Recursively feasible stochastic model predictive control using indirect feedback
We present a stochastic model predictive control (MPC) method for linear discrete-time systems subject to possibly unbounded and correlated additive stochastic disturbance sequences. Chance constraints are treated in analogy to robust MPC using the concept of probabilistic reachable sets for constra...
Saved in:
Published in | Automatica (Oxford) Vol. 119; p. 109095 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0005-1098 1873-2836 |
DOI | 10.1016/j.automatica.2020.109095 |
Cover
Abstract | We present a stochastic model predictive control (MPC) method for linear discrete-time systems subject to possibly unbounded and correlated additive stochastic disturbance sequences. Chance constraints are treated in analogy to robust MPC using the concept of probabilistic reachable sets for constraint tightening. We introduce an initialization of each MPC iteration which is always recursively feasible and guarantees chance constraint satisfaction for the closed-loop system, which is typically challenging for systems under unbounded disturbances. Under an i.i.d. zero-mean assumption, we provide an average asymptotic performance bound. A building control example illustrates the approach in an application with time-varying, correlated disturbances. |
---|---|
AbstractList | We present a stochastic model predictive control (MPC) method for linear discrete-time systems subject to possibly unbounded and correlated additive stochastic disturbance sequences. Chance constraints are treated in analogy to robust MPC using the concept of probabilistic reachable sets for constraint tightening. We introduce an initialization of each MPC iteration which is always recursively feasible and guarantees chance constraint satisfaction for the closed-loop system, which is typically challenging for systems under unbounded disturbances. Under an i.i.d. zero-mean assumption, we provide an average asymptotic performance bound. A building control example illustrates the approach in an application with time-varying, correlated disturbances. |
ArticleNumber | 109095 |
Author | Zeilinger, Melanie N. Wabersich, Kim P. Hewing, Lukas |
Author_xml | – sequence: 1 givenname: Lukas surname: Hewing fullname: Hewing, Lukas email: lhewing@ethz.ch – sequence: 2 givenname: Kim P. surname: Wabersich fullname: Wabersich, Kim P. email: wkim@ethz.ch – sequence: 3 givenname: Melanie N. surname: Zeilinger fullname: Zeilinger, Melanie N. email: mzeilinger@ethz.ch |
BookMark | eNqNkN9KwzAUh4NMcJu-Q16gM0nTNrsRdPgPBorodUhPTzWza0aSDfb2plQQvNGrwznJ7-Ocb0YmveuREMrZgjNeXm4WZh_d1kQLZiGYGMZLtixOyJSrKs-EyssJmTLGiiy9qDMyC2GTWsmVmJLnF4S9D_aA3ZG2aIKtO6QhOvgwITHp1jXY0Z3HxkJM3yi4PnrX0X2w_Tu1fWM9QkxZbGoDn-fktDVdwIvvOidvd7evq4ds_XT_uLpeZ5BzFbOaqQLFsuY1wBKNVHWppKxYI1mrJLRCsoLlbSUajibPS15KUVSGYwUMsa7yObkaueBdCB5bDTYmC8N2xnaaMz340Rv940cPfvToJwHUL8DO263xx_9Eb8YopgMPFr0OYLEHHF3oxtm_IV9qtopj |
CitedBy_id | crossref_primary_10_1002_rnc_6849 crossref_primary_10_1016_j_automatica_2022_110230 crossref_primary_10_1016_j_jfranklin_2022_02_004 crossref_primary_10_1002_rnc_5636 crossref_primary_10_1016_j_ifacol_2022_07_510 crossref_primary_10_1109_TCST_2023_3286648 crossref_primary_10_1109_TITS_2022_3147719 crossref_primary_10_1016_j_ifacol_2022_07_619 crossref_primary_10_3389_fenrg_2021_767597 crossref_primary_10_1109_LCSYS_2022_3227861 crossref_primary_10_1109_TAC_2021_3128466 crossref_primary_10_1109_LCSYS_2022_3176405 crossref_primary_10_1016_j_ifacol_2022_11_095 crossref_primary_10_1109_ACCESS_2023_3306070 crossref_primary_10_1016_j_compchemeng_2022_108112 crossref_primary_10_1016_j_enbuild_2021_111450 crossref_primary_10_1080_19401493_2022_2058087 crossref_primary_10_1109_TIV_2023_3336964 crossref_primary_10_1109_TAC_2022_3157131 crossref_primary_10_1109_TAC_2023_3273775 crossref_primary_10_1109_TAC_2024_3465522 crossref_primary_10_1109_ACCESS_2023_3326344 crossref_primary_10_1021_acs_iecr_2c02970 crossref_primary_10_1016_j_ifacol_2022_09_336 crossref_primary_10_1049_cth2_12242 crossref_primary_10_1002_rnc_6338 crossref_primary_10_1109_TAC_2023_3294868 crossref_primary_10_1109_TAC_2024_3390870 crossref_primary_10_1109_TAC_2024_3433988 crossref_primary_10_1115_1_4053887 crossref_primary_10_1016_j_ifacol_2023_10_1057 crossref_primary_10_1109_LCSYS_2024_3445723 crossref_primary_10_1109_TASE_2024_3363624 crossref_primary_10_1109_TAC_2021_3049335 crossref_primary_10_1093_imamci_dnad007 crossref_primary_10_1109_MITS_2021_3084964 crossref_primary_10_1109_JAS_2024_124974 |
Cites_doi | 10.23919/ECC.2018.8550160 10.1016/j.ifacol.2018.11.010 10.1109/TAC.2016.2625048 10.1016/j.automatica.2016.03.016 10.1016/j.automatica.2008.03.027 10.1109/CDC.2013.6761117 10.1016/j.automatica.2008.06.017 10.1109/TAC.2014.2310066 10.1016/j.automatica.2003.08.009 10.1109/TAC.2010.2086553 10.1016/j.jprocont.2016.03.005 10.1109/CDC.2018.8619554 10.1109/MCS.2016.2602087 10.23919/ECC.2018.8550520 10.1016/j.automatica.2012.06.074 10.1016/j.automatica.2015.02.039 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.automatica.2020.109095 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2836 |
ExternalDocumentID | 10_1016_j_automatica_2020_109095 S0005109820302934 |
GrantInformation_xml | – fundername: Swiss National Science Foundation grantid: PP00P2_157601/1 funderid: http://dx.doi.org/10.13039/501100001711 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 23N 3R3 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABDEX ABFNM ABFRF ABJNI ABMAC ABUCO ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPGS AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA K-O KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SSB SSD SST SSZ T5K T9H TAE TN5 VH1 WH7 WUQ X6Y XFK XPP ZMT ~G- 77I AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
ID | FETCH-LOGICAL-c318t-b085e29b1bcc9ea48b684470d40f84cf240503f72d1ea336164257a1e7c0eeb73 |
IEDL.DBID | .~1 |
ISSN | 0005-1098 |
IngestDate | Thu Apr 24 23:08:46 EDT 2025 Wed Oct 01 05:28:39 EDT 2025 Fri Feb 23 02:46:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Chance constraints Stochastic model predictive control Predictive control |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c318t-b085e29b1bcc9ea48b684470d40f84cf240503f72d1ea336164257a1e7c0eeb73 |
ParticipantIDs | crossref_citationtrail_10_1016_j_automatica_2020_109095 crossref_primary_10_1016_j_automatica_2020_109095 elsevier_sciencedirect_doi_10_1016_j_automatica_2020_109095 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2020 2020-09-00 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationTitle | Automatica (Oxford) |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Farina, Giulioni, Magni, Scattolini (b9) 2015; 55 Cannon, Kouvaritakis, Wu (b5) 2009; 45 Farina, Giulioni, Scattolini (b10) 2016; 44 Lorenzen, Dabbene, Tempo, Allgöwer (b17) 2017; 62 Kofman, De Don, Seron (b13) 2012; 48 Mayne, David Q. (2018). Competing methods for robust and stochastic MPC. In (pp. 7734–7739). Yan, Shuhao, Goulart, Paul, & Cannon, Mark (2018). Stochastic model predictive control with discounted probabilistic constraints. In Hewing, Lukas, & Zeilinger, Melanie Nicole (2018). Stochastic model predictive control for linear systems using probabilistic reachable sets. In Boyd, Vandenberghe (b3) 2004 Farina, Marcello, Giulioni, Luca, Magni, Lalo, & Scattolini, Riccardo (2013). A probabilistic approach to Model Predictive Control. In Mesbah (b19) 2016; 36 Touzi (b23) 2012 Bertsekas (b2) 2012 Esfahani, Chatterjee, Lygeros (b7) 2016; 70 Langson, Chryssochoos, Raković, Mayne (b16) 2004; 40 D. Gyalistras (b6) 2009 Cannon, Kouvaritakis, Rakovic, Cheng (b4) 2011; 56 Abate, Prandini, Lygeros, Sastry (b1) 2008; 44 Hewing, Lukas, Carron, Andera, Wabersich, Kim, & Zeilinger, Melanie N. (2018). On a correspondence between probabilistic and robust invariant sets for linear systems. In . Pola, Giordano, Lygeros, John, & Di Benedetto, Maria Domenica (2006). Invariance in stochastic dynamical control systems. In Kouvaritakis, Cannon (b15) 2016 Korda, Gondhalekar, Oldewurtel, Jones (b14) 2014; 59 Paulson, Buehler, Braatz, Mesbah (b20) 2017 Rawlings, Mayne (b22) 2009 D. Gyalistras (10.1016/j.automatica.2020.109095_b6) 2009 Cannon (10.1016/j.automatica.2020.109095_b5) 2009; 45 Paulson (10.1016/j.automatica.2020.109095_b20) 2017 Rawlings (10.1016/j.automatica.2020.109095_b22) 2009 Abate (10.1016/j.automatica.2020.109095_b1) 2008; 44 Korda (10.1016/j.automatica.2020.109095_b14) 2014; 59 10.1016/j.automatica.2020.109095_b11 10.1016/j.automatica.2020.109095_b21 Esfahani (10.1016/j.automatica.2020.109095_b7) 2016; 70 Bertsekas (10.1016/j.automatica.2020.109095_b2) 2012 Touzi (10.1016/j.automatica.2020.109095_b23) 2012 Lorenzen (10.1016/j.automatica.2020.109095_b17) 2017; 62 Kouvaritakis (10.1016/j.automatica.2020.109095_b15) 2016 10.1016/j.automatica.2020.109095_b18 10.1016/j.automatica.2020.109095_b24 Boyd (10.1016/j.automatica.2020.109095_b3) 2004 Farina (10.1016/j.automatica.2020.109095_b9) 2015; 55 Farina (10.1016/j.automatica.2020.109095_b10) 2016; 44 10.1016/j.automatica.2020.109095_b12 Langson (10.1016/j.automatica.2020.109095_b16) 2004; 40 Kofman (10.1016/j.automatica.2020.109095_b13) 2012; 48 Mesbah (10.1016/j.automatica.2020.109095_b19) 2016; 36 Cannon (10.1016/j.automatica.2020.109095_b4) 2011; 56 10.1016/j.automatica.2020.109095_b8 |
References_xml | – volume: 44 start-page: 53 year: 2016 end-page: 67 ident: b10 article-title: Stochastic linear Model Predictive Control with chance constraints - A review publication-title: Journal of Process Control – volume: 59 start-page: 1706 year: 2014 end-page: 1721 ident: b14 article-title: Stochastic MPC framework for controlling the average constraint violation publication-title: IEEE Transactions on Automatic Control – reference: Hewing, Lukas, & Zeilinger, Melanie Nicole (2018). Stochastic model predictive control for linear systems using probabilistic reachable sets. In – year: 2004 ident: b3 article-title: Convex optimization – volume: 45 start-page: 167 year: 2009 end-page: 172 ident: b5 article-title: Model predictive control for systems with stochastic multiplicative uncertainty and probabilistic constraints publication-title: Automatica – year: 2009 ident: b6 article-title: Use of weather and occupancy forecasts for optimal building climate control (OptiControl): two years progress report – reference: Yan, Shuhao, Goulart, Paul, & Cannon, Mark (2018). Stochastic model predictive control with discounted probabilistic constraints. In – year: 2012 ident: b2 article-title: Dynamic programming and optimal control: Approximate dynamic programming (vol. 2) – year: 2016 ident: b15 article-title: Model predictive control: Classical, robust and stochastic – volume: 40 start-page: 125 year: 2004 end-page: 133 ident: b16 article-title: Robust model predictive control using tubes publication-title: Automatica – volume: 70 start-page: 43 year: 2016 end-page: 56 ident: b7 article-title: The stochastic reach-avoid problem and set characterization for diffusions publication-title: Automatica – reference: Mayne, David Q. (2018). Competing methods for robust and stochastic MPC. In – reference: Hewing, Lukas, Carron, Andera, Wabersich, Kim, & Zeilinger, Melanie N. (2018). On a correspondence between probabilistic and robust invariant sets for linear systems. In – volume: 36 start-page: 30 year: 2016 end-page: 44 ident: b19 article-title: Stochastic model predictive control: An overview and perspectives for future research publication-title: IEEE Control Systems – reference: (pp. 7734–7739). – volume: 48 start-page: 2670 year: 2012 end-page: 2676 ident: b13 article-title: Probabilistic set invariance and ultimate boundedness publication-title: Automatica – year: 2017 ident: b20 article-title: Stochastic model predictive control with joint chance constraints publication-title: International Journal of Control – volume: 55 start-page: 140 year: 2015 end-page: 149 ident: b9 article-title: An approach to output-feedback MPC of stochastic linear discrete-time systems publication-title: Automatica – year: 2012 ident: b23 article-title: Optimal stochastic control, stochastic target problems, and backward SDE (vol. 29) – volume: 44 start-page: 2724 year: 2008 end-page: 2734 ident: b1 article-title: Probabilistic reachability and safety for controlled discrete time stochastic hybrid systems publication-title: Automatica – reference: . – reference: Farina, Marcello, Giulioni, Luca, Magni, Lalo, & Scattolini, Riccardo (2013). A probabilistic approach to Model Predictive Control. In – volume: 56 start-page: 194 year: 2011 end-page: 200 ident: b4 article-title: Stochastic tubes in model predictive control with probabilistic constraints publication-title: IEEE Transactions on Automatic Control – volume: 62 start-page: 3165 year: 2017 end-page: 3177 ident: b17 article-title: Constraint-tightening and stability in stochastic model predictive control publication-title: IEEE Transactions on Automatic Control – reference: Pola, Giordano, Lygeros, John, & Di Benedetto, Maria Domenica (2006). Invariance in stochastic dynamical control systems. In – year: 2009 ident: b22 article-title: Model predictive control: Theory and design – ident: 10.1016/j.automatica.2020.109095_b11 doi: 10.23919/ECC.2018.8550160 – ident: 10.1016/j.automatica.2020.109095_b18 doi: 10.1016/j.ifacol.2018.11.010 – volume: 62 start-page: 3165 issue: 7 year: 2017 ident: 10.1016/j.automatica.2020.109095_b17 article-title: Constraint-tightening and stability in stochastic model predictive control publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2016.2625048 – year: 2012 ident: 10.1016/j.automatica.2020.109095_b2 – volume: 70 start-page: 43 year: 2016 ident: 10.1016/j.automatica.2020.109095_b7 article-title: The stochastic reach-avoid problem and set characterization for diffusions publication-title: Automatica doi: 10.1016/j.automatica.2016.03.016 – volume: 44 start-page: 2724 issue: 11 year: 2008 ident: 10.1016/j.automatica.2020.109095_b1 article-title: Probabilistic reachability and safety for controlled discrete time stochastic hybrid systems publication-title: Automatica doi: 10.1016/j.automatica.2008.03.027 – year: 2004 ident: 10.1016/j.automatica.2020.109095_b3 – ident: 10.1016/j.automatica.2020.109095_b8 doi: 10.1109/CDC.2013.6761117 – year: 2016 ident: 10.1016/j.automatica.2020.109095_b15 – volume: 45 start-page: 167 issue: 1 year: 2009 ident: 10.1016/j.automatica.2020.109095_b5 article-title: Model predictive control for systems with stochastic multiplicative uncertainty and probabilistic constraints publication-title: Automatica doi: 10.1016/j.automatica.2008.06.017 – ident: 10.1016/j.automatica.2020.109095_b21 – year: 2012 ident: 10.1016/j.automatica.2020.109095_b23 – year: 2017 ident: 10.1016/j.automatica.2020.109095_b20 article-title: Stochastic model predictive control with joint chance constraints publication-title: International Journal of Control – volume: 59 start-page: 1706 issue: 7 year: 2014 ident: 10.1016/j.automatica.2020.109095_b14 article-title: Stochastic MPC framework for controlling the average constraint violation publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2014.2310066 – volume: 40 start-page: 125 issue: 1 year: 2004 ident: 10.1016/j.automatica.2020.109095_b16 article-title: Robust model predictive control using tubes publication-title: Automatica doi: 10.1016/j.automatica.2003.08.009 – volume: 56 start-page: 194 issue: 1 year: 2011 ident: 10.1016/j.automatica.2020.109095_b4 article-title: Stochastic tubes in model predictive control with probabilistic constraints publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2010.2086553 – volume: 44 start-page: 53 year: 2016 ident: 10.1016/j.automatica.2020.109095_b10 article-title: Stochastic linear Model Predictive Control with chance constraints - A review publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2016.03.005 – ident: 10.1016/j.automatica.2020.109095_b12 doi: 10.1109/CDC.2018.8619554 – volume: 36 start-page: 30 issue: 6 year: 2016 ident: 10.1016/j.automatica.2020.109095_b19 article-title: Stochastic model predictive control: An overview and perspectives for future research publication-title: IEEE Control Systems doi: 10.1109/MCS.2016.2602087 – year: 2009 ident: 10.1016/j.automatica.2020.109095_b22 – ident: 10.1016/j.automatica.2020.109095_b24 doi: 10.23919/ECC.2018.8550520 – volume: 48 start-page: 2670 issue: 10 year: 2012 ident: 10.1016/j.automatica.2020.109095_b13 article-title: Probabilistic set invariance and ultimate boundedness publication-title: Automatica doi: 10.1016/j.automatica.2012.06.074 – year: 2009 ident: 10.1016/j.automatica.2020.109095_b6 – volume: 55 start-page: 140 year: 2015 ident: 10.1016/j.automatica.2020.109095_b9 article-title: An approach to output-feedback MPC of stochastic linear discrete-time systems publication-title: Automatica doi: 10.1016/j.automatica.2015.02.039 |
SSID | ssj0004182 |
Score | 2.6126375 |
Snippet | We present a stochastic model predictive control (MPC) method for linear discrete-time systems subject to possibly unbounded and correlated additive stochastic... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109095 |
SubjectTerms | Chance constraints Predictive control Stochastic model predictive control |
Title | Recursively feasible stochastic model predictive control using indirect feedback |
URI | https://dx.doi.org/10.1016/j.automatica.2020.109095 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004182 issn: 0005-1098 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-2836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004182 issn: 0005-1098 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-2836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004182 issn: 0005-1098 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1873-2836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004182 issn: 0005-1098 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004182 issn: 0005-1098 databaseCode: AKRWK dateStart: 19630101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF2KXvQgfmL9KHvwGpuPzSbBUymWqlhELPQWdjcTrZa2lPTgxd_uTLKxFQQFjwlMCMPsm7fJ2zeMXZDpHPZ1RD8_8R0hfcAllUtHIvQhm_Vyv5xFcD-Q_aG4HYWjBuvWZ2FIVmmxv8L0Eq3tnbbNZns-HtMZXyoofCLWKTYt8gQl9y-s6cuPlcxDeHHlGF46biaxVfNUGi-1LGalMyo5EPmlt5JLkyZ-alFrbae3y3YsX-Sd6pX2WAOm-2x7zUXwgD080jdzkqFP3nkOCot8AhxJnXlR5MLMy2k3fL6gfzKEbtzq0zmJ3p85_bWmHGAsZFqZt0M27F0_dfuOHZTgGFyShaORN4GfaE8bk4ASsZaxEJGbCTePhcmxa4dukEd-5oEKAolbJFypyoPIuAA6Co7YxnQ2hWPGRSJCnSEJCwMQuBvSgYRIKmSRGjIA2WRRnZvUWBdxGmYxSWu52Gu6ympKWU2rrDaZ9xU5r5w0_hBzVac__VYVKQL-r9En_4o-ZVt0VenJzthGsVjCORKQQrfKCmuxzc7NXX_wCQly2yM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60PagH8Yn1uQevwTw2mwRPIkq1D0Ra8LZkNxNfpZZSD_57Z5KtDxAUvCZMCMPsN98m334DcMymc9TXCf3CLPSkCpGWVKk8RdBHbDYow2oWQa-v2kN5fRffLcD5_CwMyyod9teYXqG1u3LisnkyeXzkM75cUPREqlNqWnIRmjImTG5A8-yq0-5_Ho8M0to0vDLdzFIn6KllXvnr7KUyR2UTorCyV_J52MRPXepL57lcg1VHGcVZ_VbrsIDjDVj5YiS4CTe3_NmcleijN1FiTnU-QkG8zj7kbMQsqoE3YjLl3zIMcMJJ1AXr3u8F_7jmNFAsFia3z1swvLwYnLc9NyvBs7QqZ54h6oRhZgJjbYa5TI1KpUz8QvplKm1JjTv2ozIJiwDzKFK0S6LFmgeYWB_RJNE2NMYvY9wBITMZm4J4WByhpA2RiRQmKiciabBAVC1I5rnR1hmJ8zyLkZ4rxp70Z1Y1Z1XXWW1B8BE5qc00_hBzOk-__lYYmjD_1-jdf0UfwVJ70Ovq7lW_swfLfKeWl-1DYzZ9xQPiIzNz6OrtHYJW3c4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recursively+feasible+stochastic+model+predictive+control+using+indirect+feedback&rft.jtitle=Automatica+%28Oxford%29&rft.au=Hewing%2C+Lukas&rft.au=Wabersich%2C+Kim+P.&rft.au=Zeilinger%2C+Melanie+N.&rft.date=2020-09-01&rft.pub=Elsevier+Ltd&rft.issn=0005-1098&rft.eissn=1873-2836&rft.volume=119&rft_id=info:doi/10.1016%2Fj.automatica.2020.109095&rft.externalDocID=S0005109820302934 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon |