxGkwPSlaN1Ge5CA37TtMl0uYrrp1-mBzS-7Q9OXQsTwuqoHahNM98NVgXtsqZjWI2mIPITQQppDEdJF4Fiio_1T9l8cvx1fJK0UxgSC32vEyNz6QrtRK6lGgys4cGmsIpSpAbRHPdCpQFmwqoidRpPOLyhDIXSGqEe4N4z1qsuKv-ckXNpZmBBjAmBB211Jn0uQMeHSojC99nbjmflZdNso0SQEo-33Bxvn40iNzcEsT_2-gWYUbbqVjo4XSGDCwA43HnISOYzIFWgSRsKqftsv5OFslXaZZkBCqWKI-Tss3cb-fj7Tl78F9VLdj8FEGry0vZZr75a-VcAMrV53YrybxNh7bc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radial+Basis+Function+%28RBF%29+and+Multilayer+Perceptron+%28MLP%29+Comparative+Analysis+on+Building+Renovation+Cost+Estimation%3A+The+Case+of+Greece&rft.jtitle=Algorithms&rft.au=Papadimitriou%2C+Vasso+E.&rft.au=Aretoulis%2C+Georgios+N.&rft.au=Papathanasiou%2C+Jason&rft.date=2024-09-01&rft.issn=1999-4893&rft.eissn=1999-4893&rft.volume=17&rft.issue=9&rft.spage=390&rft_id=info:doi/10.3390%2Fa17090390&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_a17090390 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |