Number of Subjects and Time Points Needed for Multilevel Time-Series Analysis: A Simulation Study of Dynamic Structural Equation Modeling

Dynamic structural equation modeling (DSEM) is a novel, intensive longitudinal data (ILD) analysis framework. DSEM models intraindividual changes over time on Level 1 and allows the parameters of these processes to vary across individuals on Level 2 using random effects. DSEM merges time series, str...

Full description

Saved in:
Bibliographic Details
Published inStructural equation modeling Vol. 25; no. 4; pp. 495 - 515
Main Authors Schultzberg, Mårten, Muthén, Bengt
Format Journal Article
LanguageEnglish
Published Hove Psychology Press 04.07.2018
Subjects
Online AccessGet full text
ISSN1070-5511
1532-8007
1532-8007
DOI10.1080/10705511.2017.1392862

Cover

Abstract Dynamic structural equation modeling (DSEM) is a novel, intensive longitudinal data (ILD) analysis framework. DSEM models intraindividual changes over time on Level 1 and allows the parameters of these processes to vary across individuals on Level 2 using random effects. DSEM merges time series, structural equation, multilevel, and time-varying effects models. Despite the well-known properties of these analysis areas by themselves, it is unclear how their sample size requirements and recommendations transfer to the DSEM framework. This article presents the results of a simulation study that examines the estimation quality of univariate 2-level autoregressive models of order 1, AR(1), using Bayesian analysis in Mplus Version 8. Three features are varied in the simulations: complexity of the model, number of subjects, and number of time points per subject. Samples with many subjects and few time points are shown to perform substantially better than samples with few subjects and many time points.
AbstractList Dynamic structural equation modeling (DSEM) is a novel, intensive longitudinal data (ILD) analysis framework. DSEM models intraindividual changes over time on Level 1 and allows the parameters of these processes to vary across individuals on Level 2 using random effects. DSEM merges time series, structural equation, multilevel, and time-varying effects models. Despite the well-known properties of these analysis areas by themselves, it is unclear how their sample size requirements and recommendations transfer to the DSEM framework. This article presents the results of a simulation study that examines the estimation quality of univariate 2-level autoregressive models of order 1, AR(1), using Bayesian analysis in Mplus Version 8. Three features are varied in the simulations: complexity of the model, number of subjects, and number of time points per subject. Samples with many subjects and few time points are shown to perform substantially better than samples with few subjects and many time points.
Author Muthén, Bengt
Schultzberg, Mårten
Author_xml – sequence: 1
  givenname: Mårten
  orcidid: 0000-0002-1260-7737
  surname: Schultzberg
  fullname: Schultzberg, Mårten
  organization: Uppsala University
– sequence: 2
  givenname: Bengt
  surname: Muthén
  fullname: Muthén, Bengt
  organization: Muthén and Muthén, Los Angeles, CA
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-353189$$DView record from Swedish Publication Index
BookMark eNqFkctuFDEQRS0UJJLAJyBZYksPLnd67IbVKAkPKQlIE9hatrs68sjdnvgRNJ_AX-PJBBZsWFWVde4tue4JOZrDjIS8BrYAJtk7YIJ1HcCCMxALaHsul_wZOYau5Y1kTBzVvjLNHnpBTlLaMAYSuDwmv27KZDDSMNJ1MRu0OVE9D_TWTUi_BTfX-QZxwIGOIdLr4rPz-ID-kWjWGB0mupq13yWX3tMVXbupeJ1dmOk6l2G3t77YzXpytj7EYnOJ2tPL-3KArsOA3s13L8nzUfuEr57qKfn-8fL2_HNz9fXTl_PVVWNbkLkxoPWZsBaMxFGw5SBb0wOeaYGCSbs0I_IeRG8EtozpgQvbSRjE2JkBesvaU_L24Jt-4rYYtY1u0nGngnbqwv1YqRDvVCmq7eq-vuJvDvg2hvuCKatNKLH-NynOuOhkdReV6g6UjSGliONfW2BqH5L6E5Lah6SeQqq6D__orMuPd8lRO_8f9W9iSpoY
CitedBy_id crossref_primary_10_1002_smi_3229
crossref_primary_10_1080_10705511_2018_1555692
crossref_primary_10_2308_JFR_2019_0021
crossref_primary_10_1080_08870446_2020_1800010
crossref_primary_10_1177_10731911241235467
crossref_primary_10_1007_s10212_023_00693_6
crossref_primary_10_1177_20501579231193941
crossref_primary_10_3389_feduc_2021_714495
crossref_primary_10_1146_annurev_orgpsych_110622_054803
crossref_primary_10_1177_25152459241267912
crossref_primary_10_1080_10503307_2024_2325509
crossref_primary_10_1016_j_addbeh_2020_106788
crossref_primary_10_1177_21677026221129279
crossref_primary_10_1146_annurev_orgpsych_041621_031401
crossref_primary_10_1111_ijal_12595
crossref_primary_10_1136_bmjopen_2023_072641
crossref_primary_10_3389_fpsyt_2020_00049
crossref_primary_10_1093_joc_jqaa039
crossref_primary_10_1016_j_cedpsych_2021_101987
crossref_primary_10_1111_cdev_13447
crossref_primary_10_1177_21677026221147262
crossref_primary_10_3389_fpsyg_2021_693576
crossref_primary_10_1007_s10802_023_01070_z
crossref_primary_10_1177_09567976221116816
crossref_primary_10_1016_j_jpain_2019_11_003
crossref_primary_10_1016_j_learninstruc_2022_101664
crossref_primary_10_4236_jss_2024_1211045
crossref_primary_10_1007_s10802_023_01077_6
crossref_primary_10_1016_j_lindif_2025_102658
crossref_primary_10_1007_s12144_023_04400_y
crossref_primary_10_1097_j_pain_0000000000001626
crossref_primary_10_3389_fpsyg_2023_1168020
crossref_primary_10_1007_s10802_023_01110_8
crossref_primary_10_1016_j_dcn_2024_101353
crossref_primary_10_1080_10705511_2023_2169698
crossref_primary_10_1186_s12916_020_01738_z
crossref_primary_10_1080_10705511_2023_2192889
crossref_primary_10_1016_j_brat_2023_104398
crossref_primary_10_1080_02699931_2024_2427886
crossref_primary_10_1016_j_jcbs_2024_100781
crossref_primary_10_1093_jpepsy_jsae001
crossref_primary_10_1177_00936502211038196
crossref_primary_10_1007_s11336_021_09803_z
crossref_primary_10_1080_00273171_2024_2350236
crossref_primary_10_1080_10705511_2020_1779069
crossref_primary_10_1177_17456916211008407
crossref_primary_10_1186_s40359_022_00841_5
crossref_primary_10_1093_joc_jqae010
crossref_primary_10_1111_bjep_12575
crossref_primary_10_1080_10705511_2024_2415420
crossref_primary_10_1002_eat_24254
crossref_primary_10_1016_j_brat_2025_104685
crossref_primary_10_1080_02673843_2025_2467112
crossref_primary_10_1016_j_janxdis_2022_102571
crossref_primary_10_1080_10705511_2023_2287967
crossref_primary_10_1080_00273171_2023_2201824
crossref_primary_10_1080_00273171_2025_2462033
crossref_primary_10_1371_journal_pone_0240730
crossref_primary_10_1111_cdev_13502
crossref_primary_10_1016_j_learninstruc_2021_101494
crossref_primary_10_1080_1359432X_2023_2219002
crossref_primary_10_1111_jcpp_14161
crossref_primary_10_1007_s11336_022_09858_6
crossref_primary_10_1177_10731911241234220
crossref_primary_10_1080_10705511_2022_2130331
crossref_primary_10_1080_10503307_2024_2350681
crossref_primary_10_1177_1094428120913083
crossref_primary_10_1080_00273171_2023_2261224
crossref_primary_10_1177_2515245920978738
crossref_primary_10_1016_j_psychsport_2022_102161
crossref_primary_10_1007_s12646_023_00727_5
crossref_primary_10_1080_10705511_2022_2103703
crossref_primary_10_1080_19312458_2022_2109608
crossref_primary_10_1111_jan_15173
crossref_primary_10_1186_s40359_024_01904_5
crossref_primary_10_3724_SP_J_1042_2021_01948
crossref_primary_10_1111_acer_14881
crossref_primary_10_1016_j_envres_2024_120283
crossref_primary_10_1111_cdev_13733
crossref_primary_10_1007_s10802_023_01045_0
crossref_primary_10_1016_j_learninstruc_2022_101595
crossref_primary_10_1007_s10802_023_01101_9
crossref_primary_10_3389_fpsyg_2019_02350
crossref_primary_10_1002_brb3_3134
crossref_primary_10_1016_j_paid_2021_110808
crossref_primary_10_1038_s41598_022_16877_x
crossref_primary_10_3758_s13428_022_01995_1
crossref_primary_10_1080_10705511_2021_1961587
crossref_primary_10_1080_00273171_2024_2347959
crossref_primary_10_1080_00273171_2022_2128020
crossref_primary_10_2196_30901
crossref_primary_10_1080_10503307_2021_1998700
crossref_primary_10_1016_j_cpr_2024_102435
crossref_primary_10_1016_j_sleh_2019_08_002
crossref_primary_10_1177_00936502241276793
crossref_primary_10_1038_s41598_023_47912_0
crossref_primary_10_1186_s40359_023_01209_z
crossref_primary_10_1177_1094428119833164
crossref_primary_10_1093_jcmc_zmad008
crossref_primary_10_2139_ssrn_2614085
crossref_primary_10_1080_00273171_2022_2029339
crossref_primary_10_1080_10503307_2020_1769875
crossref_primary_10_1111_jora_12471
crossref_primary_10_1016_j_learninstruc_2022_101626
crossref_primary_10_1177_10731911221137541
crossref_primary_10_1287_orsc_2023_1673
crossref_primary_10_1080_10705511_2023_2268293
crossref_primary_10_1080_00273171_2019_1627660
crossref_primary_10_1177_21677026231196121
crossref_primary_10_1080_15213269_2021_1959350
crossref_primary_10_1002_eat_23398
crossref_primary_10_1080_1743727X_2020_1793939
crossref_primary_10_1080_10705511_2023_2224515
crossref_primary_10_2196_68667
crossref_primary_10_1080_10503307_2021_1930242
crossref_primary_10_1016_j_jrp_2023_104445
crossref_primary_10_1016_j_jvb_2022_103837
crossref_primary_10_1080_10705511_2020_1753517
crossref_primary_10_1136_bmjopen_2023_077222
crossref_primary_10_1080_00273171_2021_1957663
crossref_primary_10_3758_s13428_024_02589_9
crossref_primary_10_2196_11845
crossref_primary_10_1080_00273171_2023_2205392
crossref_primary_10_1016_j_brat_2024_104518
crossref_primary_10_1016_j_brat_2024_104645
crossref_primary_10_1080_10705511_2019_1578657
crossref_primary_10_1007_s42761_024_00291_9
crossref_primary_10_1177_2515245920924686
crossref_primary_10_1080_10705511_2019_1626733
crossref_primary_10_1111_add_15344
crossref_primary_10_1177_08902070221124705
crossref_primary_10_1016_j_psychsport_2023_102384
crossref_primary_10_3224_diskurs_v14i3_06
crossref_primary_10_1080_00273171_2018_1446819
crossref_primary_10_1111_jopy_12911
crossref_primary_10_1016_j_system_2024_103493
crossref_primary_10_1016_j_cpr_2019_01_002
crossref_primary_10_1080_00273171_2024_2436420
crossref_primary_10_1007_s12144_022_03844_y
crossref_primary_10_1080_10705511_2021_1915788
crossref_primary_10_1016_j_jad_2024_01_269
crossref_primary_10_1177_19485506241234093
crossref_primary_10_2196_38582
crossref_primary_10_1016_j_janxdis_2025_102983
crossref_primary_10_1080_17437199_2021_1987953
crossref_primary_10_1080_1359432X_2023_2276534
crossref_primary_10_2337_dc22_2008
Cites_doi 10.1111/j.1467-6494.1991.tb00253.x
10.1080/10705511.2014.935256
10.1515/9780691218632
10.1080/10705511.2016.1253479
10.1037/0022-3514.45.4.851
10.1037/0022-006X.72.2.192
10.3389/fpsyg.2016.00486
10.1037/a0016972
10.1037/a0014131
10.1037/a0012532
10.1201/b16018
10.1080/00273171.2014.1003772
10.1080/10705511.2017.1406803
ContentType Journal Article
Copyright Copyright © Taylor & Francis Group, LLC
Copyright_xml – notice: Copyright © Taylor & Francis Group, LLC
DBID AAYXX
CITATION
AHOVV
ADTPV
AOWAS
DF2
DOI 10.1080/10705511.2017.1392862
DatabaseName CrossRef
Education Research Index
SwePub
SwePub Articles
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1532-8007
EndPage 515
ExternalDocumentID oai_DiVA_org_uu_353189
10_1080_10705511_2017_1392862
GroupedDBID .7I
.QK
0BK
0R~
123
4.4
5VS
AAGDL
AAGZJ
AAHIA
AAMFJ
AAMIU
AAPUL
AATTQ
AAYXX
AAZMC
ABCCY
ABFIM
ABIVO
ABJNI
ABLIJ
ABLJU
ABPEM
ABRYG
ABTAI
ABXUL
ABXYU
ABZLS
ACGFS
ACTIO
ACTOA
ADAHI
ADCVX
ADKVQ
AECIN
AEFOU
AEISY
AEKEX
AEMXT
AEOZL
AEPSL
AEYOC
AEZRU
AFHDM
AFRVT
AGDLA
AGMYJ
AGRBW
AIJEM
AIYEW
AJWEG
AKBVH
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CITATION
CJ0
CQ1
DGFLZ
DKSSO
EBS
EJD
E~B
E~C
F5P
G-F
GTTXZ
H13
HF~
HZ~
IPNFZ
J.O
KYCEM
M4Z
NA5
NW-
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RSYQP
S-F
STATR
TASJS
TBQAZ
TDBHL
TEH
TFH
TFL
TFW
TNTFI
TRJHH
TUROJ
UT5
UT9
VAE
XSW
~01
~S~
AHOVV
07M
4B3
AAAVZ
AANPH
ABBZI
ABVXC
ABWZE
ACIKQ
ACPKE
ACRBO
ADEWX
ADIUE
ADLFI
ADTPV
ADXAZ
AEXSR
AIXGP
ALLRG
AMVHM
AOWAS
C5A
CAG
CBZAQ
CKOZC
COF
C~T
DF2
DGXZK
EFRLQ
EGDCR
FXNIP
JLMOS
L7Y
LJTGL
OHT
QZZOY
RBICI
ROL
TBH
UA1
YHZ
ID FETCH-LOGICAL-c318t-b1aa47cc1b8ef706d83b91e4a7e708c6bfe29179b7e300ad27c581d7f5bd19c03
ISSN 1070-5511
1532-8007
IngestDate Thu Aug 21 07:01:56 EDT 2025
Thu Aug 14 00:04:50 EDT 2025
Wed Jul 30 11:47:47 EDT 2025
Thu Apr 24 23:00:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-b1aa47cc1b8ef706d83b91e4a7e708c6bfe29179b7e300ad27c581d7f5bd19c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1260-7737
PQID 2027585817
PQPubID 46559
PageCount 21
ParticipantIDs swepub_primary_oai_DiVA_org_uu_353189
proquest_journals_2027585817
crossref_primary_10_1080_10705511_2017_1392862
crossref_citationtrail_10_1080_10705511_2017_1392862
PublicationCentury 2000
PublicationDate 2018-07-04
PublicationDateYYYYMMDD 2018-07-04
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-04
  day: 04
PublicationDecade 2010
PublicationPlace Hove
PublicationPlace_xml – name: Hove
PublicationTitle Structural equation modeling
PublicationYear 2018
Publisher Psychology Press
Publisher_xml – name: Psychology Press
References Muthén L. K. (CIT0018) 2017
CIT0010
CIT0021
CIT0020
CIT0001
Cohen J. (CIT0008) 1992; 112
CIT0011
CIT0022
Hamilton J. D. (CIT0013) 1994
Hamaker E. (CIT0012) 2017
Asparouhov T. (CIT0004) 2010
CIT0003
CIT0014
CIT0002
CIT0016
CIT0015
Bolger N. (CIT0005) 2013
CIT0006
CIT0017
Chatfield C. (CIT0007) 2016
CIT0009
CIT0019
References_xml – ident: CIT0006
  doi: 10.1111/j.1467-6494.1991.tb00253.x
– ident: CIT0017
– ident: CIT0021
  doi: 10.1080/10705511.2014.935256
– ident: CIT0011
– volume-title: Time series analysis
  year: 1994
  ident: CIT0013
  doi: 10.1515/9780691218632
– ident: CIT0001
  doi: 10.1080/10705511.2016.1253479
– volume-title: Intensive longitudinal methods: An introduction to diary and experience sampling research
  year: 2013
  ident: CIT0005
– volume: 112
  start-page: 155
  year: 1992
  ident: CIT0008
  publication-title: Bulletin
– year: 2017
  ident: CIT0012
  publication-title: Multivariate Behavior Research
– ident: CIT0016
  doi: 10.1037/0022-3514.45.4.851
– ident: CIT0019
  doi: 10.1037/0022-006X.72.2.192
– ident: CIT0015
  doi: 10.3389/fpsyg.2016.00486
– ident: CIT0003
– volume-title: Mplus user’s guide
  year: 2017
  ident: CIT0018
– ident: CIT0022
  doi: 10.1037/a0016972
– volume-title: Bayesian analysis using Mplus: Technical implementation
  year: 2010
  ident: CIT0004
– volume-title: The analysis of time series: An introduction (6th ed
  year: 2016
  ident: CIT0007
– ident: CIT0009
  doi: 10.1037/a0014131
– ident: CIT0020
  doi: 10.1037/a0012532
– ident: CIT0010
  doi: 10.1201/b16018
– ident: CIT0014
  doi: 10.1080/00273171.2014.1003772
– ident: CIT0002
  doi: 10.1080/10705511.2017.1406803
SSID ssj0018128
Score 2.5938537
Snippet Dynamic structural equation modeling (DSEM) is a novel, intensive longitudinal data (ILD) analysis framework. DSEM models intraindividual changes over time on...
SourceID swepub
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 495
SubjectTerms Bayesian analysis
Bayesian Statistics
between-level mediation model
DSEM
Mathematical models
power
sample size
Simulation
Structural equation modeling
Structural Equation Models
Time
Time series
Title Number of Subjects and Time Points Needed for Multilevel Time-Series Analysis: A Simulation Study of Dynamic Structural Equation Modeling
URI https://www.proquest.com/docview/2027585817
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-353189
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd4ED4lMUBvIBTijFSZzY4VaxoWpSKwQd2i2qHXsr6lpYk8v-A_4T_kyev5IMJmBcojRynpO8X9979vtC6CUReRVXnEaKER3RpNJRIamMUioJFRosVNuLYDbPp8f06CQ7GQx-9KKWmlqM5eW1eSX_w1W4Bnw1WbI34GxLFC7AOfAXjsBhOP4Tj-e2nYfNO2nEFxuXYfbBTVrH6w_blYlwmYN2ApvSBBPaXNu1CRKyIyKzMaZ2bVkSl6P-aXXuG3rZEEPrfz9wXeuNB7uRrk7H4TdXItz2UlsH9eeN3N44Fcad98dZx88ZPM5liC6bWYd9dlF3mWmzpj5zbnzXUV5tTuv-HkXMbTwr7YlVECwR2GYORSqIWpDFxPW8DbLYJUF7zNGeYKWuFafX0ZlLAf1N_Lt4STObmcwE7rExmLgJ9xL_SrntX9RgG5wY-6qpgUxpyJSezC20lzCw0oZob_HxaDptPVZgKLm0S_-mIVuMkzfXPs9VO6i3uOkXrLVGzuIeuutXJ3jioHYfDdTmAboza0v77h6i7w50eKtxAB0G0GEDKexAhx3oMIAOd6DDPdDhALq3eII7yGELOUPaQw53UMIBcjhA7hE6fn-4eDeNfD-PSILmqCMRL5eUSRkLrjQjecVTUcSKLhkICi5zoVVSgIIQTKWELKuEyQyWU0xnoooLSdLHaLjZbtQThOGH0FKkqeYpzYkQuiJMVkpkRKVMixGi4euW0he7Nz1X1uUfuTtC4_a2r67ay99u2A-sK71g2JVmPxFW4TxmI_TKsbOlZqq5H6w-T8rtxWnZNGUKOpAXT2867zN0u_uf7aMhMEM9B-u4Fi88MH8C46m1Aw
linkProvider Taylor & Francis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Number+of+Subjects+and+Time+Points+Needed+for+Multilevel+Time-Series+Analysis%3A+A+Simulation+Study+of+Dynamic+Structural+Equation+Modeling&rft.jtitle=Structural+equation+modeling&rft.au=Schultzberg%2C+M%C3%A5rten&rft.au=Muth%C3%A9n%2C+Bengt&rft.date=2018-07-04&rft.issn=1070-5511&rft.eissn=1532-8007&rft.volume=25&rft.issue=4&rft.spage=495&rft.epage=515&rft_id=info:doi/10.1080%2F10705511.2017.1392862&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10705511_2017_1392862
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-5511&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-5511&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-5511&client=summon