Recursively feasible stochastic model predictive control using indirect feedback

We present a stochastic model predictive control (MPC) method for linear discrete-time systems subject to possibly unbounded and correlated additive stochastic disturbance sequences. Chance constraints are treated in analogy to robust MPC using the concept of probabilistic reachable sets for constra...

Full description

Saved in:
Bibliographic Details
Published inAutomatica (Oxford) Vol. 119; p. 109095
Main Authors Hewing, Lukas, Wabersich, Kim P., Zeilinger, Melanie N.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2020
Subjects
Online AccessGet full text
ISSN0005-1098
1873-2836
DOI10.1016/j.automatica.2020.109095

Cover

Abstract We present a stochastic model predictive control (MPC) method for linear discrete-time systems subject to possibly unbounded and correlated additive stochastic disturbance sequences. Chance constraints are treated in analogy to robust MPC using the concept of probabilistic reachable sets for constraint tightening. We introduce an initialization of each MPC iteration which is always recursively feasible and guarantees chance constraint satisfaction for the closed-loop system, which is typically challenging for systems under unbounded disturbances. Under an i.i.d. zero-mean assumption, we provide an average asymptotic performance bound. A building control example illustrates the approach in an application with time-varying, correlated disturbances.
AbstractList We present a stochastic model predictive control (MPC) method for linear discrete-time systems subject to possibly unbounded and correlated additive stochastic disturbance sequences. Chance constraints are treated in analogy to robust MPC using the concept of probabilistic reachable sets for constraint tightening. We introduce an initialization of each MPC iteration which is always recursively feasible and guarantees chance constraint satisfaction for the closed-loop system, which is typically challenging for systems under unbounded disturbances. Under an i.i.d. zero-mean assumption, we provide an average asymptotic performance bound. A building control example illustrates the approach in an application with time-varying, correlated disturbances.
ArticleNumber 109095
Author Zeilinger, Melanie N.
Wabersich, Kim P.
Hewing, Lukas
Author_xml – sequence: 1
  givenname: Lukas
  surname: Hewing
  fullname: Hewing, Lukas
  email: lhewing@ethz.ch
– sequence: 2
  givenname: Kim P.
  surname: Wabersich
  fullname: Wabersich, Kim P.
  email: wkim@ethz.ch
– sequence: 3
  givenname: Melanie N.
  surname: Zeilinger
  fullname: Zeilinger, Melanie N.
  email: mzeilinger@ethz.ch
BookMark eNqNkN9KwzAUh4NMcJu-Q16gM0nTNrsRdPgPBorodUhPTzWza0aSDfb2plQQvNGrwznJ7-Ocb0YmveuREMrZgjNeXm4WZh_d1kQLZiGYGMZLtixOyJSrKs-EyssJmTLGiiy9qDMyC2GTWsmVmJLnF4S9D_aA3ZG2aIKtO6QhOvgwITHp1jXY0Z3HxkJM3yi4PnrX0X2w_Tu1fWM9QkxZbGoDn-fktDVdwIvvOidvd7evq4ds_XT_uLpeZ5BzFbOaqQLFsuY1wBKNVHWppKxYI1mrJLRCsoLlbSUajibPS15KUVSGYwUMsa7yObkaueBdCB5bDTYmC8N2xnaaMz340Rv940cPfvToJwHUL8DO263xx_9Eb8YopgMPFr0OYLEHHF3oxtm_IV9qtopj
CitedBy_id crossref_primary_10_1002_rnc_6849
crossref_primary_10_1016_j_automatica_2022_110230
crossref_primary_10_1016_j_jfranklin_2022_02_004
crossref_primary_10_1002_rnc_5636
crossref_primary_10_1016_j_ifacol_2022_07_510
crossref_primary_10_1109_TCST_2023_3286648
crossref_primary_10_1109_TITS_2022_3147719
crossref_primary_10_1016_j_ifacol_2022_07_619
crossref_primary_10_3389_fenrg_2021_767597
crossref_primary_10_1109_LCSYS_2022_3227861
crossref_primary_10_1109_TAC_2021_3128466
crossref_primary_10_1109_LCSYS_2022_3176405
crossref_primary_10_1016_j_ifacol_2022_11_095
crossref_primary_10_1109_ACCESS_2023_3306070
crossref_primary_10_1016_j_compchemeng_2022_108112
crossref_primary_10_1016_j_enbuild_2021_111450
crossref_primary_10_1080_19401493_2022_2058087
crossref_primary_10_1109_TIV_2023_3336964
crossref_primary_10_1109_TAC_2022_3157131
crossref_primary_10_1109_TAC_2023_3273775
crossref_primary_10_1109_TAC_2024_3465522
crossref_primary_10_1109_ACCESS_2023_3326344
crossref_primary_10_1021_acs_iecr_2c02970
crossref_primary_10_1016_j_ifacol_2022_09_336
crossref_primary_10_1049_cth2_12242
crossref_primary_10_1002_rnc_6338
crossref_primary_10_1109_TAC_2023_3294868
crossref_primary_10_1109_TAC_2024_3390870
crossref_primary_10_1109_TAC_2024_3433988
crossref_primary_10_1115_1_4053887
crossref_primary_10_1016_j_ifacol_2023_10_1057
crossref_primary_10_1109_LCSYS_2024_3445723
crossref_primary_10_1109_TASE_2024_3363624
crossref_primary_10_1109_TAC_2021_3049335
crossref_primary_10_1093_imamci_dnad007
crossref_primary_10_1109_MITS_2021_3084964
crossref_primary_10_1109_JAS_2024_124974
Cites_doi 10.23919/ECC.2018.8550160
10.1016/j.ifacol.2018.11.010
10.1109/TAC.2016.2625048
10.1016/j.automatica.2016.03.016
10.1016/j.automatica.2008.03.027
10.1109/CDC.2013.6761117
10.1016/j.automatica.2008.06.017
10.1109/TAC.2014.2310066
10.1016/j.automatica.2003.08.009
10.1109/TAC.2010.2086553
10.1016/j.jprocont.2016.03.005
10.1109/CDC.2018.8619554
10.1109/MCS.2016.2602087
10.23919/ECC.2018.8550520
10.1016/j.automatica.2012.06.074
10.1016/j.automatica.2015.02.039
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.automatica.2020.109095
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2836
ExternalDocumentID 10_1016_j_automatica_2020_109095
S0005109820302934
GrantInformation_xml – fundername: Swiss National Science Foundation
  grantid: PP00P2_157601/1
  funderid: http://dx.doi.org/10.13039/501100001711
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23N
3R3
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABDEX
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPGS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
T9H
TAE
TN5
VH1
WH7
WUQ
X6Y
XFK
XPP
ZMT
~G-
77I
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c318t-b085e29b1bcc9ea48b684470d40f84cf240503f72d1ea336164257a1e7c0eeb73
IEDL.DBID .~1
ISSN 0005-1098
IngestDate Thu Apr 24 23:08:46 EDT 2025
Wed Oct 01 05:28:39 EDT 2025
Fri Feb 23 02:46:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Chance constraints
Stochastic model predictive control
Predictive control
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c318t-b085e29b1bcc9ea48b684470d40f84cf240503f72d1ea336164257a1e7c0eeb73
ParticipantIDs crossref_citationtrail_10_1016_j_automatica_2020_109095
crossref_primary_10_1016_j_automatica_2020_109095
elsevier_sciencedirect_doi_10_1016_j_automatica_2020_109095
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationTitle Automatica (Oxford)
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Farina, Giulioni, Magni, Scattolini (b9) 2015; 55
Cannon, Kouvaritakis, Wu (b5) 2009; 45
Farina, Giulioni, Scattolini (b10) 2016; 44
Lorenzen, Dabbene, Tempo, Allgöwer (b17) 2017; 62
Kofman, De Don, Seron (b13) 2012; 48
Mayne, David Q. (2018). Competing methods for robust and stochastic MPC. In
(pp. 7734–7739).
Yan, Shuhao, Goulart, Paul, & Cannon, Mark (2018). Stochastic model predictive control with discounted probabilistic constraints. In
Hewing, Lukas, & Zeilinger, Melanie Nicole (2018). Stochastic model predictive control for linear systems using probabilistic reachable sets. In
Boyd, Vandenberghe (b3) 2004
Farina, Marcello, Giulioni, Luca, Magni, Lalo, & Scattolini, Riccardo (2013). A probabilistic approach to Model Predictive Control. In
Mesbah (b19) 2016; 36
Touzi (b23) 2012
Bertsekas (b2) 2012
Esfahani, Chatterjee, Lygeros (b7) 2016; 70
Langson, Chryssochoos, Raković, Mayne (b16) 2004; 40
D. Gyalistras (b6) 2009
Cannon, Kouvaritakis, Rakovic, Cheng (b4) 2011; 56
Abate, Prandini, Lygeros, Sastry (b1) 2008; 44
Hewing, Lukas, Carron, Andera, Wabersich, Kim, & Zeilinger, Melanie N. (2018). On a correspondence between probabilistic and robust invariant sets for linear systems. In
.
Pola, Giordano, Lygeros, John, & Di Benedetto, Maria Domenica (2006). Invariance in stochastic dynamical control systems. In
Kouvaritakis, Cannon (b15) 2016
Korda, Gondhalekar, Oldewurtel, Jones (b14) 2014; 59
Paulson, Buehler, Braatz, Mesbah (b20) 2017
Rawlings, Mayne (b22) 2009
D. Gyalistras (10.1016/j.automatica.2020.109095_b6) 2009
Cannon (10.1016/j.automatica.2020.109095_b5) 2009; 45
Paulson (10.1016/j.automatica.2020.109095_b20) 2017
Rawlings (10.1016/j.automatica.2020.109095_b22) 2009
Abate (10.1016/j.automatica.2020.109095_b1) 2008; 44
Korda (10.1016/j.automatica.2020.109095_b14) 2014; 59
10.1016/j.automatica.2020.109095_b11
10.1016/j.automatica.2020.109095_b21
Esfahani (10.1016/j.automatica.2020.109095_b7) 2016; 70
Bertsekas (10.1016/j.automatica.2020.109095_b2) 2012
Touzi (10.1016/j.automatica.2020.109095_b23) 2012
Lorenzen (10.1016/j.automatica.2020.109095_b17) 2017; 62
Kouvaritakis (10.1016/j.automatica.2020.109095_b15) 2016
10.1016/j.automatica.2020.109095_b18
10.1016/j.automatica.2020.109095_b24
Boyd (10.1016/j.automatica.2020.109095_b3) 2004
Farina (10.1016/j.automatica.2020.109095_b9) 2015; 55
Farina (10.1016/j.automatica.2020.109095_b10) 2016; 44
10.1016/j.automatica.2020.109095_b12
Langson (10.1016/j.automatica.2020.109095_b16) 2004; 40
Kofman (10.1016/j.automatica.2020.109095_b13) 2012; 48
Mesbah (10.1016/j.automatica.2020.109095_b19) 2016; 36
Cannon (10.1016/j.automatica.2020.109095_b4) 2011; 56
10.1016/j.automatica.2020.109095_b8
References_xml – volume: 44
  start-page: 53
  year: 2016
  end-page: 67
  ident: b10
  article-title: Stochastic linear Model Predictive Control with chance constraints - A review
  publication-title: Journal of Process Control
– volume: 59
  start-page: 1706
  year: 2014
  end-page: 1721
  ident: b14
  article-title: Stochastic MPC framework for controlling the average constraint violation
  publication-title: IEEE Transactions on Automatic Control
– reference: Hewing, Lukas, & Zeilinger, Melanie Nicole (2018). Stochastic model predictive control for linear systems using probabilistic reachable sets. In
– year: 2004
  ident: b3
  article-title: Convex optimization
– volume: 45
  start-page: 167
  year: 2009
  end-page: 172
  ident: b5
  article-title: Model predictive control for systems with stochastic multiplicative uncertainty and probabilistic constraints
  publication-title: Automatica
– year: 2009
  ident: b6
  article-title: Use of weather and occupancy forecasts for optimal building climate control (OptiControl): two years progress report
– reference: Yan, Shuhao, Goulart, Paul, & Cannon, Mark (2018). Stochastic model predictive control with discounted probabilistic constraints. In
– year: 2012
  ident: b2
  article-title: Dynamic programming and optimal control: Approximate dynamic programming (vol. 2)
– year: 2016
  ident: b15
  article-title: Model predictive control: Classical, robust and stochastic
– volume: 40
  start-page: 125
  year: 2004
  end-page: 133
  ident: b16
  article-title: Robust model predictive control using tubes
  publication-title: Automatica
– volume: 70
  start-page: 43
  year: 2016
  end-page: 56
  ident: b7
  article-title: The stochastic reach-avoid problem and set characterization for diffusions
  publication-title: Automatica
– reference: Mayne, David Q. (2018). Competing methods for robust and stochastic MPC. In
– reference: Hewing, Lukas, Carron, Andera, Wabersich, Kim, & Zeilinger, Melanie N. (2018). On a correspondence between probabilistic and robust invariant sets for linear systems. In
– volume: 36
  start-page: 30
  year: 2016
  end-page: 44
  ident: b19
  article-title: Stochastic model predictive control: An overview and perspectives for future research
  publication-title: IEEE Control Systems
– reference: (pp. 7734–7739).
– volume: 48
  start-page: 2670
  year: 2012
  end-page: 2676
  ident: b13
  article-title: Probabilistic set invariance and ultimate boundedness
  publication-title: Automatica
– year: 2017
  ident: b20
  article-title: Stochastic model predictive control with joint chance constraints
  publication-title: International Journal of Control
– volume: 55
  start-page: 140
  year: 2015
  end-page: 149
  ident: b9
  article-title: An approach to output-feedback MPC of stochastic linear discrete-time systems
  publication-title: Automatica
– year: 2012
  ident: b23
  article-title: Optimal stochastic control, stochastic target problems, and backward SDE (vol. 29)
– volume: 44
  start-page: 2724
  year: 2008
  end-page: 2734
  ident: b1
  article-title: Probabilistic reachability and safety for controlled discrete time stochastic hybrid systems
  publication-title: Automatica
– reference: .
– reference: Farina, Marcello, Giulioni, Luca, Magni, Lalo, & Scattolini, Riccardo (2013). A probabilistic approach to Model Predictive Control. In
– volume: 56
  start-page: 194
  year: 2011
  end-page: 200
  ident: b4
  article-title: Stochastic tubes in model predictive control with probabilistic constraints
  publication-title: IEEE Transactions on Automatic Control
– volume: 62
  start-page: 3165
  year: 2017
  end-page: 3177
  ident: b17
  article-title: Constraint-tightening and stability in stochastic model predictive control
  publication-title: IEEE Transactions on Automatic Control
– reference: Pola, Giordano, Lygeros, John, & Di Benedetto, Maria Domenica (2006). Invariance in stochastic dynamical control systems. In
– year: 2009
  ident: b22
  article-title: Model predictive control: Theory and design
– ident: 10.1016/j.automatica.2020.109095_b11
  doi: 10.23919/ECC.2018.8550160
– ident: 10.1016/j.automatica.2020.109095_b18
  doi: 10.1016/j.ifacol.2018.11.010
– volume: 62
  start-page: 3165
  issue: 7
  year: 2017
  ident: 10.1016/j.automatica.2020.109095_b17
  article-title: Constraint-tightening and stability in stochastic model predictive control
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2016.2625048
– year: 2012
  ident: 10.1016/j.automatica.2020.109095_b2
– volume: 70
  start-page: 43
  year: 2016
  ident: 10.1016/j.automatica.2020.109095_b7
  article-title: The stochastic reach-avoid problem and set characterization for diffusions
  publication-title: Automatica
  doi: 10.1016/j.automatica.2016.03.016
– volume: 44
  start-page: 2724
  issue: 11
  year: 2008
  ident: 10.1016/j.automatica.2020.109095_b1
  article-title: Probabilistic reachability and safety for controlled discrete time stochastic hybrid systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2008.03.027
– year: 2004
  ident: 10.1016/j.automatica.2020.109095_b3
– ident: 10.1016/j.automatica.2020.109095_b8
  doi: 10.1109/CDC.2013.6761117
– year: 2016
  ident: 10.1016/j.automatica.2020.109095_b15
– volume: 45
  start-page: 167
  issue: 1
  year: 2009
  ident: 10.1016/j.automatica.2020.109095_b5
  article-title: Model predictive control for systems with stochastic multiplicative uncertainty and probabilistic constraints
  publication-title: Automatica
  doi: 10.1016/j.automatica.2008.06.017
– ident: 10.1016/j.automatica.2020.109095_b21
– year: 2012
  ident: 10.1016/j.automatica.2020.109095_b23
– year: 2017
  ident: 10.1016/j.automatica.2020.109095_b20
  article-title: Stochastic model predictive control with joint chance constraints
  publication-title: International Journal of Control
– volume: 59
  start-page: 1706
  issue: 7
  year: 2014
  ident: 10.1016/j.automatica.2020.109095_b14
  article-title: Stochastic MPC framework for controlling the average constraint violation
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2014.2310066
– volume: 40
  start-page: 125
  issue: 1
  year: 2004
  ident: 10.1016/j.automatica.2020.109095_b16
  article-title: Robust model predictive control using tubes
  publication-title: Automatica
  doi: 10.1016/j.automatica.2003.08.009
– volume: 56
  start-page: 194
  issue: 1
  year: 2011
  ident: 10.1016/j.automatica.2020.109095_b4
  article-title: Stochastic tubes in model predictive control with probabilistic constraints
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2010.2086553
– volume: 44
  start-page: 53
  year: 2016
  ident: 10.1016/j.automatica.2020.109095_b10
  article-title: Stochastic linear Model Predictive Control with chance constraints - A review
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2016.03.005
– ident: 10.1016/j.automatica.2020.109095_b12
  doi: 10.1109/CDC.2018.8619554
– volume: 36
  start-page: 30
  issue: 6
  year: 2016
  ident: 10.1016/j.automatica.2020.109095_b19
  article-title: Stochastic model predictive control: An overview and perspectives for future research
  publication-title: IEEE Control Systems
  doi: 10.1109/MCS.2016.2602087
– year: 2009
  ident: 10.1016/j.automatica.2020.109095_b22
– ident: 10.1016/j.automatica.2020.109095_b24
  doi: 10.23919/ECC.2018.8550520
– volume: 48
  start-page: 2670
  issue: 10
  year: 2012
  ident: 10.1016/j.automatica.2020.109095_b13
  article-title: Probabilistic set invariance and ultimate boundedness
  publication-title: Automatica
  doi: 10.1016/j.automatica.2012.06.074
– year: 2009
  ident: 10.1016/j.automatica.2020.109095_b6
– volume: 55
  start-page: 140
  year: 2015
  ident: 10.1016/j.automatica.2020.109095_b9
  article-title: An approach to output-feedback MPC of stochastic linear discrete-time systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2015.02.039
SSID ssj0004182
Score 2.6126375
Snippet We present a stochastic model predictive control (MPC) method for linear discrete-time systems subject to possibly unbounded and correlated additive stochastic...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109095
SubjectTerms Chance constraints
Predictive control
Stochastic model predictive control
Title Recursively feasible stochastic model predictive control using indirect feedback
URI https://dx.doi.org/10.1016/j.automatica.2020.109095
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2836
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004182
  issn: 0005-1098
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-2836
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004182
  issn: 0005-1098
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-2836
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004182
  issn: 0005-1098
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-2836
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004182
  issn: 0005-1098
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2836
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004182
  issn: 0005-1098
  databaseCode: AKRWK
  dateStart: 19630101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF2KXvQgfmL9KHvwGpuPzSbBUymWqlhELPQWdjcTrZa2lPTgxd_uTLKxFQQFjwlMCMPsm7fJ2zeMXZDpHPZ1RD8_8R0hfcAllUtHIvQhm_Vyv5xFcD-Q_aG4HYWjBuvWZ2FIVmmxv8L0Eq3tnbbNZns-HtMZXyoofCLWKTYt8gQl9y-s6cuPlcxDeHHlGF46biaxVfNUGi-1LGalMyo5EPmlt5JLkyZ-alFrbae3y3YsX-Sd6pX2WAOm-2x7zUXwgD080jdzkqFP3nkOCot8AhxJnXlR5MLMy2k3fL6gfzKEbtzq0zmJ3p85_bWmHGAsZFqZt0M27F0_dfuOHZTgGFyShaORN4GfaE8bk4ASsZaxEJGbCTePhcmxa4dukEd-5oEKAolbJFypyoPIuAA6Co7YxnQ2hWPGRSJCnSEJCwMQuBvSgYRIKmSRGjIA2WRRnZvUWBdxGmYxSWu52Gu6ympKWU2rrDaZ9xU5r5w0_hBzVac__VYVKQL-r9En_4o-ZVt0VenJzthGsVjCORKQQrfKCmuxzc7NXX_wCQly2yM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60PagH8Yn1uQevwTw2mwRPIkq1D0Ra8LZkNxNfpZZSD_57Z5KtDxAUvCZMCMPsN98m334DcMymc9TXCf3CLPSkCpGWVKk8RdBHbDYow2oWQa-v2kN5fRffLcD5_CwMyyod9teYXqG1u3LisnkyeXzkM75cUPREqlNqWnIRmjImTG5A8-yq0-5_Ho8M0to0vDLdzFIn6KllXvnr7KUyR2UTorCyV_J52MRPXepL57lcg1VHGcVZ_VbrsIDjDVj5YiS4CTe3_NmcleijN1FiTnU-QkG8zj7kbMQsqoE3YjLl3zIMcMJJ1AXr3u8F_7jmNFAsFia3z1swvLwYnLc9NyvBs7QqZ54h6oRhZgJjbYa5TI1KpUz8QvplKm1JjTv2ozIJiwDzKFK0S6LFmgeYWB_RJNE2NMYvY9wBITMZm4J4WByhpA2RiRQmKiciabBAVC1I5rnR1hmJ8zyLkZ4rxp70Z1Y1Z1XXWW1B8BE5qc00_hBzOk-__lYYmjD_1-jdf0UfwVJ70Ovq7lW_swfLfKeWl-1DYzZ9xQPiIzNz6OrtHYJW3c4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recursively+feasible+stochastic+model+predictive+control+using+indirect+feedback&rft.jtitle=Automatica+%28Oxford%29&rft.au=Hewing%2C+Lukas&rft.au=Wabersich%2C+Kim+P.&rft.au=Zeilinger%2C+Melanie+N.&rft.date=2020-09-01&rft.pub=Elsevier+Ltd&rft.issn=0005-1098&rft.eissn=1873-2836&rft.volume=119&rft_id=info:doi/10.1016%2Fj.automatica.2020.109095&rft.externalDocID=S0005109820302934
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon