Radial Basis Function (RBF) and Multilayer Perceptron (MLP) Comparative Analysis on Building Renovation Cost Estimation: The Case of Greece

Renovation of buildings has become a major area of development for the construction industry. In the building construction sector, generating a precise and trustworthy cost estimate before building begins is the greatest challenge. Emphasizing the value of using ANN models to forecast the total cost...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms Vol. 17; no. 9; p. 390
Main Authors Papadimitriou, Vasso E., Aretoulis, Georgios N., Papathanasiou, Jason
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2024
Subjects
Online AccessGet full text
ISSN1999-4893
1999-4893
DOI10.3390/a17090390

Cover

Abstract Renovation of buildings has become a major area of development for the construction industry. In the building construction sector, generating a precise and trustworthy cost estimate before building begins is the greatest challenge. Emphasizing the value of using ANN models to forecast the total cost of a building renovation project is the ultimate objective. As a result, building firms may be able to avoid financial losses as long as there is as little discrepancy between projected and actual costs for remodeling works in progress. To address the gap in the research, Greek contractors specializing in building renovations provided a sizable dataset of real project cost data. To build cost prediction ANNs, the collected data had to be organized, assessed, and appropriately encoded. The network was developed, trained, and tested using IBM SPSS Statistics software 28.0.0.0. The dependent variable is the final cost. The independent variables are initial cost, estimated completion time, actual completion time, delay time, initial and final demolition-drainage costs, cost of expenses, initial and final plumbing costs, initial and final heating costs, initial and final electrical costs, initial and final masonry costs, initial and final construction costs of plasterboard construction, initial and final cost of bathrooms, initial and final cost of flooring, initial and final cost of frames, initial and final cost of doors, initial and final cost of paint, and initial and final cost of kitchen construction. The first procedure that was employed was the radial basis function (RBF). The efficiency of the RBFNN model was evaluated and analyzed during training and testing, with up to 6% sum of squares error and nearly 0% relative error in the training sample, which accounted for roughly 70% of the total sample. The second procedure implemented was the method called the multi-layer perceptron (MLP). The efficiency of the MLPNN model was assessed and examined during training and testing; the training sample, which made up around 70% of the overall sample, had a relative error of 0–7% and a sum of squares error ranging from 1% to 5%, confirming specifically the efficacy of RBFNN in calculating the overall cost of renovations.
AbstractList Renovation of buildings has become a major area of development for the construction industry. In the building construction sector, generating a precise and trustworthy cost estimate before building begins is the greatest challenge. Emphasizing the value of using ANN models to forecast the total cost of a building renovation project is the ultimate objective. As a result, building firms may be able to avoid financial losses as long as there is as little discrepancy between projected and actual costs for remodeling works in progress. To address the gap in the research, Greek contractors specializing in building renovations provided a sizable dataset of real project cost data. To build cost prediction ANNs, the collected data had to be organized, assessed, and appropriately encoded. The network was developed, trained, and tested using IBM SPSS Statistics software 28.0.0.0. The dependent variable is the final cost. The independent variables are initial cost, estimated completion time, actual completion time, delay time, initial and final demolition-drainage costs, cost of expenses, initial and final plumbing costs, initial and final heating costs, initial and final electrical costs, initial and final masonry costs, initial and final construction costs of plasterboard construction, initial and final cost of bathrooms, initial and final cost of flooring, initial and final cost of frames, initial and final cost of doors, initial and final cost of paint, and initial and final cost of kitchen construction. The first procedure that was employed was the radial basis function (RBF). The efficiency of the RBFNN model was evaluated and analyzed during training and testing, with up to 6% sum of squares error and nearly 0% relative error in the training sample, which accounted for roughly 70% of the total sample. The second procedure implemented was the method called the multi-layer perceptron (MLP). The efficiency of the MLPNN model was assessed and examined during training and testing; the training sample, which made up around 70% of the overall sample, had a relative error of 0–7% and a sum of squares error ranging from 1% to 5%, confirming specifically the efficacy of RBFNN in calculating the overall cost of renovations.
Author Papadimitriou, Vasso E.
Aretoulis, Georgios N.
Papathanasiou, Jason
Author_xml – sequence: 1
  givenname: Vasso E.
  surname: Papadimitriou
  fullname: Papadimitriou, Vasso E.
– sequence: 2
  givenname: Georgios N.
  orcidid: 0000-0002-9248-3454
  surname: Aretoulis
  fullname: Aretoulis, Georgios N.
– sequence: 3
  givenname: Jason
  surname: Papathanasiou
  fullname: Papathanasiou, Jason
BookMark eNp9kc9qGzEQxpeSQpO0h76BoJc64FZaaXel3uIlTgIODSY9i7H-pDKKtJW0KX6GvnTWdgk99fR9M_PxY5g5q05CDKaqPhL8hVKBvwLpsMCTe1OdEiHEnHFBT_7x76qznLcYt41oyWn1Zw3agUcLyC6j5RhUcTGgz-vFcoYgaHQ3-uI87ExC9yYpM5S0n9-t7meoj08DJCju2aDLAH63Z0zTxei8duERrU2Iz3Ag9jEXdJWLezrU39DDT4N6yAZFi66TMcq8r95a8Nl8-Kvn1Y_l1UN_M199v77tL1dzRQkv8w1vue5ANy1wgbHaMKtq0Jo39abFhJlG1JZiokRXa5i05oxw2wkAghlp6Xl1e-TqCFs5pGmltJMRnDw0YnqUkIpT3kjNWddwqy2vMdNmuh81lNYtwY2yHYeJdXFkjWGA3W_w_hVIsNy_RL6-ZAp_OoaHFH-NJhe5jWOaDpclJQTXghG2T82OKZVizsnY_xBfAOpel8g
Cites_doi 10.1080/01446190210151050
10.25103/jestr.145.24
10.1016/j.heliyon.2019.e01625
10.1016/j.acme.2018.01.014
10.1155/2018/7952434
10.1061/9780784479070.038
10.1080/014461900370799
10.1016/j.ijproman.2011.09.002
10.1016/j.proeng.2013.04.041
10.19026/rjaset.12.2747
10.3390/buildings14041072
10.1016/j.ijproman.2004.04.002
10.3846/13923730.2014.897988
10.1016/S0925-2312(97)00094-5
10.1016/j.phpro.2012.02.262
10.1016/S0957-4174(97)00046-8
10.3923/jai.2011.63.75
10.1081/JA-120004171
10.1061/(ASCE)CO.1943-7862.0001678
10.1016/j.buildenv.2004.03.009
10.1080/09613219508727476
10.1016/S0169-2070(97)00044-7
10.1061/(ASCE)CO.1943-7862.0001183
10.1016/j.autcon.2008.07.001
10.1080/01446193.2013.802363
10.3390/su16114322
10.1007/s00521-008-0214-2
10.1016/j.autcon.2015.12.021
10.1111/0885-9507.00219
10.3390/buildings13020382
10.1061/(ASCE)0733-9364(2003)129:4(405)
10.1061/(ASCE)0733-9364(1998)124:1(18)
10.1108/eb021106
10.1007/s42452-020-03497-1
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
ADTOC
UNPAY
DOA
DOI 10.3390/a17090390
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Proquest Central
ProQuest Technology Collection (LUT)
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ DIrectory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1999-4893
ExternalDocumentID oai_doaj_org_article_d84758fdf8204de8933e3326105cf78a
10.3390/a17090390
10_3390_a17090390
GeographicLocations Greece
GeographicLocations_xml – name: Greece
GroupedDBID 23M
2WC
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
J9A
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
TR2
TUS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
Q9U
ADTOC
C1A
IPNFZ
PUEGO
RIG
UNPAY
ID FETCH-LOGICAL-c318t-b868d7ad56a8900cb4fc2add852b6014e592f301c972da01c28418f79aa104163
IEDL.DBID BENPR
ISSN 1999-4893
IngestDate Fri Oct 03 12:44:29 EDT 2025
Sun Sep 07 11:15:23 EDT 2025
Fri Jul 25 12:17:03 EDT 2025
Thu Oct 16 04:37:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c318t-b868d7ad56a8900cb4fc2add852b6014e592f301c972da01c28418f79aa104163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9248-3454
OpenAccessLink https://www.proquest.com/docview/3110294140?pq-origsite=%requestingapplication%&accountid=15518
PQID 3110294140
PQPubID 2032439
ParticipantIDs doaj_primary_oai_doaj_org_article_d84758fdf8204de8933e3326105cf78a
unpaywall_primary_10_3390_a17090390
proquest_journals_3110294140
crossref_primary_10_3390_a17090390
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Algorithms
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Bayram (ref_55) 2016; 22
Borghese (ref_46) 1998; 19
Adeli (ref_11) 2001; 16
Attalla (ref_45) 2003; 129
Shehatto (ref_25) 2014; 4
ref_58
ref_56
Wang (ref_23) 2012; 30
ref_10
ref_54
Benedict (ref_53) 2014; 2
ref_16
Cheng (ref_21) 2009; 18
Emsley (ref_18) 2002; 20
Buscema (ref_12) 2002; Volume 37
Akintoye (ref_14) 2000; 18
Adeli (ref_43) 1998; 124
ref_60
Anagnostopoulos (ref_35) 2021; 14
Alqahtani (ref_37) 2014; 13
Elmousalami (ref_5) 2019; 5
ref_24
Naik (ref_4) 2015; 1
Ambrule (ref_28) 2017; 5
Sitthikankun (ref_32) 2021; 12
Zhang (ref_9) 1998; 14
ref_27
Aretoulis (ref_33) 2006; 6
Juszczyk (ref_39) 2018; 18
Odeyinka (ref_50) 2013; 31
Gajzler (ref_13) 2013; Volume 57
Mirahadi (ref_2) 2016; 65
Chua (ref_17) 1997; 13
Amusan (ref_49) 2013; 13
Elfaki (ref_26) 2014; 2014
Chandanshive (ref_30) 2019; 3
Kulkarni (ref_3) 2017; 1
(ref_19) 2004; 22
Arafa (ref_22) 2011; 4
ref_34
Moahamad (ref_51) 2014; 2
Ahmed (ref_7) 2022; 20
Bhokha (ref_59) 1999; 6
Bala (ref_52) 2014; 12
Ebadati (ref_15) 2020; 2
Kim (ref_20) 2004; 39
Antoniou (ref_36) 2016; 12
Yadav (ref_8) 2016; 5
Minli (ref_1) 2012; 24
Li (ref_41) 1995; 23
ref_47
Yu (ref_57) 2009; 18
Zaki (ref_42) 2021; 9
ref_44
Elmousalami (ref_6) 2020; 146
ref_40
Abd (ref_29) 2019; 12
Juszczyk (ref_38) 2018; 2018
ref_48
Hakami (ref_31) 2019; 7
References_xml – volume: 20
  start-page: 465
  year: 2002
  ident: ref_18
  article-title: Data Modelling and the Application of a Neural Network Approach to the Prediction of Total Construction Costs
  publication-title: Constr. Manag. Econ.
  doi: 10.1080/01446190210151050
– volume: 14
  start-page: 210
  year: 2021
  ident: ref_35
  article-title: Predicting Roundabout Lane Capacity Using Artificial Neural Networks
  publication-title: J. Eng. Sci. Technol. Rev.
  doi: 10.25103/jestr.145.24
– volume: 2014
  start-page: 107926
  year: 2014
  ident: ref_26
  article-title: Using Intelligent Techniques in Construction Project Cost Estimation: 10-Year Survey
  publication-title: Adv. Civ. Eng.
– volume: 5
  start-page: e01625
  year: 2019
  ident: ref_5
  article-title: Intelligent Methodology for Project Conceptual Cost Prediction
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2019.e01625
– volume: 2
  start-page: 181
  year: 2014
  ident: ref_53
  article-title: Project Cost Estimation: Issues and the Possible Solutions
  publication-title: Int. J. Eng. Tech. Res. (IJETR)
– volume: 5
  start-page: 430
  year: 2016
  ident: ref_8
  article-title: Cost Estimation Model (Cem) for Residential Building Using Artificial Neural Network
  publication-title: Int. J. Eng. Res. Technol. (IJERT)
– volume: 18
  start-page: 973
  year: 2018
  ident: ref_39
  article-title: Prediction of Site Overhead Costs with the Use of Artificial Neural Network Based Model
  publication-title: Arch. Civ. Mech. Eng.
  doi: 10.1016/j.acme.2018.01.014
– volume: 20
  start-page: 3365
  year: 2022
  ident: ref_7
  article-title: Role of Artificial Neural Networks in AI
  publication-title: Neuro Quantology
– volume: 2018
  start-page: 7952434
  year: 2018
  ident: ref_38
  article-title: ANN Based Approach for Estimation of Construction Costs of Sports Fields
  publication-title: Complexity
  doi: 10.1155/2018/7952434
– ident: ref_54
  doi: 10.1061/9780784479070.038
– volume: 18
  start-page: 161
  year: 2000
  ident: ref_14
  article-title: A Survey of Current Cost Estimating Practices in the UK
  publication-title: Constr. Manag. Econ.
  doi: 10.1080/014461900370799
– volume: 30
  start-page: 470
  year: 2012
  ident: ref_23
  article-title: Predicting Construction Cost and Schedule Success Using Artificial Neural Networks Ensemble and Support Vector Machines Classification Models
  publication-title: Int. J. Proj. Manag.
  doi: 10.1016/j.ijproman.2011.09.002
– volume: Volume 57
  start-page: 302
  year: 2013
  ident: ref_13
  article-title: The Idea of Knowledge Supplementation and Explanation Using Neural Networks to Support Decisions in Construction Engineering
  publication-title: Procedia Engineering
  doi: 10.1016/j.proeng.2013.04.041
– ident: ref_58
– volume: 12
  start-page: 1
  year: 2021
  ident: ref_32
  article-title: Construction Cost Estimation for Government Building Using Artificial Neural Network Technique
  publication-title: Int. Trans. J. Eng. Manag. Appl. Sci. Technol.
– volume: 12
  start-page: 716
  year: 2016
  ident: ref_36
  article-title: Analytical Formulation for Early Cost Estimation and Material Consumption of Road Overpass Bridges
  publication-title: Res. J. Appl. Sci. Eng. Technol.
  doi: 10.19026/rjaset.12.2747
– ident: ref_44
  doi: 10.3390/buildings14041072
– volume: 12
  start-page: 518
  year: 2014
  ident: ref_52
  article-title: A Computer-Based Cost Prediction Model for Institutional Building Projects in Nigeria an Artificial Neural Network Approach
  publication-title: J. Eng. Des. Technol.
– ident: ref_27
– volume: 22
  start-page: 595
  year: 2004
  ident: ref_19
  article-title: A Neural Network Approach for Early Cost Estimation of Structural Systems of Buildings
  publication-title: Int. J. Proj. Manag.
  doi: 10.1016/j.ijproman.2004.04.002
– ident: ref_48
– ident: ref_10
– volume: 22
  start-page: 480
  year: 2016
  ident: ref_55
  article-title: Comparison of Multi Layer Perceptron (MLP) and Radial Basis Function (RBF) for Construction Cost Estimation: The Case of Turkey
  publication-title: J. Civ. Eng. Manag.
  doi: 10.3846/13923730.2014.897988
– volume: 19
  start-page: 259
  year: 1998
  ident: ref_46
  article-title: Hierarchical RBF Networks and Local Parameters Estimate
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(97)00094-5
– volume: 12
  start-page: 1
  year: 2019
  ident: ref_29
  article-title: Predicting the Final Cost of Iraqi Construction Project Using Artificial Neural Network (ANN)
  publication-title: Indian J. Sci. Technol.
– volume: 6
  start-page: 323
  year: 2006
  ident: ref_33
  article-title: A Prototype System for the Prediction of Final Cost in Construction Projects
  publication-title: Oper. Res.
– volume: 24
  start-page: 1781
  year: 2012
  ident: ref_1
  article-title: Research on the Application of Artificial Neural Networks in Tender Offer for Construction Projects
  publication-title: Phys. Procedia
  doi: 10.1016/j.phpro.2012.02.262
– volume: 13
  start-page: 317
  year: 1997
  ident: ref_17
  article-title: Neural Networks for Construction Project Success
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/S0957-4174(97)00046-8
– volume: 13
  start-page: 51
  year: 2014
  ident: ref_37
  article-title: Artificial Neural Networks Incorporating Cost Significant Items towards Enhancing Estimation for (Life-Cycle) Costing of Construction Projects
  publication-title: Australlian J. Constr. Econ. Build.
– volume: 4
  start-page: 63
  year: 2011
  ident: ref_22
  article-title: Early Stage Cost Estimation of Buildings Construction Projects Using Artificial Neural Networks Structural Behavior of Reinforced Concrete Pile Cap Using Non-Linear Finite Element Analysis View Project
  publication-title: J. Artif. Intell.
  doi: 10.3923/jai.2011.63.75
– volume: Volume 37
  start-page: 1093
  year: 2002
  ident: ref_12
  article-title: A Brief Overview and Introduction to Artificial Neural Networks
  publication-title: Substance Use and Misuse
  doi: 10.1081/JA-120004171
– volume: 5
  start-page: 63
  year: 2017
  ident: ref_28
  article-title: Use of Arificial Neural Network for Pre Design Cost Estimation of Building Projects
  publication-title: Int. J. Recent. Innov. Trends Comput. Commun.
– volume: 4
  start-page: 9
  year: 2014
  ident: ref_25
  article-title: A Neural Network Model for Building Construction Projects Cost Estimating
  publication-title: J. Constr. Eng. Proj. Manag.
– volume: 146
  start-page: 8
  year: 2020
  ident: ref_6
  article-title: Artificial Intelligence and Parametric Construction Cost Estimate Modeling: State-of-the-Art Review
  publication-title: J. Constr. Eng. Manag.
  doi: 10.1061/(ASCE)CO.1943-7862.0001678
– volume: 39
  start-page: 1333
  year: 2004
  ident: ref_20
  article-title: Neural Network Model Incorporating a Genetic Algorithm in Estimating Construction Costs
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2004.03.009
– ident: ref_24
– ident: ref_34
– volume: 23
  start-page: 279
  year: 1995
  ident: ref_41
  article-title: Neural Networks for Construction Cost Estimation
  publication-title: Build. Res. Inf.
  doi: 10.1080/09613219508727476
– volume: 9
  start-page: 2320
  year: 2021
  ident: ref_42
  article-title: Prediction of construction cost by neural network
  publication-title: Int. J. Creat. Res. Thoughts (IJCRT)
– volume: 14
  start-page: 35
  year: 1998
  ident: ref_9
  article-title: Forecasting with Artificial Neural Networks: The State of the Art
  publication-title: Int. J. Forecast.
  doi: 10.1016/S0169-2070(97)00044-7
– ident: ref_47
– volume: 7
  start-page: 110
  year: 2019
  ident: ref_31
  article-title: Preliminary Construction Cost Estimate in Yemen by Artificial Neural Network
  publication-title: Balt. J. Real Estate Econ. Constr. Manag.
– ident: ref_56
  doi: 10.1061/(ASCE)CO.1943-7862.0001183
– volume: 1
  start-page: 70
  year: 2017
  ident: ref_3
  article-title: Artificial Neural Networks for Construction Management: A Review
  publication-title: J. Soft Comput. Civil Eng.
– volume: 18
  start-page: 164
  year: 2009
  ident: ref_21
  article-title: Web-Based Conceptual Cost Estimates for Construction Projects Using Evolutionary Fuzzy Neural Inference Model
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2008.07.001
– volume: 31
  start-page: 423
  year: 2013
  ident: ref_50
  article-title: Artificial Neural Network Cost Flow Risk Assessment Model
  publication-title: Constr. Manag. Econ.
  doi: 10.1080/01446193.2013.802363
– ident: ref_40
– ident: ref_60
  doi: 10.3390/su16114322
– volume: 2
  start-page: 129
  year: 2014
  ident: ref_51
  article-title: Parametric Cost Estimating of Sterile Building Using Artificial Neural Network & Genetic Algorithm Model
  publication-title: Int. J. Eng. Tech. Res. (IJETR)
– volume: 18
  start-page: 769
  year: 2009
  ident: ref_57
  article-title: A Hybrid MPSO-BP Structure Adaptive Algorithm for RBFNs
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-008-0214-2
– volume: 65
  start-page: 102
  year: 2016
  ident: ref_2
  article-title: Simulation-Based Construction Productivity Forecast Using Neural-Network-Driven Fuzzy Reasoning
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2015.12.021
– volume: 13
  start-page: 33
  year: 2013
  ident: ref_49
  article-title: Expert System-Based Predictive Cost Model for Building Works: Neural Network Approach
  publication-title: Int. J. Basic Appl. Sci. IJBAS-IJENS
– volume: 16
  start-page: 126
  year: 2001
  ident: ref_11
  article-title: Neural Networks in Civil Engineering: 1989–2000
  publication-title: Comput.-Aided Civil Infrastruct. Eng.
  doi: 10.1111/0885-9507.00219
– ident: ref_16
  doi: 10.3390/buildings13020382
– volume: 1
  start-page: 299
  year: 2015
  ident: ref_4
  article-title: Project Cost and Duration Optimization Using Soft Computing Techniques
  publication-title: Artic. J. Adv. Manag. Sci.
– volume: 3
  start-page: 91
  year: 2019
  ident: ref_30
  article-title: Estimation of Building Construction Cost Using Artificial Neural Networks
  publication-title: J. Soft Comput. Civil Eng.
– volume: 129
  start-page: 405
  year: 2003
  ident: ref_45
  article-title: Predicting Cost Deviation in Reconstruction Projects: Artificial Neural Networks versus Regression
  publication-title: J. Constr. Eng. Manag.
  doi: 10.1061/(ASCE)0733-9364(2003)129:4(405)
– volume: 124
  start-page: 18
  year: 1998
  ident: ref_43
  article-title: Regularization neural network for construction cost estimation
  publication-title: J. Constr. Eng. Manag.
  doi: 10.1061/(ASCE)0733-9364(1998)124:1(18)
– volume: 6
  start-page: 133
  year: 1999
  ident: ref_59
  article-title: Application of Artificial Neural Network to Forecast Construction Duration of Buildings at the Predesign Stage
  publication-title: Eng. Constr. Archit. Manag.
  doi: 10.1108/eb021106
– volume: 2
  start-page: 1703
  year: 2020
  ident: ref_15
  article-title: Cost Estimation and Prediction in Construction Projects: A Systematic Review on Machine Learning Techniques
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-020-03497-1
SSID ssj0065961
Score 2.3303938
Snippet Renovation of buildings has become a major area of development for the construction industry. In the building construction sector, generating a precise and...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 390
SubjectTerms Artificial intelligence
artificial neural network
Bathrooms
building cost estimation models
buildings renovation
Civil engineering
Completion time
Construction costs
Construction industry
Cost analysis
Cost estimates
cost estimation
Data collection
Delay time
Dependent variables
Drywall
Error analysis
Flooring
Independent variables
Industrial development
Literature reviews
Masonry
Masonry construction
multilayer perceptron algorithm
Multilayer perceptrons
Multilayers
Neural networks
Radial basis function
radial basis function algorithm
Renovation
Renovation & restoration
Sums
SummonAdditionalLinks – databaseName: DOAJ DIrectory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3iRS9-i6urDOpBD2W3bdIm3tzFZRFXlkVhbyVpEhCWKvuB-Bv8006adl0P4sVToc0hZGbevCmTN4RctrWIOMttEGojAqoUDbgRaWBiqxE0mdXS3R0ePCb9Z3o_ZuOVUV-uJ8zLA_uDa2mET8attpiqqDZuOryJkXMgL8htyktq1OaiLqY8BidMJKHXEYqxqG_JMHX_IxzwrmSfUqT_B7PcWBRv8uNdTiYrSaa3Q7Yqdgi3fle7ZM0Ue2S7nrwAVSDuk8-RkxSYQEfOXmbQw9zkzheuRp3eNchCQ3mvdiKRT8PQt65M3ffBw_Aaut-C31BrkgB-7VQTsmFk6kmpuHY2hzuEAX_D8QbQraCLmQ9eLbiendwckOfe3VO3H1RjFYIcA3geKJ5wnUrNEslFu50ravMIYY6zSGF5Rg0TkcW4z0UaaYlPzGAht6mQEms35G-HZL14LcwRAa2jWCEkKGUttTKXMTcJw3U0FIylpkHO6-PO3rx6RoZVh7NJtrRJg3ScIZYLnOB1-QLdIKvcIPvLDRqkWZsxq6JwlsXIbSJBsYZskIulaX_fyfF_7OSEbEZIfHwfWpOsz6cLc4rEZa7OSh_9Ai3A6nY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Ja9tAFB6Cc2gvTVfqNi2vy6E5KLWlGWmmt9jEhNIEY2pIT2JWKDVKiGVC-hf6p_uNJTlxoaUngeYhhnnb9zRvYez9wKlUChuSofMq4cbwRHpVJD4LDkZTBKdj7fDpWX4y55_PxfkOe9PVwty5v88Qjn_UwyL-SVCIyndzAbjdY7vzs-nRt_VtscLn4XCbjkHb9Ft-Zt2OfwtD3ltVl_rmWi8Wd9zJZO-2KKfJIvlxuKrNof35R4_Gf-70IXvQgkk6arj_iO346jHb6wY1UKu3T9ivWexAsKCRXn5f0gSuLLKDPsxGkwPSlaN1Ge5CA37TtMl0uYrrp1-mBzS-7Q9OXQsTwuqoHahNM98NVgXtsqZjWI2mIPITQQppDEdJF4Fiio_1T9l8cvx1fJK0UxgSC32vEyNz6QrtRK6lGgys4cGmsIpSpAbRHPdCpQFmwqoidRpPOLyhDIXSGqEe4N4z1qsuKv-ckXNpZmBBjAmBB211Jn0uQMeHSojC99nbjmflZdNso0SQEo-33Bxvn40iNzcEsT_2-gWYUbbqVjo4XSGDCwA43HnISOYzIFWgSRsKqftsv5OFslXaZZkBCqWKI-Tss3cb-fj7Tl78F9VLdj8FEGry0vZZr75a-VcAMrV53YrybxNh7bc
  priority: 102
  providerName: Unpaywall
Title Radial Basis Function (RBF) and Multilayer Perceptron (MLP) Comparative Analysis on Building Renovation Cost Estimation: The Case of Greece
URI https://www.proquest.com/docview/3110294140
https://doi.org/10.3390/a17090390
https://doaj.org/article/d84758fdf8204de8933e3326105cf78a
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: AMVHM
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: 8FG
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1da9swFL206cP20n2zdF0Q2x7WB9PYlmxpMEYd4pWxhhAW6J6MPkchOGmSMvYb-qd7ZVtp97A9GVvCGF3p3HPlq3MBPgyNSDjTLoqNFRFVikbcijyyqTMImswZ6c8OX0yy8zn9dsku92ASzsL4tMqAiQ1Qm6X2e-SnKfqpRFCMB76sriNfNcr_XQ0lNGRXWsF8biTG9uEg8cpYPTgoxpPpLGBzxkQWt_pCKQb7pzLO_T6FB-QHXqkR7_-LcT66qVfyz2-5WDxwPuVTOOxYIzlrzfwM9mz9HJ6EigykW6Av4HbmpQYWpJCbqw0p0Wf5cScfZ0V5QmRtSHPediGRZ5Npm9Ky9u0X36cnZHQvBE6CVgnB1qKrnE1mNlRQxb6bLRkjPLQnHz8RnG5khB6RLB3xuTzavoR5Of4xOo-6cguRxoW9jRTPuMmlYZnkYjjUijqdIPxxligM26hlInGIB1rkiZF4Rc8Wc5cLKTGmQ173Cnr1sravgRiTpAqhQinnqJNaptxmDPvRWDCW2z68C8NdrVpVjQqjEW-TameTPhTeELsOXgi7ebBc_6q6dVUZ9K6MO-OQyVBjkX2lNkVKirRRu5zLPhwHM1bd6txU93OpD-93pv33lxz9_yVv4HGCVKfNPDuG3nZ9Y98iVdmqAezz8uugm4WDJuDHu_lkevbzDhym7GQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEB7S5JBe-i51mrZLH9AcRKx9SLuFUCrXxmlsY0wCuakr7W4JGNm1HEJ-Q_9Tf1tn9XDSQ3vLSaBdFrEzO_PNamY-gPddo6gUuQtCY1XAs4wH0qo4sMwZNJrCGe1rh8eTaHjGv52L8y343dbC-LTK1iZWhtoscn9HfsjQT1HFMR74vPwZeNYo_3e1pdDQDbWCOapajDWFHSf2-gpDuPLo-CvK-wOlg_5pbxg0LANBjvq8DjIZSRNrIyItVbebZ9zlFE-9FDTDaIVboajDY5CrmBqNTzTooXSx0hpDGYQzuO492OGMKwz-dpL-ZDprfUEkVBTW_YwYU91DHcb-XsQ7gFtesCIL-Avh7l4WS319pefzW85u8AgeNCiVfKnV6jFs2eIJPGwZIEhjEJ7Cr5lvbTAniS4vSjJAH-nlTD7OksEB0YUhVX3vXCOuJ9M6hWblx8ej6QHp3TQeJ21vFIKjScPUTWa2ZWzFueWa9NEc1ZWWnwiqN-mhByYLR3zuUG6fwdmdbPxz2C4WhX0BxBjKMjRNWeYcdzrXTNpI4DweKiFi24G37Xany7qLR4rRj5dJupFJBxIviM0E33i7erFY_Uibc5wa9OZCOuMQOXFjEe0xyxACI0zNXSx1B_ZbMaaNNSjTG93twLuNaP_9JXv_X-QN7A5Px6N0dDw5eQn3KcKsOuttH7bXq0v7CmHSOnvd6CKB73et_n8AE-gkyA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkEvvBELBUY8JHqIduPEiY2EELttaOlDqxWVekud2K6QVtlls1XV38A_4tcxTuJtOcCtp0ixZUWe8TffOPMAeDfQkgle2iDURgZxUcSBMDINTGQ1gSa3Wrnc4cOjZPc4_nbCT9bgt8-FcWGVHhMboNaz0t2R9yOyU0zG5A_0bRcWMd7OPs9_Bq6DlPvT6ttptCqyby4vyH2rP-1tk6zfM5btfB_tBl2HgaAkXV4GhUiETpXmiRJyMCiL2JaMTrzgrCBPJTZcMktHoJQp04qeBOahsKlUitwYojK07i24nboq7i5LPfvqrUDCZRK2lYyiSA76KkzdjYiD_mv2r2kT8Be3vXtezdXlhZpOr5m57AHc6_gpfmkV6iGsmeoR3Pe9H7CDgsfwa-KKGkxxqOofNWZkHZ2E8cNkmG2hqjQ2mb1TRYwex23wzMKNHx6Mt3B0VXIcfVUUpNFh16MbJ8b3aqW59RJ3CIjaHMuPSIqNI7K9OLPoooZK8wSOb2Tbn8J6NavMM0CtWVQQKBWFtbFVpYqESTjNi0PJeWp68MZvdz5v63fk5Pc4meQrmfRg6ASxmuBKbjcvZouzvDvBuSY7zoXVljhTrA3xvMhERH6JoJY2FaoHm16MeYcDdX6ltT14uxLtv7_k-f8XeQ13SOnzg72j_RewwYhfteFum7C-XJybl8SPlsWrRhERTm9a8_8ADk8iYg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Ja9tAFB6Cc2gvTVfqNi2vy6E5KLWlGWmmt9jEhNIEY2pIT2JWKDVKiGVC-hf6p_uNJTlxoaUngeYhhnnb9zRvYez9wKlUChuSofMq4cbwRHpVJD4LDkZTBKdj7fDpWX4y55_PxfkOe9PVwty5v88Qjn_UwyL-SVCIyndzAbjdY7vzs-nRt_VtscLn4XCbjkHb9Ft-Zt2OfwtD3ltVl_rmWi8Wd9zJZO-2KKfJIvlxuKrNof35R4_Gf-70IXvQgkk6arj_iO346jHb6wY1UKu3T9ivWexAsKCRXn5f0gSuLLKDPsxGkwPSlaN1Ge5CA37TtMl0uYrrp1-mBzS-7Q9OXQsTwuqoHahNM98NVgXtsqZjWI2mIPITQQppDEdJF4Fiio_1T9l8cvx1fJK0UxgSC32vEyNz6QrtRK6lGgys4cGmsIpSpAbRHPdCpQFmwqoidRpPOLyhDIXSGqEe4N4z1qsuKv-ckXNpZmBBjAmBB211Jn0uQMeHSojC99nbjmflZdNso0SQEo-33Bxvn40iNzcEsT_2-gWYUbbqVjo4XSGDCwA43HnISOYzIFWgSRsKqftsv5OFslXaZZkBCqWKI-Tss3cb-fj7Tl78F9VLdj8FEGry0vZZr75a-VcAMrV53YrybxNh7bc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radial+Basis+Function+%28RBF%29+and+Multilayer+Perceptron+%28MLP%29+Comparative+Analysis+on+Building+Renovation+Cost+Estimation%3A+The+Case+of+Greece&rft.jtitle=Algorithms&rft.au=Papadimitriou%2C+Vasso+E.&rft.au=Aretoulis%2C+Georgios+N.&rft.au=Papathanasiou%2C+Jason&rft.date=2024-09-01&rft.issn=1999-4893&rft.eissn=1999-4893&rft.volume=17&rft.issue=9&rft.spage=390&rft_id=info:doi/10.3390%2Fa17090390&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_a17090390
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon